
Fast Mean Shift by Compact Density Representation

Daniel Freedman and Pavel Kisilev
Hewlett-Packard Laboratories

Haifa, Israel
daniel.freedman@hp.com

Abstract

The Mean Shift procedure is a well established clustering
technique that is widely used in imaging applications such
as image and video segmentation, denoising, object track-
ing, texture classification, and others. However, the Mean
Shift procedure has relatively high time complexity which is
superlinear in the number of data points. In this paper we
present a novel fast Mean Shift procedure which is based on
the random sampling of the Kernel Density Estimate (KDE).
We show theoretically that the resulting reduced KDE is
close to the complete data KDE, to within a given accu-
racy. Moreover, we prove that the time complexity of the
proposed fast Mean Shift procedure based on the reduced
KDE is considerably lower than that of the original Mean
Shift; the typical gain is of several orders for big data sets.
Experiments show that image and video segmentation re-
sults of the proposed fast Mean Shift method are similar to
those based on the standard Mean shift procedure. We also
present a new application of the Fast Mean Shift method to
the efficient construction of graph hierarchies for images;
the resulting structure is potentially useful for solving com-
puter vision problems which can be posed as graph prob-
lems, including stereo, semi-automatic segmentation, and
optical flow.

1. Introduction
Kernel density estimation and the Mean Shift clustering

procedure are well accepted techniques in the field of com-
puter vision, see for example [10, 5] and references therein.
Mean Shift is widely used in many imaging applications
such as image and video segmentation [5, 20], denoising
[3], object tracking [7], and texture classification [11], inter
alia. Roughly speaking, the Mean Shift procedure consists
of two steps: (i) the construction of a probability density
which reflects the underlying distribution of points in some
feature space, and (ii) the mapping of each point to the mode
(maximum) of the density which is closest to it.

One of the main difficulties in applying Mean Shift based

clustering to big data sets is its computational complexity
which is superlinear in the number of data points. There are
several existing techniques which have been developed to
increase the speed of Mean Shift. DeMenthon and Megret
[8] use an iterative, scale-space like approach to Mean-
Shift, with increasing bandwidth. Yang et al. [23] use the
Fast Gauss Transform to speed up the sum in the Mean Shift
iteration. Guo et al. [13] decompose the Mean Shift sum
into a number of local subsets. Paris and Durand [17] use
the separability of the multidimensional Gaussian kernel to
perform d separate one-dimensional convolutions. Wang et
al. [21] use a clever data structure, the dual tree, to speed up
Mean Shift. Also somewhat related is the paper by Vevaldi
and Soatto on “Quick Shift” [19].

In this paper, we introduce a new technique, which deals
directly with the description or space complexity of the Ker-
nel Density Estimate, which is linear in the number of data
points. The main focus of this paper is a novel fast Mean
Shift procedure which is based on the computation of a
pared down Kernel Density Estimate, using sampling tech-
niques. We show theoretically that the resulting reduced
KDE is close to the complete data KDE, to within a given
accuracy. The time complexity of the proposed fast Mean
Shift procedure based on the reduced KDE is considerably
lower than that of the original Mean Shift; the typical gain is
of several orders for big data sets. We verify this large gain
experimentally in a number of segmentation experiments.

The method for constructing the more compactly rep-
resented KDE is easy to implement; furthermore, the new
technique is orthogonal to the existing techniques for speed-
ing up Mean Shift, and in most cases, can be implemented
along side these older methods for even better performance.
Note that while there has been some work in this regard
(compact KDE representation) in the past, it mainly in-
volves techniques which rely heavily on neural networks
and self-organizing maps [18, 22, 12]. Neural networks
lead to a high implementation complexity (as well as other
issues) which we wish to avoid in this work.

The remainder of the paper is organized as follows. In
Section 2 we first briefly review the KDE framework and the

1
1818978-1-4244-3991-1/09/$25.00 ©2009 IEEE

Mean Shift algorithm for mode finding. Then we propose a
sampling method for constructing the compact representa-
tion of KDE. Next, based on this compact KDE, we define
our Fast Mean Shift procedure, and analyze its computa-
tional complexity as compared to the standard Mean Shift.
We also provide a rule for optimal bandwidth selection for
the Fast Mean Shift procedure. In Section 3, we demon-
strate the performance of the proposed method on the tasks
of image and video segmentation, and compare results with
standard Mean Shift. In Section 4, we present a new appli-
cation of the Fast Mean Shift method for constructing mul-
tiscale graph hierarchies for images. Section 5 concludes.

2. Fast Mean Shift
In this section, we present the Fast Mean Shift algorithm.

After a brief review of the standard Mean Shift algorithm,
we move to a general discussion of compact representations
for the kernel density estimate, and prove that a sampling-
based scheme gives us such a representation. Given this
compact representation, we then propose a fast technique
for Mean Shift, and show that its complexity is consider-
ably lower than that of the standard Mean Shift. We then
examine a soft clustering variant of this algorithm, and con-
clude with a discussion of the optimal choice of bandwidth.

2.1. Review of Mean Shift

In this section, we review the ordinary Mean Shift pro-
cedure. We begin by briefly defining the Kernel Density
Estimate (KDE). Our data is a set of points {xi}ni=1, some-
times referred to as feature vectors, living in a Euclidean
space: xi ∈ Rd. In computer vision applications, there is
generally one such vector per pixel (or voxel in the three-
dimensional case); the vector may be colour, colour aug-
mented with position, texture, and so on. The Kernel Den-
sity Estimate (KDE) of this data is then taken to be

f(x) =
1
n

n∑
i=1

KH(x− xi)

This is an estimate of the probability density underlying
the points, where the function KH(x − xi) is essentially
a bump centered at xi. More specifically, we takeKH(z) =
|H|−1/2K(H−1/2z), where the kernel K is itself a prob-
ability density with zero mean, identity covariance, and
satisfying lim‖x‖→∞ ‖x‖dK(x) = 0. Common choices
for K include Gaussian, uniform, and (multidimensional)
Epanechnikov kernels. In many cases of interest, H will be
diagonal; in general, though, this need not be the case.

The Mean Shift algorithm is essentially a hill-climbing
algorithm; that is, starting at any point x, the Mean Shift
algorithm is an efficient iteration scheme which brings x
up the hill of the KDE, finally stopping at the local maxi-
mum (or mode) of the KDE in whose basin of attraction x

lies. To specify the Mean Shift iteration formally, let us sim-
plify the form of the kernel, and take the radially symmet-
ric form K(x) = ck(‖z‖2), where k is a one-dimensional
profile, such as the one-dimensional Gaussian, uniform, or
Epanechnikov profiles, and c is a normalization. Denoting
g = k′, then the Mean Shift iteration is given by

x←

∑n
i=1 xig

(∥∥x−xi

h

∥∥2
)

∑n
i=1 g

(∥∥x−xi

h

∥∥2
) ≡M(x) (1)

Iterating an infinite number of times is guaranteed to bring
x to the mode in whose basin of attraction it lies. The ad-
vantage of this procedure over ordinary gradient ascent is
the lack of need to set a time-step parameter (note no such
parameter is present in the above expression); practically,
the mean-shift tends to converge in a very small number of
steps, typically around 5.

In order to use the Mean Shift algorithm for segmenta-
tion or clustering on the set {xi}ni=1, one may run the iter-
ations starting at each data point. Denoting by M1(x) =
M(x), M2(x) = M(M(x)) and so on, we map each point
xi to M∞(xi) (though recall that typically, M5(xi) will do
the job). Since there are a much smaller number of modes
than there are points, this is a form of segmentation or clus-
tering, which works very well in practice in a number of
applications [20, 6, 14].

2.2. A More Compact KDE: the Problem

Without explicitly computing the complexity of Mean
Shift clustering (we put off this exercise until Section 2.5),
we note that the running time will be superlinear in n, the
number of data points. If we are concerned with large im-
ages coming from today’s cameras, n can be easily be in the
range 107. Worse yet, we may be interested in using Mean
Shift on video or on 3D imagery, such as CT or MRI im-
ages; in this case, n of the order of 108 or higher is easily
conceivable. It is therefore worthwhile to consider a faster
Mean Shift technique. One of the main speed bottlenecks
is the description complexity of the KDE, which is O(n);
we thus begin by discussing the problem of finding a more
compact description for the KDE.

We wish to find a KDE which is close to f(x), but which
uses many fewer points to generate it. That is, we wish to
solve the following problem:

min
{x̂j}m

j=1, Ĥ
D(f̂(·), f(·)) subject to f̂(x) =

1
m

m∑
j=1

KĤ(x−x̂j)

where D is a distance measure between probability densi-
ties and m is a fixed number of points, with m � n. This
optimization seeks to find the data points x̂j underlying a
second KDE f̂ which well-approximates the original KDE
f , but using many fewer points.

1819

There are several natural choices for the distance mea-
sure D, ranging from Lp type distances to more informa-
tion theoretic measures such as the Kullback-Leibler diver-
gence. In all such cases, the resulting optimization problem
is hard to solve globally; this is due the fact that the x̂j ap-
pear within the kernel K, leading a non-convex optimiza-
tion, for which global solutions cannot generally be found
efficiently. However, f and f̂ are more than functions; they
are both densities, and this fact gives us a means of finding
an efficient solution to the compact representation problem.

2.3. A More Compact KDE via Sampling

Our solution is very simple: we choose the samples x̂j

by sampling from the distribution given by f(·). Before dis-
cussing the logic of this approach, note that such sampling
is quite feasible in general, and may be implemented as a
three-step procedure:

Theorem 1 For each j = 1, . . . ,m, suppose we construct
x̂j as follows:

1. choose a random integer rj ∈ {1, . . . , n};

2. choose a random sample δj from K(·);

3. set x̂j = xrj
+ H1/2δj .

Then x̂j is a proper sample of f .

Proof: See [9].

As long as one can sample easily from K(·), as is the case
for the Gaussian, uniform, and Epanechnikov kernels, then
the procedure is very simple.

Now, the main question becomes: if we construct a KDE
f̂ based on the random samples x̂j , will it be close to the
true KDE f? Of course, the KDE f̂ itself will be a random
variable (i.e. a random function), and thus any result we
prove will be of a probabilistic nature. In fact, we have the
following result, which guarantees that f and f̂ are close in
expectation, in an L2 sense:

Theorem 2 Let f be KDE with n points, and let f̂ be a
KDE constructed by sampling m times from f , as above,
and assume a diagonal bandwidth matrix Ĥ = ĥ2I. Let the
expected squared L2 distance between the two densities be
given by J = E[

∫
(f(x)− f̂(x))2dx]. Then

J ≤ 4Aĥ+A2ĥ2V +
B

mĥd
+

ABV

mĥd−1
(2)

where A,B, V are constants which do not depend on ĥ or
m.

Proof: See [9].

The meaning of this theorem is straightforward: the two
KDEs f and f̂ will be close (in expectation) if m is large

enough, and if the bandwidth ĥ is chosen properly1 as a
function of m. This is precisely what we want in a compact
representation: the description complexity of the KDE has
been reduced from O(n) to O(m), but we generate close to
the same density, in the expected L2 sense.

We turn to the issue of bandwidth selection in Section
2.7; in the next section, we turn to the central question of
how to use our reduced representation KDE in Mean Shift
Clustering.

2.4. Fast Mean Shift

How can we incorporate our more compact KDE into
the Mean Shift clustering algorithm? We use the following
three step procedure:

1. Sampling: Take m samples of the density f to
yield {x̂j}mj=1. Form the new density f̂(x) =∑m

j=1Kĥ(x, x̂j).

2. Mean Shift: Perform Mean Shift on each of the m
samples: x̂j → M̂∞(x̂j). Here, M̂ indicates that we
use f̂ (rather than f) for the Mean Shift.

3. Map Backwards: For each xi, find the closest new
sample x̂j∗ . Then xi → M̂∞(x̂j∗).

In Step 1, we construct the reduced KDE, and in Step 2,
we perform Mean-Shift on this smaller KDE. Given these
modes in the reduced KDE, the question is how to map
backwards to the original data. We deal with in Step 3,
by mapping from each point in the original data (xi) to the
closest point in the reduced data (x̂j∗), and from there to the
mode to which that point flows (M̂∞(x̂j∗)).

The key speed-up occurs in the second step; instead of
using all n samples to compute the Mean Shift, we can use
the reduced set of m samples. In the next section, we will
quantify the precise theoretical speed-up that this entails;
for the moment, note that in a naive implementation it can
lead to a speed-up of n/m, which can in pratice be greater
than 100, and often considerably larger than that.

2.5. Complexity Analysis

The key aspect in the computation of complexity is the
speed of the nearest neighbour search. Note that in each
Mean Shift iteration, see Equation (1), one must compute
the nearest neighbours out of the n samples xi to the point
in question, x. Suppose that we have a data structure which
permits nearest neighbour queries in time q(n), and requires
a preprocessing time of p(n) to compute; we will look at
examples of such structures shortly, but for now, we will

1The question of how precisely to choose the bandwidth is discussed in
Section 2.7. For the moment, it is sufficient to note that ĥ should go to 0
as m goes to ∞, but not too fast, i.e., in such as way that mĥd → ∞ as
m→∞.

1820

leave them as general. In this case, each Mean Shift iter-
ation requires O(q(n)) time to compute; and assuming, as
is the case in practice, that O(1) iterations are required for
convergence, then the cost of running the algorithm on all
n data points (i.e. the overall data reduction algorithm) is
then

Torig(n) = O(p(n) + nq(n))

How much faster is our proposed algorithm? Looking
back at Section 2.4, we may break down the complexity for
each step. Step 1, the sampling step, is O(m). We have
already computed the complexity of Step 2, the Mean Shift
step; this is simply the above expression, but specified form
rather than n samples, i.e. O(p(m)+mq(m)). In Step 3, we
must map backwards; that is, for each of the n original sam-
ples, we must find the closest amongst the m new samples.
Using our data structure (whose preprocessing time we have
already accounted for in Step 2), this requires O(nq(m)).
The total is then

Treduce(n,m) = O(m+ p(m) +mq(m) + nq(m))
= O(p(m) + nq(m))

Comparing this with the expression for Torig(n), and since
n = Ω(m), we have clearly reduced the complexity. By
how much depends on the precise details of the data struc-
ture used, and we now attempt to deal with this issue.

In the simplest case, we have no special data structure.
Then p(n) = 0, and the query time is linear in the number
of elements q(n) = O(n). In this case, Torig(n) = O(n2),
while Treduce(m,n) = O(nm), so the speed-up is a factor
of n/m. In practical cases of interest n/m > 100, so this is
quite an impressive speed-up.

Now, we may use more complex data structures for
search. Voronoi Diagrams are not very useful when the
dimension in which the data lives is d > 3 or so, as the
preprocessing time is p(n) = O(ndd/2e). Other popular
data structures, such as kd-trees, also have space complex-
ity exponential in d [2]. There are a variety of approxi-
mate nearest-neighbour algorithms, such as those based on
locality sensitive hashing [2], which can lead to more effi-
cient searches, if we are willing to find neighbours which
are close, but not the closest. Indeed, if we choose an
approximation factor of c ≥ 1 – that is, we find points
whose distance from the query are within a factor of c of
the closest – then we will have Torig(n) = O(n1+1/c2

),
and Treduce(n,m) = O(nm1/c2

), leading to a speed-up of
O((n/m)1/c2

); see for example [2]. Typically, we might
take c = 1.5, leading to a speed-up of about 10 if n/m ≈
100. (Note, however, that such data structures often have
excellent theoretical properties while being somewhat more
difficult to implement in practice, see [2].)

2.6. Variant: Soft Segmentation or Cartoons

We propose the following variant to the Fast Mean Shift
clustering algorithm, which leads effectively to a soft seg-
mentation. Note that only the third step has changed; we
reproduce the first two for clarity.

1. Sampling: Take m samples of the density f to
yield {x̂j}mj=1. Form the new density f̂(x) =∑m

j=1Kĥ(x, x̂j).

2. Mean Shift: Perform Mean Shift on each of the m
samples: x̂j → M̂∞(x̂j). Here, M̂ indicates that we
use f̂ (rather than f) for the Mean Shift.

3. Weighted Map Backwards: For each xi and each x̂j ,
compute a weight between them according to wij ∝
Kh(xi, xj), such that the weights sum to 1:

∑
j wij =

1. Then xi →
∑m

j=1 wijM̂
∞(x̂j).

Such a procedure will yield, instead of a piecewise con-
stant segmentation, a piecewise smooth or cartoon-like seg-
mentation.2 This is similar in spirit to the Mumford-Shah
scheme [16], which seeks a piecewise smooth approxima-
tion to the original image. We show examples of both soft
and hard segmentation in Section 3.

2.7. The Optimal Bandwidth

Let us return to the expression for the L2 distance be-
tween the original KDE f and the reduced KDE f̂ as given
in Equation (2). Suppose we look at the asymptotic case,
where m is sufficiently large and ĥ is sufficiently small; in
this case, the upper bound on J is well-approximated by

L = 4Aĥ+
B

mĥd

Now, we may try to find the bandwidth3 which minimizes
L, takingm fixed; L is convex in ĥ, and setting its derivative
to 0 yields

ĥ∗(m) = C1m
− 1

d+1 and L∗(m) = C2m
− 1

d+1

where C1 and C2 are (uninteresting) constants. Given the
original bandwidth h, this gives us a simple way of choosing
ĥ for the reduced KDE; byy eliminating the constantC1, we
get

ĥ = (n/m)
1

d+1h

2Note that if the kernel has finite support, then for a particular choice
of h it is possible that all weights will be 0. Thus, soft segmentation using
a kernel with infinite support, such as a Gaussian, is recommended.

3Note that our choice of bandwidth here is a scalar, yielding a diag-
onal covariance. For work which tries to find an adaptive non-diagonal
bandwidth matrix from the data, see [4].

1821

Parrot Castle Girl
Image Size 844× 636 960× 784 551× 735
Sampling m/n 1024 1024 1024
Speed-up Factor 401 1160 1543

Table 1. Timing results for image segmentation.

3. Segmentation Experiments

3.1. Image Segmentation

In the image segmentation experiment, we compare the
performance of the proposed fast Mean Shift method with
standard Mean Shift on three images. The feature vectors
are taken to be 5-dimensional, and are constructed from the
three Lab colour vectors of the individual pixels in the im-
age, and of the two corresponding spatial coordinates (x and
y). Table 1 summarizes the timing information, and the im-
ages themselves are shown in Figure 1. In each example, the
sampling factor was taken to n/m = 1024. Our complexity
analysis indicates that we ought to expect a speed-up factor
of about 1024; in fact, despite using fast nearest-neighbour
queries (based on kd-trees, which despite the arguments in
[2] tend to work well in low dimensions), the speed-up fac-
tor in two of the three cases exceeded this sampling factor,
as shown in Table 1.

In Figure 1, we show the results of the standard Mean
Shift procedure (second column), the Fast Mean Shift pro-
cedure (third column), and the soft segmentation variant of
the Fast Mean Shift procedure (fourth column). Clearly,
hard segmentation results obtained using the original and
the fast Mean Shift methods look quite similar. As ex-
pected, the soft segmentation is kind a piecewise smooth
cartoon of the original image, with small details removed
from the original image. Therefore it may be suitable for
noise reduction tasks.

3.2. Varying the Sampling Factor n/m

In order to understand the effect of varying the sampling
factor on segmentation, we ran the fast Mean Shift algo-
rithm with various sampling factors n/m on the parrot im-
age from the previous section. The images are shown in
Figure 2. Note that the algorithm does relatively well even
up to a sampling factor of n/m = 4, 096, as shown in (d);
as the image itself contains a bit more than 5 × 105 pixels,
this corresponds to using only m = 131 randomly selected
samples to construct the KDE, which is quite remarkable.
The fast algorithm fails at n/m = 16, 384; this is not sur-
prising, as this corresponds to using only 32 randomly se-
lected samples to construct the KDE. Indeed, at this high
a subsampling rate, the algorithm produces quite different
segmentations from one run to the next.

3.3. Video Segmentation

Figure 3 shows results of video segmentation on a 10
frame sequence, for two consecutive frames from a video
sequence (see upper row). In this experiment we compared
the use of our fast Mean Shift method in two configura-
tions. In the first one (the middle row), a frame by frame
segmentation was performed. In the second configuration,
data from a time window of 10 frames was combined into a
single large data set, and used to perform the first two steps
(the sampling, and the Mean Shift) in the algorithm of Sec-
tion 2.4, using a subsampling factor of 1024. (Note that in
this example, it is possible to use a subsampling factor of
5000, though the results are slightly less clean.) Then, the
third step (the mapping backwards) from Section 2.4 was
applied to each frame. The results of the “windowed” ver-
sion look cleaner; for example, this version does not mis-
classify the color of the aircraft, as is the case in the frame-
by-frame procedure. Another option is to use the time axis
as an additional feature axis, which might be useful for ap-
plications such as target tracking. Clearly, the proposed fast
method opens up some new possibilities for dealing with
large spatio-temporal data sets.

4. Application: Graph Hierarchies
In this section, we show how to use the Fast Mean Shift

algorithm in order to construct a hierarchy of graphs corre-
sponding to a particular image. Having a multiscale struc-
ture on image graphs can potentially be very useful, due
to the number of computer vision problems which can be
posed as graph problems, and solved using graph algo-
rithms, such as graph cuts [15]. Examples of these prob-
lems include stereo, semi-automatic segmentation, optical
flow, as well as many problems that can be posed as Max-
imum a Posteriori estimation over Markov Random Fields.
A multiscale graph hierarchy can be used to help speed up
the solution to these problems in the usual multiscale way:
the problem is first solved on the coarsest scale; the solution
to this problem is then used to initialize the next scale up;
and so on. In addition to making the solution faster, such as
approach can also lead in some instances to more accurate
solutions. See [1] for an example of another sort of graph
hierarchy, based on algebraic multigrid techniques.

4.1. A Graph Hierarchy

We define a continuous graph hierarchy using Mean
Shift as follows. As before, our data consists of the set
of feature vectors {xi}ni=1, where in most applications of
interest, each data point corresponds to a pixel in an im-
age. Denote by fh(x) the KDE with bandwidth matrix
H = h2I, and if x is a mode of fh, let B(x) be the basin of
attraction of x, i.e. B(x) = {y ∈ Rd : M∞(y) = x}.
The graph corresponding to bandwidth h is denoted by

1822

(a) (b) (c) (d)
Figure 1. Image segmentation example: (a) the original image (b) the result of standard Mean Shift segmentation (c) the result of fast
Mean Shift segmentation (d) the soft segmentation variant of the fast Mean Shift. Note similar hard segmentation results in (b) and (c); the
proposed method is more than 1000 times faster than the original Mean Shift.

(a) (b) (c) (d) (e)
Figure 2. Effect of varying the sampling factor n/m. (a) n/m = 64 (b) n/m = 256 (c) n/m = 1, 024 (d) n/m = 4, 096 (e)
n/m = 16, 384.

Gh = (Vh, Eh,Wh), where

Vh = {x ∈ Rd : x is a mode of fh(·)}
Eh = {(u, v) : u, v ∈ V (h), B(u) ∩B(v) 6= ∅}

and the edge weights are given by

Wh(u, v) =
∫

x∈B(u)

∫
y∈B(v)

Kh(x, y)dxdy

The definition of the vertex set and edge set is quite natu-
ral in terms of Mean Shift: the vertex set is just the set of

modes, and the edge set is the set of pairs of modes whose
basins of attractions are adjacent in the feature space. The
edge weights are also defined in a reasonable fashion, by
aggregating the similarity between points in neighbouring
basins of attraction, though many other definitions are pos-
sible as well. In practice, we will approximate the integral
in the edge weight definition by its corresponding sum.

It is clear that this continuous graph hierarchy has the
following desirable properties:

1823

Figure 3. Video segmentation example. Upper row: two origi-
nal frames from a video sequence. Middle row: the result of the
frame-by-frame segmentation using the proposed method. Lower
row: the result of the 10-frame window based segmentation using
the proposed method.

Theorem 3 Given the graph hierarchy as defined above.
Then the graph corresponding to h = 0 has the property
that V0 = {xi}ni=1, while the graph corresponding to h =
∞ has the property that |V∞| = 1.

Proof: See [9].

In other words, we move from a graph whose vertex set
comprises the original pixels, to a graph with a single ver-
tex. This is very much what we would expect from a multi-
scale hierarchy.

Now, to convert from a continuous graph hierarchy to
a discrete one, we simply choose a fixed number of band-
widths, i.e. G` = Gh`

, where the levels run from ` = 0
(finest) to ` = L (coarsest). In particular, in d-dimensional
space, it is natural to choose h` ≈ 2

1
dh`−1, so that the vol-

ume of coverage doubles at each stage. In this case, we
expect L ≈ log n; using a similar line of argument to that
of Section 2.5, we may show that the computing this dis-
crete graph hierarchy using ordinary Mean Shift requires

O(Ln2) = O(n2 log n) time. (This assumes a naive near-
est neighbour data structure, see Section 2.5 for a more in-
depth discussion.)

To use the Fast Mean Shift algorithm, we make two ob-
servations. The first is that for the initial level (` = 0) of the
hierarchy, we may use m0 � n samples; this is precisely
what we have shown in Sections 2 and 3, from the theo-
retical and experimental points of view, respectively. The
second observation is that for all subsequent levels, we may
use even fewer samples, due to the increasing bandwidths
of these levels. We have that h` ≈ 2

1
dh`−1, and we may

convert this statement about bandwidths to one about the
number of samples to use at each level of the graph, using
the result of Section 2.7 for bandwidth selection. In partic-
ular, if m` is the number of samples required at level `, this
leads to m` ≈ 2−

d+1
d m`−1, or for d large, m` ≈ 1

2m`−1.
Again, following the logic of Section 2.5, we have the com-
plexity of the fast version of the discrete graph hierarchy as
O(
∑L

`=0 n2−`m0) = O(nm0).
Note that the speed up factor in computing the graph hi-

erarchy is even better than that of Mean Shift itself; it is
(n/m) logn, versus n/m for the Mean Shift speed up. In
cases of interest where n ≈ 107 or 108, the log n factor is
not insubstantial (i.e. 20− 25).

4.2. An Example

In Figure 4, we show part of a graph hierarchy for an
image of a seashore, computed using the fast technique de-
scribed above. The four images we show are for bandwidths
h = 8, 16, 32, and 64. The number of vertices for these
graphs are 266, 59, 11, and 3 respectively. We visualize
the graphs by surrounding each contiguous region in white;
note, however, that these contiguous regions are not the seg-
ments themselves, and often a segment (and hence a vertex)
consists of multiple such contiguous regions. This is due
to the fact that the graphs are not necessarily planar. This
is true in our example, as our feature vector is colour (Lab)
rather than texture, without the addition of position; thus,
the sandy textured region looks as though it contains many
nodes, whereas in fact it contains only a few non-contiguous
nodes. Even with this effect, one can see the graph simpli-
fication as the bandwidth increases.

5. Conclusions
We have presented a fast version of the Mean Shift al-

gorithm, based on computing a pared down KDE using a
sampling procedure. We have theoretically demonstrated
the closeness of the pared down KDE to the original KDE,
as well as the superior complexity of the fast Mean Shift al-
gorithm compared to the standard Mean Shift. We have ex-
perimentally verified the algorithm’s speed, and shown its
potential utility in clustering large data sets, such as video,

1824

(a) (b)

(c) (d)
Figure 4. A visualization of the graph hierarchy. (a) h = 8, |V | =
226 (b) h = 16, |V | = 59 (c) h = 32, |V | = 11 (d) h = 64,
|V | = 3. See accompanying discussion in text.

and in the computation of complex data structures such as
the graph hierarchy presented. It is our hope that the algo-
rithm can find immediate application in fast segmentation
of existing large data sets, such as medical images.

References
[1] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image Seg-

mentation by Probabilistic Bottom-Up Aggregation and Cue
Integration. In Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, pages 1–8, 2007.

[2] A. Andoni and P. Indyk. Near-Optimal Hashing Algorithms
for Approximate Nearest Neighbor in High Dimensions.
Communications of the ACM, 51(1):117, 2008.

[3] D. Barash and D. Comaniciu. A common framework for
nonlinear diffusion, adaptive smoothing, bilateral filtering
and mean shift. Image and Vision Computing, 22(1):73–81,
2004.

[4] D. Comaniciu. An Algorithm for Data-Driven Bandwidth
Selection. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 281–288, 2003.

[5] D. Comaniciu and P. Meer. Mean Shift: A Robust Ap-
proach Toward Feature Space Analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, pages 603–
619, 2002.

[6] D. Comaniciu and V. Ramesh. Mean shift and optimal pre-
diction for efficient object tracking. In Proceedings of the
International Conference on Image Processing, volume 3,
2000.

[7] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-Based Ob-
ject Tracking. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 564–577, 2003.

[8] D. Dementhon. Spatio-temporal segmentation of video by
hierarchical mean shift analysis. In Center for Automat. Res.,
U. of Md, College Park, 2002.

[9] D. Freedman and P. Kisilev. Fast Mean Shift. Technical
report, Hewlett-Packard Laboratories, 2009.

[10] K. Fukunaga and L. Hostetler. The estimation of the gradi-
ent of a density function, with applications in pattern recog-
nition. IEEE Transactions on Information Theory, 21(1):32–
40, 1975.

[11] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based
clustering in high dimensions: A texture classification exam-
ple. In International Conference on Computer Vision, pages
456–463, 2003.

[12] I. Grabec. Self-organization of neurons described by
the maximum-entropy principle. Biological Cybernetics,
63(5):403–409, 1990.

[13] H. Guo, P. Guo, and H. Lu. A Fast Mean Shift Procedure
with New Iteration Strategy and Re-sampling. In IEEE In-
ternational Conference on Systems, Man and Cybernetics,
2006. SMC’06, volume 3, 2006.

[14] K. Kim, K. Jung, and J. Kim. Texture-based approach
for text detection in images using support vector machines
and continuously adaptive mean shift algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
25(12):1631–1639, 2003.

[15] V. Kolmogorov and R. Zabih. What Energy Functions Can
Be Minimized via Graph Cuts? IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages 147–159,
2004.

[16] D. Mumford and J. Shah. Optimal approximations by piece-
wise smooth functions and associated variational problems.
Comm. Pure Appl. Math, 42(5):577–685, 1989.

[17] S. Paris and F. Durand. A topological approach to hierarchi-
cal segmentation using mean shift. In Proc. CVPR, 2007.

[18] H. Traven. A neural network approach to statistical pat-
tern classification bysemiparametric’estimation of probabil-
ity density functions. Neural Networks, IEEE Transactions
on, 2(3):366–377, 1991.

[19] A. Vedaldi and S. Soatto. Quick shift and kernel methods for
mode seeking. In Proceedings of the European Conference
on Computer Vision (ECCV), 2008.

[20] J. Wang, B. Thiesson, Y. Xu, and M. Cohen. Image and
Video Segmentation by Anisotropic Kernel Mean Shift. Lec-
ture Notes in Computer Science, pages 238–249, 2004.

[21] P. Wang, D. Lee, A. Gray, and J. Rehg. Fast mean shift with
accurate and stable convergence. In Workshop on Artificial
Intelligence and Statistics (AISTATS), 2007.

[22] J. Wu and C. Chan. A three-layer adaptive network for pat-
tern density estimation and classification. International Jour-
nal of Neural Systems, 2(3):211–220, 1991.

[23] C. Yang, R. Duraiswami, N. Gumerov, and L. Davis. Im-
proved fast Gauss transform and efficient kernel density es-
timation. In Ninth IEEE International Conference on Com-
puter Vision, 2003. Proceedings, pages 664–671, 2003.

1825

