
Computer Standards & Interfaces 49 (2017) 71–78
Contents lists available at ScienceDirect
Computer Standards & Interfaces
http://d
0920-54

n Corr
curity, U
0631, U

E-m
journal homepage: www.elsevier.com/locate/csi
Mobile cloud security: An adversary model for lightweight browser
security

Shasi Pokharel a, Kim-Kwang Raymond Choo b,a,n, Jixue Liu a

a School of Information Technology & Mathematical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia
b Department of Information Systems and Cyber Security, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249-0631, USA
a r t i c l e i n f o

Article history:
Received 7 March 2016
Received in revised form
18 August 2016
Accepted 8 September 2016
Available online 9 September 2016

Keywords:
Mobile cloud security
Lightweight browser security
UC Browser
Dolphin
CM Browser
Samsung Stock Browser
x.doi.org/10.1016/j.csi.2016.09.002
89/& 2016 Elsevier B.V. All rights reserved.

esponding author at: Department of Informa
niversity of Texas at San Antonio, One UTSA C
SA. Tel.: þ1.210.458.7876.
ail address: raymond.choo@fulbrightmail.org
a b s t r a c t

Lightweight browsers on mobile devices are increasingly been used to access cloud services and upload /
view data stored on the cloud, due to their faster resource loading capabilities. These browsers use client
side efficiency measures such as larger cache storage and fewer plugins. However, the impact on data
security of such measures is an understudied area. In this paper, we propose an adversary model to
examine the security of lightweight browsers. Using the adversary model, we reveal previously un-
published vulnerabilities in four popular light browsers, namely: UC Browser, Dolphin, CM Browser, and
Samsung Stock Browser, which allows an attacker to obtain unauthorized access to the user’s private
data. The latter include browser history, email content, and bank account details. For example, we also
demonstrate that it is possible to replace the images of the cache in one of the browsers, which can be
used to facilitate phishing and other fraudulent activities. By identifying the design flaw in these
browsers (i.e. improper file storage), we hope that future browser designers can avoid similar errors.

& 2016 Elsevier B.V. All rights reserved.
1

2

1. Introduction

In recent years, we have seen a rapid shift in Internet browsing
behaviors from the use of personal computers (PCs) to mobile
devices, particularly accessing cloud services and storing data in
the cloud [20,45,23]. In other words, Internet browsing is in-
creasingly being conducted on mobile devices [51]. This has also
resulted in an increasing use of lightweight browsers on mobile
devices.

Lightweight browsers are popular for their speedy resource
loading capabilities, particularly for viewing large media files or
for gaming. However, the trade-off is reduced user functionalities
and weakened security mechanisms [57,58]. For example, basic
browser security requirements defined by W3C [46] implemented
in typical browsers, such as Google Chrome and Mozilla Firefox,
may not be installed on the lightweight browsers [3].

Browsers are security sensitive applications, as they are able to
access personally identifiable information (PII) and sensitive data
such as bank account details. Browser communications can be
targeted at various stages of the communication, such as on client
devices, during network transmission, and at the server. Security
tion Systems and Cyber Se-
ircle, San Antonio, TX 78249-

(K.-K. Choo).
issues and mitigation strategies relating to the network and the
server have gained significant interest (see [14,15,52]). The se-
curity of browsers in mobile devices, however, appears to be an
understudied area. For example, the question whether cache and
other files are securely stored by browsers so that they cannot be
accessed by unintended person or apps has not been well studied
(e.g. are cache and other files encrypted or stored with the ap-
propriate file permission?).

In this paper, we attempt to evaluate the security of user in-
formation stored by the lightweight browsers on mobile devices.
Using an adversary model adapted from the security literature, we
examine four popular lightweight browsers for Android device
and reveal previously unpublished vulnerabilities. We regard the
contributions to be two-fold:

) An adversary model designed to study the security of light-
weight mobile browser; and

) Identification of previously unpublished vulnerabilities in four
lightweight browsers.

The rest of the paper is organized as follows. Background ma-
terials and related literature are described in Sections 2 and 3,
respectively. In Section 4, we present the proposed adversary
model and the prototype app. The experiment setup and findings
are respectively outlined in Sections 5 and 6. The last section
discusses potential mitigation strategies and concludes the paper.

www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi
http://dx.doi.org/10.1016/j.csi.2016.09.002
http://dx.doi.org/10.1016/j.csi.2016.09.002
http://dx.doi.org/10.1016/j.csi.2016.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.09.002&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.09.002


S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–7872
2. Background: Mobile browsers

Browsing a webpage requires the loading of multiple sets of
resources, such as HTML, CSS, JavaScript and media files. For ex-
ample, according to Wang et al. [54], loading of such resources can
be slower on mobile devices than on PCs due to the architectural
differences and computational constraints.

Speed during website browsing is a key user concern. For ex-
ample, a one second delay in webpage loading could reportedly
result in 11% reduction in webpage views and 16% reduction in
customer satisfaction [39]. Similar observations were echoed in
the studies by Amazon [33] and Google [10].

Lightweight browsers apply client side efficiency solutions to
improve the browsing speed, and consequently user's quality of
experience. This includes creating a larger cache storage and
avoiding any plugins that can delay the loading of web resources.
Cache is the temporary storage to save downloaded web resources.
If a user attempts to access a previously accessed same page or
URL, the browser checks whether the content exists in the cache. If
the contents exist, then the browser loads the resources from the
cache; thus, saving time and network resources.

Popular browsers, such as Google Chrome, Mozilla Firefox, and
Opera, use standard Web Storage to store cache data. Web Storage
was introduced as a part of HTML5 and is being standardized by
World Wide Web Consortium (W3C). Web Storage contains two
major parts, namely: Local Storage and Session Storage, whose
behavior is similar to that of persistent cookies and session cook-
ies, respectively. Session storage stores web resources until the
webpage is open. In the case of Local Storage, the generated cache
remains on the device even when the browser is closed [55].

In both PC and mobile device environments, Web Storage is
considered more secure than the native browser cache. According
to W3C, Web Storage can be used to store sensitive user in-
formation, if implemented properly [55]. On Android devices, Web
Storage typically uses the device's internal storage (e.g. /data/data/
PackageName/ directory). Therefore, the items stored in these
cache storage cannot be accessed by other users or apps, with the
exception of the owner's app.

However, Web Storage is limited by cache size. For general use,
W3C recommends the use of 5MB storage size per website,
but this can be reduced when implemented on mobile devices.
Lightweight browsers mostly rely on large cache storage to
Table 1
Lightweight browsers.

S. no. Browser Name Version No. in Google Play Store downloads (in m
as of Sep 2015)

1. UC Browser 10.6.2 100–500
2. Dolphin 11.4.19 50–100
3. CM Browser 5.20.06 10–50
4. Samsung Stock

Browser
N/A N/A

Table 2
Targeted cache and file storage locations of the browsers in the study.

Browser Targeted Cache Location

Dolphin /sdcard/TunnyBrowser/cache/speeddial_covers
/sdcard/TunnyBrowser/cache/tablist_cache
/sdcard/TunnyBrowser/cache/webViewCache

UC Browser /sdcard/UCDownloads/cache/
/sdcard/UCDownloads/config/
/sdcard/UCDownloads/offline/

CM Browser /sdcard/CheetahBrowser/.data/
Samsung Stock Browser /data/data/com.sec.android.app.sbrowser/files/
improve the browser’s loading speed. Therefore, these browsers
store large amount of cache data outside of Web Storage, often in
external storage (e.g. SD card).

For Android devices, internal storage is generally considered a
more secure storage location for application data, because, by
default, stored data can be accessed or modified only by the
creator app. In comparison, any resources, stored in external sto-
rage can be accessed, modified or deleted by any applications that
have READ_ EXTERNAL_STORAGE Permission [16].
3. Related work

Web (application) security has been a research focus for a
number of years [40]. Browsers for PCs, laptops and mobile devices
share the underlying rules for loading webpages and commu-
nicating with servers. Therefore, existing literature on browser
security tend to be focused on ‘traditional’ browsers (for PCs and
laptops), as well as focusing on either network security or on de-
tecting malicious websites (see [18,19,21,24,50]).

In 2014, Wadkar, Mishra and Dixit proposed the ‘system call’
monitoring approach to prevent information leakage from the
browser [53]. System call is an interface between the browser
application and Operating System (Linux) kernel, which is invoked
during the execution of browser process. The researchers pro-
posed an intermediate layer between the Kernel and the applica-
tion layer that controls the system calls and filters the personal
information being leaked during the browsing.

Virvilis et al. [52] evaluated the effectiveness of the Blacklist
filtering approach on browsers, designed to prevent users from
visiting rouge or malicious webpages. In another related study,
Amrutkar et al. [2] presented a threat model, which allows the
discovery of architectural weakness on mobile devices and brow-
sers. The researchers demonstrated that attack vectors, such as
display ballooning, Cross Site Request Forgery (CSRF) and click-
jacking, can be used for phishing or directly stealing information
from the users’ device (Table 2).

More recently in 2015, Amrutkar, Traynor and van Oorschot [3]
evaluated the security indicators (based on the security guidelines
of W3C – [46]) used in popular mobile browsers. For example, they
check to determine whether the browser displays identity of the
site owner and certificate issuer and whether the browser uses the
illions; Remarks

Pre-installed with Samsung mobiles, so total user number and applica-
tion version cannot be identified.

Important Contents

URLS saved as speed dial
screenshot image files
All cache files (HTML, CSS, JavaScript, media)
All cache files
TrafficStatus.db; contains client server communication timing and response
ApplicationCache.db; contains data for cache loading management
Browsers URL history
Screenshot image files



S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–78 73
anti-phishing URL filter. A summary of the study for Google
Chrome and Mozilla Firefox is presented in Table 4.

Previous studies identified cache as a potential vector to com-
promise a user's privacy over browser communication [47,6,8]. For
example, Bernstein [7] demonstrated that an attacker can identify
a user's web browsing behaviors by calculating the content loading
time. Since then, several solutions have been proposed to mitigate
such an attack [28,30,37].

Existing studies generally focus on protecting the users’ in-
formation when their data is being transmitted over the network.
Due to the popularity of mobile devices, browsers are an in-
creasingly target for cybercriminals seeking to exploit the inherent
security issues, such as exploitation of user permission and file
permission. For example, Hay [22] showed how the security flaws
of Opera browser can be easily exploited by an attacker to steal the
user's personal information by exploiting the file permission of
Opera browser’s cache.

Jia et al. [26] evaluated the security strength of five desktop and
15 mobile browsers cache to determine whether they are vulner-
able to Browser Cache Poisoning (BCP) in a Man in The Middle
(MITM) attack. The researchers concluded that all the five desktop
browsers and most of the mobile browsers examined in their
study are vulnerable to such an attack. In a related work, Jia et al.
[27] presented an approach to identify the mobile device user's
geo location (e.g., country, city and neighborhood) by sniffing on
the browser cache and by measuring the timing of browser cache
queries. A similar approach was presented by Liang et al. [32], who
demonstrated that user's browsing history can be hijacked using
timing attack over browser cache.

Storage security in Android has also attracted the attention of
researchers in recent times. In 2015, for example, Liu et al. [34]
studied the data storage behaviors of Android apps. They ex-
amined the data stored by popular communication apps (i.e.
Weibo, Facebook, Instagram, LINE, Skype, and Viber) to determine
Table 3
Summary of findings.

Browsers Adversary Goals

Browser
history

Searched
Terms

Extract (knowl-
edge) of web
content

Change
content of
Cache

1 Dolphin
Browser

Yes Yes Yes Yes

2 CM Browser Yes
3 UC Browser Yes Yes Yes
4 Samsung

Stock
Browser

Yes Yes

Table 4
A comparative summary of security indicator implementations on mobile
browsers.

Browser Suites [3]

Browsers Anti-Phishing
Filter

Display of providers
identity

Display of
Certificate

Google Chrome Y Y Y
Mozilla Firefox Y Y Y

Lightweight Browsers (Result from our evaluation)
Dolphin N Y Y
UC Browser N N N
Samsung Stock
Browser

N Y Y

CM Browser Y Y Y
how much private data an attacker is able to steal from the device
without the users’ knowledge. The study suggests that security of
users’ private data is dependent on whether data is defined as
sensitive or insensitive by the app designer. Data considered in-
sensitive by the app designer will be stored in shared memory of
the external storage, which is accessible to other users. However,
there is no uniform definition for sensitive and insensitive data. It
was demonstrated that in some cases, user's phone number,
contact list and other private information could be obtained from
the publicly shared files.

The study by Zhang et al. [59] also reported that data remnants
left by Android apps after their uninstallation can reveal sensitive
information to an attacker. In their experiment, they examined the
data remnants recovered from system services and system-app
service. They were able to recover sensitive information, such as
users’ login credential, public/private keys, URI, and Pending Intent
content. Similar findings were reported in the forensic analysis of
mobile apps [5,13,31,42,43,44,35,36,41,48].

Liu et al. [34] demonstrated how an attacker with the capability
to install an app with WRITE_EXTERNAL_STORAGE, READ_-
EXTERNAL_STORAGE and INTERNET permissions could obtain
unauthorized access to files stored in public storage on Android
devices. Similar to the approach of Liu et al. [34], Zhou et al. [60]
used an adversary model to model an attacker's capability to steal
and send data via browser using the URI ACTION_VIEW intent.
However, this method (zero permission adversary model) can only
transmit data when the device's screen is on or running. The use of
adversary model in mobile app security is also found in the study
of Do, Martini and Choo [16].
4. Our proposed adversary model and a prototype App

4.1. Adversary model

In a recent work, Do, Martini and Choo [17] proposed the first
adversary model for Android covert data exfiltration. In this
model, the adversary has the capabilities to intercept, inject,
modify, delete, encrypt, decrypt, transmit, and listen to user
communication. In a related work, D’Orazio & Choo [12] presented
an adversary model which captures the real-world capability of a
digital rights management (DRM) attacker for mobile devices. In
this paper, we present a weaker (and probably, more realistic)
model of Do, Martini and Choo [17] and D’Orazio and Choo [12],
and demonstrate that an adversary in such a model can also be
used to discover and exploit vulnerabilities in lightweight brow-
sers for Android devices.

We consider a mobile browser to be insecure if any of these
goals are met.

� Goal 1: The adversary learns the URL history of the browser.
� Goal 2: The adversary learns the user's search terms.
� Goal 3: The adversary learns the content of the webpage (e.g.,

user's email content, bank account information).
� Goal 4: The adversary can modify the content (e.g., image file) in

the cache.

4.2. Prototype App

To demonstrate the utility of our adversary model, we proto-
type an Android app which is able to read files and write files in
the device’s external shared memory (via the READ_ EX-
TERNAL_STORAGE and WRITE_EXTERNAL_STORAGE permissions).
We remark that the READ_ EXTERNAL_STORAGE permission is
granted automatically if the app is granted access to the WRI-
TE_EXTERNAL_STORAGE permission. In order to transmit data



c
In

}

S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–7874
from a user device, the app will require the INTERNET permission.
However, Android apps do not need to notify or request for user's
approval for this permission because this permission is granted by
default to all apps, if it is declared in manifest file. Another per-
mission that our app requires is ACCESS_NETWORK_STATE, which
allows the adversary to know the type of network the device is
connected to (e.g., Wi-Fi or 3G/4G). In other words, our app will
require user’s approval for WRITE_EXTERNAL_STORAGE and AC-
CESS_NETWORK_STATE permissions.

A key challenge for any malicious app (including our app) is to
avoid detection by users and malware filters. Malware filter al-
gorithms are generally based on the evaluation of user permis-
sions [1,4,49] and activity behavior. These algorithms consider an
app as suspicious if it acquires too many permissions or permis-
sions associated in cost incurring activities, such as sending of SMS
or MMS, and making of calls (e.g., to premium numbers) [25,9,61].
Therefore, our app is designed to use few, common and non-cost
incurring related permissions to avoid detection.

Excessive drainage of battery or high consumption of network
bandwidth will also result in detection or raise a user’s suspicion.
Therefore, to avoid excessive battery power usage, our app is de-
signed to use Android’s in-built listener functions only. Similarly,
to avoid excessive bandwidth usage, our app will upload user in-
formation to a third-party server controlled by the adversary, only
when the device is connected to a Wi-Fi network. If the user is
browsing webpages using 3 G/4 G, our app will copy the browser’s
cache data to the app’s private folder and wait for the device to be
connected to the Wi-Fi. In other words, the app runs in Wi-Fi and
4 G network.

4.2.1. Activity 1: Determining when browser starts running
Android provides multiple methods to return current running

apps, and one effective method is to create a broadcast receiver for
targeted browser app using ActivityManager.getRunningAppPro-
cess(). However, this feature has been deprecated in Android API
level 21. Therefore, we will use Android’s native fileObserver fea-
ture, which notifies the app when changes in the target file or
directory occurs. FileObserver uses inotify subsystem of Linux
kernel, which extends the fileSystems to fire notifications when a
given directory is accessed by the browser.

4.2.2. Activity 2: Copying of cache files
Since the Android does not have “cp” command, we will use the

native InputStream and OutputStream to copy the files from the
browser’s cache directory (see Algorithm 2) after we have identi-
fied the files to be copied using Algorithm 1. Copied files will be
stored in the prototype app's cache directory (in internal storage)
to avoid raising the user's suspicion. To minimize the use of re-
sources, we will limit the prototype app’s cache directory to 5 MB
and the systemwill automatically delete older files when this limit
exceeds.
Fig. 1. Uploading of files
Algorithm 1. Listing of cache files.
File applicationCache¼this.getCacheDir();
File browserCache ¼ new File(Environment.getExternalStorage
().getAbsolutePath() þ“/cacheDirectoryName”);

String[] fileName ¼ browserCache.list();
for (int i ¼ 0; i o browserCache.listFiles().length; iþþ) {

copyFiles(new File(browserCache, fileName[i]),
new File(applicationCache, fileName[i]));

}

Algorithm 2. Copying of cache files.
to d
opyFiles(File source, File dest){
putStream toCopyFile ¼ new FileInputStream(source);

OutputStream copiedFile ¼ new FileOutputStream
(dest);

byte[] buff ¼ new byte[1024];
int leng;
while ((leng ¼ toCopyFile.read(buff)) 4 0) {

copiedFile.write(buff, 0, leng);

toCopyFile.close();
copiedFile.close();
}

To improve the efficiency of our prototype app, we can avoid
copying the same file more than once by implementing a ‘file al-
ready exists’ check.

4.2.3. Activity 3: Checking network connection and file transfer
Frequent uploading of cache files from client devices could

raise suspicion due to bandwidth consumption (e.g., when the
user has a limited data plan). Therefore, our prototype app is de-
signed to check for Wi-Fi connection (see Algorithm 3).

Algorithm 3. Checking of Wi-Fi connection.
ConnectivityManager manager ¼ (ConnectivityManager) get-
SystemService(CONNECTIVITY_SERVICE);

NetworkInfo wifiConn ¼ connManager.getNetworkInfo
(ConnectivityManager.TYPE_WIFI);

return wifiConn.isAvailable();

If a Wi-Fi connection is detected, then data stored in the private
storage of our app will be uploaded to the designated server.

Uploading of files to the server can be a lengthy and resource
consuming process, depending on the Wi-Fi connection. As our
app runs as a service in the background, we will use ‘asyncTask’ to
upload the files. The app will loop multiple times until the upload
is completed – see Fig. 1. The files will then be deleted from the
app's private storage.
esignated server.



S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–78 75
4.2.4. Activity 4: Insertion of image in cache (cache poisoning)
Using the WRITE_EXTERNAL permission, our app is able to

insert image to the cache directory of the browser – see Algo-
rithms 4 and 5. Whether the browser will load the inserted image
depends on a number of conditions, such as expiry time, type of
cache file, and frequency of user's access to the associated URL.

Algorithm 4. Determining whether existing cache file is an image.
BitmapFactory.Options imageOptions ¼ new BitmapFactory.
Options();

imageOptions.inJustDecodeBounds ¼ true;
BitmapFactory.decodeFile(file.getPath(), imageOptions);
if(options.outWidth!¼ �1 && options.outHeight!¼ �1)

return true;

Algorithm 5. Replacing of image file.
byte[] buff ¼ new byte[1024];

int leng;
while ((leng ¼ new FileInputStream(toBeCopied).read

(buff)) 4 0) {
toBeReplaced.write(buff, 0, leng);
}
toBeCopied.close();
toBeReplaced.close();
5. Experiment setup

According to statistics from Google Play Store, Google Chrome,
Mozilla Firefox and UC browsers are the most popular browser
Android apps. Chrome and Firefox are browser suites, which have
cross-platform browsing compatibility and implementation of
various security measures. However, lightweight browsers are also
popular with users as they have a significantly shorter resources
loading speed [11], especially loading of large media files and in
the gaming environment.

Therefore, in this study, we selected three most popular light-
weight Android browsers, namely: Dolphin, CM Browser and UC
Browser (as of September 2015, based on Google Play Store
downloads). As Samsung is a popular Android model, we also in-
cluded Samsung’s stock browser (package name: com.sec.android.
app.sbrowser) which is pre-installed on Samsung Galaxy S4 with
Android version 4.4.2.

Table 1 shows the information about selected browser appli-
cations. We now briefly explain the cache storage behavior of se-
lected browser applications.

UC browser is one of the most popular browsers for Android
with more than 100 million downloads. Upon an initial inspection,
we discover that the UC browser stores a large portion of cache
files in external shared memory, including HTML files of visited
web pages, JavaScript, CSS, image files and range of databases filled
with users browsing activity. These databases not only reveals the
information about which webpages were browsed by the user, but
also shows the number of times the webpages were accessed, the
times when they were accessed and what was the response from
the server every time. It also reveals how much data (bandwidth)
was used while accessing those pages individually.

Dolphin browser is one of the oldest lightweight browser in-
troduced for Android. Initial inspection of its cache storage shows
that Dolphin browser stores most of the cache resources in ex-
ternal shared memory in /sdcard/TunnyBrowser/cache/ directory.
It has three sub-directories, namely: speeddial_covers, ta-
blist_cache and webviewCache. As the name suggests, speed dial
allows a user to save their favorite or frequently used URLs on the
browser's front screen thumbnails. Speeddial_covers directory
stores the URL and associated files of those websites.

We determined that Dolphin stores the screenshots of the
displayed web content. For example, when a user browses more
than one tab at a time, web content of the tab being viewed will be
captured as a screenshot, which is around 50 KB and saved in the
tablist_cache directory. All other cache files, including HTML, Ja-
vaScript, CSS and media files, are stored in the webViewCache
directory.

Initial inspection indicated that CM browser stores most of the
cache files in the internal memory, and we determined that Local
Storage is implemented in the app_webview directory, similar to
the standard cache storage proposed in HTML5. However, visited
URLs are listed in a file stored in the shared memory.

In the case of Samsung stock browser, cache files, including
HTML, JavaScript and media files, are stored in internal storage.
Similar to the Dolphin browser, it also saves the screenshots as a
bitmap file each time new content is loaded in the browser. This
bitmap might be used to display the preview of running applica-
tions when user accesses the fast app switcher key in device or
when user attempts to change the tabs in browser.

By default, files stored in internal memory are considered pri-
vate and are only accessible by the owner app. However, this
permission can be changed by the creator app, by using MOD-
E_APPEND, MODE_WORLD_READABLE or MODE_WORLD_-
WRITABLE flags when creating such a file. This is considered a
‘serious security flaw’ by Android and removed from Android API
level 17. However, such a flaw is found in Samsung’s stock browser
as revealed by our investigation. More specifically, we determined
that the screenshot image stored by the Samsung stock browser in
its cache is assigned with chmod 644 (rw-r–r–) user permission,
which means it can be accessed by any other apps.

In our case study, we used Samsung Galaxy S4 (unrooted)
running Android 4.4.2 version as the main experiment device. We
then installed the prototype app (see next section) on the device,
which runs as a background process. We also ran each browser for
at least five minutes, opened multiple URLs in multiple tabs. To
verify the effectiveness of our adversary model, we repeated the
same experiment on a Samsung Galaxy S5 (unrooted) with An-
droid version 5.0.
6. Findings

In this section, we describe the findings of our study.

6.1. Dolphin

We were successful in copying all files in the root directory of
the cache storage (/sdcard/TunnyBrowser/Cache) and its sub-
directories. The files were also successfully uploaded to our server.

An inspection of the uploaded files, we were able to retrieve
the browser's URL history, view the content (including media files)
of the visited webpage, etc. We were also able to recover the
private content of the webpage, such as image and wall post of
user's Facebook page, by accessing the link in HTML file. From the
uploaded screenshot images, we were also able to obtain emails,
bank account details and other sensitive user information.

We also determined that Dolphin saves the cache images
without modifying the header. Generally, when a user attempts to
access the same URL, the browser checks with the server cache to
determine whether the stored cache has been modified. However,
Dolphin was unable to identify the modified cache in our study.
More specifically, we browsed Amazon homepage (https://www.
amazon.com/) and determined that all product images were

http://https://www.amazon.com/
http://https://www.amazon.com/


Table 5
Top ten mobile app security vulnerabilities identified by OWASP.

Top ten OWASP mobile app
security vulnerabilities

Vulnerabilities identified in the browsers

Dolphin UC CM Samsung
Stock

Weak Server Side Controls
Insecure Data Storage Yes Yes Yes

Insufficient Transport Layer
Protection

Unintended Data Leakage Yes Yes Yes

Poor Authorization and
Authentication

S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–7876
stored in the cache. We then replaced several of these images with
other images, which have the same filename. We immediately
browsed the same page again, and we were presented with the
replaced images (instead of the original images). We also note that
the time between the first and second browsing was less than two
minutes. Findings were similar for both devices – Samsung Galaxy
S4 and Samsung Galaxy S5.

6.2. UC browser

Similar to the findings described in Section 6.1, we were suc-
cessful in copying and uploading data stored in the cache root
directory (/sdcard/UCDownloads). We were not able to identify the
screenshots, although we were successful in recovering the web
browsing history and identifying the user's browsing behavior,
based on information gleaned from other cache files and data-
bases. For example, we were able to determine what webpage was
accessed at what time, and the number of visits a site was ac-
cessed. We were also able to recover the content of the accessed
webpage. We found similar results for both devices.

6.3. Samsung stock browser

As previously explained in Section 5, Samsung Stock browser
stores all cache resources in the device's internal storage. However,
on the Samsung Galaxy S4 device, we were able to copy and up-
load the screenshot images from the device, once new content has
been loaded in the browser. From these images, we were able to
identify user's browsing activities as well as the contents of the
visited sites. We were also able to recover other information such
as email messages, and bank account details. As the content is
stored using chmod 644 permission, we were not able to make any
modification.

We found that this browser is installed on Samsung Galaxy S5
devices with Android Version 5.0 by default. However, our in-
spections of other Samsung mobile phones and tablets show that
this browser is installed on devices with Android version 4.4.2.

6.4. CM Browser

Surprisingly, the CM browser stores all cache files, including
screenshot for the multi-tabs navigation, database, HTML files and
media files, on the device's internal storage in private mode. The
only information we could recover was the list of URLs visited by
the user, saved as a single file in /sdcard/CheeahBrowser/.data/.
Similar findings were reported in both devices.

6.5. Summary

Table 3 summarizes the findings from the study of the four
browsers.

Table 4 summarizes the security implementations (used in the
study of [3]) of the lightweight browsers studied in this paper, as
well as two other popular browser suites. It is clear that Dolphin,
UC Browser and Samsung’s stock browsers lack the basic security
mechanisms.
Broken Cryptography
Client Side Injection Yes

Security Decisions Via Un-
trusted Inputs

Improper Session Handling

Lack of Binary Protections
7. Discussion

There are a number of commercial apps designed to track and
monitor users’ activities on Android devices, such as FlexySpy and
MobileSpy. These apps allow the user to read browser history and
bookmarks on unrooted devices, but they require the mobile de-
vice owner to grant the app permissions such as “com.android.
browser permission. READ_HISTORY_BOOKMARKS” to access
browser history and “android.permission.ACCESS_FINE_LOCATION”
or “android.permission.ACCESS_COARSE_LOCATION” to track user
location. These apps are not capable of taking screenshots of
browser activity or access the content (e.g., email, personal ac-
count detail) unless the device is rooted and are granted additional
specific permissions.

We demonstrated that our prototype app can read the targeted
browsers history and content (through the cache), as well as
capturing the screenshots of the Samsung’s stock browser. In
Dolphin browser, our app can also replace the image files in the
cache and display the replaced images (instead of the legitimate
web files).

Of the vulnerabilities identified in this paper, three vulner-
abilities are regarded by the Open Web Application Security Pro-
ject (OWASP) as the top 10 major security vulnerabilities for mo-
bile apps [38] – see Table 5.

Insecure data storage includes the practice of storing sensitive
data without encryption or protection in unsafe location. For ex-
ample, in our study, we determined that the Samsung Stock
browser stores screenshots in internal memory with a weak file
permission. Our prototype app was able to inject malicious con-
tent in the cache storage of Dolphin browser. Therefore, this
browser is vulnerable to a Client Side Injection attack.

Unintended data leakage could result from the storing of data
in unsecure locations (e.g. data stored can be accessed by un-
authorized person or apps). For example, the four browser apps
studied in this paper store data in external shared memory, which
could be accessed by other apps.
8. Conclusion and future work

In this paper, we presented an adversary model that can be
used to study the security of lightweight browsers, which are a
popular way of accessing cloud services. To demonstrate the
practicality of the adversary model, we constructed a prototype
app. Using four popular lightweight browsers as case studies, we
determined that Dolphin, CM browser and UC browser store



S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–78 77
sensitive user information on external shared storage. Although
Samsung stock browser stores sensitive user information on the
device's internal memory, we demonstrated that an attacker could
exploit the weak file permissions to access the stored information.

The vulnerability is due to a design flaw; that is, improper file
storage by browsers. This also reinforces the need to ensure for
Android’s file storage and file permission system to be improved,
in order to avoid unauthorized users from accessing files created
by other apps. From a performance perspective, loading content
from the internal memory is more efficient [29] without com-
promising on security. However, it appears that browsers are still
designed to use external memory rather than internal memory,
perhaps due to the storage size. Therefore, we do not believe that a
naïve recommendation for browsers to store files in internal
memory will be a viable mitigation strategy, unless the risk asso-
ciated with file permission is also addressed (see [34,56]). There-
fore, a short-term solution could be for browsers to store non-
sensitive or large files (e.g. video clips) in external storage. How-
ever, users should also be alerted whenever these files are ac-
cessed by other apps.
Acknowledgments

The views and opinions expressed in this article are those of
the authors alone and not the organizations with whom the au-
thors are or have been associated. The authors would also like to
thank the editor and the anonymous reviewers for providing
constructive and generous feedback. Despite their invaluable as-
sistance, any errors remaining in this paper are solely attributed to
the authors.
References

[1] O.S. Adebayo, N.A. Aziz, Static code analysis of permission-based features for
Android Malware Classification using Apriori Algorithm with Particle Swarm
Optimization, J. Inf. Assur. Secur. 10 (4) (2015).

[2] C. Amrutkar, K. Singh, A. Verma, P. Traynor, VulnerableMe: Measuring Sys-
temic Weaknesses in Mobile Browser Security, Information Systems Security,
Springer 2012, pp. 16–34.

[3] C. Amrutkar, P. Traynor, P.C. van Oorschot, An empirical evaluation of security
indicators in mobile Web browsers, Mobile Comput. IEEE Trans. 14 (5) (2015)
889–903.

[4] Z. Aung, W. Zaw, Permission-based Android malware detection, Int. J. Sci.
Technol. Res. vol. 2 (3) (2013) 228–234.

[5] A. Azfar, K.-K.R. Choo, L. Liu, An Android communication App forensic tax-
onomy, J, Forensic Sciences (2016), http://dx.doi.org/10.1111/
1556-4029.13164].

[6] C. Bansal, S. Preibusch, N. Milic-Frayling, Cache Timing Attacks Revisited: Ef-
ficient and Repeatable Browser History, OS and Network Sniffing’, ICT Systems
Security and Privacy Protection, Springer 2015, pp. 97–111.

[7] D.J., Bernstein 2005, Cache-timing attacks on AES.
[8] B.B. Brumley, ‘Cache Storage Attacks’, Topics in Cryptology–-CT-RSA, Springer

2015, pp. 22–34.
[9] I. Burguera, U. Zurutuza, S. Nadjm-Tehrani, Crowdroid: behavior-based mal-

ware detection system for android, in: Proceedings of the 1st ACM workshop
on Security and Privacy in Smartphones and Mobile Devices, ACM, 2011, pp.
15–26.

[10] L. Bustos, Speed Kills Conversion Rates, 2012 o 〈http://www.getelastic.com/
site-speed-infographic/〉4 .

[11] P. Chris, Best Android browsers, 2015 edition: speed, features, and design,
updated 8 April 2015, Phonearena.com, viewed 12 September 2015, o 〈http://
www.phonearena.com/news/Best-Android-browsers-2015-edition-design-fea
tures-and-performance_id67848〉4 .

[12] C. D’Orazio, K.-K.R. Choo, An adversary model to evaluate DRM protection of
video contents on iOS devices, Comput. Secur. 56 (2015) 94–110.

[13] D. Daryabar, A. Dehghantanha, B. Eterovic-Soric, K.-K.R. Choo, Forensic In-
vestigation of OneDrive, Box, GoogleDrive and Dropbox Applications on An-
droid and iOS Devices, Aust. J. Forensic Sci. (2016), http://dx.doi.org/10.1080/
00450618.2015.1110620].

[14] M.L. Das, N. Samdaria, On the security of SSL/TLS-enabled applications, Appl.
Comput. Inf. 10 (1) (2014) 68–81.

[15] L. Desmet, M. Johns, Real-time communications security on the web, Internet
Computing, IEEE 18 (6) (2014) 8–10.
[16] Q. Do, B. Martini and K.-K.R. Choo, Enforcing File System Permissions on An-
droid External Storage. In Proceedings of 13th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom
2014), IEEE Computer Society Press, 2014, pp. 949–954.

[17] Q. Do, B. Martini, K.-K.R. Choo, Exfiltrating data from Android devices, Comput.
Secur. 48 (2015) 74–91.

[18] W. Du, L. Yang, J. Kizza & X. Yuan, New hands-on labs on browser security, in:
Proceedings of the 45th (ACM) Technical Symposium on Computer Sience
Education, (ACM), 2014, pp. 717–717.

[19] A.P. Felt, R.W. Reeder, H. Almuhimedi & S. Consolvo, 2014, Experimenting at
scale with google chrome’s SSL warning, in: Proceedings of the 32nd Annual
ACM Conference on Human factors in Computing Systems, ACM, pp. 2667–
2670.

[20] X. Fu, X. Sun, Q. Liu, L. Zhou, J. Sh, Achieving efficient Cloud search services:
multi-keyword Ranked Search over Encrypted Cloud data supporting parallel
computing, IEICE Trans. Commun. E98-B (1) (2015) 190–200, 2015.

[21] M. Hanif, M.S. Vighio, Z. Hussain, N.A. Memon, Comparative Study of Top-
Ranked Web Browsers, Bahria Univ. J. Inf. Commun. Technol. 8 (1) (2015) 93.

[22] R., Hay, Opera Mobile Cache Poisoning XAS, September 2011.
[23] D. He, D. Zeadally, L. Wu, ‘Certificateless public auditing scheme for cloud-

assisted wireless body area networks, IEEE Syst. J. (2016), http://dx.doi.org/
10.1109/JSYST.2015.2428620.

[24] C. Hothersall-Thomas, S. Maffeis & C. Novakovic, BrowserAudit: automated
testing of browser security features, in: Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ACM, 2015, pp. 37–47.

[25] T. Isohara, K. Takemori & A. Kubota, Kernel-based behavior analysis for an-
droid malware detection, Computational Intelligence and Security (CIS), 2011
Seventh International Conference on, IEEE, 2011, pp. 1011–1015.

[26] Y. Jia, Y. Chen, X. Dong, P. Saxena, J. Mao, Z. Liang, ‘Man-in-the-browser-cache:
Persisting HTTPS attacks via browser cache poisoning’, Comput. Secur. 55
(2015) 62–80.

[27] Y. Jia, X. Dong, Z. Liang, P. Saxena, ‘I know where you’ve been: Geo-inference
attacks via the browser cache’, Internet Computing, IEEE 19 (1) (2015) 44–53.

[28] E. Käsper, P. Schwabe, ‘Faster and timing-attack resistant AES-GCM’, Crypto-
graphic Hardware and Embedded Systems-CHES 2009, Springer 2009, pp.
1–17.

[29] Kim, H., Agrawal, N. & Ungureanu, C. 2011, ‘Examining storage performance on
mobile devices’, in: Proceedings of the 3rd ACM SOSP Workshop on Net-
working, Systems, and Applications on Mobile Handhelds, ACM, p. 6.

[30] R. Könighofer, ‘A fast and cache-timing resistant implementation of the AES’,
Topics in Cryptology–CT-RSA 2008, Springer 2008, pp. 187–202.

[31] M.D. Leom, K.-K. R. Choo and R. Hunt, Remote wiping and secure deletion on
mobile devices: A review. Journal of Forensic Sciences, 2016 (In press).

[32] Liang, B., You, W., Liu, L., Shi, W. & Heiderich, M. 2014, ‘Scriptless timing at-
tacks on web browser privacy’, Dependable Systems and Networks (DSN),
2014 44th Annual (IEEE)/IFIP International Conference on, (IEEE), pp. 112–123.

[33] G., Linden 2006, Make data useful.
[34] X. Liu, Z. Zhou, W. Diao, Z. Li, K. Zhang, ‘An Empirical Study on Android for

Saving Non-shared Data on Public Storage’, ICT Systems Security and Privacy
Protection, Springer 2015, pp. 542–556.

[35] B. Martini, K.-K.R. Choo, Cloud Storage Forensics: ownCloud as a Case Study,
Digit. Investig 10 (4) (2013) 287–299.

[36] F. Norouzi, A. Dehghantanha, B. Eterovic-Soric, K.-K.R. Choo, Investigating
Social Networking Applications on Smartphones: Detecting Facebook, Twitter,
LinkedIn, and Googleþ Artifacts on Android and iOS Platforms, Aust. J.4 For-
ensic Sci. (2016), http://dx.doi.org/10.1080/00450618.2015.1066854].

[37] D.A. Osvik, A. Shamir, E. Tromer, ‘Cache attacks and countermeasures: the case
of AES’, Topics in Cryptology–CT-RSA 2006, Springer 2006, pp. 1–20.

[38] OWASP 2014, OWASP Mobile Security Project: Top 10 Mobile Risk, o 〈https://
www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab¼Top_10_
Mobile_Risks〉4 .

[39] The performance of Web Application 2008, Aberdeen Group. o 〈http://v1.
aberdeen.com/launch/report/research_report/5136-RR-performance-web-ap
plication.asp〉4 .

[40] V. Prokhorenko, K.K.R. Choo, H. Ashman, Web application protection techni-
ques: a taxonomy’, J. Netw. Comput. Appl. 60 (2016) 95–112.

[41] D. Quick, K.-K.R. Choo, Google drive: forensic analysis of Cloud Storage Data
Remnants, J. Netw. Comput. Appl. 40 (2014) 179–193.

[42] D. Quick, K.-K.R. Choo, Digital Droplets: Microsoft SkyDrive forensic data
remnants, Future Gener. Comput. Syst. 29 (6) (2013) 1378–1394.

[43] D. Quick, K.-K.R. Choo, Dropbox Analysis: Data Remnants on User Machines,
Digit. Investig. 10 (1) (2013) 3–18.

[44] D. Quick, K.-K.R. Choo, Forensic collection of cloud storage data: does the act
of collection result in changes to the data or its metadata? Digit. Investig. 10
(3) (2013) 266–277.

[45] Y. Ren, J. Shen, J. Wang, J. Han & S. Lee, Mutual Verifiable Provable Data Au-
diting in Public Cloud Storage,’ Journal of Internet Technology, vol. 16, 2, pp.
317-323.

[46] T., Roessler & A., Saldhana, Web Security Context: User Interface Guidelines,
2010 o 〈http://www.w3.org/TR/wsc-ui/〉4 .

[47] V. Saraswat, D. Feldman, D.F. Kune, S. Das. Remote cache-timing attacks
against AES’ Proceedings of the First Workshop on Cryptography and Security
in Computing Systems, ACM, 2014, pp. 45–48.

[48] M. Shariati, A. Dehghantanha, K.-K.R. Choo, SugarSync forensic analysis, Aust.
J. Forens. Sci. 48 (1) (2016) 95–117.

[49] K.A. Talha, D.I. Alper, C. Aydin, APK Auditor: permission-based Android

http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref1
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref1
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref1
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref2
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref2
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref2
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref2
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref3
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref3
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref3
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref3
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref4
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref4
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref4
http://dx.doi.org/10.1111/1556-4029.13164]
http://dx.doi.org/10.1111/1556-4029.13164]
http://dx.doi.org/10.1111/1556-4029.13164]
http://dx.doi.org/10.1111/1556-4029.13164]
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref6
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref6
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref6
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref6
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref7
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref7
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref7
http://www.getelastic.com/site-speed-infographic/
http://www.getelastic.com/site-speed-infographic/
http://www.phonearena.com/news/Best-Android-browsers-2015-edition-design-features-and-performance_id67848
http://www.phonearena.com/news/Best-Android-browsers-2015-edition-design-features-and-performance_id67848
http://www.phonearena.com/news/Best-Android-browsers-2015-edition-design-features-and-performance_id67848
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref8
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref8
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref8
http://dx.doi.org/10.1080/00450618.2015.1110620]
http://dx.doi.org/10.1080/00450618.2015.1110620]
http://dx.doi.org/10.1080/00450618.2015.1110620]
http://dx.doi.org/10.1080/00450618.2015.1110620]
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref10
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref10
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref10
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref11
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref11
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref11
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref12
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref12
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref12
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref13
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref13
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref13
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref13
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref14
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref14
http://dx.doi.org/10.1109/JSYST.2015.2428620
http://dx.doi.org/10.1109/JSYST.2015.2428620
http://dx.doi.org/10.1109/JSYST.2015.2428620
http://dx.doi.org/10.1109/JSYST.2015.2428620
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref16
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref16
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref16
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref16
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref17
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref17
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref17
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref18
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref18
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref18
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref18
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref19
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref19
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref19
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref20
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref20
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref20
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref20
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref21
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref21
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref21
http://dx.doi.org/10.1080/00450618.2015.1066854]
http://dx.doi.org/10.1080/00450618.2015.1066854]
http://dx.doi.org/10.1080/00450618.2015.1066854]
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref23
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref23
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref23
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_10_Mobile_Risks
http://v1.aberdeen.com/launch/report/research_report/5136-RR-performance-web-application.asp
http://v1.aberdeen.com/launch/report/research_report/5136-RR-performance-web-application.asp
http://v1.aberdeen.com/launch/report/research_report/5136-RR-performance-web-application.asp
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref24
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref24
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref24
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref25
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref25
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref25
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref26
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref26
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref26
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref27
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref27
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref27
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref28
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref28
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref28
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref28
http://www.w3.org/TR/wsc-ui/
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref29
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref29
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref29
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref30


S. Pokharel et al. / Computer Standards & Interfaces 49 (2017) 71–7878
malware detection system, Digit. Investig. 13 (2015) 1–14.
[50] N. Tsalis, N. Virvilis, A. Mylonas, T. Apostolopoulos, D. Gritzalis, Browser

Blacklists: A Utopia of Phishing Protection, Springer, 2015.
[51] The U.S. Mobile App Report 2014, ComScore.
[52] N. Virvilis, A. Mylonas, N. Tsalis, D. Gritzalis, Security busters: web browser

security vs. rogue sites, Comput. Secur. 52 (2015) 90–105.
[53] H. Wadkar, A. Mishra, & A. Dixit, 2014, ‘Prevention of information leakages in a

web browser by monitoring system calls’, Advance Computing Conference
(IACC), 2014 IEEE International, IEEE, pp. 199–204.

[54] Z. Wang F.X. Lin L. Zhong M. Chishtie. ‘Why are web browsers slow on
smartphones? in: Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications, ACM 2011 91 96.

[55] Web Storage, W3C (2015).
[56] D., Wu & R.K., Chang 2011, Indirect File Leaks in Mobile Applications.
[57] Y. Yang, H. Cai, Z. Wei, H. Lu and K.-K.R. Choo, 2016. Towards lightweight

anonymous entity authentication for IoT applications, in: Proceedings of 21st
Australasian Conference on Information Security and Privacy - ACISP 2016,
Melbourne, Australia, Volume 9722/2016 of Lecture Notes in Computer Sci-
ence (pp. 265–280), Springer-Verlag, 4–6 July.

[58] Y. Yang, J. Lu, K.K.R. Choo and J. Liu, 2015. On lightweight security Enforcement
in Cyber-physical Systems, in: Proceedings of International Workshop on
Lightweight Cryptography for Security & Privacy (LightSec 2015), Bochum,
Germany, Volume 9542/2016 of Lecture Notes in Computer Science (pp. 97–
112), Springer-Verlag.

[59] X., Zhang, K., Ying, Y., Aafer, Z., Qiu & W., Du, Life after App Uninstallation: Are
the Data Still Alive? Data Residue Attacks on Android’, NDSS, 2016.

[60] X. Zhou S. Demetriou D. He M. Naveed X. Pan X. Wang C.A. Gunter K. Nahr-
stedt. ‘Identity, location, disease and more: Inferring your secrets from an-
droid public resources’, in: Proceedings of the 2013 ACM SIGSAC conference
on Computer communications security ACM, 2013, pp. 1017–01028.

[61] Y. Zhou, X. Jiang, X. 2012, ‘Dissecting android malware: Characterization and
evolution’, Security and Privacy (SP), 2012 IEEE Symposium on, IEEE, pp. 95–
109.

http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref30
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref30
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref31
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref31
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref32
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref32
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref32
http://refhub.elsevier.com/S0920-5489(16)30074-5/sbref33

	Mobile cloud security: An adversary model for lightweight browser security
	Introduction
	Background: Mobile browsers
	Related work
	Our proposed adversary model and a prototype App
	Adversary model
	Prototype App
	Activity 1: Determining when browser starts running
	Activity 2: Copying of cache files
	Activity 3: Checking network connection and file transfer
	Activity 4: Insertion of image in cache (cache poisoning)


	Experiment setup
	Findings
	Dolphin
	UC browser
	Samsung stock browser
	CM Browser
	Summary

	Discussion
	Conclusion and future work
	Acknowledgments
	References




