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Abstract Determining the similarity between images is
a fundamental step in many applications, such as image
categorization, image labeling and image retrieval. Auto-
matic methods for similarity estimation often fall short when
semantic context is required for the task, raising the need
for human judgment. Such judgments can be collected via
crowdsourcing techniques, based on tasks posed to web
users. However, to allow the estimation of image similari-
ties in reasonable time and cost, the generation of tasks to
the crowd must be done in a careful manner. We observe
that distances within local neighborhoods provide valuable
information that allows a quick and accurate construction of
the global similarity metric. This key observation leads to a
solution based on clustering tasks, comparing relatively sim-
ilar images. In each query, crowd members cluster a small
set of images into bins. The results yield many relative simi-
larities between images, which are used to construct a global
image similarity metric. This metric is progressively refined,
and serves to generate finer, more local queries in subsequent
iterations.Wedemonstrate the effectiveness of ourmethod on
datasetswhere ground truth is available, andon a collectionof
images where semantic similarities cannot be quantified. In
particular, we show that our method outperforms alternative
baseline approaches, and prove the usefulness of clustering
queries, and of our progressive refinement process.
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1 Introduction

In recent years, there have been many advances in image
capturing capabilities of mobile devices, encouraging end
users to capture more images of higher quality. As a result,
there is an abundance of constantly growing collections of
images, both on personal computers and on websites such
as Facebook, Flickr and Instagram. Such vast collections
require efficient methods for image categorization, image-
labeling, and in particular image retrieval, which allows users
to quickly locate an image suitable for their needs. These
methods necessarily rely on the availability of pairwise sim-
ilarities between images in the collection.

It is extremely hard to define a distance metric that would
capture well the intuitive or semantic similarity between
images. State-of-the-art analytical methods for computing
such a metric fall short when similarities are derived from a
broad semantic context. These may include elusive relations
such as a similar emotion or sensation evoked by the images
(e.g., images that convey “fear” or “comfort”); images of
things which are semantically related (e.g., different types of
garden furniture); likeness between the photographed peo-
ple; and so on. Consider, for instance, the similarity between
the movie posters in Fig. 1. Identifying such similarities is
usually easily done by a human observer, but pose a hard
computational problem nonetheless.

The natural solution is thus gathering information about
semantic similarities between images from people, for exam-
ple using a crowdsourcing technique.1 This approach was
taken in recent work [9,13] to collect style similarity

1 Crowdsourcing is a general name for processes that involve posing
many small-scale tasks to the crowd of web users, and piecing together
the crowd’s answers to achieve a larger-scale goal, such as constructing
a large knowledge base.
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Fig. 1 Nearest neighbors of the center image in a collection of movie posters, computed using image descriptors (left), and crowdsourced queries
(right). Smaller images mark farther neighbors

measures. The typical comparison task that the crowd per-
forms is of the following form: given three images A, B,
and C , choose whether A is more similar to B or to C (a
triplet query). Assuming consistent query responses, query-
ing every image triplet yields the full relative similaritymetric
over the set of images. However, the number of triplets is pro-
hibitively large. Thus, typically only a sample of the triplets
are queried and the rest are estimated based on extracted
image features [9,13].

Another challenge in this respect is that people often need
context to perform comparison tasks. For example, consider
the triplet in Fig. 2. Is the image of a bridge in London (b)
more similar to another image of a different bridge in London
from a different angle (c) or to an image of a Parisian bridge
from the same angle (a)? In a larger context, it often becomes
clearer which option is more reasonable, e.g, in the context
of Fig. 3 image (b) is more similar to (c) than (a).

In this work, we propose an alternative approach for learn-
ing image similarities based on clustering queries posed to
the crowd. Insteadof queries of three images, crowdmembers
are given a small set of images and are asked to cluster them
into bins of similar images using a drag-and-drop graphical
UI (see Fig. 4). While a single clustering task requires more

Fig. 2 Without context, similarity between images can be ambiguous

Fig. 3 With context, it can be seen that images belong to twodistinctive
locations, London and Paris

Fig. 4 An example of the clustering interface. a The user is presented
with 20 images to cluster into the four bins on the right. b The bins may
contain as many images as necessary. When all images are clustered,
the user can submit the query and receive another one

effort than comparing three images, our approach has two
important advantages. First, the results of a single clustering
task provide a great deal of information that is equivalent to
many triplet comparison tasks: images placed in the same bin
are considered closer to one another than to images in other
bins. Second, each query provides crowdmemberswith addi-
tional context that assists them in performing a more faithful
and meaningful comparison.

A key observation of this work is that a similarity metric
can be constructed more efficiently by performing compar-
isons on similar images rather than non-similar ones. This
is true in particular in the context of semantic similarities,
where local similarities are often more meaningful. Follow-
ing this observation, we develop a novel, adaptive algorithm
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that aims to generate queries that are as local as possible. The
challenge here is that similarities are unknown in advance.
Thus, our algorithmworks iteratively. At each phase, we gen-
erate andpose clusteringqueries to the crowd.As information
is collected, we progressively refine the queries to focus
on similar images in a narrower local neighborhood. Local
similarity comparisons are embedded in Euclidian space to
obtain a refined estimation for the global similarity metric.
This refined metric is then leveraged for computing more
locally focused queries in the next phase. This progressive
method efficiently converges to a meaningful similarity esti-
mate.

Evaluation and experimental study To test the efficiency
of our approach, we implement our technique in a proto-
type system, and use it to conduct a thorough experimental
study, with both synthetic and real crowd data. First, we test
our technique over two image datasets where the ground
truth is known, examine the results and compare them to
a baseline approach that uses the same number of queries
but chooses them randomly. Second, we compute the k-NN
images for real-world image datasets, where the ground truth
is unknown, and evaluate the resultsmanually. Last, we study
the effect of parameters such as the number of phases and
queries in a series of synthetic experiments. Our experimen-
tal results prove the efficiency of our approach for computing
semantic image similarity based solely on the answers of the
crowd, while using a relatively small number of clustering
queries.

2 Related work

The classification of images is a well-studied problem. A
common paradigm is based on image descriptors, such as
the color histogram of images, SIFT based descriptors [8],
orGISTdescriptors [12]. The distance between two images is
defined as the Euclidean distance between the image descrip-
tors, on top of which machine learning techniques can be
employed to find similarities or clusters of the images (e.g.,
[17,23]). Other methods employ a bag of features (BoF)
approach, using visual segments [15] and/or textual anno-
tations, either attached to the images manually or from the
textual context of a web page (e.g., [17,23]). However, such
methods fall short when classification relies on semantically
rich features, which may be hard to learn from the images,
andmay only be partially reflected in the labels. For instance,
the images of London and Paris bridges containmany seman-
tic features such as the style, building materials and general
atmosphere. The images and labels describing them may not
capture all of these features, nor their relative importance for
determining similarity.

The problem of lacking semantic features can be alle-
viated by semi-supervised learning methods that rely on
manual labeling of a small set of image pairs or triplets,
rather than per-image labels for the entire set. A large body
of work has attempted to classify images using such meth-
ods, typically, by pairwise labeling consisting of equivalence
(and sometimes inequivalence) constraints, i.e., whether or
not the pair belongs to the same class [1,2,19,21]. Triple-
wise constraints are more relevant to relative comparisons
of images, as they compare the distances of two image pairs
[6,9,11,13,16]. The constraints can then be used to learn a
distance metric between images. In particular, the work of
[16] focuses on adaptively selecting optimal triplets based
on crowd input. In the recent work of [9,11,13], triple-wise
comparisons have been collected from crowd members to
learn about style similarities. While these studies highlight
the need in collecting similarity comparisons from the crowd,
the use of triplet comparisons has shortcomings that our
work addresses: this approach requires many crowd tasks,
and users are not given context for comparison. These short-
comings were also noted by [20], a study that focuses on
redesigning the user interface to derive more image compar-
isons from each crowd task. This is done by asking users
to select the X most similar images to a given image, out
of Y images. The new interfaces of [20] are a step for-
ward from triplets but, in contrast with our work, their study
does not consider how to effectively choose images to com-
pare.

Another work highly related to ours is Crowdcluster-
ing [7], which considers clustering images with the crowd.
Each crowd member obtains a sample of a few images (a
query) and classifies them into groups. This input is used to
train a Bayesian model which estimates the ways different
crowd members may classify each image. This work resem-
bles ours in letting the user cluster a small set of images,
and also in the idea of refining the clustering results by re-
applying the technique on the obtained clusters. However,
their technique is not designed to compute image similar-
ities. In contrast, we employ the progressive refinement to
determine image similarities with faster convergence. We
compare the performance of our techniques with [7] in
Sect. 4.

Thework of [22] suggests to only obtain query answers for
a small fraction of the data, and use dedicated matrix com-
pletion techniques to complete the missing classifications,
rather than requiring that every image appears in at least one
query as in [7]. This work is orthogonal to ours, and can be
employed in our case if the number of queries that can be
asked is small relative to the number of images.

Crowdsourcing has been employed for tasks related to
ours such as record matching based on images [10], group-
ing and top-k [5], and entity matching [18]. However, no
previous work has considered the problem of learning an
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image similarity metric, nor can be applied in a straightfor-
wardmanner for this task. For example, k-NNmay be viewed
as finding the top-kmost similar images for each image; how-
ever, applying the method of [5] for each image separately is
inefficient.

3 Algorithm

We next describe our method of generating queries to the
crowdbased on an estimated similaritymetric, and of refining
the similarity metric based on answers from the crowd. We
aim to use queries that involve images from the same local
neighborhood, which are more effective for determining the
global similarity metric.

Our algorithm generates clustering queries by selecting
sets of nq images. The answer obtained from crowd mem-
bers is a division of this image set into nc clusters. The
crowd is a relatively expensive resource in terms of latency,
human effort, and often monetary cost as well. Therefore,
in many practical cases, the total number of queries that can
be asked is restricted by a predefined budget. Given such
a budget, the goal of the algorithm we develop is to uti-
lize the queries in the best way possible, by considering
only local neighborhoods. This yields an iterative process,
where local neighborhoods change according to queries’
results.

Our method estimates local distances by maintaining an
embedding of the entire set in Euclidian space, in which the
distances are calculated. The embedding is initialized ran-
domly, and local neighborhoods are progressively improved.
The embedding ensures that even distances that were not
queried are consistent with the partial information derived
from queried distances. To improve the embedding of local
neighborhoods, we pose queries to the users in small batches,
and update the embedding after each batch. Interestingly,
querying local neighborhoods of the embeddingprovedbene-
ficial even in early stageswhen the images are not necessarily
semantically close, since such queries provide many con-
straints on the same neighborhood. In addition, in each
iteration we wish to preserve the close neighbors which
are already semantically similar. Even in a random embed-
ding, local neighborhood-based queries help to detect and
preserve cases where some neighbors are also semantically
similar.

The main steps of the algorithm are illustrated in Algo-
rithm 1: As input, the algorithm takes the total number of
allowed queries (budget) and the number of queries to
generate at each iteration (batch_size). The results of
the queries are integrated into the embedding (E) and the
induced global distance metric (D). The output of the algo-
rithm is the distance metric computed based on the last, most
refined embedding.

Algorithm 1: CrowdSter(budget, batch size)
1: E = EmbedData() // random embedding
2: num of queries = 0
3: while num of queries < budget do
4: Q = SelectQueries(E, batch size)
5: R = RunQueries(Q) // using the crowd
6: D = DistanceFromEmbedding(E)
7: D = UpdateDistances(D, R)
8: E = EmbedData(D)
9: num of queries += batch size
10: end while
11: D = DistanceFromEmbedding(E)
12: Output D

Clustering query For a set of images I, we define a query Q
as a subset of I containing nq images. The answer to each
query is a division of Q into disjoint clusters C1, . . . ,Cnc ⊆
Q. From these answers, we extract similarity comparisons:
given two images x, y in cluster Ci , and a third image z
in a different cluster C j , we infer that �(x, y) < �(x, z),
where � represents the similarity metric. As nq increases,
we obtain more comparisons, but the number of images in a
query should be small enough to allow a crowd member to
view them [10]. In our experiments, we found that nq = 20
is a good balance of this tradeoff between effectiveness and
simplicity. Following this, we found that setting the number
of clusters nc to 4 is optimal, as it balances between inferring
more comparisons (smaller nc values) and quickly pruning
less similar images (larger nc values).

Generating queries Queries are generated in our algorithm
based on the embedding fromprevious phases. In each phase,
we generate queries that (a) are local, and (b) cover the set of
images as evenly as possible. To do so, we sample random
images uniformly while making sure they are not nearest
neighbors of each other. When no such samples remain, we
start over again. For each sampled image, we find its k nearest
neighbors in the embedding. Then, out of these neighbors, we
sample a random subset of size nq and use it as the next query.

Embedding We maintain an embedding of all images in the
dataset, which is gradually improved with each batch of
queries. The embedding infers a consistent distance between
every pair of images, to be used in the next phase. Before the
first queries are sent to the users, the images are embedded
into a Euclidian space using a uniform random distribution.
To gradually improve the embedding, we calculate the dis-
tance between each pair of images in the embedding, update
the distances according to the query results, and embed the
images again using the updated distances. This consolidates
the updated distance and resolves any inconsistencies among
them. To compute the embedding, we use multidimensional
scaling (MDS), whose input is the distance between each pair
of images.
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More specifically, we want to find an embedding by tak-
ing into account only distances that we have information of
(via query results), ignoring all other distances. For this, we
use Sammon Projection [14], which is a multidimensional
scaling technique that computes an embedding using a stress
function and gradient descent. The weighted stress function
can take into account the relevant distances and ignore other
distances by giving them a very small weight. All weights are
initialized to a very small value ε. In each phase, we set the
weight for each updated distance to 1. Distances that were
updated in previous phases maintain a weight of value 1, so
once a pair of images is queried its distance is always taken
into account when computing the embedding in subsequent
phases.

Updating the distance To update the distance, all the query
results in the batch are aggregated and analyzed. For each pair
of images in each query, we refer to a query result as positive
if the images were assigned to the same cluster, and negative
if the imageswere assigned to different clusters. The distance
between a pair of images is shortened if the pair has more
positive than negative query results, and made longer if the
pair has more negative query results. The distances between
pairs of images for which there was a tie and pairs of images
that did not appear in the same query are not affected.

Distances are shortened by dividing by β and are made
longer by multiplying by β. In our experiments, β is set to
4. Note that we do not take into account the number of times
a pair of images appeared in the same batch of queries. For
example, a pair of images that has two out of two positive
query results is updated in the same manner as a pair of
images that has three out of four positive query results. Since
the phases tend to be short, the probability that the same pair
of images will appear in many queries is small, and inferring
from the exact ratio between positive and negative results is
too sensitive to randomness.

4 Experiments

To evaluate the efficiency of our approach, we conduct three
sets of experiments, described below. First, to verify the cor-
rectness of our approach, we conduct a set of small-scale
experiments for a data set where the ground truth is known.
This ground truth allows evaluation of the result quality.
Second, we test the practicality of the approach for seman-
tically rich image similarities, using larger sets of images,
where the ground truth is unknown. Finally, to further inves-
tigate each component of our solution, we conduct synthetic
experiments where the ground truth similarity is known, and
crowd answers to queries are simulated accordingly instead
of using real crowd. We vary different parameters of our sys-
tem, and observe the effect on the output quality. In all sets

of experiments, we further compare the results we obtained
to alternative, baseline algorithms.

• Random Randomly select queries, equivalent to execut-
ing our algorithm in a single phase.

• CrowdclusterUsing the method of [7]. The results of this
method are targeted to identify clusters, but also include
a mean spatial location for every image, which we use as
an alternative to our embedding.

• Feature-based Estimate the similarity of images based
on automatically extracted image features, which serves
as a baseline where ground truth is not available.

Implementation and Crowd UI Our crowdsourcing system
includes a dedicated, user-friendly crowd interface. The UI
of the system is implemented on the Google App Engine
platform. The back-end analysis of the crowd answers and
the computation of the next queries to be posed to the crowd
is performed in MATLAB R2014b. A screenshot of the UI is
shown in Fig. 4. Initially, we display 20 images on the left-
hand side of the screen (the query), and the crowd member
is asked to drag and drop the images in one of the 4 right-
hand side bins (and also move images between bins). Crowd
members can also decide to leave images outside of any bin
if they are unrelated to any of the other images, in which
case our algorithm only infers that the leftover images are
less similar to the images within the bins. This UI was used
in the experiments described below.

4.1 Crowd experiments with ground truth

As a sanity check, we executed two small scale experi-
ments, with a small crowd (about 10–15 crowd members)
and small sets of images, where the ground truth is known.
We experimented with two different computation tasks: top-
k and clustering. For each task, the crowdmembers answered
queries of both the baseline algorithm and our algorithm.

Top-k similar colors The simplest set of images that we have
used is a set of 300 solid colors, whose ground truth simi-
larity can be measured, e.g., by embedding the colors into
3-dimensional space according to their RGB or HSL values
(we have used RGB). The goal was to compute, for each
color, the k-NN most similar colors for varying values of k.
We have compared the results of our algorithm to the results
of the baseline random and crowdcluster algorithms, using
the same number of queries overall in the three algorithms.

The results indicate that our algorithm identifies a larger
percentage of the nearest neighbors for a larger percent of
the images. Figure 5 illustrates the 10-NN results for the
three algorithms using 235 queries overall. Five phases were
used in our algorithm. For each algorithm, we show a his-
togram of intersection between the true 10-NN (according

123



Y. Kleiman et al.

Fig. 5 The number of correct 10-NN images based on real crowd input,
comparing the results of our algorithmwith the two baseline alternatives

to the ground truth) and the computed 10-NN. Note that
crowdcluster slightly outperforms the random baseline, but
our algorithm generally identifies a larger fraction of the
true 10-NN images, “pushing” the histogram rightwards (red
bars).Overall, our algorithm identifies 43.4–50%more of the
true nearest neighbors than the baseline alternatives, which
demonstrates the effectiveness of our progressive refinement
approach.

Clustering fonts In this experiment, we have tested the ability
of our algorithm to cluster letter images into fonts, where
the ground truth is the font to which the letters belong. We
have used 180 letters of 12 different fonts, and asked crowd
members to evaluate the similarity of letters with respect to
their appearance. The results have been used to compute 12
letter clusters, which should ideally match exactly the 12
original fonts. Our algorithm has used 123 queries in total
over 5 refinement phases. For comparison, we have executed
the same task with 123 random queries.

Figure 6 illustrates the experimental results and in partic-
ular the progressive refinement, via heatmaps that represent
the cluster quality after each of the 5 phases. The results of
the algorithm are almost perfect, with only 1.1% errors (two

Fig. 6 Heatmaps displaying the accuracy of clustering for the font
dataset. a–e Illustrates the cluster quality after phases 1–5 of our algo-
rithm, respectively, and 123 queries in total. For comparison, Figure f
displays the cluster quality after 123 random queries

Fig. 7 Two examples for clusters produced for the same letter “a” (on
the top left), based on the similarity metric of a our algorithm, and b
random baseline

letters). In comparison, the random query selection resulted
in around 60% errors, and was outperformed by our algo-
rithm already after the second phase. Figure 7 displays an
example cluster produced by our algorithm, and the corre-
sponding cluster produced by the random baseline. The latter
cluster makes sense in the broader context of the fonts, since
it contains only handwriting fonts; but the progressive refine-
ment in our method allows distinguishing also between the
different handwriting fonts.

4.2 Crowd experiments with real-world datasets

Next, we have executed experiments with two real-world
datasets where the image similarity is highly semantic and,
therefore, image features may not be sufficient for estimat-
ing this similarity. The first dataset consists of 910 images
of movie posters downloaded from the movie pages in
Wikipedia, where similarity is usually based on genre, style
of the poster, characters, and so on. For this set, we have
collected 547 query answers from about 60 crowd members.

The second dataset consists of 1024 chairs, of different
types and angles from the ShapeNet dataset [3]. Similarity
in this dataset is based, among others, on semantic features
such as the usage of the chairs, the material they are likely to
be made of, and their assessed level of comfort. For this set,
we have collected 559 query answers from about 60 crowd
members.

As in many real-life scenarios, for these sets there is no
ground truth or gold-standard. Hence, we have manually
examined the results of our algorithm by sampling images
with their k-NN images, and comparing these results with
the results obtained by automatic means based on image fea-
tures. For the movie dataset, we used a color histogram with
64 bins (four bins for each of the RGB channels), and an
image thumbnail of four by four pixels, or a total of 16 RGB
values. The two descriptors were concatenated and treated
as a single vector for the distance calculation. For the chair
dataset, we have used features derived from HoG descriptor
[4].

For the manual examination, we used 50 random “seed”
images sampled from each of the datasets. For each seed
image, we took its 10 NN images from the dataset according
to both our algorithm and the feature-based baseline. Each of
the images was labeled “very similar”, “similar”, or “unre-
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Table 1 Real-world dataset results

Dataset Number of images Success (%) �

Movie posters 910 87.2 2.5

Chairs 1024 76.2 3

lated” with respect to its seed image. We counted the percent
of seed images forwhichour algorithmfinds agreater number
of similar images than the baseline, breaking ties by the num-
ber of “very similar” images. The results are displayed in the
Success % column of Table 1. To quantify by how much we
outperform the baseline, we also computed the average dif-
ference between the number of similar images our algorithm
has discovered and the baseline. This difference is marked
by the � column in the table.

We illustrate a specific example of the observed differ-
ence in Fig. 1. The figure displays the 10-NN images (a)
computed by our algorithm based on clustering queries and
(b) according to color descriptors. The seed image is dis-
played in the middle. In this case, the results of our semantic
similarity estimation retrieve movies of the same genre (ani-
mated adventure films).Within that genre, most of the closest
neighbors (four out of the top five) have the same visual
appearance (blue background) as the seed image. On the
other hand, themovies retrieved using image descriptors have
a similar visual appearance in terms of color scheme and
mood but are very different semantically. Note that while we
use rather simple image descriptors, even extremely sophis-
ticated descriptors would fail to associate posters of movies
in the genre which has different visual appearance with the
seed image.

Figure 8 displays similar results for the chair dataset,
where the baseline k-NN results (a) are computed accord-
ing to HoG descriptor. The seed chair is a school chair with
curvy tubes supporting the back. The 10-NN chairs given by
our algorithm are all school chairs and many of them contain
similar style elements such as curvy tubes. In contrast, the
chairs computed using the HoG descriptor seem superficially
similar (and also have the same orientation) yet include office

and dinning room chairs, and varymore in their style (the less
similar chairs are highlighted in the figure).

Figure 9 displays a few more selections of k-NN results
for movie posters and chairs. In each set, the top left image
is the seed and its 7 nearest neighbors are presented from left
to right. In many cases, the similarity between images can
be both semantic and visual. We have deliberately selected
cases which present a purely semantic relation which may
be very hard or impossible to capture using image descrip-
tors. The semantic connection between movie posters varies
greatly, and spans movies from the same genre (a), posters
that have dominant typographic elements (b), posters of old
movies (c), or the same expression of the faces in the poster
(d). The semantic connection between chairs may be similar
style elements (e), similar overall shape (f), similar function
(g) or even chairs with wheels (h). The k-NN results for all
movie posters and chairs in the dataset can be seen in the
supplemental material.

4.3 Synthetic experiments

We next provide further analysis of our algorithm via syn-
thetic experimental results. The experiments were conducted
on datasets with available ground truth, and with answers
from a simulated crowd. The simulated answer for a given
query was computed using a k-means algorithm, which has
split the 20 images in the query into 4 clusters. Using syn-
thetic answers allows us to test the performance of our
algorithm in a variety of scenarios.

Effect of locality In the Introduction, we have stressed the
importance of using queries about local neighborhoods of
images. To test this claim in isolation, we have conducted a
dedicated synthetic experiment, as follows. We have used a
set of 1000 colors sampled uniformly. Since the true similar-
ities are known for this image set, we could vary the locality
of queries: for each query, we started from a seed image,
then sampled the rest of the images from within a certain
distance from the seed image. We have then used the results

Fig. 8 Nearest neighbors of the center image in a collection of chairs, computed using a HoG descriptor, and b crowdsourced queries. Smaller
images mark farther neighbors. Less similar chairs are highlighted
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Fig. 9 Example of K -NNs of images from the movie posters and chairs datasets

of the queries to compute the embedding as usual. We have
observed an almost linear decrease in the average precision of
the computed 10-NN images as the distance between images
in each sample increases.

Co-occurrence of similar images One of the indications for
the effectiveness of the progressive refinement in our algo-
rithm is the frequent co-occurrence of similar images in the
same query. Ideally, as the similarity metric that we compute
converges to the true one, similar images are more likely to
appear in a query together. Moreover, the distance between
pairs that appeared together in many queries is expected to
be more accurate, since more data are available. Since the
budget of queries is limited, each pair that is queried comes
at a cost of another pair for which there will be less available
information. We show that our algorithm effectively favors
pairs which are close to each other and, therefore, need more
accurate information.

Figure 10 illustrates this. We simulate a two-dimensional
embedding of images, where each point represents an image
in the dataset. The distance between each pair of points
(or images) is taken from the embedding, which simulates
ground truth similarity. The dataset contains 400 images, and

we ran 400 simulated queries, once using our algorithm and
once with random queries. We then select an arbitrary image
(marked in gold) and count how many times each image
in the dataset has co-occurred with it. We rank the images
according to their mutual queries count. The top 20 images
(5% of the dataset) that were queried together the most with
the golden image are colored bright red. The next 20 images
(5%) are colored dark red. The rest of the images (360 or
90%) are colored light blue.

Fig. 10 Visualization of the images that appeared in the same query
as the image marked in gold. The images are ranked by the number
of mutual queries and the top 10% images are colored red. a Mutual
queries after 400 random queries. b Mutual queries after 400 queries
using our algorithm
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Fig. 11 Number of correct 10-NN images as a function of number of queries (left) and number of phases (center), and versus a triplet-based
algorithm (right)

Figure 10a shows that using random query selection, the
images that co-occurred the most with the golden image
are randomly scattered, as expected. In contrast, using our
algorithm to select the queries (Fig. 10b), the frequently
co-occurring images are centered around the golden image.
Evidently, we do not spend queries on pairs which are known
to be far away, since their distance from each other matters
less and is expected to be less accurate. This allows our algo-
rithm to better estimate the relative local similarities, and use
them to estimate the global similarities.

Varying the algorithm parametersWe next execute our algo-
rithm while varying the value of two parameters: the total
number of queries and the number of phases, to demonstrate
the impact of these parameters on the query results. Figure
11 (right) illustrates the effect of varying the total number
of queries, for a synthetic 1000 random color dataset, and
5 phases of our algorithm. As expected, there is a positive
correlation between the number of queries we use and the
quality of the results, measured by the size of the intersec-
tion between the true 10-NN images and the 10-NN images
that we compute. This means that with a greater budget we
can improve the estimation of the similarity metric.

Figure 11 (center) illustrates the impact of number of
phases on the quality of the results (using the same image set
as above, the same quality metric, and 1200 queries overall).
The number of phases ranges from 0 (which is equivalent
to random query selection) to 5. Note that increasing the
number of phases increases the result quality, since recom-
puting the embedding more frequently allows creating better
queries. However, the margin by which the quality improves
decreases, so the difference between 4 and 5 phases is small.

Queries versus triplets A common solution for collecting
image comparisons from the crowd is based on triplet queries
of the form “Is image A more similar to image B or to
image C?”. We have already noted that one advantage of our
approach over the triplet-based one is that clustering queries
provide context for comparison. In this synthetic experiment,
we ignore the context, and focus on the number of questions

needed for each type of solution. As shown in Fig. 11 (right),
our algorithm’s performance using 1200 queries is compara-
ble to the triplet-based algorithm’s performance using 84,000
queries.

5 Conclusion

In this paper, we have presented an efficient approach for
estimating the similarity of images, based solely on the input
of the crowd. Our system progressively refines the images
posed to the crowd, to obtain similarity comparisons between
images in the same neighborhood, allowing faster conver-
gence to an accurate similarity metric. In our experimental
study, we have used a particularly small number of queries,
and have shown that even on this basis we can obtain a fair
estimate of the semantic similarity.
Limitations and future work This work focuses on input from
the crowd alone. However, it is often the case that some clues
for the semantic similarity of images are available in the form
of image features or textual context. Even if these clues do
not account for the full range of semantic connections, it
would be interesting to examine how to leverage them in
conjunction with our algorithm. This direction may benefit
the method’s scalability, since in very large image sets, the
affordable number of queries might not even be linear in the
size of the set. A straightforward approach for integrating
semantic clues would use our algorithm to learn similari-
ties for a small fragment of the image set, and then apply
machine learning techniques to complete the rest, using fea-
tures based on semantic clues (in the spirit of Lun et al.
[9], Saleh et al. [13], and Yi et al. [22]). A more interest-
ing solution may further combine the clues within the query
generation phases. This is non-trivial, since the usage of other
estimates can potentially cause semantically similar images
to be overlooked.

Another challenging direction for future work includes a
more elaborate treatment of the uncertainty stemming from
the crowd. Crowd members often disagree on the similarity
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of images, or even provide some inconsistent answers. So far,
we have assumed that the embedding we perform mitigates
the impact of such inconsistencies. However, we may want
to explicitly account for inconsistencies, by a probabilistic
modeling of the crowd’s behavior, e.g., as done in [7] for the
purpose of clustering. It would thus be interesting to develop
probabilistic models dedicated for the learning of a similarity
metric. In particular, this method should support efficient
computations, due to the interactive nature of our algorithm.
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