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Abstract—Network traffic volume estimation and prediction
is an important research topic that attracts persistent attention
from the networking community and the machine learning com-
munity. Although there has been extensive work on estimating
or predicting the traffic matrix using time series models, low
rank matrix decomposition et. al, to the best of our knowledge,
there is few work investigating the problem whether we are
able to estimate and predict the traffic volume based on some
statistics of the traffic which are much less costly to collect, for
example, the flow counts. In this paper, we propose to model the
relationship between the traffic volume and simple statistics about
flows using a Hidden Markov Model based on which we can avoid
direct measurement of the traffic volume but instead we estimate
and predict the hidden traffic volume based on those simple
flow statistics which are collected by some sketch techniques.
We demonstrate the feasibility and effectiveness of our proposed
method using some semi-simulation and real data experimental
results.

I. INTRODUCTION

Network traffic volume estimation and prediction is a very

important research problem in networking. Accurate estima-

tion and prediction of the traffic volume, especially the traffic

matrix, is beneficial to network routing control, congestion

control, network resource allocation and long term planning,

and thus it has attracted extensive attention in the networking

community and the machine learning community. There are

mainly two main streams of research in existing works. The

first main stream assumes that at any given time slot, the

aggregated traffic volume (the number of bytes) transmitted

between a certain source destination pair can be measured,

and then a time series analysis model such as linear models in-

cluding AR,ARMA,ARIMA,FARIMA [6], [7], [16], [14] and

nonlinear models including ANN,RNN,GARCH [10], [17],

[2], [8] is applied to predict the future traffic. The limitation

of this category of approaches is that we need to directly

measure the traffic volume of the previous time intervals in

order to predict the traffic volumes for the future time interval.

However, direct measurement of the traffic volume is too

expensive to be feasible, especially in the large scale high

speed network, and thus although this approach is simple but

in practice, it is not well scalable. The other main stream of

approaches is usually termed network tomography [3], [1],

[9], [4] which is complementary to the first main stream

approach. The idea of network tomography is to estimate the

network traffic volume based on other observations such as

the link utilizations. Link utilization is the aggregated traffic

volume of those flows going through that link. Consequently,

usually there is a deterministic linear system to describe the

relationship between the link utilizations and the hidden traffic

volumes. However, one of the fatal limitation of the network

tomography approach is that the linear system is always under-

determined as the number of links is far less than the number

of source destination pairs in a network. Recovering the hidden

traffic volume from the limited amount of link utilizations is

extremely difficult.

Realizing the strong limitations of existing works, in this

paper, we investigate the possibility of inferring the hidden

traffic volume based some flow statistics which are much

easier to collect such as the number of flows in a certain time

interval. To the best of our knowledge, our work is the pioneer

work exploiting the dependence between the flow counts and

the flow volume to estimate and predict the traffic volume.

We propose to use a Hidden Markov Model to describe the

relationship of the flow count and the flow volume and also

the temporal dynamic behavior of both. We use the state-

of-the-art algorithms such as Kernel Bayes Rule (KBR) and

Recurrent Neural Network (RNN) with Long Short Term

Memory unit(LSTM unit) to train the model and apply the

model to predict the future traffic.

In the rest of this paper, in Section II, we discuss the existing

works which are contributed to estimating and predicting the

network traffic; in Section III, we propose our hidden Markov

model to estimate and predict the future traffic using Kernel

Bayes Rule [5], [15] as well as Recurrent Neural Network;

in Section IV, we conduct experiments using semi-simulated

data and real network traffic data; in Section V, we conclude

this paper.

II. NETWORK TRAFFIC ESTIMATION AND PREDICTION

In the past decades, there are large amounts of works

published to solve the network traffic estimation and prediction

problem. As discussed in the introduction, those works are

mainly divided into two main categories. One is to assume

that we are able to observe the network traffic aggregated in

sequential time intervals and we build mathematical model to

predict the future traffic in a rolling way[6], [7], [16], [14],

[10], [17], [2], [8]. The other category of methods termed

network tomography avoid direct measurement of network
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traffic transmitted between any two end hosts in which we are

interested, but instead try to recover the hidden traffic volume

using some link utilizations. In this section, we will briefly

discuss the formulations as well as the limitations of these

two categories of methods.

A. Rolling Prediction Using Past Observations

This category of methods [3], [1], [9], [4] assume that we

are able to observe the traffic volume in a sequential way.

Our goal is to predict the future traffic based on the past

observations. The foundation of this category of methods is

the self-similarity of the network traffic. In general, we can use

the following formulation to describe the prediction process:

xt+1 = f(xt, · · · ,xt−p+1, εt, · · · , εt−q+1) + εt+1, (1)

where xt is the traffic volume transmitted at time t of those

source destination pairs in which we are interested, εt is the

prediction error at time t, p is the number of past observations

that are used for prediction and q is the number of past

prediction errors that are used to correct the prediction.

The training phase is to learn a best function that minimizes

the prediction error as follows:

f∗ = argmin
f

E[(xt+1−f(xt, · · · ,xt−p+1, εt, · · · , εt−q+1))
2].

Many models are used to approximate f . A simple case is

the linear model such as ARMA and its variants like ARIMA

and FARIMA. In ARMA models, the relationship between the

predictor and the target variable is simply described using a

linear model as follows:

xt+1 =

p−1∑
i=0

αixt−i +

q−1∑
j=0

βjεt−j + εt+1, (2)

where αi and βj are coefficients that can be easily learnt by

Least Square Regression.

Linear models are easy to implement and have good in-

terpretation and thus are widely used in many real work

time series analysis problems. However, linear models are

shown not sufficient to describe some nonlinear behaviors of

the network traffic. To make the model more flexible, there

are also works using Artificial Neural Network (ANN) to

approximate the nonlinear function f .

ANN is a very powerful nonlinear function approximator

given sufficient number of hidden neurons. As illustrated by

Fig. 1, we feedward the past observations and the prediction

errors to the neural network and the neural network outputs

a predicted future traffic volume. The training phase of the

neural network is to adjust the weights of connections be-

tween two adjacent layers of neurons in order to minimize

the prediction errors. Back prorogation using batch gradient

descend or stochastic gradient descend is commonly used to

train a neural network.

Although the idea of rolling prediction using the past

observations looks simple and efficient, the main limitation

Fig. 1: Artificial Neural Network

is that one should be able to collect the traffic volumes

in sequential time intervals which could be very expensive

especially in a large scale high speed network. To avoid direct

measurement of the traffic volumes, there are methods termed

network tomography proposed to estimate the traffic volume

from link utilization data and then use the estimated traffic

volume to do prediction as described in the next section.

B. Network Tomography

The idea of network tomography is to exploit the relation-

ship between the link load data and the traffic demand among

the end hosts of the network. Denote by Xt a vector collecting

all traffic volumes transmitted at time slot t between any two

end hosts of the network and denote a routing matrix by A
containing the routing information, i.e. Ai,j = 1 means that

the link i belongs to the path that the source destination pair

j used to transmit their traffic; otherwise Ai,j = 0. We also

denote by Yt a vector collecting all link loads at time slot t.
Then we can formulate the relationship between the link load

and the traffic volume by the following linear system:

Yt = AXt, ∀t. (3)

Note that we assume during the observation period, the routing

matrix is not changed. Even with this assumption, the system

described in Eq. 3 is very difficult to solve because the system

is highly under-determined since the number of link is usually

far less than the number of end host pairs in a network.

There has been extensive research using compressive sens-

ing, expectation-maximization (EM) algorithms to solve this

system. In general, those algorithms are complicated and the

results are not satisfying.

Realizing the strong limitations of those existing works, we

propose a new framework of estimating the traffic volume

based on some simple flow level statistics using Hidden

Markov Models in the following section.

III. INFERRING AND PREDICTING TRAFFIC VOLUME

USING HMMS

In this section, we discuss the possibility of inferring and

predicting traffic volume based on some simple flow level

statistics. This idea is based on the observation that there

exists strong statistical dependence between those simple flow

level statistics and the total traffic volume as illustrated by the
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following figure which is obtained by analyzing a time series

of real network traffic.

Fig. 2: Relation between flow counts and flow volumes

Fig. 2 shows the relationship between the flow numbers at

different time slots and the corresponding total flow volumes

(in terms of bytes). Here we normalize the time series such

that they have zero means and standard deviations. We can see

that it is possible to exploit this relationship to infer the volume

based on the flow count as there is significant correlation

between the flow count and the traffic volume.

A. Simple Flow Statistics and Sketch Technique

We argue that collecting the simple flow statistics is much

less expensive than direct measurement of the traffic volume.

Here we can define the flow statistics as the following statis-

tics:

• Cf,t the number of flows at time interval t;
• Ctcp,t the number of TCP flows at time interval t;
• CR(i),t the number of flows using a port number falling

into the range R(i), ∀i at time t.

There is no limitation of using more information that are

beneficial to the estimation of the traffic volume in addition

to those we define here. We put all flow statistics which

are easy to collect into a vector of observations yt =
[Cf,t, Ctcp,t, CR(i),t, · · · ]T .

Collecting those flow level statistics is by nature a problem

of counting distinct items is a data stream, which has been

extensively studied in literature.

B. Hidden Markov Models

Hidden Markov Models are commonly used time invariant

state-space models as follows:

p(X,Y) = π(x0)

T∏
i=0

p(yi|xi)

T−1∏
i=0

p(xi+1|xi), (4)

where xi is the hidden variable and yi is the observed variable,

p(xi+1|xi) is the transition probability which describes the

dynamic behavior of the system and p(yi|xi) is the emission

probability which describes the how the system generates the

observation based on the hidden variable. In our problem, the

Fig. 3: Hidden Markov Model

traffic volume is the hidden variable xi and the flow statistics

is the observed variable yi and thus p(xi+1|xi) describes

how the traffic volume changes along time and p(yi|xi)
describes the relationship between the traffic volume and the

flow statistics such the the flow count.

Generally, p(xi+1|xi) and p(yi|xi) are unknown and thus

we need to estimate them either by approximation using some

parametric approaches or learning it from data. In this paper,

we assume that we are able to collect some training data

(x0,y0,x1,y1, · · · ,xL,yL) such that we are able to learn

the transition probability and the emission probability. In the

networking problem, we assume that given a limited amount of

budget of storage and measurement capability, we can collect

some packet traces which enable us to learn the how the traffic

volume evolves and the relationship between the volume and

the flow statistics such as the flow count. This is done once

and for the future estimation and prediction, we only need to

collect the flow statistics based on which we infer and predict

the traffic volume.

Suppose we have a sequence of new observed flow statistics

(ỹ0, ỹ1, · · · , ỹt), we would like to infer the corresponding

hidden variable x̃t, i.e.

x̃t ∼ p(xt|ỹt, · · · , ỹ0), (5)

furthermore, we would like to predict the future traffic volume:

x̃t+1 ∼ p(xt+1|ỹt, · · · , ỹ0). (6)

Here we follow Kernel Bayes Rule to obtain a point estimation

of x̃t and x̃t+1. The basic idea is to embed the transition

probability and the emission probability into the RKHS as the

condition mean embeddings as follows:

p(xt+1|xt) �→ ĈX+1X(ĈXX + εI)−1, (7)

p(yt|xt) �→ ĈY X(ĈXX + εI)−1, (8)

where

ĈUV =
1

L

L∑
i=1

k(·, Ui)⊗ k(·, Vi),
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where k(·, ·) is a kernel function such as the square exponential

function k(x, x′) = exp(−(x − x′)/σ2). Suppose we embed

p(xt|ỹt, · · · , ỹ0) into the Reproducing Kernel Hilbert Space

[11] as the conditional mean embedding m̂xt|ỹt,··· ,ỹ0
[13],

[12] , then we can estimate x̃t by finding the value that

minimizes the following objective:

x̃t = argmin
x

‖k(·,x)− m̂xt|ỹt,··· ,ỹ0
‖2H.

We can further embed p(xt+1|ỹt, · · · , ỹ0) into the Reproduc-

ing Kernel Hilbert Space as the conditional mean embedding

m̂xt+1|ỹt,··· ,ỹ0
using the following Kernel Bayes Rule as

follows:

m̂xt+1|ỹt,··· ,ỹ0
= ĈX+1X(ĈXX + εI)−1m̂xt|ỹt,··· ,ỹ0

,

since

p(xt+1|ỹt, · · · , ỹ0) =

∫
p(xt+1|xt)p(xt|ỹt, · · · , ỹ0)dxt

and in RKHS, the integration simply reduces to matrix multi-

plication. Similarly, we can predict x̃t+1 by finding the value

that minimizes the following objective:

x̃t+1 = argmin
x

‖k(·,x)− m̂xt+1|ỹt,··· ,ỹ0
‖2H.

The computational complexity of KBR is O(n3) where n is

the training sample size. The computational complexity can

further be reduced to O(nr2) where r << n is the cardinality

of the subset of regressors. For more details, please refer to

[5], [15].

An alternative is to use Recurrent Neural Networks to

predict the future traffic volume based on the flow counts.

Different from feedforward neural networks in which there

Fig. 4: Future traffic prediction using RNN

is no interconnection among the neurons in the same hidden

layer, RNNs have interconnected neurons in the same hidden

layers which means that RNNs maintain internal memory to

store previous states of neurons and feed the previous states of

those neurons to themselves in addition to the inputs from the

previous layer such that it is very suitable to process arbitrary

sequences of inputs and thus applicable to tasks such as time

series analysis.

In our problem, we only need to train a RNN which takes

the flow count at any time interval t and then output an

estimate of the future traffic volume at time interval t+1. The

objective of the train phase is to learn the optimal weights

of connections in the RNN such that the prediction error is

minimized. Deep recurrent neural network could be used if

necessary.

IV. EXPERIMENT

In this section, we conduct experiments using semi-

simulated data and real network traffic data to demonstrate the

feasibility of inferring and predicting network traffic volume

based on simple flow statistics such as flow counts. In the

following experiments, we normalize both time series such

that they have zero means and standard deviations.

A. Semi-Simulation

In this section, we conduct semi-simulation where we use

the public benchmark data named 2004 Abilene data from the

Internet1.

This dataset contains 24 weeks of 5 minute averages for 12

routers (12×12 matrices). In this experiment, we only use the

traffic of the (3, 3)-th entries of the matrix .

Denote by xt the traffic volume at time interval t and yt the

corresponding flow count. We generate the flow counts from

the traffic volume using the following mechanisms (condi-

tional distributions) which exhibit certain kinds of nonlinearity

and stochasticity.

• M1: yt = 0.01 ∗ (xt + 0.05 ∗ ξ1 + 0.05 ∗ ξ2),
• M2: yt = 0.01 ∗ ((xt)

0.1 + 0.25 ∗ ξ1 + 0.25 ∗ ξ2),
where ξ1 follows standard Gamma distribution and ξ2 follows

standard Gaussian distribution.

Fig. 5: synthetic flow count vs traffic volume

We conduct the experiments under different settings of

training and testing sample size (Str, Stst)=(200, 700),

(300, 600), (400, 500). The results are summarized in the

following tables for both M1 and M2.

Table I and II show the Mean Square Error of prediction in

both scenarios of conditional distributions of the flow count

given the flow volume under different settings of training

sample size and testing sample size.

1http://www.maths.adelaide.edu.au/matthew.roughan/Stuff/Abilene.tar.gz
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TABLE I: Prediction Mean Square Error for M1

Algo (200, 700) (300, 600) (400, 500)
KBR 0.2215 0.1684 0.1991
RNN 0.2396 0.2151 0.2538

Fig. 6: Traffic Volume Prediction based on Flow Counts under

M1

We find that the prediction error is quite small as here we

normalize the time series such that the original time series is

with unit variance.

Fig. 7: Traffic Volume Prediction based on Flow Counts under

M2

Fig. 6 and 7 show the predicted traffic volume vs. the

real traffic volume for both conditionals M1 with the training

sample equals to 200. We can see the predicted traffic volumes

are very close to the real value.

B. Real Network Traffic

In this section, we conduct experiments using the real

network traffic from the Internet. We divide the whole trace

into 400 time interval according to the timestamps of the flow

records and count the number of flows as well as the total

number of bytes within each time interval.

The relationship between the flow counts and the total traffic

volume is shown in Fig. 2. We also conduct experiments

TABLE II: Prediction Mean Square Error for M2

Algo (200, 700) (300, 600) (400, 500)
KBR 0.1624 0.1454 0.1599
RNN 0.1686 0.1545 0.1608

TABLE III: Prediction Mean Square Error

Algo (100, 300) (200, 200) (300, 100)
KBR 0.3545 0.3092 0.2926
RNN 0.4285 0.4126 0.3441

RNN (volume observed) 0.6524 0.2202 0.1517

using different training sample size and testing sample size

(Str, Stst) = (100, 300), (200, 200) and (300, 100).

In this experiment, we also compare the accuracy of predic-

tion based on flow counts with the accuracy of prediction based

on observed traffic volumes in previous timestamps. Note that

in this paper, we advocate the idea of prediction based on

simple statistics such as flow counts since direct measurement

of traffic volume is too expensive. In this experiment, we

include time series prediction based on past observations of

traffic volume just in order to show the gap between prediction

based on noisy observations and prediction based on perfect

information. We use RNN again but the input to RNN is the

past observed traffic volume other than the past flow count.

The prediction accuracies are shown in Table III.

Fig. 8: Traffic Volume Prediction based on Flow

Counts(Training:Testing = 1:3)

Fig. 9: Traffic Volume Prediction based on Flow

Counts(Training:Testing = 2:2)

We can see that generally, when the sample size is larger,

the prediction error gets smaller. Even when the ratio between

the testing sample size and the training sample size is as large

as 3, the prediction errors for both KBR and RNN are less

than 0.5 which are less than half of the variance of the time

series. We can see the gap between prediction based on noisy

observations and prediction based on perfect information is not
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Fig. 10: Traffic Volume Prediction based on Flow

Counts(Training:Testing = 3:1)

large which shows there should be a solution that balances the

prediction accuracy and monitoring costs.

Fig. 8, 9 and 10 also show the predicted time series vs the

real one under different settings of training and testing sample

size ratios. We can see that is generally, the predicted time

series match the real one quite well.

V. CONCLUSION

In this work, we described how to use several machine

learning techniques including Hidden Markov Model based

on Kernel Bayes Rule as well as Recurrent Neural Network

to estimate traffic volume as well as to predict the future

traffic volume based on some simple flow level statistics that

can be much easier collected using sketching techniques. This

approach avoids direct measurement of the traffic volume

and thus is much less costly in terms of the complexity and

the storage requirement. This is particularly useful in large

scale high speed network where direct measurement of traffic

volume for all source destination pairs is nearly impossible

and the estimation of the network traffic volume from the

link load is extremely difficult. By conducting semi-simulation

and experiments using real network traffic data, we show the

use of simple flow level statistics such as the flow counts,

provides useful information to predict traffic volume. In the

future work, we plan to apply the proposed framework to real

network monitoring and traffic engineering.

There are also remaining issues to be addressed. One of

them is whether the dependence between the traffic volume

and simple flow level statistics such as flow counts is sig-

nificant enough in all networks such as WAN and inter-

data center traffic. The second issue is the nonstationarity

of the network traffic. Since the network traffic is changing

dynamically which means that the behaviors of the transition

function and the emission function could also change. In this

case, we need to develop online learning algorithms for KBR

as well as RNN such that the model adjusts and adapts itself

to the dynamic network traffic. The third open question is

besides the flow count, what other flow level statistics we can

also include in order to improve the prediction accuracy.
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