
2015 IEEE International Conference on Communication Networks (ICCN) 

Preemptable Priority Based Dynamic Resource 
Allocation in Cloud Computing with Fault Tolerance 

Shubhakankshi Goutam 

M.Tech. Scholar, 
ITM University Gwalior, 
Madhya Pradesh, India 
shubhakankshi@gmail.com 

Abstract- Today, cloud computing serves as a request 

response model, where a client makes request for various 

available services on "pay as you go basis". Cloud computing 

offers a dynamic flexible resource allocation phenomenon. For 

reliable and guaranteed services there must be a scheduling 

mechanism that all resources are efficiently allocated to satisfy 

the customer's request. Cloud services are based on scalability, 

availability, security and fault tolerance features. Service 

provisioning in cloud is based on SLA. Service level agreement 

is the terms of cloud provider's contracts with customers to 

define the level(s) of service being sold in plain language terms. 

QoS (quality of service) plays important role in cloud 

environment. Resource scheduling and service deployment is 

done by considering multiple SLA parameters like CPU 

requirement, network bandwidth, memory and storage. In this 

paper we propose an algorithm which perform resource 

preemption from low priority task to high priority task and 

advanced reservation for resources considering multiple SLA 

parameters for deploying service. This algorithm is also 

effective for fault tolerance mechanism. 

Keywords- Cloud computing,SLA, Infrastructure as a Service 

(IaaS), Platform as a Service (PaaS), Resource management, 

Software as a Service (SaaS), Virtual machine, Virtualization. 

I. INTRODUCTION 

Cloud computing is "providing computing resources and 
applications over the internet" using pay as you go model. It 
is also known as internet computing, here a pool of 
resources such as memory, processor, network and 
bandwidth, virtually distributed across the internet. If a 
customer wants to use the services of cloud provider then it 
has to pay cost according to services using real time as per 
requirements. Cloud computing provides globalize sharing 
of resources and unlimited storage capacities. 

As we know that any number of customers can make 
requests to cloud provider, if SLA based agreement takes 
place that means cloud provider are able to attain the 
corresponding request from the user, this is done by 
efficiently scheduling of resources and deploying 
applications on proper VMs. Resource scheduling means 
multiplexing of several user requests on same physical 
structure. In this time there exists more work already done 
on scheduling of resources in clouds this approach is based 

978-1-5090-0051-7 /15/$31.00©20 15 IEEE 

278 

Arun Kumar Yadav 

Associate Professor 
ITM University Gwalior, 

Madhya Pradesh, India 
arun26977@rediffmail.com 

on global resource deployment by considering one SLA 
objective such as cost of execution, time of execution, 
minimum resources etc. 

When a request is submitted by the client, it's firstly 
partitioned into several subtasks. Now there are four main 
responsibility of cloud scheduler, 1) find appropriate 
manner or order to execute a task, 2) find appropriate 
resource allocation schedule for task, 3) the scheduler 
should be fault tolerance to schedule overheads and 
terminate the task, 4) find a manner for migration of tasks in 
an effective manner. Using the resource allocation 
phenomenon these problems can be solve. 

The scheduling can be two types, global scheduling and 
local scheduling. Local scheduling is a type of scheduling 
where localize resources are use to satisfy the user's request 
within one single cloud. Global scheduling is where all the 
resources from multiple clouds are treated as one single unit 
to complete the user's request. Typically efficient 
provisioning required two distinct processes, 1) initial static 
planning - local scheduling where all the VMs are mapped 
to physical resources. 2) Dynamic resource provisioning
create new VMs, migration on VMs, dynamically response 
according to workload. Here step 1 is set up stage, it is 
generally performed at the time of set up a cloud, and when 
maintenance is done by the source. Whether step 2 run 
repeatedly at the allocation time. There are various 
challenges arise in this area for researchers such as 
scalability, multitenency, security, dynamic resource 
allocation and fault tolerance. 

In this paper we focus on dynamic resource provisioning, 
we present a scheduling heuristic considering multiple SLA 
objectives, such as amount required CPU, network 
bandwidth, and cost for deploying applications in clouds. 
The scheduling present a flexible on demand resource 
allocation strategy included advanced reservation and 
preempt-able mechanism for resources. Our proposed 
algorithm dynamically responds to requested resource for 
the task. First it's locally checks for the availability of 
resource; if resource is free then it deployed new VMs to 
current task, If resource is not available then it's create new 
VM from globally available resource; if global resources are 
not available then it will check for resource if it's preempt-

DOI 10.1109/ICCN.2015.54



able then it's migrate processes otherwise put the task into 
waiting list and apply advanced reservation scheme. 

Organization of papers is as follows: In section 2 we 
discuss research works related to this topic, in section 3 

models for resource allocation and task scheduling in [aas 
cloud computing system and consist the previous algorithms 
that is being used in our algorithm, section 4 discusses the 
proposed method, section 5 shows the simulation results, 
section 6 conclude the paper and future work. 

II. RELATED WORK 

Jiayin Li [1] presents a resource optimization mechanism in 
heterogeneous IaaS federate multi cloud systems, that 
enable preemptable task scheduling with resource allotment 
model, cloud system model, local mapping and energy 
consumption, and application model. It is suitable for 
autonomic future in cloud and VMs. They proposed online 
dynamic algorithms for resource allocation and task 
scheduling. [n proposed cloud resource phenomenal every 
data center has a manager server, the communication and 
resource allotment scheme works between various servers 
of each data center for share workloads among multiple data 
servers. The workload sharing makes a large resource pool 
of flexible and cheaper resources to resource allocation. 
S. Pandey [2] presents a scheduling heuristic for 
optimization of the cost of task resources mapping based on 
solution of the practical swarm optimization technique, PSO 
is an intelligent algorithm influence by social behavior of 
animals such as a flock of birds finding a source of food or a 
school of fish protecting themselves from a predator. A 
particle in PSO is analogous to a bird or a fish flying 
through a search space the movement of every particle is 
consist a velocity The movement of each particle is co
ordinate by a velocity which has both magnitude and 
direction. Each particle position at any instance of time is 
influenced by its best position and the position of the best 
particle in a problem space. The performance of a particle is 
measured by a fitness value, which is problem specific. A 
fitness value is use in this algorithm which gives the best 
position to particle. PSO is a scheduling heuristic for 
dynamic scheduling application. 
Vincent C. Emeakaroha [3] presents a scheduling heuristic 
aims on allocation on VMs based on SLA level terms and 
conditions. It concentrates on physical resource deployment 
based on resource availabilities, so the SLA violation 
reduces using this approach. [t provides an integrated load 
balancer for high and efficient resource utilization in cloud 
computing environment. The algorithm provides local load 
balancing strategy and global resource allocation 
phenomena for better resource utilization In cloud 
environment. 
Chandrashekhar S. Pawar [4] represents an algorithm for 
priority based dynamic resource allocation strategy in cloud 
environment, it provides modified scheduling heuristic in 
[3] for executing highest priority task that is consider as 
AR( advanced reservation) by preempting best effort task. 
This algorithm gives good perfonnance in multi cloud 

279 

environment. It can run on different set of jobs over 
multiple clouds. Various requests can be run in the AR 
modes to the SLA objectives. 
Zhen Xiao [5] presents design and implementation of an 
automated resource management system that can avoid 
overload in the system while minimizing numbers of servers 
being used, it introduce the concept of skewness measure 
the convent utilization of the server and improve utilization 
of servers of multidimensional resource constraints. [4] 
Design a load prediction algorithm that can guess the future 
resource usages of the application without internal details. 
Dorian Minarolli and Bernd Freisleben [6] represents a VM 
resource allocation in cloud computing via multi agent 
fuzzy control, it focused on line grained dynamic resource 
allocation of VM locally on each physical machine of a 
cloud provider and consider memory and CPU as resource 
that can be managed. Fuzzy control is used to minimize a 
global utility function as n a hill climbing heuristic 
implemented over fuzzy rules. The problem considers is 
how to resource of a cloud provider should be reallocated to 
VM dynamically where workload changes to keep the 
performance according to SLA's. 

III. SCHEDULING STRATEGY AND DES[GN[NG 
ISSUES 

In this section we are proposing diagram based on cloud 
environment and scheduling heuristic. Our proposed 
algorithm is generally based on SLA based resource 
provisioning and online adaptive scheduling for advanced 
preempt-able task execution. Two basic steps are required 
for effective utilization of cloud resources that meet the 
SLA objectives. 

A. Resource allocation and deployment of application 
There are three kinds of layers, that is combining to used in 
resource provisioning to service the request of user's. It's 
generally known as service models in cloud computing. 
[aaS, SaaS, and PaaS. 

Fig.l. Cloud Services Layers 



In "Fig. 1" shows how to cloud client connects with 
cloud provider to use various services. The SLA terms and 
condition should satisfy first. There are three kinds of layers 
in the given diagram: service layer, control layer and 
physical resource layers. Control layer controls the resource 
allocation and virtualization, resource layer contains 
physical resources within a cloud, service layer contains 
three type of services laaS, PaaS and SaaS. 

SaaS (software as a service) delivers applications and 
software on user's demand that are managed by third party. 
Every step including applications, virtualization, runtime, 
Qos, server, storage managed by the vendor. 

PaaS (plateform as a service) delivers plate form for 
application development, Using the Paas services a 
plateform is provided according to user's request to 
development purpose. 

laaS (infrastructure as a service) provied computing 
resources on user's demand such as physical or VMs, file 
based storage, load balancers, and firewall. 
The cloud provisioning and application deployment model 
[3] is shown in fig[2]. That combines three types of service 
models. in each layer, consist their responsibilities for 
resource provisioning to meet the SLA objectives. As in 
fIg[2] customer make their requests to service portal (step 1). 
Service portal passes their request to processing and 
management component to check the validation (step2). If 
request is validate then it should be forworded to scheduler 
and load balancer for appropriate resource 
provisioning(step3). Load balancer invoked the provisioning 
engine of Paas layer for select the appropriateVM, and 
balances the service provisioning among running virtual 
machines(step4). Virtualization layer is use to manage the 
virtual machine and interaction with physical resources 
using provision engine oflaas layer (step6). 
Low level resource matrics and physical resource in Iaas 
layer are monitor by the LoM2HiS framework (step6). If 
SLA violation occurs, reactive actions provide by the 
knowledge database techniques in FoSII (step7). The 
requested service status and the SLA information 
communicated back with the service portal (step 8). 
Provisioning can be done at the single layer alone. But our 
approach and algorithm aims to provied an integrated 
resource scheduling strategy. So we consider the three 
layers. laaS layer is responsible for physical resources 
management. PaaS layer have a responsibility for deploye 
and managed VM that is mapped with physical resource 
considering the agreed SLA's with the customers. 

28 0 

Fig. 2. Cloud Provisioning and Deployment model 

In Figure 3 it's shows the local and global resource 
scheduling between multiple clouds, as we know in cloud 
scheduling there are n numbers of users that can request any 
time for resources to cloud provider, if all the resources of 
current cloud is busy at a time and new request arrives have 
high priority then cloud provider have to put the request in 
waiting list, so here is a solution provided in this algorithm 
to effectively schedule and distribute user's request across 
the multiple clouds, and preempt the resource from low 
priority task to high priority task. Our given algorithm IS 

also capable to handle fault tolerance in cloud system. 

Fig. 3. Resource provisioning and scheduling between multiple 
clouds 



B. Scheduling heuristic description 
When a scheduler receives a user's service request, it will 
first partition that task request into several subtasks and 
form a DAG. This process is called as static resource 
allocation. In [I] authors proposed greedy algorithms to 
generate static planning of allocation: CLS (cloud list 
scheduling algorithm) 

1. Cloud list scheduling (CLS) 
This CLS is similar to CPNT [14]. The definitions used for 
listing the task are provided as follow. The earliest start time 
(EST) and the latest start time (LST) of a task are shown as 
in (1) and (2).The entry-tasks have EST equals to O. And 
The LST of Exit-tasks equal to their EST. 

EST( a = max, [EST( m) + AT( m) } ... " . , ( 1) 
t.'m e 1n .. d � t.'J 

As the cloud system concerned in [II] is 
heterogeneous the execution time of each task on VMs of 
different clouds are not the same. AT(VD is the average 
execution time of task Vi. The critical node (CN) is a set of 
vertices having equal EST and LST in the DAG. Algorithm 
1 shows a function forming a task list based on the 
priorities. 

Algorithm 1 forming a task list based on priorities 

Require (input): A DAG, Average execution time 
A T of every task in the DAG 
Ensure (output): A list of task P based on priorities 
1. The EST is calculated for every task 
2. The LST is calculated for every task 
3. The Tp and Bp of every task are calculated 
4. Empty list P and stack S, and pull all task in the list of 
task U 
5. Push the CN task into stack S in decreasing order of their 
LST 
6. While the stack S is not empty do 
7. If top(S) has un-stacked immediate predecessors then 
8. S +- the immediate predecessor with least LST 
9. Else 
10. P� topeS) 
11. Pop topeS) 
12. End if 
13. End while 

Once the above algorithm 1 form the list of task according 
there priority, we can allocate resources to tasks in the order 
of formed list. When all the predecessor tasks of the 
assigned task are finished and cloud resources allocated to 
them are available, the assigned task will start its execution. 

28 1 

This task is removed from the list after its assignment. This 
procedure is repeats until the list is empty. 

IV. SCHEDULING ALGORITHM 
In this section propose an algorithm to handle the priority 
request from the customer, and provide the advanced 
reservation and preemption over the resources, it is a 
modified version of previous algorithm in [4]. Here the 
highest priority of task defines over AR task and task related 
to highest cost paying by the customers. 

Algorithm 2 Priority based scheduling algorithm 

I. Input: AP(R, AR) 
2. Ilcall Algorithm I to form the list of task based on 

Priorities 
3. Get global Available VM List and 

Get global Used VM List and also 
Available Resource List from each cloud scheduler 

4. II find the appropriate VM List from each cloud 
Scheduler 

5. If AP(R, AR)! = rjJ then 
6. Get local available VM list and 

Local available resource list and 
Get local used VM list 

7. Check for appropriate resource 
If, 
Found in local available list 
Then 
Start new VM Instance 
Add VM to used VM List 
Deploy service on new VM 
Deployed=true 

8. Else if, 
Global Resource Able To Host Extra VM then 
Start new VM Instance 
Add VM to Available VM List 
Deploy service on new VM 
Deployed=true 

9. Else if, 
If R= "high cost task" or R= "Advance reservation" && 

available VM<= requested VM 
II call algorithm 3 for preemption and advanced 
reservation 

10 Update global and local available and used VM list 
11 Else 

Queue service Request until 
Queue Time > waiting Time 

12 Deployed=false 
13 End if 
14 If deployed then 
15 return successful 
16 terminate 
17 Else 
18 return failure 
19 terminate 



In algorithm [2] R is customer's service request, A is 
application data, S is SLA based terms and condition. These 
provided as input to the scheduler (step 1). When the 
request for a service send to cloud scheduler then scheduler 
divides it in many sub tasks as per their dependencies, for 
this purpose algorithm 1 is called. Algorithm 1 is also used 
to form a list of tasks based on their dependencies (step 2). 
In (step 3) scheduler get global available VM list, and the 
entire resources list, that is available for deployment user's 
services from the each cloud. Used VM list is also provided 
to add deployed VM information. In (step 4-5) it uses the 
SLA terms to fmd a list of appropriate VMs that is capable 
to provisioning the request service R. In (step 6) scheduler 
get all the local information and lists, once it have all 
information then load balancer locally decides which VM is 
allocate to service request (step 7). When there are no VM 
and requested resource is available at that time then 
scheduler globally checks for free resources if any resource 
is free globally then it deploy service on the resource by 
creating a new instance of VM (step 8). Else if there are no 
extra resources available locally and globally then it checks 
for task priority , if task is high cost price task or it has 
advanced reservation then scheduler runs algorithm (3) (step 
9). In (step 10) scheduler updates their list if any changes 
occurs, during the resource allocation. In any other cases 
provision request is add to queue of waiting list until the 
VM with desire resource is get free (step II). If after a 
certain period of time the service request is schedule and 
deployed then scheduler returns as successful deployment 
status otherwise it returns failure (step 14-19) to admin. 

Algorithm 3 Advanced reservations and preemption 
based cloud min-min algorithm-

Input: A set of tasks, m different clouds ETM matrix 
Output: A schedule generated by CMMS or preemption 
report 
l. For a mappable task set P 
2. While there are tasks not assigned do 
3. Update mappable task set P 
4. For I = task Vi E P do 
5. Send task check requests of Vi to all other 

Cloud schedulers 
6. Receive the earliest resource available time 

Response and list of task with their priorities 
Form all other cloud scheduler 

7. Find the cloud CmiT/Vi) giving the earliest finish time of 
Vi, assuming no other task preempts Vi 

8. If Resource Ri= "preemptable" 
Update circular queue for particular resource add new 
task Vi Cloud scheduler picks the task from the ready 
queue and set a timer to interrupt it after 2 time slice and 
dispatch it. 

A. If task brust time<=2 
1. Process while leave the resource after the 
completion 
2. Process next process in ready queue 

28 2 

B. Else 
If task burst time>2 

1. Timer= -1 
2. Execute process and put it at the tail of circular 

queue 
3. Repeat step 1,2,3 until circular queue="empty" 

C. Deployment=true for the task 
9. End for 
10. Else if 
1l. Find the task-cloud pair (Vk' Cmin(Vk)) with 

earliest fmish time in the pairs generated in for loop 
12. Assign task Vk to cloud Dmin(Vk) 
13. Remove Vk from P 
14. Update the mappbale task set P 
15. else if 

All the running task on cloud =" AR" tasks 
Then 

I. Find the resource Ri with earliest finish task Vj and 
advanced reservation='null' 

2. Make advanced reservation on particular resource 
Ri by task Vi 

3. After completion the previous the task Vj, Rj will 
be assigned to task Vi 

16. End while 

A cloud scheduler records execution schedule of all 
resources using a slot. A mappable task set is assigned to the 
algorithm, A mappable task set is a set whose predecessors 
task are allocated to VM and corresponding resource .If 
there is a high priority task (high cost) then it should be 
given advanced reservation according to given algorithm. If 
a task did not found appropriate resource in free condition 
and scheduler has a high priority task then this algorithm 
works in three steps. 
I) First it will check for earliest resource available time 
from all the clouds then it's check current requested 
resource is preemptable or not , if yes then switching 
perform between the tasks on same resource using a time 
quantum. So the deployment status of current task is true 
and all the succeeding tasks can be successfully deployed on 
the VM. 
2) If the requested resource is not preemptable and an AR 
task is assigned to a cloud, first resource availability in this 
cloud will be checked by cloud scheduler. Since best-effort 
task can be preempted by AR task, the only case when most 
of resources are reserved by some other AR task. Hence 
there are not enough resources left for this AR task in the 
required time slot. If the AR task is not rejected, which 
means there are enough resources available for the task, a 
set of required VMs are selected arbitrarily. 
3) If all the tasks running on cloud are AR task then our 
algorithm gives advanced reservation on the resource of 
earliest finish task. 
In preemptable priority if resource is preemptable then it 
just checks for nearest resource and assigns it to task then 
perform switching between tasks. When a task completes 
then it remove them from circular queue and return the 



result. In advanced reservation, if a resource is 
nonpreemptable then scheduler just sends task checks 
request to all other cloud provider and receive the earliest 
available time of corresponding resource and then, the 
manager server of this cloud will first check the resource 
availability in this cloud. Since AR tasks can preempt best
effort tasks, if the resources are reserved by some other AR 
tasks at the required time, then, AR task will capture the 
resource by advanced reservation when resource get free. 

Algorithm 4 Algorithm for fault tolerance 

1. If current running tasks Ti= {TJ,Tz, . . . . . . .. ,Tn} 
2. Current resources assign to task Tn= {RJ, Rz, . . . . . . .  ,Rn } 
3. "ERROR OCCURE" 
4. Resource status of R;="F AILED" 
5. Then 
6. Do assign highest priority to Ti 
7. Ti (priority)="highest" 
S. Run algorithm 2 
9. If deployed then 
10. Deploy="true" 
11. Return="successful" 
12. Else 
13. Suspend all the succeeding tasks 
14. put task {T;, T;+l ,Ti+2 . . . . . .  ,Tn} into waiting list 
15. Deploy="false" 
16. Return="unsuccessful" 
17. End 

Algorithm 4 is used for fault tolerance mechanism. All the 
service request and their deployment on VM is done in 
dynamic environment, in cloud computing there are still 
chances that resource get failed during the execution of 
tasks. Then there is a responsibility to cloud scheduler that 
mark that resource as failed status, and immediately migrate 
the task on new VM. For this purpose algorithm 2 can be a 
better option, because it efficiently allocates new resource. 
In algorithm 4 current running task=Ti, current resource 
assign to task Ti is Ri (in step 1-2). If any resource casus 
failed due to hardware failure (step3) then scheduler assigns 
highest priority to that task T; (step 6) and run algorithm 2 
(step 7). In (stepS-lO) if deployment of corresponding task 
is done using algorithm 2 then it returns successful 
otherwise scheduler suspends all the succeeding tasks and 
put it into waiting list. 

V. SIMULATION RESULT 
In this section we discuss the experiment result of our 
given algorithm. We evaluate the performance of our 
given heuristic through simulation, by using different 
set of tasks in 10 runs. We experiment with a set of 60 
different service requests each service request is 
composed in 10 to 15 subtasks. We consider 4 clouds 
in our simulation. The different requests can be run on 
arbitrary clouds. The arrival time of request is differing 
with each other. Some of the task run as AR mode 

28 3 

and rest of them run as best effort mode. We do our 
simulation locally using these parameters without 
implementing it in any existing cloud system or using 
VM interface API. 
Our experiment works on two situations loose 

situation and tight situation; in every case it gives 
better result than non preemptive algorithm. This 
pseudo code is better than existing algorithms [3][4] 
because it gives reservation on resource and task 
migration over the preemptable resource. The 
scheduler will re schedule these tasks with predefined 
probability a. The parameters in table 1.1 are set in 
simulation randomly to their maximum and minimum 
values. So we focus on scheduling mechanism. 

Table 1.1 RANGES OF PARAMETERS 

Parameter Minimum Maximum 
ETMij 27 120 

Number of VMs in a cloud 22 120 

Number of CPU in a VM 4 10 

Memory in a VM 40 2048 

Disk space in VM 5000 10000 

Speed of copy in disk 100 1000 

Result 
The figure 3 shows the average response time (a) and 
average execution time in loose situation, loose situation is 
where we set arrival time of request far to each other, so 
there is less resource contention. If any resource contention 
occur then the best effort job is preempt by AR tasks. In 
experiment result we find out that it gives better response 
time and has minimum average execution time. 



Fig. 3. (a) and (b) average response and execution time in loose 
situation 

The figure 4 shows the tight situation result. In which our 
given algorithm perform better than existing algorithm 
[3][4]. For experimental purpose we set arrival time of 
resource very close to each other. Adaptive procedure works 
more efficiently in tight situation. The average response 
time ( C) and average execution time (d) is better than 
previous algorithms. 

284 

Fig. 4. (c) and (d) average response and execution time in tight 
situation 

The figure 5 shows the experiment result of fault tolerance 
algorithm, in tight and loose situation of average response 
time. This algorithm works better in both the situations. 
When a resource fault is occur during the execution of a 
process then response time should be very fast by the 
scheduler. This algorithm tries to assign resources in worst 
condition, if there are no free and preemptable resources 
then it gives reservation on resources with a guarantee that it 
should get resource very soon. 

Fig. 5. average response time in loose and tight situation 

VI. CONCLUSION 
Fault tolerance, QoS, availably, and scalability are still open 
challenges in cloud computing field. In this paper, we have 
presented scheduling heuristic for dynamic resource 
allocation mechanism with resource preemption in cloud. 
We present a local and global scheduling according to 
user's service request. We also presents a novel scheme for 
high priority task it's also beneficial for fault tolerance 
mechanism in resource management. When a resource gets 



failed it immediately provides new resource for task. In this 
algorithm the priority of task is defined over cost and 
deadline constraints. 
We evaluate our scheduling algorithm using the local 
simulation. We used evaluation scenarios and test for the 
resource utilization, deployment of service and fault 
tolerance. 
Future Work- We can works on several parameters which 
decide the priority of tasks such as min resource 
requirements, CPU time, Cost and network. We can also 
investigate energy efficient objective in allocation and 
utilization of resources. The given heuristic can be also 
simulating in FOG computing environment. A new scheme 
can be develop to serve the waiting list. We can also works 
on mechanism how to assigning slot to tasks. 

REFERENCES 

[I] Jiayin Li, Meikang Qiu, Jian-Wei Niu, Yu Chen, Zhong Ming, 

"Adaptive Resource Allocation for Preempt able Jobs in Cloud 

Systems," in 10th International Conference on Intelligent System 

Design and Application, Jan. 2011, pp. 31-36. 

[2] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, "A particle swarm 

optimization-based heuristic for scheduling workflow applications in 

cloud computing environments," in AINA '10: Proceedings of the 

2010, 24th IEEE International Conference on Advanced Information 
Networking and Applications, pages 400-407, Washington, DC, USA, 

2010, IEEE Computer Society. 

[3] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, Ivan 

Breskovic, "SLA-Aware Application Deployment and Resource 

Allocation in Clouds", 35th IEEE Annual Computer Software and 

Application Conference Workshops, 2011, pp. 298-303. 

[4] Chandrashekhar S. Pawar , Rajnikant B. Wagh "Priority Based 

Dynamic resource allocation in Cloud Computing", 2013 

International Conference on Intelligent Systems and Signal Processing 

(lSSP). 

[5] Zhen Xiao, Senior Member, IEEE, Weijia Song, and Qi Chen ," 

Dynamic Resource Allocation using Virtual Machines for Cloud 

Computing Environment". 

[6] Dorian Minarolli and Bernd Freisleben Department of Mathematics 

and Computer Science, University of Marburg," Virtual Machine 

Resource Allocation in Cloud Computing via Multi-Agent Fuzzy 

Control", 2013 IEEE Third International Conference on Cloud and 

Green Computing 

[7] 1. Brandic.Towards self-manageable cloud services. In 33rd Annual 

IEEE International Computer Software and Applications Conference 

(COMPSAC'09), 2009 

[8] R. N. Calheiros, R Ranjan, ABeloglazov, C.A FD.Rose, and R. 

Buyya. CloudSim: A toolkit for modeling and simulation of cloud 

computing environments and evaluation of resource provisioning 

algorithms. In Software: Practice and Experience. Wiley Press, New 

York, USA, 2010. 

[9] O.H. lbarra and C.E.Kim, "Heuristic Algorithms for Scheduling 

Independent Tasks on Non-identical Processors," Journal of the ACM, 

pp. 280-289, 1977. 

[IO]Ravi Jhawar( Graduate Student Member IEEE), Vincenzo Piuri( 

Fellow, IEEE)and Marco Santambrogio( Senior Member, IEEE), 

"Fault Tolerance Management in Cloud Computing: A System-Level 

Perspective" 2013 IEEE International Conference. 

[1I]Y. c. Emeakaroha, 1. Brandic, M. Maurer, and S. Dustdar, "Low level 

metrics to high level SLAs - LoM2HiS framework: Bridging the gap 

between monitored metrics and SLA parameters in cloud 

environments," In High Performance Computing and Simulation. 

[12]y' C. Lee, C. Wang, A Y. Zomaya, and B. B. Zhou.Profit-driven 

service request scheduling in clouds. In 10lh IEEEI ACM International 

Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, 

pages IS -24, may. 2010. 

[13]Shi J.Y., Taifi M., Khreishah A,"Resource Planning for Parallel 

Processing in the Cloud," in IEEE 13th International Conference on 

High Performance and Computing, Nov. 2011, pp. 828-833. 

[14]T. Hagras and J. Janecek,"A high performance, low complexity 

algorithm for compile-time task scheduling in heterogeneous systems," 

Parallel Computing, vol. 31, no. 7, pp. 653-670, 2005. 

[15]G. lung, and K. M. Sim, -Agent-based Adaptive Resource Allocation 

on the Cloud Computing Environment,1 in 40th International 

Conference on Parallel Processing Workshops (ICPPW'II), Taipei 

City, 2011, pp. 345 - 351. 

28 5 






