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Abstract

Edge detection is arguably the most important 
operation in low level computer vision. Mean shift is 
an effective iterative algorithm widely used in edge 
detection. But the cost of computation prohibits Mean 
shift algorithm for high dimensions feature space. In 
this paper, a fast adaptive mean shift algorithm is 
proposed for edge detection. It makes use of one 
approximate nearest neighbors search method, i.e. 
LSH (Locality-Sensitive Hashing) firstly, which 
dramatically reduces the computation of iterations in 
high dimensions. Moreover, the LSH procedure can 
help to determine the bandwidth of the kernel window 
adaptively. The experimental results show the 
effectiveness of the proposed approach. 

1. Introduction

Edge detection is arguably the most important
operation in low level computer vision with a plethora 
of techniques. An edge is the boundary between an 
object and its background (the outline of the object). 
Edge detection must be efficient and reliable because 
the validity, efficiency, and possibility of the 
completion of subsequent processing stages (in 
computer vision for example) rely on it. This means 
that if the edges in an image can be identified 
accurately, objects in the image can be located and 
basic properties such as area, perimeter, and shape can 
be measured. A fundamental difficulty in edge 

detection processes is the possible extraction of 
spurious edges that arise from noise and minor 
intensity changes which are often non-meaningful and 
disturbing, and may subsequent processing stages 
degrade computational performance. Thus, a proper 
selection of the edges may be very important. 

Numerous approaches have been dedicated for edge 
detection, among which the mean shift method is one 
of the most common methods. Mean-shift is a 
nonparametric density gradient estimator. The mean 
shift method presents an elegant way to locate these 
density maxima without having to estimate the density 
directly [1]. The mean shift vector always points to the 
direction of maximum increase in the density.  The 
mean shift process is an iterative procedure that shifts 
each data point to these density maxima. In [2], it is 
employed to derive the object candidate that is the 
most similar to a given model while predicting the next 
object location. This method provides accurate 
localization, and it is computationally fast. However, 
the limitation of the approach based on mean shift is 
that it does not scale well with the dimension of the 
space. It was indicated that when the dimensionality is 
above 6, the analysis should be approached carefully 
[1]. 

Mean shift is a nonparametric density estimator 
which iteratively computes the nearest mode of a 
sample distribution. After its introduction in the 
literature [3], it has been adopted to solve various 
computer vision problems, such as line fitting [4], 
segmentation [5] and object tracking [6]. Despite its 
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promising performance, as discussed in various papers 
[7], [8]and [9], the traditional mean shift method has 
two main limitations, the first of which is the 
constancy of the kernel bandwidth. The change in the 
object scale requires an adjustment of the kernel 
bandwidth in order to consistently track the object. An 
intuitive approach to estimate the object scale is to 
search for the best scale by testing different kernel 
bandwidths and selecting the bandwidth which 
maximizes the appearance similarity [6]. Alternatively, 
after the object center is estimated, a mean shift 
procedure can compute the bandwidth of the kernel in 
the scale space, which is formed by convolving the 
image with a set of Gaussian kernels at various scales 
[8]. 

The second limitation of the traditional mean shift 
method is the use of radically symmetric kernels which 
are isotropic in shape. In the view of often anisotropic 
structure of the object, radically symmetric kernels 
inhibit robust image segmentation [9] and object 
tracking. For example, representing an elongated 
object with a circular kernel will bias the position 
estimation due to the non-object regions residing 
inside the kernel. This object can be better represented 
by an anisotropic symmetric kernel, such as an ellipse. 
The scale and orientation of a kernel representing an 
object can be computed by evaluating the second order 
moments from the object silhouette [10] or the 
posterior appearance probabilities [11]. Both of these 
methods, however, are computationally expensive 
compared to the mean shift tracking method. This 
observation resulted in the introduction of anisotropic 
symmetric kernels to the mean shift analysis. In 
particular, Wang et al. [9] has shown the improved 
performance of the mean shift segmentation when a 
circular kernel is replaced with an elliptical kernel. In 
their approach, in contrast to analyzing the local data 
distribution, the authors estimated the orientation and 
the scale of the elliptical kernel from images. 

In this paper, we extend the traditional mean shift 
method by introducing an approximate nearest 
neighbor searching algorithm, i.e. LSH (Locality-
Sensitive Hashing) [12]. We get the nearest neighbors 
for each pixel by an approximate neighbor search 
method, LSH. Then, we store the results and take it as 
the range of iteration, i.e. bandwidth. The pixels that 
do not promote the convergence of iteration are 
removed, which dramatically decreases the time cost 
for convergence of iteration. It makes use of one 
approximate nearest neighbors search method, i.e. 
LSH (Locality-Sensitive Hashing) firstly, which 
dramatically reduces the computation of iterations in 
high dimensions. Moreover, the LSH procedure can 

help to determine the bandwidth of the kernel window 
adaptively.

In the rest of this paper: Section 2 discusses the 
related works about the edge detection. In Section 3, 
our proposed approach that LSH-based mean shift 
algorithm is described. In Section 4, the experiments 
are done. Finally, we present our conclusion and future 
works.

2. Related works

A basic edge detection process usually involves the
following stages: 1) Smoothing required for noise 
reduction and regularization of the numerical 
differentiation. It depends on the regularization 
parameter (scale) which determines the compromise 
between noise elimination and image structure 
preservation. 2) Differentiation an operation that 
evaluates the intensity variations in the image. 3) 
Labeling the final decision stage that marks the 
identified edges. This stage usually involves a 
threshold parameter that separates true from false 
edges. This common detection process is based on 
evaluation of the strength of intensity transitions in the 
image. Another (complementary) approach to edge 
detection is based on evaluation of spatial properties of 
the image features [13] [14]. This approach (denoted 
saliency) states that points are more likely to be 
meaningful edges if they belong to longer, smoother, 
and continues curves. Lindenbaum and Berengolts [15] 
developed a saliency estimation mechanism which is 
based on probabilistically specified grouping cues and 
on length estimation. This mechanism produces a 
saliency map, in which higher values specify locations 
of pixels that belong to longer and smoother curves. 
Final edge detection was obtained by thresholding the 
saliency map using a previously selected threshold 
parameter. 

The outcome of an edge detection process varies 
greatly with the choice of the detector parameters. 
Therefore, a prior step of parameter selection is 
necessary. Selection of the detector parameters is often 
done manually by a trial-and-error process. However, 
such a process is frequently non-efficient and tedious. 
Therefore, automatic techniques have been developed 
to select parameters of edge detectors [16, 17]. These 
methods have been concentrated on common specific 
parameters such as the smoothing scale [16] and the 
threshold [17]. However, other parameters may also be 
employed in edge detection. For example, a vision 
model-based edge detector developed recently uses an 
invariable threshold (an average contrast threshold of 
the visual system), but employs several band pass 
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filters that may be regarded as parameters [18]. 

3. The Proposed Edge Detection Algorithm

In the following, we firstly introduce the means 
shift algorithm and LSH algorithm respectively, and 
then give the hybrid algorithm. 

3.1. Kernel density estimation and mean shift 

The mathematical derivation of kernel density 
estimation theory was described in [1]. In pattern 
recognition, each sample is represented as a point in d-
dimensional space, called feature space. Its dimension 
is determined by the number of parameters (such as 
intensity and coordinate loci on the genome for array 
CGH data) to describe the sample points. The feature 
space can be regarded containing an empirical 
probability density function (PDF) of the represented 
parameters. Given n data points xi (i = 1,…, n) in the d-
dimensional space Rd, the multivariate kernel density 
estimator( ) at point x is computed with kernel 
K(x) and a symmetric positive definite d×d bandwidth 
matrix H
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The bandwidth matrix is often chosen either as 
proportional to the identity matrix H = h2I or diagonal 
H = diag [h1
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2] in practice. For example, if we 
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The kernel K(x) is a bounded function which must 
satisfies the following conditions: 
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The radially symmetric kernel is a special case that 

satisfies )()( 2
, xkcxK dk , where k(x) is the 

profile of the kernel (x  0). ck,d (assumed strictly 
positive) is the normalized constant, which makes K(x)
integrate to one. By introducing profile notation, the 
density estimator can be re-written as 
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The first step in the analysis of the feature space with 
underlying density  is to find the modes of the 
density, which are among the zeros of the 
gradient

)(xf

0)(xf .  The mean shift method is an 
elegant way to locate these zeros without having to 
estimate the density [1]. By computing, using the chain 
rule, the gradient of ,  the formula (5) is 
changed to  
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where )(')( xkxg  using simplified notation. 
The kernel G(x) then is defined as 
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, xkcxG dg where is the

corresponding normalization constant. In Equation 

(6), the first factor 
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be positive number. This condition is easy to 
satisfy for all the profiles in practice. The second 
factor in (6) is called the mean shift, which is the 
difference between the weighted mean (using the 
kernel G for weight) and the center of the kernel x.
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It has been proven that the mean shift vector at 
location x computed with kernel G is proportional to 
the normalized density gradient estimate obtained by 
kernel K [1]. The mean shift vector always points 
toward the direction of the maximal increase in the 
density. The mean shift procedure is carried out by 
successive steps between the computation of the mean 
shift vector mh,G(x) and the translation of window by 
mh,G(x). It has been proven that this procedure is 
guaranteed to converge at a point nearby where the 
estimate has a zero gradient, if the kernel K has a 
convex and monotonically decreasing. 
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Thus, the sequence of successive locations of kernel 
G, denoted by yj ( j=1,2,…) for each starting point xi 
(y1 = xi), can be computed as 
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Provided that the mean shift vector always points 
toward the direction of the maximal increase in density, 
the local mean is shifted toward the region in which 
the majority of the points are located. Consequently, 
the mean shift vector can define a path that leads to a 
stationary point of the estimated density, as it is 
aligned with the local gradient estimate. These 
stationary points are called the ‘modes’ of the 
estimated density. The mean shift procedure, obtained 
by consecutive computation of the mean shift vector 
mh,G(yj) and translation of the window yj+1 = yj 
+mh,G(yj),  is guaranteed to converge to a point where 
the gradient of density function is zero. The set of all 
locations that converge to the same mode defines “the 
basin of attraction” of that mode. The points which are 
in the same basin of attraction are associated with the 
same cluster . 

3.2. LSH algorithm 

There are numerous problems that involve 
finding similar items. These problems are often 
solved by finding the nearest neighbor to an object 
in some metric space. This is an easy problem to 
state, but when the database is large and the objects 
are complicated, the processing time grows linearly 
with the number of items and the complexity of the 
object. For very large databases of high dimensional 
items, LSH (Locality-Sensitive Hashing) [12] is a 
particularly valuable technique for retrieving items 
that are similar to a query item. In these searches it 
can drastically reduce the computational time, at the 
cost of a small probability of failing to find the 
absolute closest match. 

Given a query point, we wish to find the points in 
a large database that are closest to the query. We 
wish to guarantee with a high probability equal to 
1  that we return the nearest neighbor for any 
query point. 

Conceptually, this problem is easily solved by 
iterating through each point in the database and 
calculating the distance to the query object. 
However, our database may contain billions of 

objects—each object described by a vector that 
contains hundreds of dimensions. Therefore, it is 
important that we find a solution that does not 
depend on a linear search of the database. Existing 
methods to accomplish this search include trees and 
hashes.

Several methods of this general nature have been 
proposed, and Locality-Sensitive Hashing (LSH) [12] 
has received considerable recent  attention because it 
was shown that its runtime is independent of the 
dimension D and has been put forth as a practical tool. 
Roughly speaking, a locality sensitive hashing function 
has the property that if two points are “close,” then 
they hash to same bucket with “high” probability; if 
they are “far apart,” then they hash to same bucket 
with “low” probability. Formally, a function family 

}:{ UShH  is -sensitive,
where

)2,1,2,1( pprr
)21,21( pprr , for distance function D 

if for any two points , the following 
properties hold: 

Sqp,

1) if )1,( rqBp ,then ,
and

1)]()([Pr pphqhHh

2) if )2,( rqBp ,then 2)]()([Pr pphqhHh ,

where  denotes a hypersphere of radius r 
centered at q. By defining a LSH scheme, namely 
a

),( rqB

)2,1),1(,( pprr -sensitive hash family, the 
)1( -NN problem can be solved by performing a 

series of hashing and searching within the buckets. 
Applications have found )1(  approximation to be 
useful, for example when the k-nearest-neighbor 
search is just one component in a large system with 
many parts, each of which can be highly inaccurate. In 
this paper we explore the extent to which the most 
successful exact search structures can be adapted to 
perform )1(  approximate high-dimensional 
searches. A notable previous approach along this line 
is a simple modification of k-d-trees – ours takes the 
more powerful metric trees as a starting point. We next 
review metric trees, then introduce a variant, known as 
spill trees.

3.3. LSH-based Mean Shift algorithm 

In the edge detection by standard Mean Shift 
algorithm, each pixel has a radius of neighbor window, 
i.e. the kernel function bandwidth. Every pixel in this 
neighbor window must be included in the iteration 
computation of means shift. However, some of the 
pixels is useless while consumes the time of circulation. 
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Therefore, we get the nearest neighbors for each pixel 
by an approximate neighbor search method, LSH. 
Then, we store the results and take it as the range of 
iteration, i.e. bandwidth. The pixels that do not 
promote the convergence of iteration are removed, 
which dramatically decreases the time cost for 
convergence of iteration. 

Based on LSH algorithm and Mean shift, the LSH-
based Mean shift algorithm is described as Table 1.  

Table 1. ANN-based Mean Shift Algorithm 

/* Step 1: input data point and construct the tree. */ 
1) Load data point;
2) Build Tree

/* Step 2: Set the search distance and search the Near 
Neighbor for each data points.  */ 

For i=0 to nPointNumber 
    Querypt = DataPoints[i]; 
    LSH(Querypt, SquaredRadius, Numreturn, 

IndexPointer, Distance , Error Bound); 
    nCount = NumReturn; 
    while(nCount = NumReturn) 
        nCount =0; 
        for j=0 to NumReturn 
            if(IndexPointer[j]>-1) 
              nCount= nCount +1; 
        end for 
        if(nCount < NumReturn) 
            for j=0 to nCount 

store IndexPointer[j] to PindexArray (which is 
the whole Nearest Neighbors Array of all the 
data Points); 

            end for 
            break; 
         end if 
         Increase Radious 
         LSH again; 
    End while 
End for 

/* Step 3: Iterative Computation of Mean Shift */ 
For i=0 to nPointNumber 

        IterPoint = DataPoints[i]; 
Msv=MeanShiftVector(IterPoint, PindexArray) 
MsvMag= Caculate Msv magnitude squared; 

        IterationCount = 1; 
        While ( MsvMag <  && IterationCount <100) 
             IterPoint = IterPoint + Msv; 
             Msv=MeanShiftVector(IterPoint,

PindexArray); 
MsvMag=Caculate Msv magnitude squared; 

             IterationCount = IterationCount +1; 
          End while 
          Store the IterPoint’s value as result; 

  End for 

4. Experiments

We have applied the proposed method to several 
hundreds of different images, and Fig. 1 shows some 
results. Figure 1(a) and Figure 2(a) are the original 
images for the famous “camera man” and “lena” 
respectively; Figure 1(b) are Figure 2(b) the result 
Edge Map by standard Mean shift with grad win.=2 
and min. length=5; Figure 1(c) and Figure 2(c) are the 
result Edge Map by standard Mean shift with grad 
win.=5 and min. length=10; Figure 1(d) and Figure 2(d) 
are the results for edge detection by our method.  

It can be seen from Figure 1 and Figure 2, the edges 
segmented by our method are almost same as the 
standard mean shift algorithm. Moreover, to some 
extent, it has more detail information than standard 
mean shift. 

Table 2 lists the processing time for the two edge 
detection methods using a Pentium-IV 1.8 GHz PC 
with 1GB RAM for image sizes 512*512. The results 
show that the proposed method is faster than the 
conventional methods. 

(a) (b)

(c)                                           (d) 
Figure 1. The edge diction results for “camera man” image. 
(a) Original image; (b) Edge Map by Mean shift with grad 
win.=2 and min. length=5; (c) Edge Map by Mean shift with 
grad win.=5 and min. length=10; (d) our approach. 
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(a) (b) 

(c)                                           (d) 
Figure 2. The edge diction results for “lena” image. (a) 
Original image; (b) Edge Map by Mean shift with grad 
win.=2 and min. length=5; (c) Edge Map by Mean shift with 
grad win.=5 and min. length=10; (d) our approach 

Table 2. The time comparison 
Test image Time for MS (s) Time for proposed 

method (s) 
Camera man 8.23 2.21
lena 7.95 2.05
fruit 8.12 2.13

5. Conclusions

This paper proposes a new edge detection method 
that base on LSH and Mean Shift algorithm. The 
method takes the nearest neighbors as the iteration 
bandwidth of mean shift. The advantages of the 
proposed method are: 1) reducing the time for 
convergence of iterations; 2) having the adaptation for 
bandwidth. Therefore, the edge results can preserve 
more detail information of image. The experiment 
shows the effectiveness of the proposed method.  
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