
Electrical Power and Energy Systems 77 (2016) 337–344
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Energy management at the distribution grid using a Battery Energy
Storage System (BESS)
http://dx.doi.org/10.1016/j.ijepes.2015.11.035
0142-0615/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 808 956 0767; fax: +1 808 956 2373.
E-mail address: sepasi@hawaii.edu (S. Sepasi).
Ehsan Reihani a, Saeed Sepasi b,⇑, Leon R. Roose b, Marc Matsuura b

aRenewable Energy Design Laboratory, Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St., Holmes Hall 347, Honolulu, HI 96822, USA
bHawaii Natural Energy Institute, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1680 East-West Road, POST 110, Honolulu, HI 96822, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 19 December 2014
Received in revised form 16 September 2015
Accepted 17 November 2015

Keywords:
Battery energy storage system
Peak shaving
Power smoothing
Voltage regulation
Grid optimization
In 2008, the State of Hawaii initiated a clean energy initiative that set an ultimate goal of 70% clean
energy by 2030 (40% from renewable energy and 30% from energy efficiency). A controllable Battery
Energy Storage Systems (BESSs) can be used to manage intermittent renewable resources on a power
system to address both circuit and system level issues. Simulation and experimental results of applying
a novel algorithm for the charging and discharging of a BESS are presented, using actual grid data for con-
trolling a BESS for the purpose of peak load shaving, power curve smoothing, and voltage regulation of a
distribution transformer. Two optimization objectives for peak shaving are presented in which proposed
load forecasting methods are used. The application of a BESS for voltage regulation is examined and ana-
lyzed with different tests, and the observed results are discussed.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

The addition of renewable energy resources to power grids in
the U.S. has grown rapidly in recent years. Photovoltaic (PV) devices
are the fastest growing renewable category with a 60% growth rate,
followed bywind power at 27% and biofuels at 18% [1]. The inherent
intermittent nature of renewables poses some challenges to the
continued expansion of their use due to limitations of existing con-
ventional generation facilities that are designed more for efficiency
than flexibility and existing transmission and distribution systems
that are designed for one-way power flows and load connection
rather than generation interconnections.

Energy storage is one of the ways to deal with the variability of
renewable resources. Energy storage devices can harvest excess
energy during periods of low demand and inject the stored energy
when needed during peak usage periods. The storage devices can
also play the role of reserve power plants, providing extra energy
in case of power system contingencies or a rapid change in demand.
A popular use of energy storage is for system peak demand shaving,
which involves absorbing energy when there is excess energy, gen-
erated either by renewables or base power plants, during off-peak
times and injecting the stored energy back into the distribution sys-
tem during system peak load times. As a result, renewable genera-
tion curtailment is reduced, and expensive fast generating units can
be avoided. Energy storage can also be used for peak demand shav-
ing on a particular distribution feeder transformer, with the objec-
tive to reduce the peak power demand on the transformer and
extend its useful life. The Battery Energy Storage System (BESS) is
a battery equipped with bidirectional converters which can absorb
or inject active and reactive power at the designated set points. In
this paper, an algorithm is developed to manage stored energy
and storage capacity effectively for peak shaving and load leveling
purposes and which considers estimates of future hourly pricing
and renewable generation output.

There is a growing number of research works which employ dif-
ferent storage technologies for dealing with the intermittency of
renewables. In [2], different technologies used in battery energy
storage systems deployed at the grid level are introduced. The opti-
mal power and size of a hybrid energy storage system consisting of
BESS and a high-speed superconducting flywheel energy storage
system are investigated in [3] for the purpose of stabilizing the
power system. In [4], a real-time State of Charge (SOC) based con-
trol method is proposed to reduce the fluctuations in the power
system in response to a high level of integration of variable energy
sources such as PV and wind. The sizing of energy storage for
micro-grids is examined in [5], where a neural network is used
to forecast the PV and wind power generation levels, and the opti-
mal size of BESS is determined with and without connection to the
main grid. In [6,7], a scheme consisting of wind generation in com-
bination with a BESS is proposed for scheduling short-term power
dispatch to maximize the energy harvested from wind generation.
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Different methods have been proposed for battery operation opti-
mization and leveling the load profile.

In [8,9], dynamic programming techniques are used to find the
optimal battery energy storage and power levels for peak load
shaving applications. Battery storage is examined in [10] for reduc-
ing transmission and distribution losses, and a set of normalized
charts are provided to quantify the benefit of BESS for leveling
the utility load. Finally, in [11], BESS is used to regulate active
and reactive power according to SOC limits, and the control signals
are fed into the switches using a current control loop.

BESS

Here, a grid scale BESS (1 MW, 1 MWH) is connected to a distri-
bution feeder via a 1 MVA step-up transformer and is used for peak
shaving of the distribution grid circuit shown in Fig. 1.

A 69 kV transmission grid provides the energy balancing needs
of the distribution circuit and BESS collectively via a 69/12.47 kV
distribution transformer. The goal of peak shaving is to optimally
control the BESS to reduce the peak load of the circuit.

The BESS consists of twelve Li-ion battery racks and a master
control rack. A single battery rack contains 22 trays (2 columns
of 11) each populated with 38 prismatic flat pack cells and one Bat-
tery Management System (BMS) tray at the top. Together, these
components form a 1 MW, 1 MW h energy storage system. The
BESS is connected to a 1 MW bidirectional three phase inverter
with 12,470 V AC output. The battery management system has a
SOC estimation algorithm, which estimates the amount of usable
electrical energy stored in the battery pack [12]. The SOC is limited
to an operating range of 0.2–0.8 in which the battery is neither
fully depleted nor fully charged [13,14], in order to avoid adversely
impacting the battery life. Control modes, set points, and active
and reactive power commands are sent from the dispatch room
to the BESS controller using the Maui Electric supervisory control
and data acquisition (SCADA) system utilizing the DNP3 protocol.

In the context of a deregulated energy market system, a Distri-
bution System Company (DISCO) can offer peak load shaving and
load smoothing services with optimal operation of a BESS under
its control at a market based price to the Independent System
Operator (ISO). The ISO can in turn then utilize this DISCO provided
resource to meet its system operational objectives, such as peak
demand shaving and operational reserves.

Peak shaving

Peak shaving is used to reduce the peak demand on a power
system, either at the balancing area as a whole or on a sub-
system such as a distribution feeder. This can be accomplished
in several ways depending on the needs of the system and the
objectives of the strategy used. An example of this is to shift cur-
tailed renewable energy or lower priced energy generated during
times of low demand to periods of high demand to increase the
utilization of renewable energy or reduce the use of more expen-
sive peak generating units. BESS are one of the emerging grid
level options for shifting generation to when it is needed and
smoothing the power fluctuations. In order to schedule the bat-
tery operation for the next 24 h, a forecast of the circuit power
profile is needed. A linear regression method is used for obtaining
the power profile needed in the forecasting optimization
algorithm.

Linear regression method

In this method, the predicted value for each time step for n col-
lected samples is calculated based on the least square fitting poly-
nomial. A general fitting for a straight line to a first degree
polynomial statement is as follows [15]:

y ¼ a0 þ a1x ð1Þ
The residual is the difference of forecast and actual values:

R2 ¼
Xn
i¼1

yi � ða0 þ a1xiÞ½ �2 ð2Þ

Taking the partial derivative with respect to each coefficient ai
and arranging in matrix form we get the Vandermonde matrix as
follows:
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The matrix shown in Eq. (4) can be written as follows:

y ¼ Xa ð5Þ
Then the ‘‘a” coefficients can be calculated with a simple

manipulation:

a ¼ XTX
� ��1

XTy ð6Þ

The paper discusses a parallel load forecasting method which
is required for peak shaving of the load curve. The advantage of
the proposed load forecasting method is its light computation
burden. Two BESS control use cases are then evaluated and pre-
sented. The first use case focuses on a peak shaving method
which presents fairly accurate performance since the magnitude
of load uncertainty is low during the primary periods of BESS
charging and discharging in the early morning and early eve-
ning hours. The method, however, may not perform as well in
time periods when PV generation variability is high. The second
BESS use case builds upon the first case by adding a power
smoothing algorithm that utilizes an improved reference power
curve to address periods when PV production and power output
variability is high, while maintaining the capability of peak
shaving.
BESS experiments

In order to develop a good understanding of BESS operation on
the power grid, several charge/discharge experiments are per-
formed, and the electrical measurements from SCADA equipment
at the distribution transformer are plotted.

Active power flow

In this experiment, BESS is charged with 50 kW steps. This
test is done to figure out the impact of charging on the voltage
level and transformer Load Tap Changer (LTC) operation. The
step changes are kept small for safety purposes and also to see
the effect of incremental power changes on the grid. BESS and
circuit active power and transformer voltage level and BESS
SOC graphs are depicted in Figs. 2 and 3, respectively.
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Fig. 1. BESS connection to distribution grid system.
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In Figs. 2 and 3, 1blue and red graphs in the power measurements
represent active and reactive power, respectively. In the voltage
measurement plot, phases A, B and C are indicated by blue, red,
and green colors, respectively. Charging BESS draws current from
the main grid, and there is a gradual voltage drop sensed by the
LTC. As a result, the transformer compensates for the voltage drop
by increasing its tap position, as observed in the abrupt changes in
the voltage graph.

Reactive power flow

In order to analyze the impact of reactive power flow from the
BESS on the voltage level, reactive power tests are performed in
which reactive power is injected and absorbed in 200 KVAR incre-
ments. Results from reactive power injection tests and the corre-
sponding measurements are plotted in Figs. 4 and 5.

Voltage level changes measured at the lower side of the
69/12.47 kV distribution transformer of approximately 0.015 kV
for each incremental 200 KVAR injection and 0.06 kV for the total
800 KVAR test are recorded. Based on the observed test results,
reactive power flow by the BESS does not have a significant impact
on voltage regulation in the presence of the transformer LTC which
serves as the primary voltage regulation equipment for the distri-
bution circuit. Thus, it is preferred to utilize the BESS capacity for
active power management. Remaining BESS capacity can, however,
be used to regulate the distribution circuit power factor.

Optimization algorithm

The optimization algorithm finds the optimum active power
flow of the BESS at each time step. The objective function for peak
shaving consists of two components, SOC cost and load cost which
are to be minimized. The SOC cost at time step k + 1 is defined as
follows:

JSOCðkþ1Þ ¼
PkDt
Etot

þ SOCk � SOCmax ð7Þ

In the above equation, Pk denotes discharged power and SOCk is
the value of the SOC of the BESS with capacity Etot at time step k.
The cost of SOC, represented by JSOC, includes the updated SOC
value minus the maximum SOC value, SOCmax. The SOC cost is
added to keep the battery full for as long as possible and incur a
cost for battery operation. The total cost at step k + 1 can be
described as a weighted load flowing through the distribution
transformer Lk plus the SOC cost:

Jkþ1 ¼ JSOCðkþ1Þ þ ðLk þ PkÞWk ð8Þ
The weight componentWk is a quadratic function of load, which

penalizes the high load passing through the distribution
transformer:

Wk ¼ Lk þ Pkð Þ2 ð9Þ
1 For interpretation of color in Figs. 2 and 3, the reader is referred to the web
version of this article.
Combining Eqs. (8) and (9) into a single objective function, we
arrive at the following equation:

Jkþ1 ¼ PkDt
Etot

þ SOCk � SOCmax þ ðLk þ PkÞWk ð10Þ

Minimizing the objective function leads to taking a partial
derivative with respect to Pk and summing over the planning hori-
zon gives the following result:

Min
XN
k¼1

Dt
Etot

þ 3 Lk þ Pkð Þ2
 !

ð11Þ

Subject to SOC constraints:

1
Dt

SOCminEtot � EK½ � < Pk <
1
Dt

SOCmaxEtot � EK½ � ð12Þ
Ekþ1 ¼ Ek þ PkDt ð13Þ

where Ek denotes BESS stored energy level at time step k. The
objective function is nonlinear with a sequential quadratic pro-
gramming method which is used to obtain the BESS optimal
points. If there is an effective forecast of renewable energy gen-
eration available, such as a wind forecast, the objective function
can be revised to make use of renewable generation for charging
the battery rather than curtailing it in the off-peak time. This
can be done by defining a reference power curve, Pref, at the dis-
tribution transformer with the electricity price and renewable
energy generation assumptions embedded in the reference
power curve. The revised objective function minimizes the error
of active power flowing from the transformer and the reference
power curve using the battery capacity subject to SOC
constraints:

Min
XN
k¼1

Lk þ Pk � Pref ðkÞ
� �2" #

ð14Þ

It is up to the utility to define the reference power curve. A typ-
ical reference power curve consists of two parts, peak time and off-
peak time. The off-peak power profile makes use of a renewable
energy forecast for charging the BESS. The peak time profile follows
setpoints obtained from optimal power flow. The overall flowchart
of the algorithm is shown in Fig. 6.

The algorithm presented in Fig. 6 describes the peak shaving
method that is implemented in the BESS in Fig. 1. In the above
flowchart, Qres denotes the remaining reactive power injection
capability of the BESS after it has dispatched active power deter-
mined by the optimization objective function. If this value is
greater than the reactive power demand of distribution grid QL,
available reactive power capacity from the BESS is used to raise
the power factor of the circuit to the desired level. Although the
optimization algorithm takes into account SOC changes on the
horizon, the real value of SOC is read from SCADA to account for
losses and inaccurate dispatch of the BESS. By following this tech-
nique, we make sure that the BESS is maintained within its desired
SOC range.



Fig. 2. Circuit and BESS measurements in 50 kW active power flow test.

Fig. 3. Circuit voltage and BESS SOC measurements in 50 kW active power flow test.

Fig. 4. Circuit and BESS measurements in 200 kVAR reactive power flow test.

340 E. Reihani et al. / Electrical Power and Energy Systems 77 (2016) 337–344
A potential concern of load shifting performance by a BESS
is the impact of the power flow changes on the regulation of
grid frequency. In the case of the BESS evaluated here, the
amount of power injected or absorbed is insignificant from a
perspective of overall system generation load balance. Thus,
any minor frequency deviations that result from the BESS
charging and discharging cycles are easily managed by the
system Load Frequency Control (LFC) function through dis-
patch of the conventional generators. Moreover, a frequency
error signal can be embedded in the optimization algorithm,
by which part of the deviation can be corrected by the BESS
power flow.



Fig. 5. Circuit voltage and BESS SOC measurements in 200 kVAR reactive power flow test.
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Simulation and results

Load forecasting simulation results

Linear regression method for next day load forecasting is
applied to 108 days of historical data with 1 min resolution. The
forecast data point (y) for each time step (X) is obtained by insert-
ing the given time step in Eq. (5). If the load curve for 24 h is given
with 1 min resolution, the above equation should be executed
1440 times to obtain a forecast value for the next day. The load
forecasting algorithm is performed on 14 weeks of data and the
predicted weekday in the 15th week is compared with the actual
value. The load forecast and the corresponding actual load for a
weekday at the distribution transformer are shown in Fig. 7.

It can be seen in Fig. 7 that the linear regression approach does
not perform well in predicting the fluctuation caused by PV
resources in the circuit around 12:00 PM to 3:00 PM when PV pro-
duction is highest. However, we are not concerned about the devi-
ation of the forecast value from the actual value during this time
period when PV fluctuations are high because the load shifting
function of the BESS does not occur during these hours. The fore-
cast value is very close to the actual load during the BESS load
shifting charge and discharge cycles which coincide with times of
low to no PV generation on the grid. The Root Mean Square Error
(RMSE) for this forecast is 49.36.
Peak shaving simulation and infield test results

The optimization algorithm is applied to a 1 MW/1 MW h BESS
in the circuit shown in Fig. 1. The time step is taken once every
15 min for a total of 96 steps in a 24 h planning horizon. The first
optimization algorithm shown in Eqs. (11)–(13) is applied to the
forecast load for both smoothing and shaving the peak of the
power curve. The shaved peak, load, BESS, optimized active power
profile, and BESS SOC are depicted in Figs. 8 and 9, respectively. The
output of a PV inverter in the circuit is plotted in Fig. 10.

The optimization simulation is done with an initial SOC of 70%.
Due to lack of communication with SCADA until 12:00 PM, the
BESS is operated according to optimization points after this time,
and thus SOC goes above 80% for a short time to comply with the
obtained power points. As can be seen from Fig. 10, there is a small
amount of power generation from PV resources causing the load
curve to ramp up from 12:00 PM. The load forecast cannot predict
the stochastic variations caused by weather conditions (e.g. cloud
movement) on the power profile. However, the optimized and
shaved power profile curves are very close after 5:00 PM, and the
peak is shaved even better than the expected curve.
The SOC trajectories also have some discrepancies due to some
nonlinearities of the BESS and also some errors from the SOC esti-
mation subsystem in the BESS. In order to prolong the battery life,
SOCmin and SOCmax parameters are set to 0.2 and 0.8, respectively.
The objective function defined in Eq. (11) tries to flatten the overall
power curve by finding the BESS power setpoints considering the
forecasted load. As a result, the BESS is charged when the load is
low (early morning) and discharged when the load is high (early
evening). In the case of conducting our test, the BESS SOC is near
80% at the start of the test, there is not a significant power flow into
the BESS until 6:00 AM. Then, from approximately 6:00 AM to 9:00
AM, the peak shaving algorithm called on the BESS to discharge a
little to reduce an early morning peak demand on the feeder and
approach the optimized profile. PV fluctuations change the load
profile between the hours of 9:00 AM and 6:00 PM when the fore-
cast and actual loads vary quite significantly. The evening circuit
peak demand is then shaved well from 6:00 PM until about
11:00 PM.

Another scenario can also be considered where for some reason
the BESS is unavailable to shave the peak circuit load. In this case,
normal dispatch of thermal generation by the grid Energy Manage-
ment System (EMS) operates to pick up the load. Other peak shav-
ing methods implemented in an EMS such as load management
can also be dispatched to reduce circuit peak demand in coordina-
tion with action of the BESS.

In order to effectively address the high variability of the load
profile during periods when there is high PV production and
fluctuation, a real time smoothing scheme can be used. Since
real-time measurements of active power in the transformer are
available in the dispatch room, an active power setpoint is defined
for the BESS. Any deviation from this setpoint is compensated for
by charging/discharging the difference in power to maintain the
defined level. The charge/discharge of the BESS away from this
level should be almost equal to keep the SOC level needed in early
evening for peak shaving. However, to ensure that the BESS SOC is
at its desired level based on the peak load shaving algorithm,
power smoothing capability is suspended at 5:00 PM, one hour
in advance of the start of anticipated peak shaving, to allow the
BESS an opportunity to recharge. Simulations of this power
smoothing algorithm are performed. The load curve, accompanied
by PV fluctuations, along with the BESS active power setpoint, is
depicted for a sample day in Fig. 11.

This feature is useful for reducing the system regulating reserve
to the degree that the BESS can flatten the fluctuation and thus
minimize the operational and cost burden on thermal generation
regulating grid frequency. In order to find the optimum number
of smoothing levels, the maximum and average SOC error for 10
smoothing levels is plotted in Fig. 12.



Fig. 6. Flowchart of peak shaving method.
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The average value for the above 10 active power setpoints is
771.67 kW. If this value is applied across an entire week, the max-
imum SOC error at 7:00 PM, one hour into the peak shaving period,
is 13%. The BESS can effectively compensate for this 13% shortfall in
SOC by charging for approximately 40 min with minimal impact to
the overall effectiveness of the peak shaving objective. The opti-
mization algorithm for the second method in Eq. (14) is applied
to the circuit, for which a reference power curve is provided. The
BESS tries to follow the reference power curve considering SOC
constraints. For example, it is preferred to charge the BESS at a



Fig. 7. Actual and forecast load curves using linear regression method.

Fig. 8. Power curves for first optimization algorithm.

Fig. 9. Actual and forecast SOC curve for first optimization method.

Fig. 10. Power output of an inverter in the circuit.

Fig. 11. Distribution circuit load curve with PV production and BESS active power
setpoint.

Fig. 12. Maximum and average SOC error for 10 smoothing levels.
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constant rate from 2:00 AM to 5:00 AM and discharge it from 6:00
PM to 11:00 PM. The utility can define the reference power curve
based on the optimal power flow in the grid. The BESS power out-
put and SOC values are depicted in Figs. 13 and 14, respectively.

The SOC value rises up in the charging time interval based on
the duration defined and drops sharply in the peak time interval
to meet some of the demand. It remains constant in other time
intervals as the reference power curve is defined as the forecast
load.

This approach uses a reference load following algorithm in
which operational and planning constraints can be embedded
and used for defining the reference power curve. Considerations
such as load forecast, demand response, and reserve scheduling
can be easily integrated into the reference power curve and thus
make it a better approach. On the other hand, charging and dis-
charging of the BESS can decrease its lifetime, which makes the
first approach more desirable [16]. Moreover, after getting real
data from SCADA, the planning can be updated for the next time
horizon. The objective of the first method is to flatten the load
curve with the BESS considering the imposed constraints. The
disadvantage of the first method is its vulnerability to growing



Fig. 13. Power curves for second optimization algorithm.

Fig. 14. Actual and forecast SOC curve for second optimization method.
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uncertainty in the grid especially with higher integration of
distributed renewable generations.

Conclusion

In this paper, BESS is investigated for use in peak shaving and
voltage regulation of a distribution feeder. Several experiments
are carried out on the BESS and measurements obtained by SCADA
are analyzed. Application of BESS for peak shaving, voltage regula-
tion, and power smoothing is studied and it is shown that the BESS
capacity can be used effectively for peak shaving and power
smoothing. In this application (bulk storage at the substation end
of a feeder), the BESS does not have much impact on the feeder
voltage, but can be used to serve the VAr load on the circuit and
reduce the VAr load on the system. Two optimization methods
for peak shaving are introduced and the resulting power curves
are discussed.
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