
Contents lists available at ScienceDirect
Information Systems

Information Systems 48 (2015) 89–112
http://d
0306-43

n Corr
E-m

xlwang@
mitch.w
journal homepage: www.elsevier.com/locate/infosys
A fast MST-inspired kNN-based outlier detection method

Xiaochun Wang a,n, Xia Li Wang b, Yongqiang Ma a, D. Mitchell Wilkes c

a Xian Jiaotong University, ROC
b Changan University, ROC
c Vanderbilt University, United States
a r t i c l e i n f o

Article history:
Received 11 June 2013
Received in revised form
25 August 2014
Accepted 9 September 2014

Recommended by F. Korn

based methods are that they are very sensitive to the value of k, may have different
Available online 26 September 2014

Keywords:
Distance-based outlier detection
Density-based outlier detection
Clustering-based outlier detection
Minimum spanning tree-based clustering
Approximate k-nearest neighbors’ search
x.doi.org/10.1016/j.is.2014.09.002
79/& 2014 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: xiaocchunwang@mail.xjtu.edu
chd.edu.cn (X.L. Wang), yongqiangma@stu.
ilkes@vanderbilt.edu (D.M. Wilkes).
a b s t r a c t

Today's real-world databases typically contain millions of items with many thousands of
fields. As a result, traditional distribution-based outlier detection techniques have more
and more restricted capabilities and novel k-nearest neighbors based approaches have
become more and more popular. However, the problems with these k-nearest neighbors

rankings for top n outliers, are very computationally expensive for large datasets, and
doubts exist in general whether they would work well for high dimensional datasets. To
partially circumvent these problems, we propose in this paper a new global outlier factor
and a new local outlier factor and an efficient outlier detection algorithm developed upon
them that is easy to implement and can provide competing performances with existing
solutions. Experiments performed on both synthetic and real data sets demonstrate the
efficacy of our method.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Aiming to discover observations that deviate from
other observations so much as to arouse suspicions that
they are generated by a different mechanism, outlier
detection has become an important data mining task [1].
Being applied in many different fields such as intrusion
detection for cyber-security [2,3], fraud detection for credit
cards, insurance and tax [4], early detection of disease
outbreaks in the medical field [5], fault detection in sensor
networks for monitoring health, traffic, machine status,
weather, pollution, surveillance [6], and so on [7,8], it has
generated enormous interests and many techniques have
been developed for this purpose in recent years, namely
distribution-based approaches, depth-based approaches,
.cn (X. Wang),
xjtu.edu.cn (Y. Ma),
distance-based approaches, density-based approaches
and clustering-based approaches.

State-of-the-art k-nearest neighbors (kNN) based out-
lier detection algorithms, such as many distance-based
and density-based methods, have demonstrated various
ways to filter out the normal data and locate the small
number of outliers. While they are simple to implement,
other aspects concerning the algorithms are worth further
exploration. Firstly, these methods usually return only top
n outliers with two values. One is the outlier factor (also
referred to as score in this paper) and the other is the
ranking of the points according to the scores. Therefore,
different methods may have different rankings for top n
outliers. Secondly, it has been observed that k-nearest
neighbors based outlier detection methods are sensitive
to the parameter k and a small change in k can lead to
changes in the scores and, correspondingly, the ranking. As
a result, except for very strong outliers where the scores are
distinct, the ranking is sensitive to k as well. Thirdly, for
modern large datasets with N data items, the O(N log N)

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2014.09.002
http://dx.doi.org/10.1016/j.is.2014.09.002
http://dx.doi.org/10.1016/j.is.2014.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2014.09.002&domain=pdf
mailto:xiaocchunwang@mail.xjtu.edu.cn
mailto:xlwang@chd.edu.cn
mailto:yongqiangma@stu.xjtu.edu.cn
mailto:mitch.wilkes@vanderbilt.edu
http://dx.doi.org/10.1016/j.is.2014.09.002

Fig. 1. A classic example of a local outlier.

X. Wang et al. / Information Systems 48 (2015) 89–11290
running time involved in the exact search of the k-nearest
neighbors has to be improved significantly. Finally, in high
dimensional space, data points become equally close to each
other, raising the so-called problem of “curse of dimension-
ality”, and the issue exists whether the notion of these
outlier definitions is still meaningful for the high-
dimensional data.

To meet these challenges and to explore the impact of
dimensionality on these kNN-based outlier detection algo-
rithms, in this paper, we propose a new minimum spanning
tree (MST)-inspired k-nearest neighbors (kNN)-based out-
lier detection method that continues the work presented in
[9] and is both computationally efficient and competent
with the state-of-the-art outlier detection techniques. Basi-
cally, our method starts by finding k-nearest neighbors for
each data point. Then a mini MST is constructed upon each
data point and its k-nearest neighbors. Finally a small
number of outliers are identified relatively within each
mini MST using our proposed outlier scores. It is based on
the observation that one good point of MST clustering-
based outlier detection methods reside in its taking dis-
tances between data points in an MST (rather than the
distances to the kth or k nearest neighbor(s)) into account
when clustering, thus making the outlier scores relatively
less sensitive to k. However, the construction of an exact
MST requires quadratic running time and is very computa-
tionally expensive for modern large datasets. Therefore, the
aim of this hybridization (i.e., MST clustering-based outlier
detection and kNN based outlier detection) is to increase
the robustness and consistency of the detecting results and
to significantly decrease the computation time of MST-
clustering based outlier detection process. Our first con-
tribution in this paper is two newly proposed MST-inspired
kNN-based outlier scores, a global one and a local one, and
an outlier detection method developed upon them. Our
second contribution is the significant tempo efficiency of
the proposed method through the application of an efficient
approximate k-nearest neighbors’ search framework to our
kNN-based outlier detection techniques. This is an advan-
tage over a preliminary work of this research presented in
[9], which requires a construction of an approximate mini-
mum spanning tree very close to a true one. Our third
contribution is a study of a set of current outlier detection
algorithms when applied to some high dimensional data-
sets. Finally, to be as general as possible, our algorithm has
no specific requirements on the dimensionality of data sets
and can be applied to outlier detection in large high-
dimensional data sets. A number of experiments on both
synthetic and real data sets demonstrate the robustness and
efficiency of the proposed approach in comparison with
several state-of-the-art outlier detection algorithms.

The rest of the paper is organized as follows. In Section 2,
we review some existing work on state-of-the-art outlier
detection approaches. We then present our proposed
approaches in Section 3. In Section 4, an empirical study is
conducted. Finally, conclusions are made in Section 5.

2. Related work

Related work in this paper falls into three main categories:
distance -and density-based outlier detection methods, MST
clustering-based outlier detection techniques, and outlier
detection techniques for high dimensional data.

2.1. Distance-based and density-based outlier detection

Many efforts have been devoted to detecting outliers.
Distance-based outlier detection method was originally
proposed by Knorr and Ng in 1998 as an improvement
over distribution based methods. Given a distance mea-
sure defined on a feature space, “an object O in a dataset T
is a DB(p,D)-outlier if at least a fraction p of the objects in T
lies greater than distance D from O”, where the term DB(p,
D)-outlier is a shorthand notation for a Distance-Based
outlier (DB-outlier) detected using parameters p and D [10].
To suit for different theoretical and practical purposes, two
kNN-based variants have been developed. “Given two
integers, n and k, Distance-Based outliers are the data items
whose distance to their kth nearest neighbor is among top n
largest ones [11]” (referred to as “DB-MAX” in the follow-
ing), and “Given two integers, n and k, Distance-Based
outliers are the data items whose average distance to their
k-nearest neighbors is among top n largest ones [12]”
(referred to as “DB” in the following).

Though simple and elegant, distance-based outlier
detection techniques work well for data sets that contain
one or more clusters with similar densities and can detect
more globally-orientated outliers. However, many real
world data sets often have complex structures. A classic
situation illustrating this deficiency is shown in Fig. 1,
where o1 and o2 are global outliers and can easily be
detected by distance-based methods while o3 is a local one
and cannot.

To deal with this situation, in 2000, Breunig et al.
pioneered the density-based outlier detection research
by introducing an indicator for each data item, called Local
Outlier Factor (LOF), which is a ratio between the local
density of an object and the average of those of its k-
nearest neighbors [13]. The LOF method works by first
calculating the LOF for each object, next ranking data
points according to their LOF values, and, finally, returning
objects with top-n largest LOF values as outliers.

Following the notion of local outlier factor, several exten-
sions and refinements to the basic LOF model have been
proposed. In 2002, Tang et al. proposed a connectivity-based

Fig. 2. Sample clusters in a 2-D data set.

X. Wang et al. / Information Systems 48 (2015) 89–112 91
outlier factor (COF) to deal with “isolativity” of outliers [14].
Isolativity implies low density, but the latter does not always
imply the former. Given a data point o and its k-nearest
neighbors, the first cost in the cost description is the distance
from o to its closest neighbor. In general, the ith (irk) cost is
the smallest distance from o and its (i�1) closest objects to
the rest of the k–i objects in the neighborhood. Finally, the
COF is the ratio of a data point's cost description over the
average of those of its k-nearest neighbors’. In 2003, Papadi-
mitriou et al. proposed another local outlier detection scheme
called Local Outlier Integral (LOCI) based on the concept of a
multi-granularity deviation factor (MDEF). The main differ-
ence between LOF and LOCI is that the MDEF of LOCI uses ε-
neighborhoods rather than k-nearest neighbors [15]. In 2004,
Sun and Chawla proposed a spatial local outlier measure
called SLOM [16]. In 2006, Jin et al. presented the INFLO
method which considers the union of a point's k-nearest
neighbors and its reverse nearest neighbors to obtain a
measure of outlierness [17]. The reverse nearest neighborhood
of a data point p is defined to consist of those of its k-nearest
neighbors for which p is also among its k nearest neighbors.
By this way, INFLO compares p's density with the average of
densities of objects in the union as a measure of outlierness.
Noticing that real-world data usually have a scattered dis-
tribution, in 2009, Zhang et al. proposed a new outlier
definition, named Local Distance-Based Outlier Factor (LDOF),
for detecting outliers in scattered datasets [18]. LDOF is the
ratio of the average of distances from a data point to its k-
nearest neighbors over the average of pairwise distances
among these kþ1 data points and, in this fashion, captures
the degree to which an object deviates from its neighborhood
system. In 2013, Huang et al. proposed a new approach for
outlier detection, named RBDA, based on a ranking measure
that focuses on the question of whether a point is ‘central’
from its nearest neighbors [19]. Eliminating the problem of
density calculation in the neighborhood of a point, RBDA
identifies outliers based on computing the ranks of a point
among all its k-nearest neighbors but unfortunately with a
high computation cost.

2.2. MST clustering-based algorithms

Distance-based as well as density-based outlier scores
are sensitive to the setting of some parameters. This can be
illustrated by a 2-dimensional dataset shown in Fig. 2. For
distance-based outlier detection techniques, if k¼6 near-
est neighbors are considered, all the data points in cluster
C3 will not be detected as outliers, while if k¼7, all the
data points in cluster C3 are regarded as outliers. Similar
problems exist for density-based outlier detection techni-
ques. The situation could be worse for the detection of
outliers in high-dimensional feature space since data
points there cannot be easily visualized.

This is where clustering-based algorithms can be more
meaningful. Being a very important data mining tool, the
main concern of clustering algorithms is to find clusters by
optimizing some criterion, such as minimizing the intra-
cluster distance and maximizing the inter-cluster distance.
As a by-product, data items in small groups can often be
regarded as outliers (noise) that should be removed to
make clustering more reliable. Classic clustering algorithms,
such as K-means algorithm and PAM, rely on grouping the
data points around some “centers” and do not work well
when the boundaries of the clusters are irregular. As an
alternate, graph theory based methods, typified by the MST-
based clustering algorithms, can find clusters with irregular
boundaries.

Being a connected weighted graph over a set of data
points but with no closed paths, a minimum spanning tree
has the minimal total weight. If a weight denoting a distance
between two end points is assigned to each edge, any edge
in an MST will be the shortest distance between two
subtrees that are connected by that edge. This fact is referred
to as the cut property of MST's. Therefore, removing the
longest edges corresponds to choosing the breaks to form
clusters. Minimum spanning tree (MST) based clustering
was first proposed by Zahn in 1971 [20], and has so far been
extensively studied [21,22,23,24,25]. Regarding that data
points in smallest clusters formed by cutting the longest
edges in an MST may likely be outliers, several MST-based
outlier detection techniques have been proposed [26,27,28].
But for modern large and high-dimensional data sets where
only a set of N data points is given, these MST-based outlier
detection algorithms suffer from a quadratic running time
required for the construction of an MST.

To be more computationally efficiency, Wang et al.
proposed an efficient three-phase outlier detection tech-
nique (referred to as MSTþLOF in the following) [9]. First,
an efficient construction of a spanning tree very close to
a minimum spanning tree of the data set is conducted.
Second, the longest edges in the obtained spanning tree
are removed to form clusters. Based on the intuition that
the data points in small clusters may be most likely all
outliers, they are selected and regarded as potential outlier
candidates. Finally, density-based outlying factors, LOF, are
calculated for potential outlier candidates and accessed to
pinpoint the local outliers. The main advantage of the
algorithm is its computation efficiency.

2.3. Projection based High dimensional outlier mining

The outlier detection algorithms presented so far make
implicit assumptions of relatively low dimensionality of
the data and use the distances in full-dimensional space to

X. Wang et al. / Information Systems 48 (2015) 89–11292
find the outliers. However, in high-dimensional space, the
data are sparse and the notion of finding meaningful outliers
becomes substantially more complex and nonobvious. Aside
from considering the behavior of the data in full dimension-
ality, the abnormal deviations may be embedded in some
lower-dimensional subspace [29]. By examining the beha-
vior of the data in subspace, it is possible to design more
meaningful techniques for finding outliers that are specific to
the particular subspace in question. In fact, it has been
reported in [11] that more interesting outliers on the
NBA98 basketball statistics database were obtained by using
fewer features. Based on these observations, Aggarwal and
Yu proposed new techniques for outlier detection (referred
to as Projection Based Outlier Detection (PBOD) in the
following) that define a data point to be an outlier if in
some lower-dimensional projection it is present in a local
region of abnormally low density [30]. To characterize and
find such projections, a grid discretization of the data is first
performed. Each of the d attributes of the data is divided into
φ ranges and, thus, each range contains a fraction f¼1/φ of
the records. For a k-dimensional cube that is created by
picking grid ranges from krd different dimensions, the
sparsity coefficient S(C) of the cube C is calculated as follows:

SðCÞ ¼ nðCÞ�NU f kffi
NU f k U ð1� f kÞ

q ð1Þ

where N is the number of data points and n(C) denotes the
number of points in the k-dimensional cube. Only sparsity
coefficients that are negative indicate cubes in which the
presence of the points is significantly lower than expected.
Once such patterns have been identified, the outliers are
defined as those records that have such patterns present in
them. An interesting observation is that such lower-
dimensional projections can be mined even in data sets that
have missing attribute values [31]. The problem with PBOD
is the exponentially increasing search space of possible
projections with dimensionality. The algorithm is not feasi-
ble for a few hundred dimensions.

3. An MST-inspired outlier detection algorithm

From our study of distance-based, density-based and clus-
tering-based outlier detection algorithms, we have obtained
several observations.
Fig. 3. A sample 2-D data set illustrating a deficiency of dista
Firstly, distance-based methods work theoretically by
calculating kNN for each data point, computing the
distance-based outlier scores for them, ranking all the
objects according to their scores, and finally returning
data points with top n largest scores as outliers. However,
there is no reason to assume that this must be the case.
For example, in Fig. 3, though distance-based outlier
scores can be calculated for this data set, from an MST
point of view, there are no outstanding outliers. Unfortu-
nately, MST-based clustering criterion favors cutting small
sets of isolated nodes in a graph and can give a bad
partition when no outliers exist. This fact can be easily
manifested from the dataset shown in Fig. 3. Therefore,
there must be some way to judge whether outliers exist or
not. To do so, as a first degree approximation, the edge
weights (i.e., edge distances) within a cluster of an MST
can be assumed to follow a uniform distribution and the
corresponding mean and standard deviation can thus be
calculated. The ratio of the standard deviation over the
mean can be used to judge to some degree whether
outliers exist or not.

Secondly, density-based outlier detection algorithms
may not do well in global outlier detection. For example,
consider the data set in Fig. 4. Apparently data point A is
farthest away from its six closest neighbors and therefore
should be identified as a global outlier. However, for k¼6,
the LOF algorithm assigns a higher outlier score to data
point B than to A. This is because that LOF is computed as a
ratio and data point B gets a higher ratio for this k. As a
result, LOF-based algorithms fail to identify A as the most
significant outlier [20]. From an MST point of view as
shown on the right of Fig. 4, if tree edge weight (i.e.,
distance) is used as the outlier factor, this will not happen
and data A's score remains as a constant for different k's.

Thirdly, according to the cut property, MST-based
clustering algorithms can be very useful in detecting small
clusters that are connected to the normal data points by
long edges and can be selected and regarded as outliers as
illustrated in Fig. 4. However, standard MST clustering-
based outlier detection algorithms usually take a quadratic
running time to ensure the properties of MSTs to be
satisfied. From our point of view, this is neither efficient
nor necessary.

Based on these observations, the working ideas behind
our efficient MST-inspired outlier detection algorithm are
formalized in the following subsection.
nce-based outlier detection (left) data set (right) its MST.

Fig. 4. A sample 2-D data set illustrating a deficiency of LOF-based outlier detection (left) data set (right) its MST.

X. Wang et al. / Information Systems 48 (2015) 89–112 93
3.1. Two new outlier factors
Definition 1. (Hawkins Outlier) An outlier is an observa-
tion that deviates from other observations so much as to
arouse suspicions that it is generated by a different
mechanism.

Definition 2. (Clustering) Given a dataset T, a general
clustering algorithm attempts to partition T into K clusters,
C1, C2,…, CK, CiaØ, Ci\Cj¼Ø, T¼C1[C2[…[CK, i,j¼1:K,
ia j, such that the distance between any closest pair of
points in a cluster is less than the distance between any
point in the cluster and any point not in the cluster (or, in
its nearest cluster).

Definition 3. (Distance between two clusters) Let Ci, Cj be
clusters of the dataset T, the distance between Ci and Cj is
defined as ρ(Ci,Cj)¼min {ρ(xi,xj)| xi,ACi,xjACj}.

Definition 4. (Minimum spanning tree) Given a weighted
and connected graph, G(T)¼(V,E) with a vertex set V¼T
(i.e., a set of T data points) and an edge set E¼{eij¼(xi, xj)|
xi, xjAT, ia j}. Each edge eij has a weight w(xi, xj), a
minimum spanning tree (MST) of graph G(T) is an acyclic
subset of E that connects all the vertices in V with
minimum total weights W(MST)¼ min {Σxi,xjAV,eijAEw(xi,
xj)} and satisfies the following two conditions:
(1)
 the cut property: the edge with the smallest weight
crossing any 2 partitions of the vertex set must belong
to an MST and
(2)
 the cycle property: the edge with the largest weight in
any cycle in a graph cannot be in an MST.
If a weight (i.e., w) denoting a distance (i.e., ρ) between
two end points is assigned to each edge, any edge in an
MST will be the shortest distance between two subtrees
that are connected by that edge. Therefore, removing the
longest edges (i.e., the inconsistent edges) will theoreti-
cally result in clusters.

Definition 5. (Link) A partition of the nodes of a graph G
is a division into two disjoint nonempty subsets (Ci, Cj).
A link is any edge in G whose weight is equal to the
distance ρ(Ci, Cj).
Theorem 1. All MST edges are links of some partition in
graph G. (The proof is given in [20].)

Definition 6. (Minimum spanning tree based clustering)
Given a dataset T and an MST of it, MSTT, let Cm, Cn be two
subsets of T such that Cm, CnDT, Cm\Cn¼Ø and CmaØ,
CnaØ. Cm and Cn are minimum spanning tree based
clusters if they are formed by removing the link whose
edge weight (i.e., distance) is significantly larger than the
average of nearby edge weights on both sides of the link,
that is, ρ(Cm, Cn)»max{ρ(Cm), ρ(Cn)}, where ρ(Cm)¼max{ρ
(xi, xj)|xi, xjACm,eijAMSTT, ia j}and ρ(Cn)¼max{ρ(xi, xj)|xi,
xjACn, eijAMSTT, ia j}.

Definition 7. (Minimum spanning tree clustering based
outliers) Let C1,C2,…,CK be the clusters of the dataset T
discovered by MST-based clustering in the sequence such
that |C1|Z |C2|Z⋯Z |CK|. Given parameters α and β, clus-
tering based outliers are the clusters in Ci through CK such
that: |C1|þ |C2|þ⋯þ |Ci�1|Z |T|nα and |C1|þ |C2|þ⋯þ |Ci�2|
r |T|nα. and Ci�1/Ci4β.

According to normal distribution, α can take a value of
0.3%. Without loss of generality, β can take a minimum
value of 3.

Definition 8. (MST clustering based global outliers) Let C1,
C2,…,CK be the clusters of the dataset T discovered by MST-
based clustering, and ρMAX be the largest intra-cluster edge
weight, a cluster Ci is an MST-clustering based global
outlier cluster if ρ(Ci, Cj)⪢ρMAX, where Cj is the nearest
neighboring cluster of Ci.

Definition 9. (MST clustering based local outliers) Let C1,
C2,…,CK be the clusters of the dataset T discovered by MST-
based clustering, and ρMAX be the largest intra-cluster edge
weight, a cluster Ci is an MST-clustering based local outlier
cluster if ρ(Ci, Cj)oρMAX, but ρ(Ci, Cj)⪢ρ(Cj), where Cj is the
nearest neighboring cluster of Ci.

For the sample dataset shown in Fig. 5, it can be seen
that o1 (i.e., cluster C3) is an MST-based global outlier since
E1⪢ρMAX (i.e., ρ(C1)) and E1oE2, while o2 (i.e., cluster C4) is
an MST-based local outlier since E3oρMAX and E3⪢ρ(C2)
where E3¼ρ(C2, C4).

Definition 10. (MST clustering based global outlier factor)
Let C1 be an MST-clustering based global outlier group and

Fig. 5. Sample clusters in a 2-D data set.

X. Wang et al. / Information Systems 48 (2015) 89–11294
C2 be the nearest cluster of C1. The MST clustering based
global outlier factor is defined as ρ(C1,C2).

Definition 11. (MST clustering based local outlier factor)
Let C1 be an MST-clustering based local outlier group and
C2 be the nearest cluster of C1. The MST clustering based
local outlier factor is defined as ρ(C1,C2)/ρ(C2).

Since there are only a small number of outliers in a
dataset, MST clustering-based outlier detection algorithms
can be more efficient if the longest edges connecting the
outlier clusters to the normal data can be correctly identi-
fied and quickly located. In other words, some of the longest
edges do not correspond to any cluster separations but are
associated with the outliers. Basically, this observation for
the design of a more efficient scheme is formalized in the
following theorem.

Theorem 2. Given a data set and a minimum spanning
tree constructed upon it, for an outlying group of k data
points, the edge connecting these k data points to the rest
of data set is the same as the one in a mini MST
constructed upon these k data points and the data point
at the other end of this edge in the minimum spanning
tree constructed upon the data set.

Proof. To prove this, we use contradiction. Suppose there
exists another smaller edge connecting these k outlying
data points to the rest of the data set. This is impossible
because otherwise the cut property will be violated.
Therefore, they must have been the same one. This is true
for both global and local outliers. &

Based on Theorem 2, locating the longest edges in an
MST connecting the outliers to the rest of data is equivalent
to locating the longest edges in mini MSTs constructed
upon each data point and its k-nearest neighbors, which
takes much less time since many efficient kNN computation
methods have been proposed [32]. Therefore, we can carry
out an outlier detection procedure (e.g., an MST-clustering
based one) within each data point and its k-nearest
neighbors to detect top outliers. On the other hand, since
MST-based clustering has been an active research area and
many sophisticated algorithms have been developed for it
for small datasets, MST-based clustering algorithms can be
dwelt upon and tapped for their potential for outlier
detection within a mini MST. This is where the combination
of kNN structure and the cutting property can be exploited.
In this sense, it will be more meaningful if k is defined
to be the size of the largest outlying cluster plus 1 for
outlier detection process. To identify the relatively small
number of long edges connecting small outlier groups to
the majority of normal data of an MST, a mini MST for
every point and its kNN is first constructed.

To find global outliers, we first search for the edge in
these mini MSTs that has the largest edge distance value. If
it is significantly larger than the average values of neigh-
boring edges, this longest edge among mini MSTs can be
regarded as the global outlier score for those data items
that are in the same partition as the data point itself. In
other words, these data points are this longest edge away
from the rest data points of the database. As illustrated in
Fig. 4, it is evident that, compared to DB and DB-MAX,
these global scores are less sensitive to k.

Further for global outlier detection, we are more inter-
ested in those mini MSTs in which the weights of the
longest edges are significantly larger than the average
values of those of the neighboring edges. To further
quantify the significance of an edge's weight being larger
than the average values of neighboring edges for global
outlier detection, we use the uniform distribution as a first
degree approximation for tree edge weights in mini MSTs.

Definition 12. (miniMST-based global outlier indicator)
Let a mini MST be constructed upon a data point and its
k-nearest neighbors, dist[i] denote the ith edge weight of
such mini MST starting at the point, miniMST-based global
outlier indicator, SOMMST, is define to be the ratios of
the standard deviation, StdMST, and the mean, MeanMST,
of these edge weights (i.e., edge distances) as

MeanMST ¼
1
k

∑
k

i ¼ 1
dist½i� ð2Þ

StdMST ¼
ffi
1
k

∑
k

i ¼ 1
ðdist½i��MeanMST Þ2

s
ð3Þ

SOMMST ¼
StdMST

MeanMST
ð4Þ

SOMMST is a quantitative measure of deviation from normal-
ity and can be used as a threshold to rule out the large
portion of normal data. Based on these ideas, our kNN-based
global outlier score is given in the following definition.

Definition 13. (MST-inspired kNN-based global outlier
factor) Let a mini MST be constructed upon a data point
and its k-nearest neighbors, dist[i] denote the ith edge
weight of such mini MST and cut-thred be a user provided
threshold for SOMMST which measures the possibility of
outlier existence, an MST-inspired kNN-based global out-
lier factor is defined as

MST�MAX ¼ max
i ¼ 1:k

fdist½i�g ð5Þ

SOMMST Zcut�thred ð6Þ

For local outliers, since they are significantly far away only
from their nearest neighboring clusters, the local outlier

X. Wang et al. / Information Systems 48 (2015) 89–112 95
score is defined as the ratio of the largest edge weight value
over the smallest edge weight value in each mini MST.

Definition 14. (MST-inspired kNN-based local outlier fac-
tor) Let a mini MST be constructed upon a data point and
its k-nearest neighbors and dist[i] denote the ith edge
weight of such mini MST, the MST-inspired kNN-based
local outlier factor is defined as

MST�MAX�MIN¼
max
i ¼ 1:k

fdist½i�g
min
i ¼ 1:k

fdist½i�g ð7Þ

The local outlier detection can be assumed to be over
when the ratio drops below a threshold (say 3). Finally, the
outlier scores are used to assign the returned data points a
degree of being outlying.
3.2. An approximate nearest neighbor search structure

Since most data points are normal, the goal of finding
top n outliers can be achieved by first quickly finding
a good estimate of the outlying score for each data item
and then focusing on top mZn ones. By removing all the
inliers among them, the required top n outliers show up.
To meet this goal, we are particularly interested in an
approximate nearest neighbor search facility, called the
divisive hierarchical clustering algorithm (DHCA) [21].
Essentially, to start the DHCA, K centers at the top level
are randomly selected from the whole data set. Next each
data point is assigned to its closest center, creating K
partitions. At each successive level in the iteration, for each
of these K partitions, K random centers are recursively
selected within each partition and the clustering process
continues to form at most Kn partitions at the nth stage.
The procedure continues until the number of elements in a
partition is below Kþ2, at which time, a nearest neighbor
search among all the data items in that partition is
conducted. Such a strategy ensures that points that are
close to each other in space are likely to be collocated in the
same partition, and multiple runs of DHCA greatly enhance
such possibilities. A more detailed demonstration and proof
of the effectiveness of DHCA on approximate nearest
neighbors’ search have been given in [21] and will not be
repeated here. After several iterations, exact kNNs and the
correspondingly scores are computed for top outliers. The
number of top outliers is small, thus the computation time
is fast. With these observations in mind, a simple outlier
detection method is developed in the following.

3.3. Our MST- inspired outlier detection algorithm

We combine the above three factors to create our MST-
inspired kNN-based outlier detection algorithm:
1.
 set k to be the largest outlying cluster size plus 1;

2.
 sequentially read the data set in and initialize k neigh-

bors of each data item from its immediate predecessors
or successors on the fly (referred to as sequential
initialization (SI));
3.
 run DHCA multiple times, and, for each iteration,
calculate a 1-dimensional array of the average distance
of each data item to its kNN and then the array mean;
stop this step when the percentage differential of the
mean between two consecutively iterations is below
10�6;
4.
 construct the mini MST over each data item and its k
nearest neighbors;
5.
 compute three 1-dimensional arrays of the estimated
outlying scores for iNN (where i¼2:k), and sort them in
a non-increasing order;
6.
 for data items with top global outlying scores, find their
true iNN and calculate their true outlying scores, check
its SOMMST, return it if the SOMMST is larger than a
threshold (say 1.5), then if i¼k, the global outlier
detection is completed, otherwise, i¼ iþ1 and go to 5;
7.
 for data items with top local outlying scores, find their
true iNN and calculate their true outlying scores, return
it if the score is larger than a threshold (say 3), then if
i¼k, the local outlier detection is completed, otherwise,
i¼ iþ1 and go to 5;
8.
 repeat steps 5, 6 and 7 until all the outliers (i.e., whose
score is above the global or local thresholds) are mined.

Since the number of outliers is expected to be relatively
small, the number of distance computations consumed is
expected to be relatively small as well.

Physically, the resource consumed by our algorithm
includes the space to hold the whole data set in memory,
space to store their k neighbors, and some temporary
space for mini MSTs. The numerical parameters our algo-
rithm needs from the user include the number of nearest
neighbors (i.e., k), the global and local outlier thresholds,
while the outputs include a set of ranked outliers from the
dataset. To improve the readability, our outlier detection
algorithm is presented in a pseudo code format in Table 1.

3.4. Time complexity analysis

From the description in the previous subsections, it can
be seen that our algorithm mainly consists of three steps, a
sequential initialization, a DHCA updating, and finally top
outliers’ mining. The time complexity for sequential initiali-
zation is dNk. Since the number of outliers is small, the third
step takes a nearly linear time on average. For the runs of
DHCA, we use a tree structure to analyze its time complexity.

In d-dimensional space, the time complexity of the kNN
computation is upper bounded by O(dN2). However,
if fortunately, a dataset can be evenly partitioned into several
well separated clusters, such as the one shown on the left of
Fig. 6, the computation cost can be reduced to dN2/4. Then
how to quickly find kNN for a data point becomes how to
quickly partition data into size reduced well separated
equally distributed clusters. It is in this sense that DHCA
provides a very good way to partition data quickly.

At the top level of DHCA, the number of distance
computations is dNK, where K is the number of subsets
for DHCA. For each subsequent level l, if it is a balanced
tree, there are Kl subsets of size N/Kl, and the partition cost
is still dNK. At the lowest lever, since Kþ2 number of data
points is quite small, the pairwise distance computation

Fig. 6. An illustration of the effect of DHCA.

Table 1
Our MST-inspired outlier detection algorithm.

Input:
data a set of N data points
k the number of NNs of a data item
K the number of clusters at each step
SOM-TH global outlier detection termination threshold
MAX-MIN-TH local outlier detection termination threshold
Output:
a set of ranked global outliers GO, a set of ranked local outliers LO
Begin

set k to be the largest outlying cluster size plus 1
perform a sequential initialization (SI)
run DHCA multiple times until the percentage difference between two consecutively updated kNN is below 10�6;
find miniMST for each data point
for each i¼2:k
{ compute three 1-dimensional arrays of the estimated outlying scores for iNN, namely, MST-MAX, MST-MAX-MIN and SOMMST, and

sort the first two in a non-increasing order and the orders are remembered in MST-MAX–INDEX and MST-MAX-MIN-INDEX, respectively;
GO_T¼[];
for j¼1:N
{

find true iNN for MST-MAX-INDEX[j];
recomputed the global score and SOMMST;
if (SOMMST[MST-MAX-INDEX[j]]4SOM-TH)

GO_T¼[GO_T MST-MAX-INDEX[j]];
end

}
GO¼[GO GO_T];
LO_T¼[];
for j¼1:N
{

find iNN for MST-MAX-MIN-INDEX[j];
recomputed the local score;
if(MST-MAX-MIN[j]]4 MAX-MIN-TH)

LO_T¼[LO_T MST-MAX-MIN-INDEX[j]];
end

}
LO¼[LO LO_T];

}
End

GO_T and LO_T are temporary arrays to hold ranked outliers for each i.

X. Wang et al. / Information Systems 48 (2015) 89–11296
takes a nearly constant time. For a balanced tree, the tree
height l is logK N. The best case time complexity of a DHCA
is O(dNK logK NþN).

However, in practice, we may not have a balanced tree,
and it can happen that a partition may result in two
completely unbalanced subsets where one set contains
most of the points. Therefore, the worst time complexity to
DHCA could be O(dN2). Fortunately, by randomly selecting
the partition centers, the probability of isolating a point
from its neighbors is small, and the worst case when all
the data items are clustered into the same partition will be
diminished. The average time complexity of DHCA can be
roughly approximated as the case of the balanced tree. On
the other hand, as shown on the right of Fig. 6, any data
point in a partition is closer to its cluster center (not its
nearest neighbor) than to the center of any other partition,
the data points in the clusters’ boundaries can be mis-
classified into a wrong partition. Fortunately, MSTs are

Table 2
The node class.

Name Explanation

public data members:
sampleNumbers; An array holding the indices of all samples in the cluster
centroid; An array holding the indices of the randomly chosen cluster centers
childNodes; An array holding the indices of its child Nodes in the Node array
parent; An integer holding the index of its parent Node in the Node array
vecindex; An integer holding the index of the current Node in the Node array

public Methods:
void DHCA Our DHCA Procedure

Table 3
The DHCA member function.

Procedure name DHCA

Input:
dist_knn, edge_knn The auxiliary arrays to remember k-nearest neighbors(kNN) for each data item
k The number of NNs of a data item
nodeArray An array of the Node structures
currentNode The current Node in the Node array
K The number of clusters at each step
data The input data set
clustersize The maximum size of each clusters
Output:
updated dist_knn, edge_knn, and newly generatedrK Nodes
Begin

randomly select K centers from sampleNumbers of currentNode;
generate K newNodes;
for each sample i in sampleNumbers of currentNode that is not a center
{ find its nearest center j out of K;

if (dist_knn[i].max4distance(i,j)
update dist_knn, edge_knn;

end
assign sampleNumbers[i] to the group of center j;

}
for each newNode j¼1: K
{ if (newNode[j].sampleNumbers.size4clustersize)

push newNode[j] to the end of nodeArray;
assign values to data members parent and vecindex;

end
}

End

dist_knn[i].max is the kNNth nearest neighbor of data item i.

X. Wang et al. / Information Systems 48 (2015) 89–112 97
relatively insensitive to this effect, which can be easily
figured out from Fig. 6 Therefore, a few DHCA will meet
our needs.

As a result, we expect the time complexity of our
algorithm to be O(dfNK logK N), where f denotes the number
of DHCA run.

3.5. Pseudo code for DHCA

The implementation of the DHCA in our approach is
through the design of a Cþþ data structure called Node,
which has several member variables for bookkeeping and
a main member function that clusters its own set into K
subclusters. The outputs of the Node data structure are at
most K new Nodes as the descendents of the current one.

The divisive hierarchical clustering process starts with a
Node instance, called the topNode, which has every data
item in the data set as its samples, and generates K data
subsets in the form of K Nodes. Only when the number of
samples in a Node is larger than a predefined cluster size
will that Node be pushed to the back of the topNode,
forming an array of Nodes. This process continues recur-
sively until no new Nodes are generated and the end of the
existing Node array is reached. The Node class is summar-
ized in Table 2 and the DHCA procedure is given in Table 3.

4. A performance study

In this section, we present the results of three sets
of experiments performed to evaluate our MST-inspired
outlier detection algorithm. In Experiment 1, three 2-
dimensional synthetic data sets are used to show that
our MST-inspired outlier detection method can outper-
form classic outlier detection algorithms in classification
accuracy. In Experiment 2, five real data sets obtained from
the UCI Machine Learning Repository [33] are used to
check the technical robustness of this study and to illustrate
the effectiveness of our method in real-world situation.

Table 4
the sets of data.

Data set Size (N) Dimensionality

Dataset1 515 2
Dataset2 78 2
Dataset3 473 2
Shuttle 14 500 9
Lymphography 148 18
Ionosphere 351 34
Optical digits 5620 64
Multiple features 2000 649
IPUMS 88 443 68
Covertype 581 012 55
UScensus 2 458 285 61

X. Wang et al. / Information Systems 48 (2015) 89–11298
In Experiment 3, we evaluate the run time performance of
the proposed algorithm on three large real data sets and
compare it with that of MSTþLOF outlier detection algo-
rithm to show the impact of different data sizes and input of
k's on our algorithm. All the data sets are briefly summar-
ized in Table 4. All the algorithms are implemented in
C/Cþþ and run on a computer with Intel Core 2 Duo
Processor E6550 2.33 GHz CPU and 2 GB RAM. The operat-
ing system running on this computer is Windows XP. We
use the timer utilities defined in the C standard library to
report the CPU time. The results show that, overall, our
MST-inspired outlier detection algorithm is superior to
other state-of-the-art outlier detection algorithms in both
classification accuracy and the execution time. For consis-
tency, we only use the parameter k to represent the
neighborhood size in the investigation of these methods.
4.1. Performance of our algorithm on synthetic datasets

In this subsection, we use three synthetic data sets to
show that the proposed method can efficiently identify
local and global outliers in various scenarios. In each
dataset, there are multiple clusters and six outliers (A, B,
C, D, E, and F) are planted in the vicinities of the clusters. A
particular challenging feature of these data sets is that
clusters are of different sizes and have different densities.
We exclusively use 2-dimensional data sets due to their
convenience for visual inspection.

To study the relative effects of our proposed outlier
detection algorithm to parameter k, for comparison with
DB, DB-MAX, LOF, COF, INFLO, LDOF, RBDA, and MSTþLOF,
we first decide the largest number of data points for an
outlying cluster, next calculate the outlier scores given by
each outlier definition, sort them in a nondecreasing order
and return top ones.

Synthetic dataset 1 consists of 515 instances, including
six planted outliers, one large normally-distributed cluster
and two small uniform clusters. This is a global outlier
detection task. For our approach, if the size of the largest
outlying group is set to 2, k is set to 3 for all the algorithms
in this case. The experimental results are depicted in Fig. 7
where 6 top outliers are marked with red plus, red star, red
cross, red triangle, red circle and red square in order,
respectively.
From the figures, it can be seen that, DB, DB-MAX, LOF,
INFLO MSTþLOF and our method (i.e., MST-MAX) correctly
detect all the outliers, though the rankings are slightly
different for different methods. Unfortunately, COF does
not do very well, and misses A, D, F. Since the average of k
nearest distances and that of the k(k�1) pairwise inner
distances are both large for B,D,F, their ratios are near 1
and they are missed by LDOF. RBDA misses one global
outlier, (i.e., A) in Fig. 7. This phenomenon is due to the
fact that the rank of A in its 3 nearest neighbors is
relatively lower than the ranks of H in its 3 nearest
neighbors. PBOD detects 3 right for top 6 outliers.

So far, it is implicitly assumed that the number of
outliers is given beforehand and it is not clear when the
detection process should come to a close. As an improve-
ment, SOMMST can be used as a first degree approximation
for such purpose.

To test our termination mechanism, we show top 7
outliers detected using our algorithm for k¼3 in the
middle plot on the last line of Fig. 7. From the figure, we
can observe the limitation of our global outlier factor, that
is, data point K is mistakenly detected by our global outlier
definition. Fortunately, our termination mechanism for
global outlier detection identifies data object K to have a
very low SOMMST value (which is actually 0) and declares
the end of global outlier detection.

In addition to 6 planted outliers, there are three
clusters existing. Correspondingly, if the size of the largest
outlying group is set to 9, the dataset has only a major data
pattern. Depicted in Fig. 8 are the experimental results for
each method when k is set to 10, at which case, there are
totally 24 outliers. To simplify the illustration, totally 24
top outliers are marked with red plus.

From the figure, it can be seen that DB misses one for
k¼10. LOF identifies only 10 out of 24 correctly. COF does
not do very well, either and misclassifies 19 out of 24.
INFLO gets only 9 out of 24. LDOF does not detect two
clusters of size 9 and therefore misses 18 out of 24. RBDA
misses 9 points in one of the two clusters of size 9. PBOD
works a little better for this case and only misses 2 for top
24 outliers. LOCI misses 2 but with quite some false
positives. DB-MAX, MSTþLOF and our method (i.e., MST-
MAX) detect all the outliers correctly.

To test if our approach can effectively find meaningful
outliers in a little more complex dataset, we use Synthetic
Dataset 2 which contains 78 instances, including five
planted global outliers, one planted local outlier B, and
four clusters of different densities consisting of 36, 8, 12
and 16 uniformly distributed instances.

To demonstrate the effectiveness of our approach in
finding both global and local outliers, we compare the
effectiveness of the distance-based and density-based meth-
ods on this dataset. For these kNN-based methods, we first set
k¼3 and the screen shots in Fig. 9 show the results for mining
top 6 outliers. For this case, DB and DB-MAX both miss B and
C, and have the same ranks for A, D, E and F. LDOF, our MST-
MAX and MSTþLOF all miss one of them while PBOD misses
5. RBDA, INFLO, COF, LOF and our local outlier factor MST-
MAX-MIN detect all six outliers correctly. The plot at lower
bottom-right corner shows those data points whose SOMMST

values above 1.5, which correctly identifies the six outliers.

Fig. 7. The outlier detecting results on synthetic dataset 1 for k¼3.

X. Wang et al. / Information Systems 48 (2015) 89–112 99
In addition to six planted outliers, there is also a small
cluster consisting of 8 points. If it is also regarded as an
outlying group, we set k to 9. For this case, there are 14
outliers. The detection results are shown in Fig. 10. From
the figure, it can be observed that DB-MAX does not
perform well when local outlier exists. DB misses 10, DB-
MAX misses 11, LOF misses 3, COF misses 6, INFLO misses
4, LDOF misses 8, RBDA misses 6, PBOD misses 12. LOCI
misses 11. MSTþLOF misses 1. Our local outlier detector,
MST-MAX-MIN, detects all right.

From Figs. 9 and 10, the advantage of our local outlier
detection factor, MST-MAX-MIN, is very evident on this
comparably low dimensional data set having not only
global outliers, but also local outliers. The experiment
shows that our method is suitable to mixed type data as
well in this sense.

To test our method as a whole, Synthetic dataset 3,
which has 473 data points and consists of 5 clusters with
different densities and 6 outliers, is used. A particular
challenging feature of this data set is that three denser
clusters are buried into one sparse cluster on the upper
right corner. Since the largest outlying group has 2 data
points (i.e., E and F), k is first set to 3. The performance of
outlier detection methods is shown in Fig. 11. The same

Fig. 8. The outlier detecting results on synthetic dataset 1 for k¼10.

X. Wang et al. / Information Systems 48 (2015) 89–112100
conventions are employed for the plots. From the figure,
it is easily seen that this is also a global outlier detection
situation with the difference from Synthetic dataset 1
being that the detection process is disturbed by the
immediate connection of clusters with different densities.

For detecting top 6 outliers, COF misses B and C, LDOF
misses E and F, RBDA misses C and PBOD misses all. The
good news is that DB, DB-MAX, LOF, INFLO, MSTþLOF and
our method detect all six outliers correctly but with
different rankings. If the sparse cluster (i.e., the one
consisting of 7 data points) is also regarded as an outlying
group, k is set to 8. For this situation, both DB-MAX and
LOF misses 1, COF misses 7, INFLO misses 2, LDOF misses 8,
RBDA misses 6, PBOD misses 6, LOCI misses 8, while DB,
MSTþLOF, and our outlier detector get all right, as shown
in Fig. 12.

To summarize, it can be observed from Figs. 7–12 that
our method has no problems detecting all outliers and
clearly offer the best ranking in three synthetic datasets
while all other methods do not perform competently with
detecting all the outliers for two different k's one way or
the other. In other words, the advantage of our outlier
detection factors is very evident on these 2-dimensional
data sets.

Fig. 9. The outlier detecting results for synthetic dataset 2 for k¼3.

X. Wang et al. / Information Systems 48 (2015) 89–112 101
4.2. Performance on real datasets

As pointed out by Aggarwal and Yu, one way to test
how well the outlier detection algorithm works is to run
the method on the dataset and test the percentage of
points which belongs to the rare classes [34]. To evaluate
the effectiveness and accuracy of our proposed method on
real data, we compare the algorithms by their performance
on detecting rare classes in five real datasets, namely, the
Lymphography, Shuttle, Ionosphere, Optical Digits and
Multiple Features datasets, which are downloaded from
UCI [33].
To quantitatively measure the performance of an out-
lier detection scheme, three popular metrics, namely,
precision, recall, and rank power, are employed here.
Assuming that a dataset D¼Do[Dn where Do denotes
the set of all outliers and Dn denotes the set of all normal
data. Given any integer mZ1, if Om denotes the set of
outliers among the objects in the top m positions returned
by an outlier detection scheme, precision and recall are
defined as

precision¼ Omj j
m

ð8Þ

Fig. 10. The outlier detecting results for synthetic dataset 2 for k¼9.

X. Wang et al. / Information Systems 48 (2015) 89–112102
recall¼ Omj j
Doj j ð9Þ

Therefore, precision measures the percentage of true
outliers among top m ranked objects returned by a
method, while recall measures the percentage of total
outlier set included in top m ranked objects. Usually, users
are not only interested in how many true outliers being
returned by a method, but also in where they are placed.
rank power is a metric that considers both the placements
and the number of results returned by a method. Here, the
rank power given in [35] is used. Suppose that a method
returns m objects, n of which are true outliers. For
1r irn, if Li denotes the position of the ith outlier, the
rank power of the method with respect tom can be defined
as

Rank Power ¼ nðnþ1Þ
2∑n

i ¼ 1Li
ð10Þ

As can be seen from Eq. (10), rank power weighs the
placements of the returned outliers heavily. An outlier
placed earlier in the returned list adds less to the denomi-
nator of the rank power (and thus contributes more to the

Fig. 11. The outlier detecting results for synthetic dataset 3 using k¼3.

X. Wang et al. / Information Systems 48 (2015) 89–112 103
rank power metric) than those placed later in the list.
A value of 1 indicates the best performance and 0 indicates
the worst.

To measure the capability of each algorithm to retrieve
the most likely outliers and to compare the quality of the
ranking provided by each algorithm, in the following, the
performance is measured with the three metrics of recall,
precision, and rank power, denoted by p, r and rp, respec-
tively. The value of m indicates top m ranked records
returned by our scheme. SOM-TH is set to 1.5 and MAX-
MIN-TH is set to 3 for all the experiments in this subsection
using our method.
4.2.1. Lymphography data
The Lymphography dataset has 148 instances with 18

attributes and contains a total of 4 classes. Classes 2 and 3
have the largest number of instances (81 and 61, respec-
tively). The remaining two classes have 6 instances in total
(2 and 4, respectively) and are regarded as outliers (i.e.,
rare classes) for they are small in size. We report the
corresponding detecting results of our method, PBOD
method and three best cases of the rest methods in
Table 5 for four values of k and five values of m.

For k equal to 7, PBOD is the first one to mine all six
outliers within top 10 ranked instances. LOF and our

Fig. 12. The outlier detecting results for synthetic dataset 3 for k¼8.

X. Wang et al. / Information Systems 48 (2015) 89–112104
method are the second one. For k equal to 30, LOF, INFLO
and RBDA perform better than PBOD. The detection
performances of our method are similar with the other
four methods and stay the same for all k's, that is, our
method is less sensitive to parameter k, which agrees with
our expectation.

4.2.2. Space shuttle data
The Shuttle dataset contains 14500 objects, in which

each object has 9 real-valued features and an integer label
(1–7), and has 7 clusters. We regard those objects with
labels 2, 6 and 7 (with 13, 4 and 2 objects respectively) as
outliers, and the rest 4 classes as normal data (i.e., classes
1, 3, 4, 5, with 11478, 39, 2155 and 809 instances,
respectively). We show in Table 6 the experimental results
of our method, PBOD method and three best cases of the
rest methods for four different values of k's and seven
values of m's. As reflected in the table, this is not a very
easy task for all other techniques. Our method performs
significantly better in comparison with others for all k's
and all m's. More specifically, our method has the highest
precision and recall and is less sensitive to k as in the case

Table 5
Lymphography, K¼7,10,20,30.

m LOF INFLO RBDA Our method PBOD

n p r rp n p r rp n p r rp n p r rp n p r rp

k¼7
5 4 0.80 0.67 0.83 3 0.60 0.50 0.60 3 0.60 0.50 0.86 4 0.80 0.67 0.71 2 0.40 0.33 1.00
10 5 0.50 0.83 0.75 5 0.50 0.83 0.58 4 0.40 0.67 0.71 5 0.50 0.83 0.68 6 0.60 1.00 0.88
15 6 0.40 1.00 0.64 5 0.33 0.83 0.58 5 0.33 0.83 0.60 6 0.40 1.00 0.57 6 0.40 1.00 0.88
20 6 0.30 1.00 0.64 5 0.25 0.83 0.58 5 0.25 0.83 0.60 6 0.30 1.00 0.45 6 0.30 1.00 0.88
30 6 0.20 1.00 0.64 6 0.20 1.00 0.40 6 0.20 1.00 0.42 6 0.20 1.00 0.37 6 0.20 1.00 0.88

k¼10
5 4 0.80 0.67 0.83 3 0.60 0.50 0.60 3 0.60 0.50 1.00 4 0.80 0.67 0.71 – – – –

10 5 0.50 0.83 0.79 5 0.50 0.83 0.65 5 0.50 0.83 0.65 5 0.50 0.83 0.68 – – – –

15 5 0.33 0.83 0.79 5 0.33 0.83 0.65 5 0.33 0.83 0.65 6 0.40 1.00 0.49 – – – –

20 6 0.30 1.00 0.58 5 0.25 0.83 0.65 5 0.25 0.83 0.65 6 0.30 1.00 0.49 – – – –

30 6 0.20 1.00 0.58 5 0.17 0.83 0.65 5 0.17 0.83 0.65 6 0.20 1.00 0.40 – – – –

k¼20 – – – –

5 4 0.80 0.67 1.00 4 0.80 0.67 1.00 4 0.80 0.67 1.00 4 0.80 0.67 0.77 – – – –

10 5 0.50 0.83 0.94 5 0.50 0.83 0.94 5 0.50 0.83 0.94 5 0.50 0.83 0.60 – – – –

15 5 0.33 0.83 0.94 6 0.40 1.00 0.68 5 0.33 0.83 0.94 6 0.40 1.00 0.40 – – – –

20 6 0.30 1.00 0.66 6 0.30 1.00 0.68 6 0.30 1.00 0.58 6 0.30 1.00 0.40 – – – –

30 6 0.20 1.00 0.66 6 0.20 1.00 0.68 6 0.20 1.00 0.58 6 0.20 1.00 0.32 – – – –

k¼30 – – – –

5 4 0.80 0.67 1.00 4 0.80 0.67 0.83 4 0.80 0.67 1.00 4 0.80 0.67 0.77 – – – –

10 6 0.60 1.00 0.84 6 0.60 1.00 0.78 6 0.60 1.00 0.84 5 0.50 0.83 0.71 – – – –

15 6 0.40 1.00 0.84 6 0.40 1.00 0.78 6 0.40 1.00 0.84 6 0.40 1.00 0.44 – – – –

20 6 0.30 1.00 0.84 6 0.30 1.00 0.78 6 0.30 1.00 0.84 6 0.30 1.00 0.38 – – – –

30 6 0.20 1.00 0.84 6 0.20 1.00 0.78 6 0.20 1.00 0.84 6 0.20 1.00 0.31 – – – –

Note: maximum values are marked bold.

Table 6
Shuttle, K¼7,20,40,60.

m DB LOF RBDA Our method PBOD

n p r rp n p r rp n p r rp n p r rp n p r rp

k¼7
20 6 0.30 0.32 0.23 1 0.05 0.21 0.06 1 0.05 0.05 0.20 9 0.45 0.47 0.35 6 0.30 0.32 0.34
30 6 0.20 0.32 0.23 2 0.07 0.10 0.07 2 0.07 0.11 0.09 12 0.40 0.63 0.36 6 0.20 0.32 0.34
60 8 0.13 0.42 0.18 10 0.17 0.53 0.14 8 0.13 0.42 0.13 16 0.27 0.84 0.33 7 0.12 0.37 0.27
90 9 0.10 0.47 0.16 11 0.12 0.58 0.14 10 0.11 0.53 0.13 17 0.19 0.89 0.31 7 0.08 0.37 0.27
120 10 0.08 0.53 0.14 11 0.09 0.58 0.14 12 0.10 0.63 0.13 18 0.15 0.95 0.25 7 0.06 0.37 0.27
140 11 0.08 0.58 0.13 11 0.08 0.58 0.14 15 0.11 0.79 0.12 18 0.1 0.95 0.25 7 0.05 0.37 0.27
200 16 0.08 0.84 0.10 13 0.06 0.68 0.11 16 0.08 0.84 0.12 19 0.09 1.00 0.12 7 0.04 0.37 0.27

k¼20
20 6 0.30 0.32 0.23 4 0.20 0.21 0.32 1 0.05 0.05 0.08 11 0.55 0.58 0.40 – – – –

30 6 0.20 0.32 0.23 5 0.17 0.26 0.28 4 0.13 0.21 0.10 14 0.47 0.74 0.42 – – – –

60 7 0.12 0.37 0.19 9 0.15 0.47 0.20 7 0.12 0.37 0.13 18 0.30 0.95 0.37 – – – –

90 9 0.10 0.47 0.15 13 0.14 0.68 0.17 9 0.10 0.47 0.12 19 0.21 1.00 0.33 – – – –

120 10 0.08 0.53 0.13 15 0.12 0.79 0.16 13 0.11 0.68 0.11 19 0.16 1.00 0.27 – – – –

140 11 0.08 0.58 0.12 17 0.12 0.89 0.15 15 0.11 0.79 0.11 19 0.14 1.00 0.27 – – – –

200 19 0.10 1.00 0.10 19 0.09 1.00 0.15 19 0.10 1.00 0.11 19 0.09 1.00 0.12 – – – –

k¼40
20 6 0.30 0.32 0.23 4 0.20 0.21 0.29 0 11 0.55 0.58 0.40 – – – –

30 6 0.20 0.32 0.24 5 0.17 0.26 0.25 3 0.10 0.16 0.07 14 0.47 0.74 0.42 – – – –

60 6 0.10 0.32 0.24 8 0.13 0.42 0.18 7 0.12 0.37 0.12 18 0.30 0.95 0.37 – – – –

90 9 0.10 0.47 0.15 9 0.10 0.47 0.16 8 0.09 0.42 0.11 19 0.21 1.00 0.33 – – – –

120 9 0.08 0.47 0.15 11 0.09 0.58 0.14 13 0.11 0.68 0.11 19 0.16 1.00 0.27 – – – –

140 11 0.08 0.58 0.12 16 0.11 0.84 0.12 15 0.11 0.79 0.11 19 0.14 1.00 0.27 – – – –

200 18 0.09 0.95 0.10 19 0.09 1.00 0.12 19 0.10 1.00 0.10 19 0.09 1.00 0.12 – – – –

k¼60
20 6 0.30 0.32 0.23 4 0.20 0.21 0.23 0 11 0.55 0.58 0.40 – – – –

30 6 0.20 0.32 0.24 5 0.17 0.26 0.22 3 0.10 0.16 0.07 14 0.47 0.74 0.42 – – – –

60 6 0.10 0.32 0.24 8 0.13 0.42 0.17 7 0.12 0.37 0.12 18 0.30 0.95 0.37 – – – –

90 8 0.09 0.42 0.17 8 0.09 0.42 0.17 7 0.08 0.37 0.12 19 0.21 1.00 0.33 – – – –

120 9 0.08 0.47 0.15 11 0.09 0.58 0.12 13 0.11 0.68 0.11 19 0.16 1.00 0.27 – – – –

140 10 0.07 0.53 0.13 16 0.11 0.84 0.11 14 0.10 0.74 0.11 19 0.14 1.00 0.27 – – – –

200 16 0.08 0.84 0.09 19 0.09 1.00 0.11 15 0.08 0.79 0.11 19 0.09 1.00 0.12 – – – –

X. Wang et al. / Information Systems 48 (2015) 89–112 105

Table 7
Ionosphere, K¼5,10,20,30.

m DB RBDA MSTþLOF Our method PBOD

n p r rp n p r rp n p r rp n p r rp n p r rp

k¼5
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 4 0.80 0.03 1.00 5 1.00 0.04 1.00 4 0.80 0.03 1.00
10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 9 0.90 0.07 1.00 10 1.00 0.08 1.00 7 0.70 0.06 0.76
30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 29 0.97 0.23 1.00 30 1.00 0.24 1.00 20 0.67 0.16 0.73
60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 59 0.98 0.47 1.00 59 0.98 0.47 1.00 32 0.53 0.25 0.72
90 88 0.98 0.70 1.00 88 0.98 0.70 0.99 89 0.99 0.71 0.99 83 0.92 0.66 1.00 34 0.38 0.27 0.69
120 107 0.90 0.85 0.98 98 0.82 0.78 0.98 106 0.88 0.84 0.94 94 0.78 0.75 0.97 58 0.48 0.46 0.51
130 109 0.84 0.87 0.98 100 0.77 0.79 0.97 109 0.84 0.86 0.92 96 0.74 0.76 0.96 68 0.52 0.54 0.51
140 110 0.79 0.87 0.97 103 0.74 0.82 0.96 113 0.81 0.90 0.91 98 0.70 0.78 0.95 70 0.50 0.56 0.51

k¼10
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 4 0.80 0.03 1.00 5 1.00 0.04 1.00 – – – –

10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 9 0.90 0.07 1.00 10 1.00 0.08 1.00 – – – –

30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 29 0.97 0.23 1.00 30 1.00 0.24 1.00 – – – –

60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 59 0.98 0.47 1.00 60 1.00 0.48 1.00 – – – –

90 88 0.98 0.70 1.00 88 0.98 0.70 0.99 89 0.99 0.71 0.99 89 0.99 0.71 1.00 – – – –

120 107 0.90 0.85 0.98 97 0.81 0.77 0.98 106 0.88 0.84 0.95 96 0.80 0.76 0.99 – – – –

130 109 0.84 0.87 0.98 100 0.77 0.79 0.97 111 0.85 0.88 0.93 99 0.76 0.79 0.97 – – – –

140 112 0.80 0.89 0.96 101 0.72 0.80 0.96 114 0.81 0.90 0.93 100 0.71 0.79 0.97 – – – –

k¼20
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 4 0.80 0.03 1.00 5 1.00 0.04 1.00 – – – –

10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 9 0.90 0.07 1.00 10 1.00 0.08 1.00 – – – –

30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 29 0.97 0.23 1.00 30 1.00 0.24 1.00 – – – –

60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 59 0.98 0.47 1.00 60 1.00 0.48 1.00 – – – –

90 85 0.94 0.67 1.00 84 0.93 0.67 0.99 89 0.99 0.71 1.00 90 1.00 0.71 1.00 – – – –

120 103 0.86 0.82 0.97 98 0.82 0.78 0.96 106 0.88 0.84 0.94 103 0.86 0.82 1.00 – – – –

130 107 0.82 0.85 0.96 102 0.78 0.81 0.95 110 0.85 0.87 0.90 105 0.81 0.83 0.99 – – – –

140 111 0.79 0.88 0.95 105 0.75 0.83 0.93 111 0.79 0.88 0.89 106 0.76 0.84 0.98 – – – –

k¼30
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 4 0.80 0.03 1.00 5 1.00 0.04 1.00 – – – –

10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 9 0.90 0.07 1.00 10 1.00 0.08 1.00 – – – –

30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 29 0.97 0.23 1.00 30 1.00 0.24 1.00 – – – –

60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 59 0.98 0.47 1.00 60 1.00 0.48 1.00 – – – –

90 83 0.92 0.66 0.99 86 0.96 0.68 0.99 89 0.99 0.71 1.00 90 1.00 0.71 1.00 – – – –

120 98 0.82 0.78 0.96 98 0.82 0.78 0.97 106 0.88 0.84 0.93 107 0.89 0.85 1.00 – – – –

130 103 0.79 0.82 0.94 102 0.78 0.81 0.95 111 0.85 0.88 0.90 108 0.83 0.86 0.99 – – – –

140 106 0.76 0.84 0.93 105 0.75 0.83 0.94 112 0.80 0.89 0.89 109 0.78 0.86 0.98 – – – –

Table 8
Optical digits, K¼7.

m n p r rp n p r rp n p r rp n p r rp n p r rp

DB DB-MAX RBDA Our method MSTþLOF
Class ‘2’
5 0 0.00 0.00 0.00 2 0.40 0.40 0.50 0 0.00 0.00 0.00 1 0.20 0.20 0.33 0 0.00 0.00 0.00
10 1 0.10 0.20 0.13 3 0.30 0.60 0.40 1 0.10 0.20 0.20 3 0.30 0.60 0.43 0 0.00 0.00 0.00
15 2 0.13 0.40 0.16 4 0.27 0.80 0.40 1 0.07 0.20 0.20 4 0.27 0.80 0.42 0 0.00 0.00 0.00
20 3 0.15 0.60 0.18 4 0.20 0.80 0.40 1 0.05 0.20 0.20 5 0.25 1.00 0.38 0 0.00 0.00 0.00
30 4 0.13 0.80 0.16 5 0.17 1.00 0.33 4 0.13 0.80 0.13 5 0.17 1.00 0.38 0 0.00 0.00 0.00
40 4 0.10 0.80 0.16 5 0.13 1.00 0.33 4 0.10 0.80 0.13 5 0.13 1.00 0.38 0 0.00 0.00 0.00
50 4 0.08 0.80 0.16 5 0.10 1.00 0.33 4 0.08 0.80 0.13 5 0.10 1.00 0.38 1 0.02 0.20 0.20

DB DB-MAX RBDA Our method LOF
Class ‘0’
5 1 0.20 0.20 0.33 2 0.40 0.40 0.75 2 0.40 0.40 0.43 3 0.60 0.60 1.00 0 0.00 0.00 0.00
10 1 0.10 0.20 0.33 3 0.30 0.60 0.67 3 0.30 0.60 0.50 3 0.30 0.60 1.00 0 0.00 0.00 0.00
15 1 0.07 0.20 0.33 4 0.27 0.80 0.33 4 0.27 0.80 0.40 5 0.33 1.00 0.60 0 0.00 0.00 0.00
20 1 0.05 0.20 0.33 4 0.20 0.80 0.33 4 0.20 0.80 0.40 5 0.25 1.00 0.35 0 0.00 0.00 0.00
30 2 0.07 0.40 0.10 5 0.17 1.00 0.33 4 0.13 0.80 0.40 5 0.17 1.00 0.35 1 0.03 0.20 0.04
40 4 0.10 0.80 0.10 5 0.13 1.00 0.33 4 0.10 0.80 0.40 5 0.13 1.00 0.35 1 0.03 0.20 0.04
50 4 0.08 0.80 0.10 5 0.10 1.00 0.33 4 0.08 0.80 0.40 5 0.10 1.00 0.35 1 0.02 0.20 0.04

X. Wang et al. / Information Systems 48 (2015) 89–112106

Table 9
Multiple features, K¼7.

m n p r rp n p r rp n p r rp n p r rp n p r rp

DB LOF RBDA Our method COF
Class ‘9’
5 0 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.00 4 0.80 0.80 1.00 0 0.00 0.00 0.00
10 1 0.01 0.20 0.11 0 0.00 0.00 0.00 0 0.00 0.00 0.00 5 0.50 1.00 0.75 1 0.10 0.20 0.11
15 1 0.07 0.20 0.11 0 0.00 0.00 0.00 0 0.00 0.00 0.00 5 0.33 1.00 0.75 1 0.07 0.20 0.11
20 1 0.05 0.20 0.11 1 0.05 0.20 0.05 2 0.10 0.40 0.08 5 0.25 1.00 0.75 1 0.05 0.20 0.11
30 2 0.07 0.40 0.08 2 0.07 0.40 0.07 2 0.07 0.40 0.08 5 0.17 1.00 0.75 1 0.03 0.20 0.11
40 2 0.05 0.40 0.08 2 0.05 0.40 0.07 3 0.08 0.60 0.08 5 0.13 1.00 0.28 1 0.03 0.20 0.11
50 2 0.04 0.40 0.08 2 0.04 0.40 0.07 3 0.06 0.60 0.08 5 0.10 1.00 0.28 1 0.02 0.20 0.11

DB DB-MAX RBDA Our method COF
Class ‘6’
5 0 0.00 0.00 0.00 1 0.20 0.20 0.33 0 0.00 0.00 0.00 1 0.20 0.20 0.33 0 0.00 0.00 0.00
10 2 0.20 0.40 0.21 3 0.30 0.60 0.30 0 0.00 0.00 0.00 3 0.30 0.60 0.43 0 0.00 0.00 0.00
15 3 0.20 0.60 0.25 4 0.27 0.80 0.29 0 0.00 0.00 0.00 4 0.27 0.80 0.40 0 0.00 0.00 0.00
20 4 0.20 0.80 0.24 5 0.25 1.00 0.29 0 0.00 0.00 0.00 4 0.20 0.80 0.40 0 0.00 0.00 0.00
30 5 0.17 1.00 0.22 5 0.17 1.00 0.29 0 0.00 0.00 0.00 5 0.17 1.00 0.33 1 0.03 0.20 0.05
40 5 0.13 1.00 0.22 5 0.13 1.00 0.29 1 0.03 0.20 0.03 5 0.13 1.00 0.33 1 0.03 0.20 0.05
50 5 0.10 1.00 0.22 5 0.10 1.00 0.29 1 0.02 0.20 0.03 5 0.10 1.00 0.33 1 0.02 0.20 0.05

DB DB-MAX RBDA Our method LOF
Class ‘4’
5 2 0.40 0.40 0.60 1 0.20 0.20 0.50 1 0.20 0.20 0.33 2 0.40 0.40 0.60 1 0.20 0.20
10 3 0.30 0.60 0.55 3 0.30 0.60 0.46 1 0.10 0.20 0.33 2 0.20 0.40 0.60 1 0.10 0.20
15 3 0.20 0.60 0.55 4 0.27 0.60 0.38 2 0.13 0.40 0.20 3 0.20 0.60 0.33 1 0.07 0.20
20 5 0.25 1.00 0.33 4 0.20 1.00 0.38 3 0.15 0.60 0.19 5 0.25 1.00 0.31 1 0.05 0.20
30 5 0.17 1.00 0.33 5 0.17 1.00 0.28 4 0.10 0.80 0.19 5 0.17 1.00 0.31 2 0.07 0.40
40 5 0.13 1.00 0.33 5 0.10 1.00 0.28 5 0.13 1.00 0.15 5 0.13 1.00 0.31 3 0.08 0.60
50 5 0.10 1.00 0.33 5 0.13 1.00 0.28 5 0.10 1.00 0.15 5 0.10 1.00 0.31 4 0.07 0.80

Table 10
Shuttle, k¼7,20,40,60.

m 1.0 1.5 2.0 2.5 3.0

n p r rp n p r rp n p r rp n p r rp n p r rp

k¼7
20 11 0.55 0.58 0.42 9 0.45 0.47 0.35 5 0.25 0.26 0.23 5 0.25 0.26 0.23 5 0.25 0.26 0.23
30 14 0.47 0.74 0.45 12 0.40 0.63 0.36 9 0.30 0.47 0.28 9 0.30 0.47 0.28 9 0.30 0.47 0.28
60 17 0.28 0.89 0.32 16 0.27 0.84 0.33 13 0.22 0.68 0.24 13 0.22 0.68 0.24 13 0.22 0.68 0.24
90 18 0.20 0.95 0.28 17 0.19 0.89 0.31 15 0.17 0.79 0.22 15 0.17 0.79 0.22 15 0.17 0.79 0.22
120 19 0.16 1.00 0.23 18 0.15 0.95 0.25 16 0.13 0.84 0.21 16 0.13 0.84 0.21 16 0.13 0.84 0.21
140 19 0.14 1.00 0.23 18 0.1 0.95 0.25 17 0.12 0.89 0.20 17 0.12 0.89 0.20 17 0.12 0.89 0.20
200 19 0.14 1.00 0.14 19 0.09 1.00 0.12 18 0.10 0.95 0.10 18 0.10 0.95 0.10 18 0.10 0.95 0.10

k¼20
20 11 0.55 0.58 0.42 11 0.55 0.58 0.40 8 0.40 0.42 0.31 8 0.40 0.42 0.31 8 0.40 0.42 0.31
30 14 0.47 0.74 0.45 14 0.47 0.74 0.42 13 0.43 0.68 0.39 13 0.43 0.68 0.39 13 0.43 0.68 0.39
60 18 0.30 0.95 0.32 18 0.30 0.95 0.37 18 0.30 0.95 0.33 18 0.30 0.95 0.33 18 0.30 0.95 0.33
90 19 0.21 1.00 0.28 19 0.21 1.00 0.33 19 0.21 1.00 0.27 19 0.21 1.00 0.27 19 0.21 1.00 0.27
120 19 0.16 1.00 0.23 19 0.16 1.00 0.27 19 0.16 1.00 0.26 19 0.16 1.00 0.26 19 0.16 1.00 0.26
140 19 0.14 1.00 0.23 19 0.14 1.00 0.27 19 0.14 1.00 0.23 19 0.14 1.00 0.23 19 0.14 1.00 0.23
200 19 0.14 1.00 0.14 19 0.09 1.00 0.12 19 0.10 1.00 0.10 19 0.10 1.00 0.10 19 0.10 1.00 0.10

k¼40
20 11 0.55 0.58 0.42 11 0.55 0.58 0.40 11 0.55 0.58 0.51 11 0.55 0.58 0.51 11 0.55 0.58 0.51
30 14 0.47 0.74 0.45 14 0.47 0.74 0.42 14 0.47 0.74 0.44 14 0.47 0.74 0.44 14 0.47 0.74 0.44
60 18 0.30 0.95 0.32 18 0.30 0.95 0.37 18 0.30 0.95 0.33 18 0.30 0.95 0.33 18 0.30 0.95 0.33
90 19 0.21 1.00 0.28 19 0.21 1.00 0.33 19 0.21 1.00 0.27 19 0.21 1.00 0.27 19 0.21 1.00 0.27
120 19 0.16 1.00 0.23 19 0.16 1.00 0.27 19 0.16 1.00 0.26 19 0.16 1.00 0.26 19 0.16 1.00 0.26
140 19 0.14 1.00 0.14 19 0.14 1.00 0.27 19 0.14 1.00 0.23 19 0.14 1.00 0.23 19 0.14 1.00 0.23
200 19 0.14 1.00 0.14 19 0.09 1.00 0.12 19 0.10 1.00 0.10 19 0.10 1.00 0.10 19 0.10 1.00 0.10

k¼60
20 11 0.55 0.58 0.42 11 0.55 0.58 0.40 11 0.55 0.58 0.51 11 0.55 0.58 0.51 11 0.55 0.58 0.51
30 14 0.47 0.74 0.45 14 0.47 0.74 0.42 14 0.47 0.74 0.44 14 0.47 0.74 0.44 14 0.47 0.74 0.44
60 18 0.30 0.95 0.32 18 0.30 0.95 0.37 18 0.30 0.95 0.33 18 0.30 0.95 0.33 18 0.30 0.95 0.33
90 19 0.21 1.00 0.28 19 0.21 1.00 0.33 19 0.21 1.00 0.27 19 0.21 1.00 0.27 19 0.21 1.00 0.27
120 19 0.16 1.00 0.23 19 0.16 1.00 0.27 19 0.16 1.00 0.26 19 0.16 1.00 0.26 19 0.16 1.00 0.26
140 19 0.14 1.00 0.14 19 0.14 1.00 0.27 19 0.14 1.00 0.23 19 0.14 1.00 0.23 19 0.14 1.00 0.23
200 19 0.14 1.00 0.14 19 0.09 1.00 0.12 19 0.10 1.00 0.10 19 0.10 1.00 0.10 19 0.10 1.00 0.10

X. Wang et al. / Information Systems 48 (2015) 89–112 107

Table 11
Ionosphere, k¼5,10,20,30.

m 1.0 1.5 2.0 2.5 3.0

n p r rp n p r rp n p r rp n p r rp n p r rp

k¼5
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00
10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00
30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 27 0.90 0.21 0.93 25 0.83 0.20 0.90 25 0.83 0.20 0.90
60 60 1.00 0.48 1.00 59 0.98 0.47 1.00 47 0.78 0.37 0.85 44 0.73 0.35 0.80 44 0.73 0.35 0.80
90 90 1.00 0.71 1.00 83 0.92 0.66 1.00 63 0.70 0.50 0.78 59 0.66 0.47 0.73 59 0.66 0.47 0.73
120 109 0.91 0.87 0.95 94 0.78 0.75 0.97 72 0.60 0.57 0.74 67 0.56 0.53 0.70 67 0.56 0.53 0.70
130 113 0.87 0.90 0.93 96 0.74 0.76 0.96 74 0.57 0.59 0.73 69 0.53 0.55 0.69 69 0.53 0.55 0.69
140 116 0.83 0.92 0.92 98 0.70 0.78 0.95 79 0.56 0.63 0.71 72 0.51 0.57 0.67 72 0.51 0.57 0.67

k¼10
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00
10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00
30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00
60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00
90 90 1.00 0.71 1.00 89 0.99 0.71 1.00 76 0.84 0.60 0.90 73 0.81 0.58 0.87 73 0.81 0.58 0.87
120 109 0.91 0.87 0.95 96 0.80 0.76 0.99 83 0.70 0.66 0.82 79 0.66 0.63 0.79 79 0.66 0.63 0.79
130 114 0.88 0.90 0.93 99 0.76 0.79 0.97 86 0.66 0.68 0.80 82 0.63 0.65 0.77 82 0.63 0.65 0.77
140 116 0.83 0.92 0.92 100 0.71 0.79 0.97 89 0.64 0.71 0.76 85 0.61 0.67 0.74 85 0.61 0.67 0.74

k¼20
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00
10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00
30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00
60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00
90 90 1.00 0.71 1.00 90 1.00 0.71 1.00 88 0.98 0.70 0.96 86 0.96 0.68 0.97 86 0.96 0.68 0.97
120 117 0.97 0.93 0.97 103 0.86 0.82 1.00 96 0.80 0.76 0.89 93 0.78 0.74 0.86 93 0.78 0.74 0.86
130 121 0.93 0.96 0.97 105 0.81 0.83 0.99 97 0.75 0.77 0.86 94 0.72 0.75 0.83 94 0.72 0.75 0.83
140 123 0.88 0.98 0.96 106 0.76 0.84 0.98 99 0.71 0.79 0.81 96 0.69 0.76 0.79 96 0.69 0.76 0.79

k¼30
5 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00 5 1.00 0.04 1.00
10 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00 10 1.00 0.08 1.00
30 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00 30 1.00 0.24 1.00
60 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00 60 1.00 0.48 1.00
90 90 1.00 0.71 1.00 90 1.00 0.71 1.00 90 1.00 0.73 1.00 90 1.00 0.73 1.00 90 1.00 0.73 1.00
120 120 1.00 0.71 1.00 107 0.89 0.85 1.00 98 0.82 0.78 0.91 96 0.80 0.76 0.87 96 0.80 0.76 0.87
130 123 0.95 0.98 0.99 108 0.83 0.86 0.99 98 0.75 0.78 0.87 96 0.74 0.76 0.84 96 0.74 0.76 0.84
140 124 0.89 0.98 0.97 109 0.78 0.86 0.98 100 0.71 0.79 0.82 97 0.70 0.77 0.80 97 0.70 0.77 0.80

X. Wang et al. / Information Systems 48 (2015) 89–112108
of Lymphography Data, which again manifests the intui-
tion that using tree edge weights in mini MST or MST as
indication of outlying degree is less sensitive to the
different values of k and, therefore, more reliable.
4.2.3. Ionosphere data
The Johns Hopkins University Ionosphere dataset con-

tains 351 instances with 34 attributes, of which 225 are
labeled as good instances while the rest 126 are labeled as
bad instances. All attributes are normalized in the range
from 0 to 1 and there are no duplicate instances in the
dataset. Instead of randomly selecting sample instances
from the bad class to form the rare class, we use all 351
instances and compare the performances of all the methods
for four different k's and eight different m's. The experi-
mental results obtained by PBOD, our method and three
best cases from the rest methods are presented in Table 7.

From the table, it can be clearly seen that, overall, our
method performs the best, and DB method performs the
next. RBDA performs a little better than MSTþLOF. PBOD
performs the worst. For this test dataset, all the methods
are less sensitive to k than they are in the previous
experiments.

For real world high-dimensional data sets, we pick
two datasets (Multiple Features and Optical Digits) from
UCI [33].
4.2.4. Optical digits
The Optical Digits dataset consists of the data extracted

from handwritten numbers (‘0’–‘9’) and contains 5620
instances with 64 attributes. To obtain the dataset, nor-
malized bitmaps of handwritten digits are extracted from
a preprinted form. 32�32 bitmaps are then divided into
nonoverlapping blocks of 4�4 and the number of pixels is
counted in each block, generating an input matrix of 8�8
where each element is an integer in the range 0…16. Since
there are no small rare classes to be regarded as outliers,
we randomly pick 5 data points from one of the classes to
make it rare (i.e., as outliers). We show in Table 8 the best
experimental results of our method for two classes (i.e., ‘2’,
‘0’) and four best cases of the rest methods for k¼7 and
seven values of m's.

Fig. 13. Run time performance of our algorithm for IPUMS data.

X. Wang et al. / Information Systems 48 (2015) 89–112 109
From the table, it can be clearly seen that, overall, our
method performs the best, and DB-MAX method performs
the next. RBDA performs a little better than DB method.

4.2.5. Multiple features
The Multiple Features dataset consists of the data of

handwritten numbers (‘0’–‘9’) as well but extracted from
a collection of Dutch utility maps and contains 2000
instances with 649 attributes including six feature sets
(i.e., 76 Fourier coefficients, 216 profile correlations, 64
Karhunen–Love coefficients, 240 pixel averages in 23 win-
dows, 47 Zernike moments and 6 morphological features).
Since all the classes contain 200 data points each and there
are no rare classes to be regarded as outliers, we randomly
pick 5 data points from one of the classes to make it rare
(i.e., as outliers). Table 9 summarizes the best findings from
the experimental results of our method for three classes
(i.e., ‘9’, ‘6’, ’4’) and four best cases of the rest methods for
k¼7 and seven values of m's.

From the table, it can be clearly seen that, overall, our
method is the only one that performs best for class ‘9’ for
which others perform much worse. For the other two cases,
our method and DB-MAX method perform similarly. DB
performs well for classes ‘6’ and ‘4’. RBDA performs well
for class ‘4’. Therefore, overall, our method performs the best.

4.3. Performance of our algorithm with SOM-TH

In the above experiments, we keep the threshold, SOM-
TH, being fixed to be 1.5. In this subsection, we conduct
experiments to study the detecting effectiveness of the
proposed method by varying the SOM-TH in the range [1.0,
1.5, 2.0, 2.5, 3.0] and the results for two datasets, Shuttle
and Ionosphere, are shown in Tables 10 and 11. From the
tables, we can see that our methods can obtain better
results when SOM-TH is set to take the value of 1.0.

4.4. Run time performance of our algorithm on large
High-dimensional datasets

In this subsection, we focus our study on the running time
behavior of the proposed method with varying parameter, k,
and under different workloads. Particularly, we want to show
the impact of the size of the dataset on the performance of
our algorithm (i.e., the scalability of our algorithm) and
compare the running time of our algorithm with that of

Fig. 14. Run time performance of our algorithm for covertype data.

X. Wang et al. / Information Systems 48 (2015) 89–112110
MSTþLOF algorithm on three different large high-
dimensional datasets which can be downloaded from UCI
[33]. These datasets are briefly summarized in Table 1. All the
categorical features in them, if existing, have been cast to
integer values.

A large problem when evaluating outlier detection
methods for large high-dimensional data is that there are
very few real world data sets where it is exactly known
which objects are really behaving differently due to
belonging to a different and rare mechanism. More often
than not, it is not given beforehand what and how much
objects are outliers. Although there exist multiple case
studies on outlier detection, the question whether an
object is an outlier or not is often depending on the point
of view. Another problem is that the list of possible
outliers is often incomplete, making it hard to evaluate
whether the algorithm ranks all outliers in the database
properly. Since it is shown from the previous subsections
that our outlier detection method is comparable with (if
not more effective than) other state-of-the-art outlier
detection schemes, we focus on comparing our approach
with MSTþLOF algorithm on the running time issue. The
sensitivity of DHCA to the input parameter K (the number
of partition centers at each stage of the DHCA) has been
studied in [21]. For large K, more distances to the partition
centers need to be computed and the running time
increases with K. In this set of experiments, the input K
to DHCA is set to be 5.

Since outliers account for only a very small portion in a
dataset, in this set of experiments, the running time results
of our method and MSTþLOF method to mine top 30
outliers for three real data sets under different workloads
for k ¼10 and with varying k's (i.e., the number of nearest
neighbors from 10 to 30) are presented in Fig. 13 for IPUMS
data, Fig. 14 for Covertype data, and Fig. 15 for UScensus
data, respectively. For this comparison, the threshold of
our global outlier detection is SOMMST¼3, and that of our
local outlier detection is set to be 2.

There are two bar charts for each dataset in each figure.
The upper part of each figure represents the running time
performance of our algorithm and MSTþLOF method for
five different data sizes (in five different colors) obtained
by varying the data sizes between 20% and 100% of the
whole of each dataset. The results of our method are

Fig. 15. Run time performance of our algorithm for UScensus data.

X. Wang et al. / Information Systems 48 (2015) 89–112 111
shown on the left while those of MSTþLOF algorithm are
shown on the right. The lower part of each figure repre-
sents the running time performance of our algorithm (in
light blue) and MSTþLOF method (in purple) for three
different k's (i.e., k¼10, 20, 30). Clearly, the execution time
of our algorithm increases with data sizes and k's in a
sublinear form and is about five times faster than those of
MSTþLOF. Since these datasets have very different char-
acteristics and are of different dimensionalities, overall, it
can be seen that our algorithm outperforms MSTþLOF
algorithm.

5. Conclusion

In this paper, we have proposed an efficient MST-
inspired kNN-based outlier detection method that can
detect both global and local outliers. In addition to being
compatible with the traditional distance-based outlier
detection methods, our approach also performs better in
identifying local outliers that deviate from the main
patterns in a given dataset. Candidate outliers are ranked
based on the MST-inspired outlier scores that are assigned
to each data point. To demonstrate the utility of our
proposed outlier factors, we have performed a detailed
comparison of its performance with a number of state-of-
the-art outlier detection methods. Through a thorough
evaluation, our method manifests its ability to rank the
best candidates for being an outlier with high precision and
recall. In addition to the basic approach, we propose to use
DHCA as an acceleration suitable for high-dimensional
large data sets. It has been shown that a small number of
consecutive running of DHCA can facilitate the detection of
top outliers, which are only a small fraction of the whole
dataset. Both theoretical justification and empirical valida-
tion show the effectiveness of the proposed method.

Our study also shows that we should not view one
method as being superior to others in all aspects but use it
as a compliment to, instead of as a replacement of, others
in applications with different requirements. This is intui-
tive because, in reality, it is usually difficult to detect all the
outliers that fit user's intuitions. Thus, it is probably
meaningful to incorporate our proposed outlier detection
method as a component into current outlier detection
framework.

X. Wang et al. / Information Systems 48 (2015) 89–112112
Acknowledgment

The authors would like to thank the Chinese National
Science Foundation for its valuable support of this work
under award 61473220 and all the anonymous reviewers
and editors for their valuable comments.

References

[1] D.M. Hawkins, Identification of outliers, Monographs on Applied
Probability and Statistics, Chapman and Hall, London, 1980.

[2] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo. A geometric
framework for unsupervised anomaly detection: Detecting intrusions
in unlabeled data. in: Daniel Barbará and Sushil Jajodia (Eds.), Data
Mining for Security Applications, 2002, pp.77-101.

[3] T. Lane, C.E. Brodley, Temporal sequence learning and data reduction
for anomaly detection, ACM Trans. Inf. Syst. Secur. 2 (3) (1999)
295–331.

[4] R.J. Bolton, J.H. David, Unsupervised profiling methods for fraud
detection, Stat. Sci. 17 (3) (2002) 235–255.

[5] W. Wong, A. Moore, G. Cooper, and M. Wagner, Rule-based anomaly
pattern detection for detecting disease outbreaks, in: Proceedings of
the 18th National Conference on Artificial Intelligence, 2002,
pp. 217–223.

[6] B. Sheng, Q. Li, W. Mao, W. Jin, Outlier detection in sensor networks,
in: Proceedings of ACM International Symposium on Mobile Ad Hoc
Networking and Computing, 2007, pp. 219–228.

[7] V.J. Hodge, J. Austin, A survey of outlier detection methodologies,
Artif. Intell. Rev. 22 (2004) 85–126.

[8] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: a survey,
ACM Comput. Surv. 41 (July) (2009). (Article 15).

[9] X. Wang, X.L. Wang, D.M. Wilkes, A spanning tree-inspired cluster-
ing based outlier detection technique, in: Proceedings of the 12th
Industry Conference on Data Mining, Berlin, Germany, 2012,
pp. 209–223.

[10] E.M. Knorr, R.T. Ng, Algorithms for mining distance-based outliers in
large datasets, in: Proceedings of the 24th VLDB Conference, New
York, USA,1998, pp. 392–403.

[11] S. Ramaswamy, R. Rastogi, K. Shim, Efficient algorithms for mining
outliers from large data sets, in: Proceedings of the ACM SIGMOD
Conference, 2000, pp. 427–438.

[12] F. Angiulli, C. Pizzuti, Fast outlier detection in high dimensional
spaces, Proceedings of the Sixth European Conference on the
Principles of Data Mining and Knowledge Discovery (2002) 15–26.

[13] M.M. Breuning, H.P. Kriegel, R.T. Ng, J. Sander, LOF: identifying
density-based local outliers, in: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, 2000,
pp. 93–104.

[14] J. Tang, Z. Chen, A.W.C. Fu, D.W. Cheung, Enhancing effectiveness of
outlier detections for low density patterns, in: Proceedings of the
6th Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD), vol. 2336, Taipei, Taiwan, 2002, pp. 535–548.

[15] P.B. Gibbons, S. Papadimitriou, H. Kitagawa, C. Faloutsos, LOCI: fast
outlier detection using the local correlation integral, in: Proceedings
of the IEEE 19th International Conference on Data Engineering,
Bangalore, India, 2003, pp. 315–328.
[16] P. Sun, S. Chawla, On local spatial outliers, in: Proceedings of the 4th
International Conference on Data Mining (ICDM), Brighton, UK,
2004, pp. 209–216.

[17] W. Jin, A.K.H. Tung, J. Han, W. Wang, Ranking outliers using
symmetric neighborhood relationship, in: Proceedings of the 10th
Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD), vol. 3918, Singapore, 2006, pp. 577–579.

[18] K. Zhang, M. Hutter, H. Jin., A new local distance-based outlier
detection approach for scattered real-world data, Adv. Knowl.
Discov. Data Min. 5476 (2009) 813–822.

[19] H. Huang, K. Mehrotra, C.K. Mohan, Rank-based outlier detection,
J. Stat. Comput. Simul. 83 (3) (2013) 1–14.

[20] C.T. Zahn, Graph-theoretical methods for detecting and describing
gestalt clusters, IEEE Trans. Comput. C-20 (1971) 68–86.

[21] X. Wang, X.L. Wang, D.M. Wilkes., A divide-and-conquer approach
for minimum spanning tree-based clustering, IEEE TKDE 21 (7)
(2009) 945–958.

[22] C. Zhong, D. Miao, R. Wang., A graph-theoretical clustering method
based on two rounds of minimum spanning trees, Pattern Recognit.
43 (3) (2010) 752–766.

[23] T. Luo, C. Zhong., A neighborhood density estimation clustering
algorithm based on minimum spanning tree, LNAI 6401 (2010)
557–565.

[24] T. Luo, C. Zhong, H. Li, X. Sun, A multi-prototype clustering algorithm
based on minimum spanning tree, in: Proceedings of 2010 7th
International Conference on Fuzzy Systems and Knowledge Discov-
ery (FSKD 2010), 2010, pp. 1602–1607.

[25] C. Zhong, D. Miao, P. Franti, Minimum spanning tree based split-
and-merge: a hierarchical clustering method, Inf. Sci. 181 (2011)
3397–3410.

[26] F.J. Rohlf, Generalization of the gap test for the detection of multi-
variate outliers, Biometrics 31 (1975) 93–101.

[27] M.F. Jiang, S.S. Tseng, C.M. Su., Two-phase clustering process for
outliers detection, Pattern Recognit. Lett. 22 (2001) 691–700.

[28] J. Lin, D. Ye, C. Chen, M. Gao, Minimum spanning tree based spatial
outlier mining and its applications, Lecture Notes Computer Science,
vol. 5009, Springer-Verlag, Berlin/Heidelberg, 2008, 508–515.

[29] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is nearest
neighbors meaningful?, in: Proceedings of ICDT, 1999, pp. 217–235.

[30] C. Aggarwal, P. Yu, An effective and efficient algorithm for high-
dimensional outlier detection, Int. J Very Large Data Bases 14 (2)
(2005) 211–221.

[31] S. Parthasarathy, C.C. Aggarwal, On the use of conceptual recon-
struction for mining massively incomplete data sets, IEEE TKDE 15
(6) (2003) 1512–1531.

[32] X. Wang, X.L. Wang, D.M. Wilkes, Modifying iDistance for a fast
CHAMELEON with application to patch based image segmentation,
in: Proceedings of the 9th IASTED International Conference on
Signal Processing, Pattern Recognition and Applications (SPPRA
2012), Crete, Greece, 2012, pp. 107–114.

[33] UCI: The UCI KDD Archive, University of California, Irvine, CA.
〈http://kdd.ics.uci.edu/〉.

[34] C. Aggarwal, P. Yu, Outlier detection for high-dimensional data, in:
Proceedings of SIGMOD’01, Santa Barbara, CA, USA, 2001, pp. 37–46.

[35] X. Meng, Z. Chen, On user-oriented measurements of effectiveness
of web information retrieval systems, in: H.R. Arabnia, O. Droege-
horn (Eds.), Proceedings of the International Conference on Internet
Computing, vol. 1, Las Vegas, Nevada, USA, 2004, pp. 527–533.

http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref1
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref1
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref3
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref3
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref3
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref4
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref4
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref5
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref5
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref6
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref6
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref7
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref7
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref7
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref8
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref8
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref8
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref9
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref9
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref10
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref10
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref11
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref11
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref11
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref12
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref12
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref12
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref13
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref13
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref13
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref14
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref14
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref14
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref15
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref15
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref16
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref16
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref17
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref17
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref17
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref18
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref18
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref18
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref19
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref19
http://refhub.elsevier.com/S0306-4379(14)00133-1/sbref19
http://kdd.ics.uci.edu/

	A fast MST-inspired kNN-based outlier detection method
	Introduction
	Related work
	Distance-based and density-based outlier detection
	MST clustering-based algorithms
	Projection based High dimensional outlier mining
	An MST-inspired outlier detection algorithm
	Two new outlier factors
	An approximate nearest neighbor search structure
	Our MST- inspired outlier detection algorithm
	Time complexity analysis
	Pseudo code for DHCA

	A performance study
	Performance of our algorithm on synthetic datasets
	Performance on real datasets
	Lymphography data
	Space shuttle data
	Ionosphere data
	Optical digits
	Multiple features

	Performance of our algorithm with SOM-TH
	Run time performance of our algorithm on large High-dimensional datasets

	Conclusion
	Acknowledgment
	References

