
Design Considerations for Network Processor Operating
Systems ∗

Tilman Wolf, Ning Weng, and Chia-Hui Tai
Dept. of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA, USA

{wolf,nweng,ctai}@ecs.umass.edu

ABSTRACT
Network processors (NPs) promise a flexible, programmable
packet processing infrastructure for network systems. To make full
use of the capabilities of network processors, it is imperative to
provide the ability to dynamically adapt to changing traffic patterns
and to provide run-time support in the form of a network processor
operating system. The differences to existing operating systems
and the main challenges lie in the multiprocessor nature of NPs,
their on-chip resources constraints, and the real-time processing re-
quirements. In this paper, we explore the key design tradeoffs that
need to be considered when designing a network processor oper-
ating system. In particular, we explore the performance impact of
(1) application analysis for partitioning, (2) network traffic charac-
terization, (3) workload mapping, and (4) run-time adaptation. We
present and discuss qualitative and quantitative results in the con-
text of a particular application analysis and mapping framework,
but the observations and conclusions are generally applicable to
any run-time environment for network processors.

Categories and Subject Descriptors: D.4.1 [Operating Systems]:
Multiprocessing;

General Terms: Design.

Keywords: Network processors, application partitioning, applica-
tion mapping.

1. INTRODUCTION
The success of the Internet as a communication medium is

driving research in the areas of sensor networks, overlay networks,
ubiquitous computing, grid computing, and storage area networks.
This trend expands the functionality of networks to include increas-
ingly diverse and heterogeneous end-systems, protocols, and ser-
vices. Even in today’s Internet, routers perform a large amount
of processing in the data path. Examples are firewalling , network
address translation (NAT), web switching, IP traceback, TCP/IP of-
floading for high-performance storage servers, and encryption for

∗This research was supported in part by National Science Founda-
tion grant CNS-0447873.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’05, October 26–28, 2005, Princeton, New Jersey, USA.
Copyright 2005 ACM 1-59593-082-5/05/0010 ...$5.00.

virtual private networks (VPN). Many of these functions are per-
formed in access and edge networks, which exhibit the most diver-
sity of systems and required network functions. With the broad-
ening scope of networking it can be expected that this trend will
continue and more complex processing of packets inside the net-
work will become necessary [2, 4].

The processing infrastructure for these various packet process-
ing tasks can be implemented in a number of ways. Well-defined,
high-speed tasks are often implemented on application-specific in-
tegrated circuits (ASICs). Tasks that are not well-defined or pos-
sibly change over time need to be implemented on a more flexible
platform that supports the ability to be reprogrammed. Network
processors (NPs) have been developed for this purpose.

The performance demands of increasing link speeds and the
need for flexibility require that these network processors are imple-
mented as multiprocessor systems. This makes the programming
of such devices difficult, as the overall performance depends on the
fine-tuned interaction of different system components (processors,
memory interfaces, shared data structures, etc.). The main prob-
lem is handling the complexity of various, interacting NP system
components. To achieve the necessary processing performance to
support multi-gigabit links, network processors are implemented
as system-on-a-chip multiprocessors. This involves multiple mul-
tithreaded processing engines, different types of on- and off-chip
memory, and a number of special-purpose co-processors. On con-
ventional workstation or server systems these complexities are hid-
den by the operating system or do not express themselves as dras-
tically due to their uniprocessor architecture. To simplify this
process, a number of domain-specific programming languages and
optimizing compilers are currently being developed [5, 17, 19].
These approaches aim at optimizing a single application (i.e., router
functionality) statically for the underlying hardware. In current net-
work processors, most performance critical tasks are implemented
and fine-tuned in assembly (e.g., to balance the processing times
in each step of a software pipeline). As a result, slight changes in
the functionality can have drastic performance impacts which re-
quire re-tuning. Due to the necessary fine-tuning of individual ap-
plications, it is very difficult to integrate and dynamically change
multiple packet processing functions on a single network proces-
sor. However, network processing is inherently a dynamic process.
The main motivation for implementing packet processing functions
in a network processor (rather than in a faster, more power-efficient
custom logic device) is the need to change the functionality over
time. Changing traffic patterns, new network services and proto-
cols, new algorithms for flow classification, and changing defenses
against denial of service attacks present the dynamic background
that a programmable router needs to accommodate. This requires
that the router (1) can implement multiple packet processing appli-

cations at the same time, (2) can quickly add and remove process-
ing functions from its workload, and (3) can ensure efficient op-
eration under all circumstances. In particular, the management of
various system resources is important to avoid performance degra-
dation from resource bottlenecks.

The complexity of NP multiprocessor architectures has limited
the use of existing operating system concepts in this domain. The
few existing approaches to providing run-time support are still
aimed at single packet processing applications that are optimized
offline [19, 12] or consider network processing applications as a
single monolithic entity [9]. In this paper, we explore a variety
of design issues for a run-time environment that supports several
concurrent network processing applications and allows dynamic re-
configuration of the workload on a multiprocessor system. The key
design considerations that are addressed fall into four broad cate-
gories: (1) application partitioning, (2) traffic characterization, (3)
run-time mapping and adaptation, and (4)system constraints.

Research efforts in the network processor domain have long been
influenced by particular system designs. In order to separate the
general design issues of operating systems from a particular sys-
tem, we separate qualitative observations and quantitative results.
First, we explore the above design issues and discuss the qualita-
tive tradeoffs between available design choices. This analysis pro-
vides an important understanding of interactions between system
tradeoffs. Second, we provide quantitative results that illustrate the
tradeoffs discussed above in the context of actual NP applications.
For this, we leverage NP application partitioning and mapping tech-
niques and analytic performance modeling results that were devel-
oped in our prior work [15, 20].

In Section 2, we discuss related work. Section 3 discusses the
key characteristics of network processor operating systems and
how they differ from conventional workstation operating systems.
Section 4 discusses qualitative design tradeoffs and Section 5 quan-
tifies these observations in the context of our particular experimen-
tal system. Section 6 combines the results and discusses their im-
plications on network processor operating system design. Section
7 concludes this paper.

2. RELATED WORK
Commercial examples of network processors are numerous [3, 6,

7, 10]. A network processor is typically implemented as a single-
chip multiprocessor with high-performance I/O components, which
is optimized for packet processing. In particular, NPs provide a
more suitable architecture to handle these workloads than conven-
tional workstation or server processors. The need for a specialized
architecture is due to the uniqueness of the workload of NPs, which
is dominated by many small tasks and high-bandwidth I/O opera-
tions [21]. Another alternative for implementing packet processing
functions is programmable logic devices, e.g., field-programmable
gate arrays (FPGAs), which are more suitable for some of the data
flow style processing functions [1, 18]. The design considerations
for run-time support in FPGA-based systems are very similar to
those of conventional NPs and thus the results of our work can be
expected to be equally applicable to this domain.

In order to achieve the necessary performance of ever-increasing
line speeds and increasingly complex packet processing functions,
both NPs and FPGAs exploit the parallelism that is inherent in the
workload of these systems. In general, packets can be processed in
parallel as long as they do not belong to the same flow. Processing
functions within a packet can also be parallelized to decrease packet
delay. This leads to NP systems with numerous parallel process-
ing and co-processing engines. To program such a system, several
domain-specific programming languages have been developed. In-

tel jointly with the Shangri-La project at UT Austin has developed
Baker [5]. The MESCAL project at UC Berkeley has developed
NP-Click [17], which is based on the Click modular router [8].

In the NEPAL project [12], Memik et al. propose a run-time
system which controls the execution of applications on a network
processor. Applications are separated into modules at the task level
using the NEPAL API and modules are mapped to execution cores
dynamically. There is an extra level of translation during which the
application code is converted to modules. The analysis of run-time
techniques is limited to a couple of heuristic allocation algorithms.
Teja [19] is a commercial programming environment for the Intel
IXP family of network processors. While they provide a thin net-
work processing operating system (NPOS), both Teja and NEPAL
are designed to simplify the programming process of a single ap-
plication and aim at code-reuse across platforms. The ability to
quickly adapt to multiple applications on the same network proces-
sor system is not supported.

Even though there has not been much work on the mecha-
nisms for dynamically managing multiple applications, there has
been work on the algorithms for adapting and scheduling network
processors to save power. Kokku et al. have explored run-time en-
vironment design issues [9] similar to the ones we present here, but
do not considers partitioned applications that are distributed over
several processors of the network processing system. Instead, it is
assumed that an entire application is mapped to a single processor
core.

3. NETWORK PROCESSOR OPERATING
SYSTEM

The term “operating system” is most commonly used in the con-
text of workstation computers. The responsibilities of such an op-
erating system are to manage hardware resources and isolate users
from each other. The optimization target is commonly to minimize
the execution time of a single task (the one the user is currently
working on). It is important to note that the goals of an operat-
ing system for network processors are very different. On a network
processor, all applications are controlled by the same administrative
entity and optimization aims at maximizing overall system through-
put.

3.1 Differences to Workstation Operating
Systems

The following list details the differences between network
processor operating systems and conventional operating systems:

• Separation Between Control and Data Path. This separa-
tion refers to the processor context, not the networking con-
text. To achieve high throughput on NPs, several studies have
shown that it is more economical to implement a larger num-
ber of simpler processing engines than fewer, more powerful
ones. Such simple processors do not have the capability to
run complex control tasks on top of packet processing tasks.
In today’s NP designs, control is implemented on a separate
control processor. Due to this separation between “classes”
of processors, it is necessary to have a more explicit control
structure than one would have in a conventional operating
system.

• Limited Interactivity. Users do not directly interact with
an NP or its operating system. At most, applications are in-
stalled and removed occasionally. This does not mean that a
user could not change configurations on an NP (e.g., update
rules for a firewall application), but the key variable in this

system are the traffic patterns that determine what processing
needs to happen.

• Regularity and Simplicity of Applications. One dominat-
ing aspect of network processing is that data path processing
is performed on individual packets. This means that packet
processing tasks are typically limited in complexity due to
the real-time constraints imposed by continuously arriving
packets. As a result, the processing demands are low (few
hundred to several thousand instructions [16]). Addition-
ally, the execution path within an application is the same in a
large number of cases and only slightly different for the other
cases. Therefore it is feasible to analyze packet processing
applications in detail to find good processor mappings.

• Processing Dominates Resource Management. Conven-
tional operating systems need to implement a number of
different functions: processor scheduling, memory man-
agement, application isolation, abstraction of hardware re-
sources, etc. In network processor systems, these challenges
are dominated by managing processing resources. The di-
versity of hardware resources is limited and many are con-
trolled directly by the application. Also, memory is usually
allocated statically to ensure deterministic run-time behav-
ior. This might change in the future as network applica-
tions become more complex and network processor operat-
ing systems become more similar to conventional operating
systems. In this work, we focus on processing aspects of
operating system functionality.

• Non-Existence of User-Space/Kernel-Space Separation.
All functions on a network processor are controlled by the
same administrative entity. There is no clear separation be-
tween user-space and kernel-space in the traditional sense.
Instead, functionality is divided betwen control and data
path. As a result, traditional protection mechanisms are typ-
ically not implemented in network processor operating sys-
tems.

3.2 Design Considerations
Due to these numerous and significant differences between what

is conventionally thought of as an operating system and what is
necessary for a network processor, we believe it is important to
explore some of the fundamental design issues that one encounters
in the context of network processor operating systems.

The questions that arise from such an exploration are:

• How should applications be dynamically installed on and re-
moved from the network processor?

• How can applications be partitioned and mapped to utilize
the underlying multiprocessor hardware?

• How should the operating system adapt to changes in net-
work traffic that require different application configurations?

• What should be the frequency and level of adaptation?

In order to explore operating system design aspects concretely,
we assume a general operational approach as shown in Figure 1.
There are four basic steps that are necessary for run-time support of
network processor systems: application analysis, traffic characteri-
zation, workload mapping, and adaptation. There is a fundamental
question what should be done offline (e.g., during application de-
velopment) and what should (and can realistically) be done during
run-time.

applications

offline
profiling

partitioning

network traffic

traffic
analysis/
prediciton

application
allocation

task to processor
mapping

packet processing

periodic
adaptation

Figure 1: Processing and Traffic Analysis in an Network
Processor Operating System.

Application analysis is necessary to analyze the processing re-
quirements of the application and to be able to partition the ap-
plication. Partitioning allows the distribution of different subtasks
onto different processing elements to fully utilize the resources on
the NP. The simplicity and repetitiveness of network processing
applications [21, 16] allows for a detailed analysis of the applica-
tion. The profiling process is shown as an offline component. With
the limited processing resources on current NP architectures, this
analysis cannot be done online. Typically, such an analysis can be
performed in the context of the application development environ-
ment for the NP applications. The partitioning can be performed
in different ways and the level of granularity at which it should be
performed is discussed in more detail below.

Network traffic characterization is another important aspect of
run-time support for network processor systems. Depending on
the requirements of current network traffic, different applications
dominate the processing. The dynamically changing workload is
the main reason why run-time support is necessary. In order to
achieve a good allocation of processing resources, it is necessary
to know what processing is necessary for packets currently in the
system (or that will be processed in the near future). The result
of traffic analysis is an application allocation, which describes the
ratio of processing required by each application that is available on
the system.

Workload mapping is the process that assigns processing tasks to
actual processing engines. This assignment is based on the applica-
tion allocation and the application partitioning derived in the previ-
ous two steps. Mapping can be performed in a number of different
ways and depends on the particular system architecture, application
development environment, and operational principles of a system.
The goals of mapping are to achieve high system throughput and
efficient resource utilization.

The adaptation step illustrates the need to reconfigure the net-
work processor system to match the processing requirements that
are dictated by the traffic workload. During adaptation, the appli-
cation allocation is changed according to the new traffic require-
ments. Then, the mapping step modifies the allocation of tasks to
processors to match the new allocation.

4. QUALITATIVE TRADEOFFS
With each of these four components of a network processor op-

erating system discussed in the previous section, there are a num-
ber of qualitative design tradeoffs. We discuss the different design
choices in this section and then provide quantitative results in Sec-
tion 5. Since the quantitative results are highly dependent on a
particular system, we have separated the discussion of tradeoffs to
preserve its general applicability.

4.1 Application Partitioning
Network processor applications rarely consist of a single mono-

lithic piece of code. More commonly, NP applications are split
into several subtasks. For example, on the Intel IXP2400, input
processing is separated from forwarding and from output process-
ing. This partitioning makes application development somewhat
easier and changes to the application easier to implement. Also, it
allows for exploiting parallelism and pipelining to fully utilize the
multiprocessor infrastructure. How can an operating system sup-
port this application partitioning?

4.1.1 Manual Partitioning
Manual application partitioning is the most common approach to

determining a suitable separation of tasks and a mapping of tasks to
processors. Using simulation environments, programmers can im-
plement a certain partitioning and obtain performance results. By
manually adapting the partitioning, the bottlenecks can be removed
and the performance can be fine-tuned. This approach is very time
consuming and requires a detailed understanding of the application
and the NP hardware. From an operating system perspective, man-
ually partitioned applications limit the amount of dynamic support.
It is generally not possible to adapt to changing traffic conditions.

4.1.2 Automated Partitioning
More recently, several approaches to automated partitioning of

applications have been investigated. The automatic mapping as-
pect discussed below is related to this. An auto-partitioning com-
piler has been developed by Intel in [5]. Ramaswamy et al. have
developed a profiling-based instruction clustering algorithm that
derives a directed acyclic graph representation of NP applications
[15]. The granularity of the partitioning can be adapted as needed.
Plishker et al. take an approach were applications are described in a
domain-specific language and then distributed onto processing ele-
ments [14].

4.1.3 Design Choices
One key question is what granularity of application partitioning

is most suitable. The spectrum of choices ranges from monolithic
applications to extremely fine-grained instruction (or basic block)
allocations to processing resources. The design tradeoffs are:

• Monolithic Applications. If the application is not parti-
tioned, it can only be allocated to a single processing engine.
This significantly limits how the application workload can be
adapted to network traffic requirements. Also, it may cause
performance bottlenecks in pipelined systems (e.g., multiple
sequential applications per packet), where the pipeline speed
is determined by the maximum stage time. Finally, as ap-
plication size continues to grow, monolithic applications do
not allow for a scalable distribution of processing and may
conflict with instruction store limitations.

• Very Fine-Grained Partitioning. The extreme opposite
case of a monolithic application is a partitioning where each
instruction is mapped individually to a processing resource.

This approach provides more flexibility, but also generates
more overhead for managing the installation and control of
the application. It also increases the complexity of the map-
ping problem, because a large number of nodes have to be
mapped and the space of possible solutions grows signifi-
cantly with the number of mapping choices.

• Balanced partitioning. Ideally, we would like to find
a balanced partitioning that allows efficient distribution of
processing tasks, but keeps the complexity of the mapping
problem at bay.

In the quantitative section below, we show that an optimally bal-
anced partitioning exists. This emphasizes the importance of con-
sidering application partitioning for network processors. The as-
sumption that applications are a monolithic structure that needs to
be mapped to a single processing engine is not sufficient.

4.2 Traffic Characterization
Traffic characterization is an important input to determining a

suitable allocation of different applications on the network proces-
sor. Heavily used applications typically need to be replicated mul-
tiple times to provide sufficient performance (e.g., multiple parallel
IP forwarding applications). When considering run-time support
for workloads, it is important to be able to analyze network traffic
to estimate and possibly predict a suitable application allocation.

4.2.1 Static Traffic Model
The simplest case of traffic characterization is a static traffic

model. This is the most commonly used model since it does not
require any online changes in the system. The assumption is that
traffic requirements remain the same over the entire run time of the
system. Short term variations are compensated by buffering (thus
increasing the packet delay) or overprovisioning, where additional
resources are allocated to each type of application (thus increasing
the total required hardware resources).

4.2.2 Batch Model
In the batch-processing approach, a certain number of packets

are buffered and their processing requirements analyzed before a
workload allocation decision is made. This buffering allows an ac-
curate characterization of the requirements. Since the allocation or
reallocation of tasks cannot be done arbitrarily fast, it is necessary
to maintain a particular processor mapping for a certain amount of
time. This period might be only a few milliseconds, but given high
link rates, it is equivalent to at least several dozen or hundred pack-
ets. If batch processing is used, then all the packets in a batch need
to be buffered. Since this increases the overall delay that is ex-
perienced by a packet, predictive batch processing might be more
suitable.

4.2.3 Predictive Batch Model
In many cases, network traffic exhibits a certain amount of tem-

poral locality. This can be exploited to derive a traffic requirement
estimation for a batch by observing a smaller window within the
batch (“sampling”). Based on the observation, the total processing
requirements for the batch can be extrapolated. For small samples,
only a few packets need to be buffered to determine the allocation
of a batch. With larger samples, the accuracy increases, but so does
the processing delay.

4.2.4 Design Choices
In order to determine the allocation of applications to the net-

work processor system, traffic characterization can be performed
according to the approaches described above. The tradeoffs are:

• Choice of Batch Size. The batch size determines how many
packets are processed given the same allocation of process-
ing resources to applications. The smaller the batch size, the
more frequently this allocation can be adapted to changes
in traffic. However, with smaller batch sizes, less time is
available between reconfigurations for the operating system
to determine how to adapt and to find a good task mapping.

• Choice of Sample Size. In order to minimize the delay for
packets, the sample should be chosen to be small. This re-
duces the accuracy and thus there is a limit to how small it
can be.

• Granularity of Application Allocation. From the traffic
models, an application allocation is derived that assigns a
fraction of the overall processing requirements to each ap-
plication. For large batch and sample sizes, this allocation
can be determined with high precision. In contrast, most net-
work processor systems only support a very coarse allocation
of applications (e.g., number of times a certain application is
replicated on the multiprocessor). Therefore, the granularity
of application allocation can be kept at the same level of pre-
cision as the network processor can support. This permits the
usage of smaller samples.

4.3 Run-Time Mapping and Adaptation
The mapping of application tasks to processing elements is per-

formed through a mapping algorithm. We explore the design trade-
offs without requiring that a particular algorithm be used. However,
we assume two properties of the mapping algorithm:

• The mapping algorithm can yield incrementally better results
as the run-time increases. This implies that the operating
system designer could choose the run time of the algorithm
and the quality of the resulting mapping.

• The mapping algorithm can be employed on a partially con-
figured system. This means that some applications can be
removed and others can be added without changing the map-
ping of applications that are not affected.

The resulting design choices address the frequency and level of
(partial) mapping.

4.3.1 Static Mapping
Static mapping goes hand-in-hand with static partitioning and a

static traffic model. In this case, processing tasks are allocated to
processors offline and no changes are made during run-time.

4.3.2 Complete Dynamic Mapping
Complete mapping refers to a mapping solution where the en-

tire workload is mapped from scratch. The mapping algorithm can
place processing tasks on the entire architecture without any initial
constraint. This typically leads to a good solution that approxi-
mates the theoretical optimum for increasing processing times.

4.3.3 Partial Dynamic Mapping
Partial mapping assumes that some part of the workload is al-

ready mapped to the NP system. The mapping algorithm only
needs to map a few applications to the remaining processing re-
sources. This approach is more restrictive than complete dynamic
mapping because much of the system resources are already as-
signed to applications. The incremental nature of this approach
poses the risk that the mapping algorithm “gets stuck” in a local
minimum. Nevertheless, the processing cost for the partial map-
ping is less than mapping the entire workload.

4.3.4 Mapping Effort
Another interesting parameter for dynamic mapping is how of-

ten to reprogram the system. Ideally, we want to reconfigure ap-
plication allocation with every packet to guarantee the best system
utilization and high performance while traffic is varying. However,
there is a cost associated with mapping and remapping. Apart from
the cost for uploading new instructions to each processor, deter-
mining the new mapping requires processing power and computa-
tion time. It is important to keep the reprogramming frequency at
a low enough rate where sufficient processing time is available to
find good mapping results.

4.3.5 Design Choices
Design choices for mapping determine how often, how much,

and with how much effort to perform complete or partial mapping.

• Choice of Dynamic Adaptation Frequency and Mapping
Effort. In order to adapt to changing traffic conditions, the
network processor operating system needs to change the ap-
plication allocation and thus the mapping. The rate at which
this happens determines the maximum time that is available
for determining a new mapping. The lower the adaptation
rate, the more time can be spent on finding a better mapping
solution. As the adaptation rate increases, the quality of the
derived mapping solution decreases.

• Choice of Partial Mapping and Mapping Effort. Changes
in traffic conditions may only affect a few applications. In
order to be able to adapt quickly with low mapping cost, an
operating system designer may choose to only map a small
part of the overall allocation. The benefit of this is the abil-
ity to adapt quickly, but the amount of traffic variation that
can be supported is limited to the fraction of the NP that is
remapped.

• Balance of Partial and Complete Mapping. Repeated par-
tial mapping causes mapping solutions to deteriorate. In
order to avoid this, complete mapping steps should be per-
formed periodically. The more frequently this happens, the
less likely the system will go into an inefficient state. How-
ever, this also increases the overall mapping effort.

The quantitative results show that partial mapping can provide
quicker adaptation to changes in traffic, but that the deterioration of
the mapping result can have significant impact on the performance.

4.4 Constraints
A network processor has a number of system constraints that are

not considered in the above discussion. These constraints can play
a major role when making design decisions.

4.4.1 Instruction Store Limitations
Most network processor systems are severely limited in the

amount of instruction store that is available for each processing
engine. This is due to the relatively high chip area cost of mem-
ory compared to processing logic. This limitation is the reason that
not all applications can be installed on all processing engines at all
time. Therefore mapping changes are quite costly as they require
uploading of new instructions to every processor.

4.4.2 Overprovisioning
A network processing system needs to be capable of processing

any packet that is transmitted on the network. In the context of a
network processor operating system, this means that processing re-
sources should be available for all applications. If this is not the

application
ADAG

P

P

P

P

P

P

P

P

P

M M M

NP
architecture

mapping
algorithm

application
profiling

and
partitioning

mapping
result

analytic
perfor-
mance

evaluation

system
throughput
and other

results

Figure 2: Application Analysis, Mapping, and Performance Evaluation Process. Typically, multiple ADAGs are mapped to the NP
architecture to reflect the workload mix that can be processed by the network processor.

case, packets need to be delayed until the next adaptation cycle or
processed in the slow path of the router. One way to avoid this
delay is to overprovision the system and increase the application
allocation to more than 100%. It can be ensured that even applica-
tions that are not expected to see any traffic in the upcoming batch
can be installed just in case.

5. QUANTITATIVE RESULTS
In this section, we support the qualitative observations of the

previous sections with quantitative results. This helps illustrating
which trends have a large impact and which trends have a small
impact on the system performance.

In order to derive quantitative results, we use a particular system
baseline. Of course, there are big differences between different net-
work processor systems and results on another system would look
somewhat different. It is therefore more important to consider the
trends that can be observed in our results (e.g., does an optimum
exist?) than individual data points (e.g., where exactly is the opti-
mum?).

5.1 Baseline System
The metric that we are interested in is the throughput of a net-

work processor system given a certain workload. In order to de-
rive this information, we need to implement some of the functions
that are necessary for network operating systems. In particular,
we need to consider realistic network processing applications, their
partitioning, and the mapping of processing tasks to processing en-
gines. In order to explore the design space that we have described,
it is not sufficient to only consider a handful of partitioning and
mapping solutions. We choose therefore to use an analytic model-
ing approach instead of simulation. With the automated partition-
ing, mapping, and performance modeling environment provided in
[15] and [20], we can evaluate a large number of possible applica-
tion partitioning, mapping results, etc. This provides a first-order
understanding of the quantitative tradeoffs. In the process, several
ancillary metrics (e.g., cost for deriving a certain quality mapping)
can be obtained.

The process of obtaining performance results is shown in Figure
2. We briefly describe the three key components, application par-
titioning and representation, the mapping algorithms, and the ana-
lytic performance model, to provide a basis for the understanding
of the results below.

5.1.1 Application Representation
A network processing application needs to be represented in a

way that it can be easily mapped to multiple parallel or pipelined
processing elements. This requires a representation that exhibits
the application parallelism while also ensuring that data and con-

trol dependencies are considered. We use an annotated directed
acyclic graph (ADAG) to represent the dynamic execution profile
of applications.

The ADAG is derived from dynamic profiling of the application
by determining data and control dependencies between individual
instructions. Using a clustering heuristic that minimizes the com-
munication overhead, instructions are aggregated to larger nodes in
the graph. Each node is annotated with information on the total
number of instructions and memory accesses that need to be exe-
cuted when processing the node.

5.1.2 Mapping Algorithm
Once we have the application represented as an ADAG, the next

step is to map the ADAG onto a NP topology. The goal of the map-
ping is to assign processing tasks (i.e., ADAG nodes) to processing
elements and generate a schedule that achieves the maximum sys-
tem throughput. This assignment is not easy because the mapping
process needs to consider the dependencies within an ADAG and
ensure that a correct processing of packets is possible. Further,
Malloy et al. have shown that producing an optimal schedule for
a system that includes both execution and communication cost is
NP-complete, even if there are only two processing elements [11].
Therefore we need to develop a heuristic to find an approximate
solution.

Our heuristic solution to the mapping problem is based on “ran-
domized mapping.” The key idea is to randomly choose a valid
mapping and evaluate its performance. By repeating this process a
large number of times and picking the best solution that has been
found over all iterations, it is possible to achieve a good approxi-
mation to the global optimum. With the randomized approach any
possible solution is considered and chosen with a small, but non-
zero probability. This technique has been proposed and success-
fully used in different application domains [13]. The mapping is
performed for multiple, possibly different, ADAGs. The mixture
of ADAGs represents the allocation of applications to the NP ar-
chitecture.

5.1.3 Analytic Performance Model
In order to evaluate the throughput performance of a given

solution, we use an analytic performance model that considers
processing, inter-processor communication, memory contention,
and pipeline synchronization effects. After mapping the application
ADAGs to the network processor topology, we know exactly the
workload for each processing element. This information includes
the total number of instructions executed, the number of memory
accesses, and the amount of communication between stages. The
model needs to take this into account as well as contention for
shared resources (memory channels and communication intercon-

Table 1: Baseline Configuration for Quantitative Results.
System parameter Baseline configuration

NP pipeline stages 4
PEs per stage 4
Total number of PEs 16
Memory interfaces per stage 2
Memory access time (in cycles) 10
Number of ADAGs 20
Nodes per ADAG 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

re
la

tiv
e

th
ro

ug
hp

ut
 p

er
fo

rm
an

ce

mapping cost (number of randomized runs)

Figure 3: System Performance Compared to Mapping Cost.

nects). We are particularly interested in the maximum latency of
each pipelined processing stage since that determines the overall
system speed. The number of ADAGs that are mapped to an ar-
chitecture determines how many packets are processed during any
given stage time. After specifying the several system parameters,
the throughput of the system for a given mapping can be expressed.

5.1.4 System Configuration and Workload
The system architecture considered in the above model can be

configured to represent any regular NP architecture with a specified
number of parallel processing engines (PEs) and pipeline stages.
We have chosen one single baseline system with a fixed configura-
tion to explore the operating system issues (see Table 1). A separate
question is how these change for different architecture configura-
tions. This design space exploration is currently not addressed in
our work. The applications that are considered for this system are
radix-tree-based IP-lookup and hash-based flow classification.

5.2 Processing Task Mapping

5.2.1 Metrics
Mapping takes a certain amount of processing. This is expressed

as c. The performance that is achieved by the mapping is expressed
as t, the throughput of the system. Due to the NP-completeness of
the mapping problem, finding the overall optimal solution is infea-
sible. What is really desirable in a system is to obtain a “good
enough” solution by running the approximation algorithm for a
large amount of time.

5.2.2 Results
Figure 3 shows the increasing quality of the mapping result as

more processing effort is dedicated to the mapping process. The
mapping cost is the time that it takes to calculate the solution (ex-

0

0.2

0.4

0.6

0.8

1

1.2

5 10 15 20 25 30

pe
rf

or
m

an
ce

 r
el

at
iv

e
to

 m
on

ol
ith

ic
 a

pp
lic

at
io

n

partitioning level (number of nodes)

Figure 4: Performance for Different Levels of Application Par-
titioning. The overall mapping effort is limited to 10,000 total
node mapping attempts.

pressed as the number of randomized mapping iterations). We do
not consider the additional overhead for stopping, reprogramming,
and restarting processing engines, which occurs in real systems.
Since the maximum system performance is unknown, we use a
mapping result with very high cost as the baseline.

5.3 Partitioning
The goal of application partitioning is to study the impact of the

partition granularity on the performance.

5.3.1 Metrics
We consider the number of tasks (or nodes in the ADAG), n, into

which the application is partitioned. The maximum n is different
for each application, but for this evaluation we only consider values
of n that are much smaller than this maximum. If the partitioning
is balanced, then the size of each subtask is approximately 1

n
of the

application size.

5.3.2 Results
First, we explore the tradeoff between system throughput and

partitioning granularity. Finer granularity promises better perfor-
mance if the permissible mapping effort is unbounded. When con-
sidering the realities of a network processor operating system, the
mapping effort is bounded by the batch size and adaptation fre-
quency. Figure 4 shows the throughput of the baseline system with
different levels of application granularity relative to a monolithic
implementation, where the entire application is executed on a single
processor. The mapping effort is fixed and it can be observed that
the best performance is achieved for n=5. The monolithic applica-
tion performs worse because it does not permit an even distribution
of processing tasks on the multiprocessor system. Larger values
of n also degrade the performance because the mapping problem
becomes more complex and finding a good mapping in a limited
amount of time becomes more difficult.

5.4 Traffic Characterization
To illustrate the need for traffic characterization and run-time

adaptation, we have performed network measurement experiments.

5.4.1 Metrics
As described above, the predictive batch model assumes that

traffic is processed in batches (with batch size b) and the applica-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 5000 10000 15000 20000

tr
af

fic
 v

ar
ia

tio
n

packet

Figure 5: Traffic Variation Over a Sequence of Packets.

tion allocation is based on a sample (size l). We can then describe
the traffic variation v based on two metrics, ei,j(a) and pi,j(a).
Metric e reflects the estimated number of packets requiring appli-
cation a and metric p is the actual number of packets requiring this
application in packet interval [i . . . j):

vi(l, b) =
1

b
·
�

a

max(pi,i+b(a) − b

l
ei,i+l(a), 0). (1)

For example, if the traffic matches exactly the estimated alloca-
tion, then all packets “matched up” and the traffic variation is v=0.
If half the packet of a batch are different from what was expected
(e.g., all packets require a single application instead of an estimated
50/50 split between two application), then the traffic variation is
v =0.5.

5.4.2 Results
To get realistic data on what traffic variation looks like in a net-

work, we obtained measurement data from our institution’s Gigabit
internet access link. We collected 4,235,403 packets and classified
them by layer 7 applications (using the classification rules of the
Ethereal tool). There are a total of 175 categories, but over 98% of
the traffic falls into the top five categories.

Figure 5 shows traffic variation over a sequence of packets. The
parameters are b=10,000 and l=100 and the variation is computed
as a sliding window. While this is only a small sample of the overall
measurement that we have performed, it does reflect the overall
trends correctly. In most cases, the variation is around v=0.04 with
a few spikes of up to v=0.15.

Of course, the observed variation depends on the quality of the
estimate (i.e., size of l relative to b) and the batch size b. To show
this relationship, Figure 6 shows the average variation observed
throughout the entire trace for different batch sizes and different
sample percentages l

b
. With small samples and small batch sizes,

the average variation is very high (v=0.4). The peak variation in
this case can reach v=1. The larger the sample percentage, the
better are the estimates and thus the lower is the traffic variation.
As the batch size increases, the temporary variations within the
network traffic are “smoothed out” and less average variation is
observed. This does not mean that the static allocation approach
(b=∞) is necessarily ideal. What the figure does not show is the
delay that would be caused by smaller scale traffic variation nor
the overprovisioning that would be necessary to support all possi-
ble traffic conditions. When the amount of sampling is fixed, then
larger batch sizes cause higher traffic variations as shown in Figure

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 1000 10000 100000 1e+06 1e+07

av
er

ag
e

tr
af

fic
 v

ar
ia

tio
n

batch size

1% sample
10% sample
20% sample

Figure 6: Traffic Variation Compared to Batch Size with Dif-
ferent Levels of Sampling. The sample size is set to a percentage
of the batch size.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 100 1000 10000

av
er

ag
e

tr
af

fic
 v

ar
ia

tio
n

batch size

Figure 7: Traffic Variation Compared to Batch Size with Fixed
Sample Size. The sample size is fixed to l=100.

7. These results illustrate the importance of run-time adaptation
because traffic does change significantly on short time scales.

5.5 Adaptation
Adaptation during run-time is guided by the variation of traffic.

Complete and partial mapping is performed during each adaptation
process.

5.5.1 Metrics
The metrics that are interesting for adaptation are the system

throughput in comparison to a baseline configuration. The key in-
put parameters are the frequency of adaptation and the amount of
partial mapping (i.e., the fraction of NP resources to which new ap-
plications can ge allocated). For our experiment, we consider the
adaptation frequency to be the same as the batch size.

5.5.2 Results
Figure 8 shows the degradation effect of repeated partial map-

ping. The figure shows that repeated removals and additions of ap-
plications cause system performance to quickly drop and then sta-
bilize at a suboptimal state of about 80% of the peak performance.
There is little variation between different levels of partial adapta-
tion; the stabilizing value is driven more by the amount of effort

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pe
rf

or
m

an
ce

 r
el

at
iv

e
to

 b
as

el
in

e
sy

st
em

number of iterations

baseline
10% partial mapping
30% partial mapping
50% partial mapping

Figure 8: Performance Degradation Due to Repeated Partial
Mapping. The baseline case is a complete mapping.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

pe
rf

or
m

an
ce

 r
el

at
iv

e
to

 b
as

el
in

e

batch size (packets)

v=0.0
v=0.01
v=0.03
v=0.05
v=0.07
v=0.09

operational variation

Figure 9: Performance for Different Batch Sizes under Traffic
Variation. The total mapping effort is fixed and the baseline
case has infinite batch size with no traffic variation.

that is dedicated to the partial mapping. This result clearly shows
that partial mapping can very quickly lead to suboptimal configu-
rations. When designing a NP operating system, it should be taken
into account that complete mapping is occasionally necessary.

The adaptation frequency (i.e., the batch size) poses a tradeoff
between the adaptiveness of the system to changing traffic and the
quality of the mapping result that can be derived. Figure 9 shows
the relative performance of configurations with different batch sizes
and traffic variation. With increasing batch size, the performance
of the system increases, but as the traffic variation increases, the
performance decreases.

The line marked as “operational variation” shows the maximum
system performance with real traffic variation and a chosen batch
size (with fixed sample size of l=100 as shown in Figure 7). As the
batch size increases, the traffic variation does so, too. The resulting
deviation from the processing allocation causes the performance to
drop. The trend of this curve shows that there clearly is an optimal
batch size. This further supports the argument that careful design
considerations are necessary when choosing such system parame-
ters.

6. NP OPERATING SYSTEM DESIGN
SCENARIOS

In the previous two sections, we have discussed a number of de-
sign considerations and explored their qualitative and quantitative
dependencies. To summarize some of these observations and to
identify concrete results, we present three example designs for net-
work processor operating systems. For each scenario, we discuss
the performance aspects based on our observations above.

6.1 Scenario 1: Static Configuration
This scenario assumes that all analysis, mapping, and allocation

operations are performed offline. Once the network processor is
configured, no adaptation is performed. This scenario represents
many of today’s network processor systems that are programmed
and optimized for a single application scenario. The design and
performance considerations are:

• Simplicity of System. Clearly, as static handling of all map-
ping and allocation issues simplifies the implementation of
the system. There is no need for run-time control.

• Limited Run-Time Flexibility. The static approach does
not allow for any changes during run-time. Any change in
the workload configuration requires the use of a software de-
velopment tool to reconfigure the entire system. As network
processors become more integral components of networks,
this approach will become less feasible.

• Performance Degradation under Traffic Variation. From
Figure 5, we can see that traffic requirements do change over
time. This leads to performance degradation or the need for
significant overprovisioning.

6.2 Scenario 2: Predetermined
Configurations

In this scenario, we assume that the NP system can be configured
to one of multiple predetermined workload configurations. Each
configuration is statically mapped in an offline process. During
run-time, the system can adapt to any one of these configurations.
The design and performance considerations are:

• Offline Mapping. While the system needs to monitor traffic
variation, it does not need to perform mapping computations.
This limits the complexity of the operating system.

• Limited Adaptability. The number of configurations that
can be precomputed is limited. If traffic varies outside the
estimated bounds, no further adaptation is possible. Within
the bounds of estimated traffic, it is unlikely that actual traffic
completely matches a predetermined configuration. Thus, a
certain level of performance degradation can be expected.

• Better Quality Mapping Results. Due the availability of ar-
bitrary amounts of computational power for offline mapping,
the quality of mapping results (see Figure 3) can be better
than for online mapping.

6.3 Scenario 3: Fully Dynamic Configuration
In the fully dynamic scenario, mapping is performed online and

the system adaptation is performed to match the traffic variation.
This case utilizes sampling to estimate the processing requirements
for each batch. The design and performance considerations are:

• Complete Adaptability. A fully dynamic system can adapt
to any traffic variations – even configurations that could not

be predicted when programming the system. This is clearly
the most important functional benefit of this scenario.

• Limited Mapping Quality. Due to the online nature of the
mapping process, only limited amounts of processing time
are available (very large batch sizes decrease performance –
see Figure 9). Thus, the quality of the mapping results is less
than that of the other two scenarios.

• Lower Overprovisioning Overhead. Due to the ability to
adapt to changing traffic conditions, a fully dynamic scenario
can provide high throughput performance with less process-
ing resources.

In summary, each of the three approaches has its benefits (sim-
plicity vs. high quality mapping vs. lower system requirements).
Nevertheless, the ability to completely adapt at run-time is key in
future network processor systems.

7. CONCLUSION
We have presented an extensive qualitative discussion of design

issues related to operating system design for network processors.
To illustrate the design considerations, we have provided quanti-
tative results that highlight performance tradeoffs between various
design parameters. Finally, we have explored three different oper-
ating system designs and their benefits and drawbacks.

We believe that this study provides an important basis for de-
sign and implementation of future operating systems for network
processors. Understanding the presented tradeoffs will guide op-
erating systems designers to consider the relevant interactions be-
tween applications, network traffic, and the underlying hardware.
This will bring us closer to realizing network processors as easy-
to-use components of network systems.

8. REFERENCES
[1] BAKER, Z., AND PRASANNA, V. K. A methodology for

synthesis of efficient intrusion detection systems on FPGAs.
In Proc. of the IEEE Conference on Field-Programmable
Custom Computing Machines (Napa, CA, Apr. 2004).

[2] ELSON, J., AND CERPA, A. Internet content adaptation
protocol (ICAP). RFC 3507, Network Working Group, Apr.
2003.

[3] EZCHIP TECHNOLOGIES LTD. NP-1 10-Gigabit 7-Layer
Network Processor. Yokneam, Israel, 2002.
http://www.ezchip.com/html/pr np-1.html.

[4] GAVRILOVSKA, A., SCHWAN, K., NORDSTROM, O., AND

SEIFU, H. Network processors as building blocks in overlay
networks. In Proc. of Hot Interconnects (Stanford, CA, Aug.
2003), ACM, pp. 83–88.

[5] GOGLIN, S. D., HOOPER, D., KUMAR, A., AND

YAVATKAR, R. Advanced software framework, tools, and
languages for the IXP family. Intel Technology Journal 7, 4
(Nov. 2004), 64–76.

[6] IBM CORPORATION. IBM Power Network Processors,
2000. http://www.chips.ibm.com/products/wired/com-
munications/network processors.html.

[7] INTEL CORPORATION. Intel Second Generation Network
Processor, 2002. http://www.intel.com/design/network/pro-
ducts/npfamily/ixp2400.htm.

[8] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND

KAASHOEK, M. F. The Click modular router. ACM
Transactions on Computer Systems 18, 3 (Aug. 2000),
263–297.

[9] KOKKU, R., RICHÉ, T., KUNZE, A., MUDIGONDA, J.,
JASON, J., AND VIN, H. A case for run-time adaptation in
packet processing systems. In Proc. of the 2nd Workshop on
Hot Topics in Networks (HOTNETS-II) (Cambridge, MA,
Nov. 2003).

[10] LUCENT TECHNOLOGIES INC. PayloadPlusTM Fast
Pattern Processor, Apr. 2000. http://www.agere.com/sup-
port/non-nda/docs/FPPProductBrief.pdf.

[11] MALLOY, B. A., LLOYD, E. L., AND SOUFFA, M. L.
Scheduling DAG’s for asynchronous multiprocessor
execution. IEEE Transactions on Parallel and Distributed
Systems 5, 5 (May 1994), 498–508.

[12] MEMIK, G., AND MANGIONE-SMITH, W. H. NEPAL: A
framework for efficiently structuring applications for
network processors. In Proc. of Second Network Processor
Workshop (NP-2) in conjunction with Ninth International
Symposium on High Performance Computer Architecture
(HPCA-9) (Anaheim, CA, Feb. 2003).

[13] MOTWANI, R., AND RAGHAVAN, P. Randomized
Algorithms. Cambridge University Press, New York, NY,
1995.

[14] PLISHKER, W., RAVINDRAN, K., SHAH, N., AND

KEUTZER, K. Automated task allocation for network
processors. In Proc. of Network System Design Conference
(Oct. 2004), pp. 235–245.

[15] RAMASWAMY, R., WENG, N., AND WOLF, T. Application
analysis and resource mapping for heterogeneous network
processor architectures. In Proc. of Third Workshop on
Network Processors and Applications (NP-3) in conjunction
with Tenth International Symposium on High Performance
Computer Architecture (HPCA-10) (Madrid, Spain, Feb.
2004), pp. 103–119.

[16] RAMASWAMY, R., WENG, N., AND WOLF, T. Analysis of
network processing workloads. In Proc. of IEEE
International Symposium on Performance Analysis of
Systems and Software (ISPASS) (Austin, TX, Mar. 2005),
pp. 226–235.

[17] SHAH, N., PLISHKER, W., AND KEUTZER, K. NP-Click: A
programming model for the intel IXP1200. In Proc. of
Second Network Processor Workshop (NP-2) in conjunction
with Ninth International Symposium on High Performance
Computer Architecture (HPCA-9) (Anaheim, CA, Feb.
2003), pp. 100–111.

[18] TAYLOR, D. E., TURNER, J. S., LOCKWOOD, J. W., AND

HORTA, E. L. Dynamic hardware plugins: Exploiting
reconfigurable hardware for high-performance
programmable routers. Computer Networks 38, 3 (Feb.
2002), 295–310.

[19] TEJA TECHNOLOGIES. TejaNP Datasheet, 2003.
http://www.teja.com.

[20] WENG, N., AND WOLF, T. Profiling and mapping of
parallel workloads on network processors. In Proc. of The
20th Annual ACM Symposium on Applied Computing (SAC)
(Santa Fe, NM, Mar. 2005), pp. 890–896.

[21] WOLF, T., AND FRANKLIN, M. A. CommBench - a
telecommunications benchmark for network processors. In
Proc. of IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS) (Austin, TX, Apr.
2000), pp. 154–162.

