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Vehicle Detection in High-Resolution Aerial Images
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Abstract—This paper presents a study of vehicle detection from
high-resolution aerial images. In this paper, a superpixel segmen-
tation method designed for aerial images is proposed to control
the segmentation with a low breakage rate. To make the training
and detection more efficient, we extract meaningful patches based
on the centers of the segmented superpixels. After the segmenta-
tion, through a training sample selection iteration strategy that
is based on the sparse representation, we obtain a complete and
small training subset from the original entire training set. With
the selected training subset, we obtain a dictionary with high
discrimination ability for vehicle detection. During training and
detection, the grids of histogram of oriented gradient descriptor
are used for feature extraction. To further improve the training
and detection efficiency, a method is proposed for the defined main
direction estimation of each patch. By rotating each patch to its
main direction, we give the patches consistent directions. Compre-
hensive analyses and comparisons on two data sets illustrate the
satisfactory performance of the proposed algorithm.

Index Terms—Aerial image, high resolution, sparse representa-
tion, superpixel, vehicle detection.

I. INTRODUCTION

DUE to economic development and an increasing demand
for fast and convenient travel, automobiles have become

extremely popular and play an important role in daily life. The
large number of cars generates heavy pressure on transporta-
tion, road, and traffic regulatory authorities and also makes
vehicle monitoring a vital part of traffic information gathering,
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traffic jam and congestion prevention, traffic accident control,
vehicle flow statistics, road network planning, and estimating
parking situations [1]–[5].

A large number of fixed ground sensors, such as induction
loops, bridge sensors, stationary cameras, and radar sensors,
are required to efficiently monitor vehicles and gather traffic
information [6], [7]. By using these fixed ground sensors, the
traffic flow, vehicle density, and parking situation are partially
acquired. However, these methods fail to provide a complete
overview of the traffic situation, which is a vital information
source for studying road network planning, modeling, opti-
mization, and traffic-related statistics.

The demand for gathering an overview of traffic situations
leads to monitoring of vehicles via alternate methods such
as remote sensing images captured by satellites or airplanes.
Due to their capability to provide full coverage of an area of
interest, remote sensing images have been widely applied for
monitoring vehicles [6], [8], [9]. Currently, there are many com-
mercial Earth observation satellites such as IKONOS, GeoEye,
WorldView-2, WorldView-3, and QuickBird that provide pub-
licly available images with the spatial resolution of a submeter.
Benefiting from the high spatial resolution, satellite images
are a data source for studying vehicle monitoring [5], [7],
[10]. Compared with satellite images, aerial images are usually
preferred because of their higher spatial resolution ranging from
0.1 to 0.5 m [11], [12] and their easier data acquisition [13].
With high spatial resolution, vehicles, even small cars, can
be clearly identified in aerial images. Thus, detecting vehicles
from high-resolution aerial images is attractive for traffic moni-
toring and mitigation over a large area [14]. Manually detecting
vehicles from aerial images is time consuming and labor inten-
sive. Therefore, it is imperative to develop an automatic vehicle
detection method from high-spatial-resolution aerial images.

Conversely, automatically detecting vehicles from high-
resolution aerial images is still a challenging task because the
presence of a large number of structures (e.g., trash bins, road
marks, electrical units, and air conditioning units on top of
buildings), particularly in urban areas, can cause false alarms.
In addition, the partial occlusions caused by the shadows of
trees and buildings might greatly increase the difficulties of
vehicle detection. The illumination condition is another crit-
ical factor for detecting vehicles from aerial images. Train-
ing samples play an important role in object recognition. In
order to obtain high classification accuracy between vehicles
and background, a training sample set that contains kinds of
positives and negatives is required. The simplest way is to use

0196-2892 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



104 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 1, JANUARY 2016

the whole training sample set. However, the whole training
sample set is usually too large and redundant, which causes
high computational complexity of training or detection. Thus,
to train a classifier, it is necessary to select a small and complete
subset of training samples. However, it is time consuming and
difficult to manually select all of the representative samples
from a large number of negatives. Additionally, both the manual
and random training sample selection methods cannot promise
to train an optimal classifier to obtain the best performance.

To improve the detection efficiency and automatically con-
struct a complete and representative training set, we develop
an algorithm using sparse representation and superpixel seg-
mentation for automatic vehicle detection in high-resolution
aerial images. To effectively slide the detection window without
side effects, a superpixel-based segmentation is introduced to
segment the high-resolution aerial image into a set of super-
pixels. Based on the centers of superpixels, meaningful patches
are generated accordingly. Then, sparse representation is ap-
plied for dictionary learning and classification processing. To
construct an optimal training subset, we propose an iteration
of sample selection strategy based on sparse representation.
During the training sample selection, the completeness of repre-
sentative positives and negatives are both considered. With the
selected optimal training set, we obtain a sparse representation
dictionary with high discriminative ability for vehicle detection.

We apply our method to two high-resolution aerial image
data sets. One data set is the aerial images covering the city of
Toronto, Canada, with 0.15-m spatial resolution; the other data
set is from the overhead imagery research data set (OIRDS).
Experimental analyses and comparisons on both data sets
demonstrate the superior performance of our method versus
several state-of-the-art methods, including histogram of ori-
ented gradient (HOG) + linear support vector machine (SVM)
[15], [16], scale-invariant feature transform (SIFT) + linear
SVM [17], and HOG + kernel SVM [18].

II. RELATED WORK

Sparse representation and superpixel segmentation have re-
ceived considerable attention in computer vision [19]–[22].
Sparse representation has been successfully applied in many
fields, including face recognition, object classification, im-
age classification, image de-noising, image restoration, visual
saliency, and data compression [23]–[30]. Yokoya and Iwasaki
applied sparse representation for object detection in remote
sensing images and achieved good results [31]. The devel-
opment of superpixel segmentation provides a new way for
image preprocessing, image segmentation, feature extraction,
and object tracking [22], [32]. In recent years, much research
has focused on superpixel-based image segmentation, and many
approaches have been developed. Representative approaches
include graph-based algorithms and gradient-based algorithms.
The latest achievements are simple linear iterative clustering
(SLIC) [33], edge-weighted centroidal Voronoi tessellations-
based (VCells) [34], and entropy-rate clustering [35]. Using
sparse representation and superpixel segmentation is a new way
to detect vehicles from high-resolution aerial images.

Many approaches have been developed for vehicle detec-
tion from high-resolution aerial images [6], [8], [11]–[14],
[36]–[44]. Most of the approaches can be separated into two
types of vehicle models, i.e., appearance-based implicit models
and explicit models.

Appearance-Based Implicit Models: An appearance-based
implicit model typically consists of image intensity or tex-
ture features computed using a small window or kernel that
surrounds a given pixel or a small cluster of pixels. Then,
detection is conducted by examining feature vectors of the
image’s immediate surrounding pixels [14]. Cheng et al., us-
ing dynamic Bayesian networks for vehicle detection from
aerial surveillance, achieved promising results on a challenging
data set [43]. However, the color model, specially designed
for separating cars from the background, still cannot avoid
false and missing detection due to the overlap of the cars’
and the background’s color models. Another problem is that
the approach must remerge the detected pixels into individual
vehicles, which is a difficult task when vehicles are parked in
close proximity. Additionally, detection checking over all of the
pixels increases not only the computational complexity but also
the false detection rate. Shao et al. first explored vehicle detec-
tion by using multiple features (e.g., HOG, local binary pattern,
and opponent histogram) and the intersection kernel SVM [45].
Similarly, Moranduzzo and Melgani combined the SIFT and
SVM for detecting cars from unmanned aerial vehicle (UAV)
images [17]. Kembhavi et al. detected cars from high-resolution
aerial images by applying partial least squares, a powerful
feature selection analysis, and a redundant feature descriptor,
consisting of color probability maps, HOG features, and pairs
of pixel comparisons that catch a car’s structural features [11].
Their work shows an impressive performance. Moranduzzo and
Melgani proposed a catalog-based approach for detecting cars
in UAV images [44]. However, its application is limited to
special scenes because it must use the asphalt area as an a priori
guide. Another problem is that it must also remerge the detected
pixels into individual vehicles. Hinz and Baumgartner extracted
vehicle features based on a hierarchical vehicle model, which
details different levels [36]. Khan et al. extracted vehicle fea-
tures based on a 3-D model [41]. Wang et al. applied the
implicit shape model and Hough voting for car detection in 3-D
point clouds, with impressive results [46].

Explicit Models: Regarding the explicit model, a vehicle is
usually described by a box, a wireframe representation, or a
morphological model. Car detection is performed by matching
a car model to the image with a “top-down” or a “bottom-up”
strategy [14]. Zheng et al. utilized grayscale opening transfor-
mation and grayscale top-hat transformation to identify poten-
tial vehicles in the light or white background and used grayscale
closing transformation and grayscale bot-hat transformation to
identify potential vehicles in the black or dark background.
Then, size information is employed to eliminate false alarms
[14]. Their approach exhibits good performance on highway
aerial images; however, the gray value estimates of the back-
ground and geographic information system data are required.
As a result, this method is not suitable for general scenes.
A vehicle has been also represented as a 3-D box with dimen-
sions for width, length, and height in [47].
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Several studies have also studied the sample selection from
a large amount of training data. Zhou et al. [48] proposed
a sample reduction method to address the sample unbalance
problem of SVM. Nie et al. [49] proposed an active method
to select the most representative samples for labeling in the
early active learning stage to reduce manual works. They used
an iteration method to select a subset of the most representative
samples by using structured sparsity-inducing norms. However,
the method is still time consuming.

Generally speaking, two disadvantages of car detection
methods using an explicit model are obvious. First, the de-
tection is usually based on detected edges, leading to unro-
bustness to noise and a complex background. Second, these
methods have a poor performance under the situations of
slight occlusions and shape variations because car models are
rigidly predefined. Most state-of-the-art car detection meth-
ods (even commercial software) for remote sensing images
use an implicit model because of its better generalization
ability [7].

However, existing methods employing the implicit model
still suffer from the following two problems.

First, most methods are pixel based or use a slide window
with a predefined slide step during detection. The pixel-based
methods are computationally intensive. In addition, these meth-
ods must remerge the detected pixels into individual vehicles,
which is a difficult task when vehicles are parked in close
proximity. In slide window methods, the slide step influences
the detection recall rate and the processing speed. A large slide
step may result in fast processing speed but cause a decrease
in the recall rate. A small slide step may increase the recall
rate but lead to a high computation cost. It is difficult to
trade off the detection recall rate and the processing speed. A
more effective scanning strategy is desired for improving the
scanning efficiency.

Second, the training samples are manually or even randomly
selected. Manual training sample selection is time consuming.
For vehicle detection in aerial images, a complex background
results in a large number of negatives, making it difficult to
manually select an optimal negative training subset. With re-
gard to the random selection method, it might cause an unstable
detection performance and usually cannot achieve an optimal
performance. An effective training sample selection method
needs to be developed.

Consequently, a strong need exists to exploit a solution for
the two problems above.

III. PROPOSED SOLUTION

A. Framework

As shown in Fig. 1, the framework of our proposed method
includes two stages, i.e., dictionary training and car detection.
In the training stage, training images are first segmented into
superpixels via the proposed superpixel generation method.
Based on the superpixel centers, we generate the meaningful
patches as the whole training set. Then, we select a small
training subset to initialize a small sparse dictionary. In our
method, the grids of HOG descriptors of patches are extracted

Fig. 1. Framework of the proposed method includes two stages: training stage
and detection stage.

as the dictionary input. With the trained dictionary, we estimate
the similarity between the remaining training samples and cars.
The negatives with the highest similarity and the positives with
the lowest similarity are selected to add into the training subset
to train a new dictionary for the next sample selection iteration.
The training sample selection iteration proceeds until conver-
gence is reached. In this paper, two situations are regarded as
convergence conditions. First, the trained dictionary contains
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more than 2000 items. Second, the classification accuracy of
test images is higher than 80% under a 0.7 recall rate. Once
converged, we apply the sparse representation dictionary to
detect vehicles.

In the detection stage, a test image is first segmented into
superpixels, based on the center of which we scan the test image
with high efficiency. According to the sparse codes during
scanning, the patch candidates are classified into cars and the
background.

B. Superpixel Segmentation

In our proposed method, superpixel segmentation is an
important step. Superpixel segmentation breakage, defined
as the disconnection of segmentations, affects the scanning
location accuracy and detection performance. To obtain
superpixel segmentation with low breakage, we proposed a
superpixel segmentation method designed specifically for our
framework.

Given a uniform partition P = {pi}ji=1 of image C =
{r(e), g(e), b(e)}e∈C , where j represents the initial partition
number, r(e), g(e), and b(e) represent the red (R), green (G),
and blue (B) components of color space for pixel e, respectively.
Then, each color center of partition pi is calculated by using the
following function:

RPi
=

1

|pi|
∑
e∈pi

R(e)

GPi
=

1

|pi|
∑
e∈pi

G(e)

BPi
=

1

|pi|
∑
e∈pi

B(e)

(1)

where |pi| is the number of pixels in partition pi. RPi
, GPi

,
and BPi

represent the color centers of the RGB components,
respectively. In the next step, we iteratively update each parti-
tion’s boundary pixels according to three measurements. The
first measurement is the color distance between a boundary
pixel e and a neighbor partition pi’s color center, which is
defined as

dc(e, pi)

=

√
(r(e) −Rpi

)2 + (g(e)−Gpi
)2 + (b(e)−Bpi

)2

AN
(2)

where AN is the normalization term to make the smallest color
distance to be 1. Thus, AN is set as the smallest color distance
extracted from the distances between the boundary pixels and
their corresponding neighbor partitions. Empirically, setting
AN at 25 is sufficient to obtain a good result.

The second measurement is the space distance between a
boundary pixel e and its neighbor partitionpi’s space center.

Fig. 2. Statistics distribution probability within pixel e’s local 3 × 3 area.

The space center of partition pi is defined as

SPi
(u, v) =

(∑
e∈Pi

we · eu,
∑
e∈Pi

we · ev

)

ôe =
RPi

|r(e) −RPi
| +

GPi

|g(e)−GPi
| +

BPi

|b(e)−GPi
|

oe =
ôe∑

e∈Pi

ôe
(3)

where u and v are the position coordinates of pixel e in the
image, ôe and oe are the weights of pixel e, and oe is the
normalized term of ôe. Then, the space distance from pixel e
to its neighbor partition pi is calculated as

ds(e, pi) =

√
(u− upi

)2 + (v − vpi
)2

BN
(4)

where BN is a normalization term to make the smallest space
distance to be 1. Thus, BN is set as the smallest space distance
extracted from the distances between the boundary pixels and
their corresponding neighbor partitions. Empirically, setting
BN at 10 is sufficient to obtain a good result.

The third measurement is a boundary pixel e’s local informa-
tion that computes the statistical probability of pixels assigned
to partition pi within an area centered on e. The definition is as
follows:

h(e, pi) =
N(e, pi)

L
(5)

where N(x, pi) represents the number of pixels in partition pi
within e’s local area, and L is the total pixel number within the
defined e’s local area. A large L improves the robustness of lo-
cal information, but it increases the computational complexity.
In our method, we use a 3 × 3 local area. As shown in Fig. 2,
the yellow rectangle within a 3 × 3 window is defined as e’s
local area. We compute the statistical probabilities of pixels in
the adjacent partitions of e (i.e., partitions 1, 2, 3, and 4).

Finally, the probability of e ∈ pi is calculated by

prob(e, pi) =
1

dc(e, pi)
· 1

ds(e, pi)
· h(e, pi). (6)
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Fig. 3. (a) and (b) Two original image patches. (c) and (d) HOG descriptors
of (a) and (b).

According to (6), we iteratively update boundary pixels of
the segmented partitions until boundary pixels remained un-
changed or reach the iteration termination condition. By using
the local information, the segmented patches are smooth and
well handled in disconnections. Another benefit from local
information is that the robustness to noise is enhanced. The
detailed analysis is discussed in the experimental part.

C. Grids of HOG Descriptor

In this paper, we use the grids of HOG descriptor to describe
a patch. Here, we give a brief introduction about the grids of
HOG descriptor proposed by Dalal and Triggs [16]. Given an
image patch, we first divide the patch into small spatial regions
(“cells”). For each cell, we accumulate a local 1-D histogram
of gradient directions or edge orientations over the pixels of the
cell. After this, the histogram entries of each cell are combined
to form the representation of the patch. For better invariance to
illumination, shadowing, etc., it is useful to contrast-normalize
the local responses before using them. Fig. 3 shows an example
of the grids of HOG descriptor. Fig. 3(a) and (b) are the same
image patch with different orientations. We computed the HOG
descriptors of the two patches with a cell size of 5 pixels.
Fig. 3(c) and (d) are the HOG descriptors of Fig. 3(a) and (b),
respectively. In Fig. 3, the descriptors of the two patches are
different. As shown in Fig. 3, although it has achieved great
success in object detection area, the grids of HOG is orientation
sensitive. Notice that, instead of RGB images, we compute the
HOG features based on grayscale images.

D. Sparse Representation

In our method, we apply the sparse representation method
proposed by Jiang et al. [50] for sample selection, training, and
testing.

Let Y = [y1, . . . , yN ] ∈ Rn×N denote N n-dimensional in-
put signals. Then, learning a reconstructive dictionary with K
items for sparse representation of Y can be accomplished by
solving the following problem:

〈D,X〉 = argmin
D,X

‖Y −DX‖22 s.t. ∀ i, ‖xi‖0 ≤ T (7)

where T is a sparsity threshold, D is the sparse representation
dictionary, and X represents the sparse codes. Equation (7) can
be replaced by an l1-norm problem

〈D,X〉 = argmin
D,X

‖Y −DX‖22 + γ‖X‖1 (8)

where γ is a parameter to balance the reconstruction error and
the sparsity of representation codes. The equality of (7) and
(8) was proved in [51]. The K singular value decomposition
(K-SVD) algorithm [52] is an iterative approach to minimize
the energy in (8) and learns a reconstructive dictionary for the
sparse representation of signals. Reversely, given a dictionaryD,
the sparse representation xi of an input signal yi is computed as

xi = argmin
x

‖yi −Dx‖22 + γ‖x‖1. (9)

Due to the discrimination of the sparse codes among different
classes, the sparse codes can be directly used for classification.
The orthogonal matching pursuit algorithm [53] is used to solve
(9). To increase the discriminability of the obtained sparse
codes, a term representing the training samples’ label infor-
mation is added to the training dictionary. Thus, the objective
function for dictionary construction is defined as

〈D,A,X〉 = arg min
D,A,X

‖Y −DX‖22
+ α‖Q−AX‖22 s.t. ∀ i, ‖x‖0 < T (10)

where α controls the relative contribution between reconstruc-
tion and label consistency regularization, Q = [q1, . . . , qN ] ∈
RK×N are the “discriminative” sparse codes of input signals
Y for classification, and A is a linear transformation matrix
that transforms the original sparse codes to be the most dis-
criminative in sparse feature space RK . The term ‖Q−AX‖22
represents the discriminative sparse code error, which forces
signals from the same class to have very similar sparse repre-
sentations and results in good classification performance. We
say that qi = [q1i , . . . , q

K
i ]

t
= [0, . . . , 1, 1, . . . , 0]t ∈ RK is a

discriminative sparse code corresponding to an input signal yi if
the nonzero values of qi occur at those indices where the input
signal yi and the dictionary item dk share the same label. For
example, assume that D = [d1, . . . , d6] and Y = [y1, . . . , y6],
where y1, y2, d1, and d2 are from class 1; y3, y4, d3, and d4 are
from class 2; and y5, y6, d5, and d6 are from class 3. Then, Q
can be defined as

Q ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
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where each column corresponds to a discriminative sparse code
for an input signal.

During dictionary learning, a term that optimizes the dis-
criminative power of sparse codes between different classes
is included into the objective function of dictionary learning.
Then, the objective function is represented as follows:

〈D,W,A,X〉 = arg min
D,W,A,X

‖Y −DX‖22 + α‖Q−AX‖22

+ β‖H −WX‖22 s.t. ∀ i, ‖x‖0 < T (11)

where the term ‖H −WX‖22 represents the classification er-
ror. W denotes the classifier parameters. H = [h1, . . . , hN ] ∈
Rm×N are the class labels of input signals Y . hi =
[0, 0, . . . , 1, . . . , 0, 0]t ∈ Rm is a label vector corresponding to
an input signal yi, where nonzero position indicates the class
of yi. m is the number of classes, and α and β are the scalars
controlling the relative contribution of the corresponding terms.

To employ the K-SVD algorithm to solve (11), (11) is
rewritten as follows:

〈D,W,A,X〉 = arg min
D,W,A,X

∥∥∥∥∥∥
⎛
⎝ Y√

αQ√
βH

⎞
⎠

−

⎛
⎝ D√

αA√
βW

⎞
⎠X

∥∥∥∥∥∥
2

2

s.t. ∀ i, ‖xi‖0 ≤ T. (12)

Denote Ynew = (Y t,
√
αQt,

√
βHt)

t
, and Dnew = (Dt,√

αAt,
√
βW t)t. Then, (12) is equal to the following function:

〈Dnew, X〉 = arg min
Dnew,X

{
‖Ynew −DnewX‖22

}
s.t. ∀ i, ‖xi‖0 ≤ T. (13)

Equation (13) is just the form that the K-SVD algorithm
solves. After we obtain D={d1, . . . , dK}, A={a1, . . . , aK},
and W = {w1, . . . , wK} from Dnew, we cannot simply use D,
A, and W for testing because D, A, and W are L2-normalized
jointly, i.e., ∀ k, ‖dtk,

√
αatk,

√
βwt

k‖2 = 1. Thus, the desired
dictionary D̂, the transform parameters Â, and the classifier
parameters Ŵ are recomputed as follows:

D̂ =

{
d1

‖d1‖2
, . . . ,

dK
‖dK‖2

}
, Â =

{
a1

‖d1‖2
, . . . ,

aK
‖dK‖2

}

Ŵ =

{
w1

‖d1‖2
, . . . ,

wK

‖dK‖2

}
. (14)

The desired D̂, Â, and Ŵ are directly applied for tests. The
final classification prediction l can be simply represented by

l = Ŵ x̂i. (15)

The label of yi is regarded as the classification scores cor-
responding to each class. In our method, the grids of HOG

Fig. 4. (a) Test sample of car. (b) HOG feature of the test sample. (c) Class
scores of the test sample responding to each class according to the sparse codes.
b1 to b6 are background classes.

Fig. 5. Framework of the proposed training sample selection method.

features are utilized as the initial input signals Y . As shown
in Fig. 4, we extract the grids of HOG feature of a car sample
as the input test and solve the sparse codes of the test sample.
According to the sparse codes, we compute the scores of the
test patch corresponding to each class. Clearly, the test sample
has the highest score for cars. Thus, we classify the test sample
as car. The background classes of b1–b6 were constructed
through our sample selection procedure and built according to
the estimated similarities to a vehicle, instead of their actual
background classes, such as grass, ground, and air conditioner.

E. Iterative Training Sample Selection

In this section, we introduce an automatic training sample
selection approach that considers the difference of interclass
and the completeness of intraclass to construct a compact
training set to improve training and classification efficiency.

Fig. 5 shows the framework of the iterative training sample
selection method. First, we manually select several dozen sam-
ples of cars and background samples to initialize the training
set. Second, the grids of HOG features are extracted from the
training samples as the input signal Y for dictionary training,
according to (11). Third, the sparse codes of all the other
training samples are calculated. Each sample is assigned a class
distribution index. Based on this index, we select samples to add



CHEN et al.: VEHICLE DETECTION IN AERIAL IMAGES VIA SPARSE REPRESENTATION AND SUPERPIXELS 109

into the training set. The class distribution index I of a sample
is defined as follows:

I =
li

m∑
i=1

|li|
(16)

where l is the label information of samples computed from (15),
and m is the number of total classes. According to the class
distribution index, we estimate the similarity between a sample
and a car. Fourth, the samples are selected to join the training
set according to the following two criteria.

(1) A positive sample, whose value I is lower than the de-
fined threshold, will be selected as a new positive sample.
The threshold starts from a small threshold (0.1 in our
method). Then, it continually increases during the sample
selection iteration.

(2) A negative sample, whose value I is higher than the
defined threshold, will be selected as a new negative
sample. The threshold starts from a large threshold
(0.9 in our method). Then, it continually decreases during
the sample selection iteration.

The first criterion ensures the difference of the intraclass car
samples, and the second criterion ensures the discriminability
of the selected training samples for classifying the cars and the
background. To forbid the reselection of samples, we label all
the unselected samples as 0 and the selected samples as 1. Fifth,
a new and larger dictionary is trained according to the new
training subset. We iteratively run these steps to select samples
until the aforementioned convergence conditions are reached.

As aforementioned, the grids of HOG descriptor used in
our method are orientation sensitive. The orientation of the
vehicle is unknown in the test image. Thus, the test image
should be scanned at multiple rotations [11]. Usually, each
test patch is rotated with an angle interval of 5◦ (or 30◦,
45◦, etc.) for scanning, resulting in a dramatic decrease in
detection efficiency. To further improve detection efficiency,
we estimate the main direction of each patch and automat-
ically rotate all patches to their main directions to maintain
orientation consistence during dictionary training and vehicle
detection. Through main direction estimation, we only need to
examine each test patch in one orientation. Thus, we improve
the detection efficiency. Considering that a car patch usually
contains two long straight lines along the car’s length direction,
we define the main direction of a patch as the direction of
straight lines with a longer length than the predefined threshold.
In this paper, the Canny and Hough transforms are used for
edge detection and line detection, subsequently. Affected by
light illumination, occlusions, and noises, the extracted straight
lines contain lines that do not belong to a car’s length direction.
To reduce the interference of lines that have different directions
with a car’s length, we cluster the detected long straight lines
into several classes according to their angles. The average angle
of the cluster that has the most lines is taken as the main
direction of the patch. Fig. 6 shows the results of patches after
the rotation according to their main direction. As shown, our
method effectively solves the rotation problem of the patches
and rotates most of the cars to their vertical direction correctly.

Fig. 6. Samples after rotating to their main directions.

Fig. 7. Example of segmentation breakage. P1, P2, P3, P4, and P5 represent
the partitions of an image. In the figure, P1 and P3 have two parts that are
disconnected. The situations of P1 and P3 are the so-called segmentation
breakage.

IV. EXPERIMENTS AND DISCUSSIONS

In this part, we first provide a discussion regarding the su-
perpixel segmentation. Then, we test our algorithm in two data
sets, i.e., the Toronto data set and the OIRDS. In both data sets,
the ground truths of test images were labeled with rectangular
areas surrounding the cars. Only the detections that are located
exactly on a ground truth are considered true detections. If one
ground truth is redetected multiple times, only one is considered
the true positive detection. Thus, other overlapping detections
are considered as the false alarms.

A. Superpixel Segmentation Discussion

In this discussion, we tested our superpixel segmentation
method on the public Berkeley database, which contains 300
images [54]. To analyze the robustness of our method to break-
age, which is defined as the disconnection of segmentations,
we evaluated the breakage rate of our method on the Berkeley
database. Fig. 7 shows an example of segmentation breakage.
In the figure, an image is segmented into five parts, namely, P1,
P2, P3, P4, and P5. However, partitions P1 and P3 have two
disconnected parts, denoted as segmentation breakage. Given
segmentation P , the breakage rate is defined as

BR =
ϕ(P )

|P | (17)

where ϕ(P ) represents the number of disconnected segmenta-
tions of P and |P | represents the number of total segmentations
of P .
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Fig. 8. Breakage rate comparison of segmentation results by our method,
VCells, and SLIC in the Berkeley database. The red, blue, and green lines
represent our method, SLIC, and VCells, respectively.

For comparison, we also evaluated the breakage rate of
VCells [34] and SLIC [33] on this database. The code of
VCells was obtained from the author, and the SLIC code
was obtained from VLFeat. In our experiment, we fixed the
superpixel size at approximately 200 pixels per superpixel and
maintained a boundary recall rate ranging from 55% to 70%.
Only the segmented boundary pixel, which is located on the
boundaries of the ground truth, was considered as correct seg-
mented boundary pixel. Fig. 8 shows the experimental result;
the horizontal and vertical axes represent the boundary recall
rate and breakage rate, respectively. In the figure, the red line
represents our method, which shows that our method obtained
the lowest breakage rate among the three methods. Both VCells
and SLIC obtained high breakage rates when the boundary
recall was higher than 0.55. The situation was worse for VCells.
In contrast, during segmentation, we used the local information
to improve the segmentation process and successfully con-
trolled the segmentation with a low breakage rate. Fig. 9 shows
a visual comparison of segmentation on an aerial image by
our method, VCells, and SLIC. The segmentation parameters
of each method were kept the same with the experiments in
the Berkeley database. It can be observed that our method’s
segmentation result is smoother and more regular than that of
the other two methods. When handling objects with complex
textures (e.g., cars), the segmentation results of VCells and
SLIC showed their breakages, which resulted in the generation
of considerably small segmentation fragments. This increases
not only the burden on the detection work but also the false
alarm rate of detection.

B. Toronto Data Set

We tested the performance of our algorithm on an aerial im-
age, covering the city of Toronto, with a size of 11 500 pixels ×
7500 pixels and a color depth of 24 bits/pixel (RGB). The
spatial resolution of the aerial image is 0.15 m, under which
resolution, a car contains about 38 pixels × 16 pixels. In our
experiment, we cut the image into subareas and selected several
subareas for training and testing. Fig. 10 shows a subimage cov-
ering a parking lot. In the experiment, 13 subimages for training

Fig. 9. Comparison of superpixel segmentation results among the proposed
method, VCells, and SLIC. (a) Original high-resolution aerial image. (b)–(d)
Segmentation results of the proposed method, VCells, and SLIC, respectively.
The parameter configurations of each method were the same as those in the
Berkeley database.

Fig. 10. Parking lot example from the Toronto data set.

and 8 images for testing were selected. The total number of cars
in the testing set is 1589. Generally, the scanning patch size
is set at a size larger than the size of cars in the test images.
In our experiments, the scanning patch size is 41 pixels ×
21 pixels. The reason for using this scanning patch size is
that we only consider the texture feature of vehicles in our
method. The context information of nearby background would
be studied in our future work.
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TABLE I
SIZE OF THE SUBAREAS FOR TRAINING IN TORONTO DATA SET

C. Compact and Complete Training Set Construction

In our experiment, we selected the positive patches (cars)
and negative patches (the background) from 13 subareas for
training a sparse representation dictionary. Table I shows the
size of each subarea for training. We segmented all the subareas
into superpixels with a size of approximately 400 pixels and
generated 184 710 superpixels. Accordingly, 184 710 training
patches, which include 5169 car patches, were obtained based
on the superpixel centers. Choosing a small and complete train-
ing subset is necessary because the generated entire training set
is too large for training and a large amount of information is
redundant. However, it is difficult to manually select a compact
and complete training subset. To automatically construct a com-
plete training subset, we apply our training sample selection
procedure to select representative training samples. In order to
reduce the computational complexity, all the patches were first
rotated to their main directions. Then, each patch was trimmed
with a uniform size of 41 pixels × 21 pixels, as shown in Fig. 6.

From the rotated and trimmed training patches, we manually
selected 60 car patches and 120 background patches, respec-
tively. For the positives, we selected the car patches with clear
textures without interference (shadows, occlusions, etc.). For
the negatives, we selected the samples that appear similar to
cars. The grids of HOG features were extracted as the initial
sparse representation dictionary input. All positive features
are labeled as 1, and all negative features are labeled as −1.
Utilizing the trained dictionary, we calculated the sparse codes
and classification scores of other remaining training patches.
According to the calculated scores, some patches were selected
to join the previously selected training subset. With the new
selected training subset, a new dictionary was trained for the
sample selection in the next iteration. We terminated the train-
ing sample selection after five iterations because, at that point,
we obtained a classification accuracy value of greater than
80% under a 0.7 recall rate (considered a satisfactory detection
accuracy value in this paper). Finally, a compact and complete
dictionary training subset was created with 180 car patches and
1080 background patches.

Due to occlusions and illumination variations, the estimated
main direction might not be a car’s vertical direction of interest,
resulting in omission detections of cars. Thus, we estimated
two directions of each patch for scanning. After clustering
the detected straight lines, we selected two clusters that con-
tained more straight lines than others. The directions of the
two selected clusters were defined as the main directions.
A test patch was examined in the orientations of the two
estimated main directions. To forbid redetections, only the
result with a higher positive score was taken as the exam result.
A test patch without lines was examined with no rotation in
our experiment.

Fig. 11. Detection results with dictionaries trained in each iteration. Green,
red, cyan, black, magenta, and blue represent the results of iterations ranging
from initial to fifth, respectively.

To demonstrate the effectiveness of our iterative training
sample selection, we used the dictionaries trained during it-
erations for vehicle detection on test images. Fig. 11 shows
the detection precision–recall curves using dictionaries trained
with samples selected in different iterations, ranging from the
initial time to fifth time. The detection accuracy monotonously
increases during the sample selection iterations because the
negatives that have high similarity to positives are added into
the training set one by one. With the addition of negatives
that have a high similarity to positives, the decision boundary
between the positives and negatives is more and more ex-
act. Thus, the ability to separate the vehicles, as well as the
negative tests that are close to vehicles in feature space, is
increased during the iterations. Then, the detection accuracy
improves during the iterations. The experimental result proves
the effectiveness of our method for automatically constructing
a compact and complete training set. In our experiment, we
obtained a satisfactory result after five time iterations. In the
following comparison, the fifth iteration result is regarded as
our final result.

D. Sensitivity of the Superpixel Size

Superpixel segmentation is a vital process to detect cars from
high-resolution aerial images in our method. The superpixel
size influences the detection accuracy and recall rate. A large
superpixel size reduces detection positions and false alarms,
but it increases omission detections. On the contrary, a small
superpixel size increases detection burden and redetections, but
it improves recall rate. This is a tradeoff of the superpixel size
for detection.

In this paper, to determine the best superpixel size, we tested
five superpixel sizes (100, 225, 400, 625, and 900) to seg-
ment images for training and detection. From a segmentation
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Fig. 12. Detection results of the proposed framework with different superpixel
segmentation sizes. The superpixel sizes include 100, 225, 400, 625, and 900.

Fig. 13. Comparison of the detection results by using the iteratively trained
dictionary and the randomly trained dictionary. The blue and green lines
represent the iteratively selected samples’ result and the random samples’
result, respectively.

having a given superpixel size, we selected training samples
and detected the test images. Fig. 12 shows the detection results
of our framework with different superpixel sizes. In Fig. 12,
the detection result with a superpixel size of 400 is superior to
others. The detection accuracy quickly decreases with the su-
perpixel sizes 100 and 225 because cars in the test images were
oversegmented, which increased redetections during detection.
On the contrary, the omissions increased when the superpixel
size is 625 or 900, leading to a low maximum recall rate. To
balance redetections and omission detections, the superpixel
size was set at 400 in our study.

E. Effects on Training Samples

To analyze the influence of training samples on the accu-
racy of vehicle detection, we detected cars by our iteratively
trained dictionary and a randomly trained dictionary, respec-
tively. Each dictionary contained 180 cars and 1080 non-car
objects. Fig. 13 shows the comparison results. The blue and
green lines represent the precision–recall curves of detection
results with our iteratively trained dictionary and the randomly
trained dictionary, respectively. Both detections were under the

proposed vehicle detection framework. As shown in Fig. 13,
the iteratively trained dictionary method outperforms the ran-
domly trained dictionary method for car detection. The method
using the iteratively trained dictionary has higher precision for
every recall rate value, which proves the high effectiveness of
our iterative training sample selection strategy. The randomly
selected training set was not able to effectively contain all the
representative negatives in the original training set to train a
highly discriminative dictionary.

F. Performance on Toronto Data Set

The Toronto data set was used to further verify the perfor-
mance of our algorithm. Table II shows the sizes of the test
images. In this paper, the test images have the same spatial
resolution as the training images. We segmented the eight
test images into superpixels with a size of 400 and generated
patch candidates with a size of 61 pixels × 61 pixels based
on the superpixel centers. These patches were rotated to their
main directions and clipped to smaller patches with a size of
41 pixels × 21 pixels. We consider only the vehicle texture
for the proposed method in this paper. The use of background
information will be studied in our next work. During the de-
tection, the sparse codes of patch candidates were calculated to
classify them into cars or the background class. The dictionary
in our experiment was obtained after five time training sample
selection iterations. Fig. 18 shows two detection results of our
method. In Fig. 18, the red line represents the wrong detections,
and the green line represents the right detections. Our results
show good performance, which has high vehicle detection
recall and precision, in complex urban areas.

We also performed three other popular methods on the test
images for comparison, including HOG + linear SVM, HOG +
kernel SVM, and SIFT + linear SVM. All of the codes in
our experiments were obtained from the publicly available
sources (VLFeat). In these methods, a slide window scanning
strategy with a slide step of 5 pixels on both the horizontal
and vertical axes was used. For each scanning position, the test
patch was rotated with a rotation interval step of 5◦ for exami-
nation. In the training stage, 180 car patches were selected and
aligned vertically. Meanwhile, 1080 background patches were
randomly selected as the negatives for training. The patch size
for these methods was 61 pixels × 31 pixels, considering that a
bit of background information benefits the performance of these
methods in normal circumstance [55].

Fig. 14 shows the performance comparison between our
method and the other three methods in the Toronto data set. The
horizontal axis is the recall rate for vehicles, and the vertical
axis represents the precision. The blue line represents the
result of our method, which obtained higher precision than the
other methods. The SIFT feature method had the worst per-
formance among the four methods in our experiment. When
the recall rate is higher than 0.6, our method still maintained
high precision. However, the other three methods’ precision
values showed a dramatic decrease when the recall rate is higher
than 0.6. Fig. 14 fully illustrates the better performance of our
method.
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TABLE II
SIZE OF THE SUBAREAS FOR DETECTION IN TORONTO DATA SET

Fig. 14. Comparison between our method and the other methods in the
Toronto data set.

Fig. 15. Processing time comparison for two different scanning strategies, i.e.,
the scanning strategy with a fixed step sliding and the scanning strategy based
on superpixel centers.

To examine the effects of detection scanning strategy based
on superpixel centers, we also tested the performance of super-
pixel sliding strategy for linear SVM + HOG and linear SVM+
SIFT. The test result for linear SVM + HOG + superpixel is
shown as a red line with squares, and the test result for linear
SVM + SIFT + superpixel is shown as a black line with circles
in Fig. 14. The detection results show that the sliding strategy
based on superpixel centers has little effect on the detection
accuracy of linear SVM + HOG and linear SVM + SIFT, but
the detection efficiency has been greatly improved, as shown
in Fig. 15. In addition, we tested the sparse representation with
fixed step sliding scanning strategy on this data set (see the blue
line with circles in Fig. 14). The result shows that our proposed
method has even a better performance than the method combin-
ing sparse representation with fixed step sliding strategy.

Fig. 15 shows a comparison of the processing efficiency. We
conducted experiments on a personal computer with Intel Core

Fig. 16. Four test images in OIRDS.

i5-2400 CPU at 3.1 GHz and 8-GB RAM. The platform was
the MATLAB, and the test was an image with the size of
352× 379. In Fig. 15, blue bars represent the detection process-
ing times using the traditional fixed step sliding strategy. The
green bars represent the detection processing times using scan-
ning strategy based on superpixel centers. As shown in Fig. 15,
all the detections with fixed step sliding strategy consume much
more time than their corresponding detections using scanning
strategy based on superpixel centers. Among the detections us-
ing scanning strategy based on superpixel centers, our proposed
method consumes a little more time than the other two methods.
Nevertheless, our proposed method is still much more efficient
than the detections with fixed step sliding strategy.

G. Performance on OIRDS

To further verify the performance of our algorithm, the
publicly available OIRDS, which contains 907 aerial images,
was used. The total number of vehicles annotated in the data
set is approximately 1800. Most images in this paper cover
suburban areas, which leads to large number of cars that are
partially or even totally occluded by trees, buildings, and other
objects. Moreover, other factors such as spatial resolution and
observation view variation also influence car detection nega-
tively. In our experiment, to directly use the dictionary and
SVM models trained in the previous experiment, images that
have a spatial resolution different with 0.15 m × 0.15 m were
manually eliminated.

Fig. 16 shows four selected test images in the OIRDS.
In Fig. 16, most vehicles are occluded by trees, buildings,
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Fig. 17. Comparison of the detection results in OIRDS. The blue, red, and
green lines represent the precision–recall curve of the proposed method,
HOG + kernel SVM, and HOG + linear SVM, respectively.

and shadows cast by other elevated objects. In our study,
370 images containing 579 vehicles were selected to verify the
performance of our vehicle detection method. Fig. 17 shows the
comparative results of our method and the other three methods
(i.e., HOG + linear SVM, HOG + kernel SVM, and SIFT +
SVM). The blue line with stars represents the precision–recall
curve of our method. The green, red, and black lines represent
the precision–recall curves of HOG + linear, HOG + kernel
SVM, and SIFT + SVM, respectively. In Fig. 17, our method’s
detection precision is higher than that of the other methods.
When the recall rate is higher than 0.7, all the detection results
of four methods are not satisfactory. Two reasons account for
this phenomenon. First, the training set and the test set come
from different data sets, leading to the differences of vehicles
in the trained dictionary (or models) and the test images. The
differences contain size, observation view, noise level, and
illumination condition, which make it hard to achieve a high
detection recall rate in the test images. Second, the occlusions,
shadows, and brightness variations in OIRDS make it rather
hard to detect the vehicles, resulting in a dramatic decrease in
accuracy when we relax the threshold to detect those challeng-
ing vehicles with a high recall rate.

V. CONCLUSION

We have presented a novel vehicle detection method from
high-resolution aerial images by using sparse representation
and superpixel segmentation.

Through superpixel segmentation, aerial images are first
segmented into superpixels. Based on the superpixel centers,
we got meaningful patches for training and detection, benefiting
the training sample selection and making the detection scanning
highly effective. To construct a compact and complete training
subset, we propose a training sample selection method based on
sparse representation to select the most representative samples
from the entire large training set. With the selected training
subset, we obtain a sparse representation dictionary with highly
discriminative ability for vehicle detection. We further improve
the algorithm’s effectiveness by using an effective direction

Fig. 18. Vehicle detection results of the proposed method in two subareas
of the test image. In both (a) and (b), the locations with rectangles are the
areas recognized as cars. The rectangles with a red color represent the wrong
detection, and the rectangles with a green color represent the right detections.
The redetections are also considered as wrong detection.

estimation to make the patches maintain consistent directions
during training and detection (see Fig. 18).

We tested our algorithm in two data sets, i.e., the Toronto data
set and the OIRDS. Several state-of-the-art methods (i.e., HOG
+ linear SVM, HOG + kernel SVM, and SIFT + SVM) are
compared with our method. The comparisons of the detection
results show that our method obtained a satisfactory detection
result and performed better than the compared methods. Three
factors influence the detection accuracy of our method, namely,
superpixel segmentation size, sample selection iteration time,
and completeness of the original entire training set. The exper-
imental analyses regarding the iteration time of training sample
selection procedure and the processing efficiency were also
presented in our experiments.

Although we have introduced a superpixel-based scanning
strategy into our method to improve the detection efficiency,
the sparse representation still has higher computational com-
plexity than the SVM methods with same scanning strategy.
Thus, in our future work, we will study a hierarchical classifi-
cation structure to further improve the detection efficiency and
accuracy.
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