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INTRODUCTION

Experimental studies of decision making have, for
the most part, examined choices with clearly defined
probabilities and outcomes in which the decision
maker selects between options that have consequences
only for them. This is reflected in the fact that the
canonical decision tasks involve choices between mon-
etary gambles — for example, participants might be
asked whether they prefer a 50% chance of $25, or
a certain $10. Though the outcomes and likelihoods
are often complex and uncertain, and sometimes
ambiguous, these decisions are typically made in
socially isolated settings.
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However, in our daily life decisions are seldom
made in these sterile situations, and indeed many of
our everyday decisions and choices are made in the
context of a social interaction. We live, work, and play
in highly complex social environments, and the deci-
sions we make are often dependent on the concomitant
decisions of others, for example, when we are deciding
to extend an offer of employment or when we are
entering a business negotiation. These decisions
have the potential to offer a useful window into more
complex forms of decision making, decisions that
approximate many of the more interesting choices we
make in real-life. This chapter examines a neuroeco-
nomic approach to study this problem in non-human
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primates, that is, by directly measuring or manipulat-
ing neural signals in monkeys who are engaged in
such social decisions.

The nature of decision making may change funda-
mentally when the outcome of a decision is dependent
on the decisions of others, an issue also taken up in
Chapters 2, 11, 25, and 27 of this book. Under these
kinds of conditions, the standard expected utility com-
putation that underlies many of the existing theories
and models of decision making described in Chapter 1
is complicated by the fact that we must also attempt
to infer the beliefs of our partner or opponent in
attempting to reach the optimal decision, as noted in
Chapter 2.

As part of the neuroeconomic approach, several
groups of researchers have begun to investigate the
psychological and neural correlates of relatively simple
social decisions using tasks derived from a branch of
experimental economics that focuses on game theory.
These tasks, though simple, may require sophisticated
reasoning about the motivations of other players in
the task. The combination of these tasks and modern
neuroscientific methods have the potential to greatly
extend our knowledge of both the brain mechanisms
involved in social decision making, as well as advanc-
ing the theoretical models of how we make decisions
in a rich, social environment.

This chapter focuses on the use of invasive
electrophysiological techniques in monkeys for study-
ing decision-making processes during game-theoretic
tasks. The biggest advantage of this approach is that it
allows us to directly measure and manipulate neural
signals and circuits with exquisite spatial and temporal
resolution during the actual decision-making process.
For a number of technical reasons that will be dis-
cussed below, this approach has been limited to simple
iterative games such as rock-paper-scissors. These sim-
pler games are ideal for examining neural processes
involved in representing reward, probability, subjec-
tive value, choice selection and adaptive learning. The
reader is directed to Chapters 11 and 25 that adopt
the complimentary neuroeconomic approach of brain
imaging in humans during games. The advantage with
human brain imaging is that it examines the decision
processes in the species we are most interested in,
ourselves. Also, more sophisticated games can be
employed in humans to examine social preferences
and related concepts, such as fairness, reciprocity, and
trust that play important roles in challenging social
situations. The currently available neuroimaging tech-
niques, however, lack the spatial and temporal rich-
ness of direct neurophysiological measurements.
Together, these human and non-human primate
approaches are providing us with unparalleled access
to the process within the “black-box” and the promise
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of a deeper understanding of how social animals suc-
cessfully (and sometimes unsuccessfully) interact.

GAME THEORY

In essence, game theory is a collection of rigorous
models aimed at explaining situations in which
decision makers must interact with one another, and it
is the focus of Chapter 2 in this volume. In classical
game theory (e.g., von Neumann and Morgenstern,
1944), it is assumed that decision makers have full
knowledge not only about each of the alternative
actions they can choose, but also know about how the
payoff is determined jointly by their actions and
actions of other decision makers. The concept of an
equilibrium plays a central role in understanding
these interactions. For example, a set of strategies is
referred to as a Nash equilibrium (Nash, 1950; also see
Chapter 2) when no individual players can increase
their payoffs by deviating from such strategies
unilaterally. For example, if both players in a game
of rock-paper-scissors were choosing between the
three options unpredictably and in equal proportions
(a mixed-strategy) they would be at the Nash equilib-
rium because neither would have an incentive to
change their strategy, conditional upon their belief that
their opponent is also behaving rationally in this
regard. Such game theoretic equilibria would be accu-
rate models of human or animal decision making, how-
ever, only to the extent that real decision makers are
capable of making all the inferences necessary to iden-
tify and implement such equilibrium strategies. In fact,
when the behaviors of humans and animals during
various games are systematically studied in laboratory
experiments, the results often display similar system-
atic deviations from the predictions of equilibrium
strategies (a point taken up in the preceding chapter
and in Camerer, 2003). Typically, decision makers are
both less selfish and more willing to consider factors
such as reciprocity and equity (Chapter 11), than the
classical game theory might predict. In addition, when
the same game is played repeatedly, decision makers
tend to adjust their strategies gradually to improve the
outcomes of their choices. In fact, humans and mon-
keys display similar dynamics in their choice behaviors
during iterative games (Lee, 2008), and in a way that is
often not captured by classical game theory. It is also
important, however, for the reader to keep in mind
that despite these strategic similarities between species,
it is unclear whether monkeys performing experiments
in laboratories truly understand that they are engaged
in a strategic game because they often do not face a
live opponent in the laboratory, nor can the researchers
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provide them with verbal instruction or receive self-
reports from the monkeys.

Nonetheless, the well-characterized tasks and for-
mal modeling approach offered by game theory pro-
vides a useful foundation for the study of decisions in
a social context. From an experimental standpoint, the
mathematical framework of game theory provides a
common language in which findings from different
research groups, and indeed research methodologies,
can be compared, and deviations from model predic-
tions quantified. These tasks produce a surprisingly
varied and rich pattern of decision making, while
employing quite simple rules. The rules for the three
iterative, repeated games that have been studied in
monkeys — matching pennies, the inspection game, and
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Figure 26.1. As we describe the results for each below,
we will examine the manner in which these tasks have
been adapted for neurophysiological experiments in
awake, behaving monkeys.

The benefits of combining game theoretic tasks with
systems neuroscience techniques, such as single-
neuron recording, are twofold. First, as described
above, choice patterns in these tasks often do not con-
form precisely to the predictions of classical game the-
ory, and therefore more precise characterizations of
behavior, in terms of the neural process that underlie
them, will be important in adapting these models to
better fit how decisions are actually made. Second,
neuroscience can provide important biological con-
straints on the processes involved, and indeed research

rock-paper-scissors — are shown in normal form in is revealing that many of the processes thought to
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Payoff matrices for mixed-strategy games used in neurophysiological experiments in non-human primates. Matching pen-
nies task (A), inspection game task (B), traditional rock-paper-scissors task (C), and the biased rock-paper-scissors task (D). The red numbers

in each cell refer to the units of liquid reward received by the monkey (or the “virtual” units for the blue numbers in the case of the computer
opponent). For the inspection game task (B), I refers to the “cost of inspection” for the computer opponent and it ranged from 0.1 to 0.9 across

blocks of trials in 0.2 step increments.
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underlie this type of complex decision making may
overlap strongly with more fundamental brain pro-
cesses such as reward, punishment and disgust.
Knowledge of the “building blocks” of decision
making in games will greatly assist in constructing
better models of this process.

PRIMATE VISUO-SACCADIC CIRCUITRY
AS A MODEL SYSTEM FOR STUDYING
THE NEURAL BASIS OF SOCIAL
DECISION MAKING

Although use of awake, behaving monkeys has
been a mainstay of systems neuroscience research for
over 40 years, their use in conjunction with game-
theoretic tasks is less than 10 years old. Though still in
its infancy, this research has already produced signifi-
cant insights into the hidden processes that occur
within the so-called “black-box” during social interac-
tions. Here we outline the general neurophysiological
techniques for the non-neuroscientist and highlight
their promise and limitations in providing future
insights.

A suitable animal model is required to permit
direct access to the neural substrate during decision
making in games play. For a number of reasons, the
rhesus monkey (Macaca mulatta) has been the pri-
mary animal model for studying higher-order deci-
sion processes. The general organization of their
nervous system is similar to that of humans and this
complexity allows these non-human primates to learn
relatively sophisticated behavioral tasks in the labora-
tory. The suitability of these non-human primates
likely extends into the social domain, a point taken
up in Chapter 7. Both species have well-established
hierarchical social structures with sophisticated sig-
naling systems for maintaining this structure (Byrne
and Whiten, 1989; de Waal, 1990). Across a number
of decision-making contexts, including that of mixed-
strategy games on which we focus here, monkeys
and humans display apparently comparable strate-
gies, suggesting that many of the underlying neural
processes may be shared.

For a number of practical reasons, decision-making
research in animals has focused primarily, but not
exclusively (Kalaska et al., 2003; Romo and Salinas,
2003), on the monkey visuo-saccadic system (Glimcher,
2003; Schall and Thompson, 1999). The primate visuo-
saccadic system is of critical importance because it
allows us to efficiently extract visual information from
our environment. This is achieved by aligning the
foveae — the central portion of the retinae associated
with the highest visual acuity — with targets of interest
using ballistic eye movements known as saccades,
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followed by stable fixation, when visual information is
acquired and processed in extra-striate visual areas.
Although not traditionally considered “choices,” sac-
cades are in fact the behavioral read-out of one of our
most common decisions, that of choosing when and
where to look.

The neural circuitry underlying visual processing
and saccadic control is well understood, which pro-
vides a solid foundation for asking questions about
the decision processes that link sensation to action.
Saccades are particularly simple and stereotyped
movements and, unlike other sensory-motor systems,
all the circuitry is housed entirely within the head.
This last point is important because the head can be
restrained from moving during experiments thus
providing the stability necessary for recording tiny
neurons within an awake and otherwise moving ani-
mal. To do so, monkeys are trained to sit in specialized
head-restraining chairs while performing experiments.
Consequently, social interactions within the neuro-
science laboratory have involved directing saccades
to visual targets controlled by virtual computer
opponents (Figure 26.2) rather than direct, rough-and-
tumble interactions between monkeys. Comparable
restrictions are incurred when conducting experiments
on social decision making within scanners in human
experiments (see Chapter 6).

Advantages and Disadvantages of a Systems
Neurophysiology Approach

The advantages of the systems neurophysiology
approach stem from the direct access to the neural sub-
strate that it seeks to characterize. Neuronal signals
can be sampled with exquisite temporal (<1 ms) and
spatial (individual neurons) resolution and, with
nearly comparable precision, neuronal activity can also
be artificially manipulated.

For those not familiar with the methodology asso-
ciated with neurophysiology in awake, behaving
monkeys, we outline it briefly. It is treated in greater
detail in Chapter 6. A chamber with a removable cap
is fixed over a small opening in the skull and
cleaned daily under antiseptic conditions. At the
onset of each experiment, a fine metal electrode or
needle pierces the membrane (dura) which covers
the brain and, with high precision, is slowly lowered
to the brain region of interest. These procedures are
painless and cause little damage to neural tissue
because the brain lacks pain receptors and only very
thin probes are used. These latter properties are criti-
cal because to obtain accurate experimental results
both the animal and brain must be in as natural a
state as possible.
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It is the action potentials, or electrical pulses origi-
nating in one neuron and propagating along axons
described in Chapter 5, which are recorded with
microelectrodes during these experiments. This neuro-
nal activity can be correlated with features of the sen-
sory instructions, internal variables predicted by
economic theory, aspects of the choice response, and
the type of reinforcement. Because this neural activa-
tion can be measured with millisecond precision, it is
the best means for understanding the moment-to-
moment computations underlying the decision
process.

Artificial manipulation of neuronal activity can pro-
vide more direct evidence that a brain region is caus-
ally involved in the decision process, complimenting
the correlational evidence provided by neuronal
recordings. A number of techniques for manipulating
neuronal activity exist as described in Chapter 6.
This chapter describes the artificial excitation of neuro-
nal activity through electrical micro-stimulation. The
temporal precision, spatial extent, and intensity of
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neuronal activity manipulation can be controlled more
precisely than with the techniques currently available
for reversibly inactivating regions of the brain.

A number of potential disadvantages exist in using
non-human primates to infer the neural processes
underlying human social interactions, however. To
date, non-human primates have only been trained
to perform simple mixed-strategy games during neuro-
physiological recordings. The reader should refer to
Chapters 2, 7, 11 ,and 25 for a discussion of other
forms of social interactions and games that non-human
primates have been trained to perform, and which will
surely be examined with neurophysiological techni-
ques in the near future. Much of the challenge in using
non-human primates is assessing whether they share
key cognitive abilities with us necessary to perform
complex social interactions and, if so, distilling these
abstract tasks into formats that monkeys can under-
stand. Moreover, it may be difficult to train animals
on game-theoretic tasks without verbal instructions,
using only operant conditioning techniques. Even if
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comparable choice strategies are used during experi-
mental games, we must remember that this is a prereq-
uisite, not proof, that the same neural mechanisms
are shared in these two species. That being said, mon-
keys and humans have displayed remarkably similar
strategies under the simple mixed strategy games
studied to date (Barraclough et al., 2004; Dorris and
Glimcher, 2004; Lee et al., 2004, 2005; Thevarajah et al.,
2009, 2010). Although the limits of this animal model
have yet to be determined, understanding the neural
mechanisms underlying decision making during
games in monkeys is important because these may be
directly related to our own decision-making mechan-
isms or, at the very least, they represent the core
mechanisms upon which our more sophisticated deci-
sion processes rest.

Adapting Games for Non-Human Primates

Neurophysiologists have initially focused their
efforts on simple mixed-strategy games primarily
because non-human primates can be trained relatively
easily on these tasks. We next briefly describe some of
these games, and how they have been modified for the
neurophysiology laboratory (Figure 26.2).

Nearly all tasks studied to date involve thirsty ani-
mals competing against dynamic computer oppo-
nents for liquid rewards. Monkeys sit in front of
visual displays and indicate their choices by looking

(A) (B)

Firing frequency

Time from saccade
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to one of several potential choice targets followed by
visual feedback on the choice of the computer oppo-
nent. At the onset of each experiment, a microelec-
trode is manipulated, moved back and forth, until
the experimenter succeeds in isolating the activity of
a single neuron from the background of general
brain activity.

A critical concept needed to interpret neurophysio-
logical findings is that of the neuronal response field.
In many brain areas involved in vision and eye move-
ment control, each neuron is activated by a particular
combination of sensory and motor attributes that
together define the neuron’s response field. In some
structures, such as the visual cortex or the superior col-
liculus, populations of neurons with similar response
fields are organized together into topographic maps of
sensory and motor space (Figure 26.3). Sensory attri-
butes include the spatial location of visual stimuli rela-
tive to the foveae, the speed and direction of motion,
color and shape. Movement-related, or motor, attri-
butes include the direction and amplitude of the sac-
cadic eye movement and the timing of the saccadic
response. If neurons within a given brain region have
response fields with defined sensory and motor attri-
butes, the experimenter determines the neuron’s
response field properties and tailors the choice targets
to engage the neuron under study.

Response fields in various brain regions are further
elaborated in two ways that are relevant to the
decision-making  process. First, response field

Saccade direction

Saccade amplitude

onset

Example of a response field from an individual neuron and population level topographic maps in brain areas with visual
and saccadic responses. Saccadic responses within the superior colliculus (SC) are illustrated here but the principle is similar for visual aligned
responses in more visual areas. (A) Once activity from a single neuron is isolated from background noise, the monkey makes saccades from a
central location (cross) towards targets placed throughout the visual field (black dots). (B) The amount of neuronal activity elicited by this sin-
gle neuron is shown for the five saccadic vectors highlighted in panel A. From these vector-associated activities a heat-map is constructed
illustrating the neuronal response field. The saccade vector associated with target A is considered the center of this neuron’s response field
because it elicits the highest firing frequency. (C) The neurons within the intermediate layers of the SC are organized as a topographic map of
saccade vectors. The populations of neurons with the highest activation are shown in the left SC associated with the five rightward saccades

shown in panel A.
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properties evolve as we move from sensory to motor
related brain regions; in the sensory cortical areas,
response fields encode stimulus properties largely irre-
spective of the movements or decisions made by the
subject and, later on, in motor areas, response fields
encode properties of the movements largely irrespec-
tive of incoming sensory attributes. This transformation
has been well characterized by decades of neuroscience
research. Second, response field activation in many
brain areas is shaped by cognitive and economic fac-
tors even when immediate sensory and motor attri-
butes are fixed. These modulatory processes result
from interactions with other brain regions that lack
classical response fields such as much of the frontal
cortex and parts of the basal ganglia. Neuronal
responses from these modulatory regions tend to be
heterogeneous and only weakly tuned to sensory and
motor attributes of the task. Below we outline neuroe-
conomic approaches to determine how economic vari-
ables such as choices, reward, subjective value and
beliefs are represented in higher cortical regions to
extend classical sensory-motor response fields to select
appropriate social actions.

In a typical neuroeconomic experiment in monkeys,
each game trial, or round, begins with the animal fixat-
ing a central visual stimulus. The animal indicates its
choice by directing a saccade to one of the peripheral
targets upon their presentation, or after a short delay.
Whether the animal receives a liquid reward (or its
amount, type, etc.) depends on both their own choice
and that of the computer opponent. Although com-
puter algorithms vary in their details across studies,
during competitive mixed-strategy games all look for
patterns in the animal’s history of choices and rewards
in an effort to predict and counter the animal’s upcom-
ing actions so that they can approximate a more natu-
ral and biological opponent.

Monkeys have been trained to perform simple zero-
sum games such as matching pennies (Barraclough
et al., 2004; Lee et al., 2004; Thevarajah et al. 2009, 2010)
and rock-paper-scissors (Abe and Lee, 2011; Lee et al.,
2005) and non zero-sum games such as the inspection
game (Dorris and Glimcher, 2004). Another successful
means for studying adaptive decision making in non-
human primates uses foraging tasks that produce
results consistent with Herrnstein’s matching law.
During these tasks, the frequency with which the
animal chooses a given target tends to match the
fractional reward the animal acquires from that target
(Corrado et al., 2005; Herrnstein 1961; Lau and
Glimcher, 2005; Sugrue et al., 2004). Because matching
law tasks do not involve interaction with a strategic
opponent they technically are not games. Nevertheless,
we mention them here because it is unclear whether
monkeys can distinguish between these two classes of
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adaptive tasks. Indeed, matching law experiments and
traditional games may well be more similar than has
been widely appreciated.

Statistical Analyses of Iterative, Repeated
Game Data

A final advantage of studying social decision
making in awake-behaving monkeys is that a wealth
of choice and neuronal data can be collected from each
experimental session. Typically, monkeys will play
many hundreds, if not more than a thousand, repeated
trials during a single experimental session. This is
advantageous for a number of reasons. First, neural
signals and choice sequences are highly stochastic, so
large data sets are extremely valuable for developing a
more accurate representation of a given neuron’s con-
tribution to an overall choice strategy. Second, having
long sequences of both neuronal signals and choice
patterns allows researchers to examine how the history
of previous choices and their outcomes affect proces-
sing on the current trial. It is particularly important to
keep track of such factors as one’s own choices and
their outcomes, your opponent’s choices, and overall
reward rate during social decision making. These are
critical both for providing accurate estimates of the
subjective value of the options to guide the current
choice but also are integral to the learning process and
adapting to dynamic opponents and conditions. Lastly,
such large data sets allow us to perform rigorous
comparisons of various statistical models for choice
and neural activity. We can ask whether neurons in a
particular brain region represent certain variables
predicted by economic models or to determine which
of the competing models provides the best description
of learning, choice behavior, and neural activity.

Given the large amount of choice data that can be
obtained from multiple sessions of behavioral experi-
ments in monkeys, a number of studies have com-
pared different learning models to gain insights about
the nature of learning that takes place during repeated
games. As summarized in the following sections, these
studies have also begun to identify the neural signals
in multiple brain areas, including the prefrontal cortex
and basal ganglia that are likely to play an important
role for decision making during social interactions.

REINFORCEMENT LEARNING

Reinforcement Learning in Games

When decision makers are allowed to make deci-
sions repeatedly in a particular game and observe the
outcomes of their choices as well as the choices of
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other players, their behaviors can be described by vari-
ous learning models more accurately than by the equi-
librium predictions of the classic game theory
(Camerer, 2003; Camerer and Ho, 1999; Erev and Roth,
1998; Fudenberg and Levine, 1998). The models in
reinforcement learning theory (Sutton and Barto, 1998)
have successfully provided parsimonious explanations
for a wide range of choice behaviors (see Chapters 15
and 16), including those occurring during social inter-
actions (Lee, 2008; Lee et al., 2012). Reinforcement
learning theory provides a large number of computa-
tional algorithms that can be used to discover success-
ful strategies by trial and error. In contrast to the
static equilibrium strategies described by traditional
economic approaches, these learning models make
predictions about the dynamics of trial-by-trial choice
behavior. The goal of such algorithms is, of course,
to maximize the sum of the future rewards that
are usually discounted according to their delays.
Perhaps surprisingly, these dynamic models, which
seek to maximize reward, often converge towards an
approximation of the Nash equilibrium under some
conditions.

Algorithms in reinforcement learning theory can be
divided into two different categories, depending on
how the value functions are updated through experi-
ence (Sutton and Barto, 1998; see Chapters 15, 16,
17 and 21). In the simple or so-called model-free rein-
forcement learning algorithms which were the focus
of Chapter 15, the value functions for a given decision
maker are updated exclusively according to the
actual payoffs or rewards resulting from his or her
previous actions. By contrast, in the model-based rein-
forcement learning algorithms covered in Chapter 16,
behaviors can be adjusted more flexibly according
to the decision-maker’s knowledge of his or her
environment.

One area in which these kinds of models have been
extended is in the domain of what rewards a decision
maker would have received if he or she had chosen
differently. The outcomes from such hypothetical
actions are referred to as fictive outcomes. Analogous to
the reward prediction error of traditional, model-free,
reinforcement learning, the difference between fictive
outcomes and the outcomes predicted from the current
value functions is referred to as a fictive reward predic-
tion error. In model-based reinforcement learning, such
as the experience-weighted attraction (EWA) model of
Camerer and Ho (1999), value functions are indepen-
dently updated according to both real and fictive
reward prediction errors simultaneously. Human
neuroimaging studies have, in fact, identified signals
related to fictive reward prediction errors in the
striatum (Daw et al.,, 2011, Lohrenz et al., 2007).
However, whether dopamine neurons encode fictive
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reward prediction errors in addition to actual reward
prediction errors is not yet known. The activity of
individual neurons related to fictive outcomes have,
however, been identified in prefrontal cortical areas,
including the anterior cingulate cortex (Hayden
et al., 2009) and orbitofrontal cortex (Abe and Lee,
2011).

Model-Free Reinforcement Learning During
Matching Pennies Games in Monkeys

In the classic version of the matching pennies game,
each of two players chooses from two alternative
options, and one of the players (matcher) wins if their
two choices “match” and loses otherwise. The payoff
to the other player (non-matcher) is opposite, so the
sum of the two players’ payoffs is zero. When two
rational players participate in the matching pennies
game, the Nash equilibrium is for each player to
choose the two targets with equal probabilities and
independently across successive trials. To test whether
and how monkeys approximated optimal decision-
making strategies in competitive games through expe-
rience, a number of studies have examined the choice
behavior of monkeys in a computer-simulated match-
ing pennies game (Barraclough et al., 2004; Cui and
Andersen, 2007; Lee et al., 2004; Thevarajah et al., 2009;
Figure 26.2A). During one of these neurophysiological
experiments in monkeys (Barraclough et al., 2004),
each monkey played the matching pennies game
against a computer opponent. The animal was
required to begin each trial by fixating a small yellow
square presented in the center of a computer screen
(“fore-period,” Figure 26.2A). Shortly thereafter, two
identical green disks were presented along the hori-
zontal meridian, and the animal was required to shift
its gaze towards one of the targets when the central
fixation target was extinguished. The computer oppo-
nent also chose one of these two targets — although
that was invisible to the monkey — according to a pre-
specified algorithm described below. The animal was
rewarded only when it chose the same target as the
computer.

To investigate how the animal’s choice behavior
would be affected by the strategy of its opponent, the
strategy of the computer opponent was systematically
manipulated in a series of experiments by Lee and
colleagues (2004). Initially, for several days, the com-
puter opponent chose the two targets with equal
probabilities regardless of the animal’s choices. This
was referred to as algorithm 0, and corresponds to the
Nash equilibrium strategy of the matching pennies
game at the static equilibrium. In this case, then the
computer played this static equilibrium, the animal’s
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expected payoff was fixed regardless of what it chose.
All three monkeys tested with algorithm 0 displayed
a strong bias to choose one of the two targets more
frequently (Lee ef al., 2004).

In the next stage of the experiment, the computer
opponent applied a set of statistical tests to the mon-
key’s choices to determine whether the animal’s deci-
sions were randomly divided between the two targets,
and whether successive choices were statistically inde-
pendent. If the animal showed a bias towards one
target or non-independence of sequential choices, the
computer used this information to adjust its choices
so as to maximize the probability that it would win
each round. This more dynamic approach was
referred to as algorithm 1. Importantly, this algorithm
did not examine the animal’s reward history, and
therefore was not sensitive to any bias that the ani-
mal might show that arose from using information
about previous rewards to determine future choices.
When tested with algorithm 1, monkeys chose the
two targets more or less equally. In addition, the ani-
mal’s successive choices were relatively independent,
and as a result, the animal’s overall reward rate was
close to the one that would have been achieved by
two players in Nash Equilibrium, a value of 0.5 (Lee
et al., 2004). Interestingly, the animals were more
likely to choose the same target on the next trial if
the choice in the previous trial was rewarded (win-
stay) and switch to the other target otherwise (lose-
switch). Such win-stay-lose-switch (WSLS) strategies
were not penalized during the period of algorithm 1,
since the information about the animal's reward
history was not utilized by the computer opponent.
All three animals chose their targets according to the
WSLS strategy in substantially more than 50% of the
trials.

In the final stage of these behavioral experiments on
the matching pennies task, the computer opponent
(algorithm 2) also exploited the biases in the animal’s
choice and reward history, including the tendency to
use the WSLS strategy. When this was the case, the
animals were less likely to obtain reward if they used
the WSLS strategy more frequently than 50% of the
trials. As expected, this reduced the probability of the
WSLS strategy significantly in all animals. However,
the WSLS strategy was still used more frequently than
50% in all animals, suggesting that the animals still
relied on a reinforcement learning algorithm to
approximate the Nash equilibrium strategy during the
matching pennies task.

In reinforcement learning models, the probability of
choosing a particular action is typically given by a soft-
max or logistic transformation of the value functions
for all actions. When there are only two choices, this
reduces to the following equation.
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where P(right) denotes the probability of choosing
the rightward saccade in trial f and Q;(x) the value
function of choosing action x (x =right or left). The
parameter 3 determines the randomness, or stochasti-
city, of the decision maker. The choices are
completely random and unrelated to the value func-
tions, when (=0, and become more deterministic as
[ increases. In the standard model-free reinforcement
learning algorithm, the value functions for the actions
chosen by the decision maker (listed as the Q-terms
above) are adjusted according to the following
equation:

Qi1(x) = Qu(x) + a {reward; — Q,(x)}

where reward; indicates the reward received by the
decision maker (1 and 0 for rewarded and unrewarded
trials, respectively) and « the learning rate.

Empirically, Lee and colleagues (2004) found that
the choices of monkeys during the matching pennies
game were relatively stochastic (Barraclough et al.,
2004; Lee et al., 2004). The animal’s choices were also
well accounted for by the model-free reinforcement
learning model. In addition, the fact that the probabil-
ity of using the WSLS strategy decreased against the
more exploitative computer opponent using algorithm
2 suggests that this might be due to a smaller learning
rate. Alternatively, this could also be the result of a
smaller 3, which would have made the animal’s
choices more stochastic. The parameters estimated for
the animal’s behavioral data suggest that the changes
in the animal’s choices related to the different algo-
rithms of the computer opponent were largely due to
the changes in the learning rate (Figure 26.4A). These
results suggest than when faced with a more exploit-
ative opponent during a competitive game, animals
made their choices more stochastic, perhaps by reduc-
ing their learning rates. In addition, they provide a
nice example of so-called “meta-learning,” in which
the parameters of a learning model, such as learning
rate, are optimized (Schweighofer and Doya, 2003;
Soltani et al., 2006).

(26.2)

Hybrid Learning During the Rock-Paper-
Scissors Game in Monkeys

In the model-free reinforcement learning described
above, only the value function for the action chosen
by the decision maker in a given trial is updated
according to the outcome of that action. In contrast,
results from studies on experimental games in
humans suggest that people can also adjust the value
functions for unchosen actions, according to the
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fictive outcomes that alternative actions would have
produced, a feature of the EWA algorithm described
above. Recently, it was found that monkeys can also
adjust their strategies according to the fictive out-
comes from unchosen actions during a rock-paper-
scissors game (Abe and Lee, 2011; Lee et al., 2005).
Nevertheless, consistent with the results from studies
in humans, the choices of monkeys were more
strongly influenced by the actual outcomes from the
actions chosen by the animals, than by the fictive
outcomes from unchosen actions.

To demonstrate this, Abe and Lee (2011) trained
monkeys to play the rock-paper-scissors game
(Figure 26.1D). The monkeys first fixated a small cen-
tral target at the beginning of each trial (Figure 26.2C).
After a brief delay, three green disks were presented as
choice targets, and the animal was free to shift its gaze
towards one of these targets when the central target
was extinguished. Each of these three targets was des-
ignated as rock, paper, or scissors, and whether the
animal would be rewarded as a result of this choice,
and the amount of juice reward given to the animal,
were determined by the payoff matrix of a biased rock-
paper-scissors game in competition with a computer
opponent. For example, if the animal chose the “rock”
target and the computer the “paper” target, then the
animal did not receive any rewarded. When the result
was a tie, the animal was reward with a single drop of
juice. When the animal won by choosing rock, paper,
and scissors, it received two, three, and four drops of
juice, respectively. The payoff for the winning trial was
varied so that the behavioral and neurophysiological
effects of fictive outcomes could be examined quantita-
tively (Figure 26.1D). During this experiment, the

animals were not required to memorize the rules of the
rock-paper-scissors game, since the payoffs from all
three choices determined by the choice of the computer
opponent were visually indicated by the colors of the
feedback stimuli (Figure 26.2C).

To test whether and how the animal’s choices dur-
ing this rock-paper-scissors game were influenced by
fictive outcomes, the behavioral data obtained during
this experiment were analyzed with several different
learning models (Abe and Lee, 2011). This included a
model-free reinforcement learning model, similar to
the one described above, as well as a belief-learning
model. In the belief-learning model, the players update
their beliefs about the strategies of other players after
each trial, and make their choices expecting to produce
the best outcomes given such beliefs. This model was
applied to the animal’s choices during the rock-paper-
scissors game by updating the value functions for all
three choices according to the outcomes determined by
the choice of the computer opponent. For example,
when the computer selected the “rock” target, the out-
come for the animal choosing rock, paper, scissors
would be 1, 2, and 0, respectively, and these values
were used as actual or fictive rewards to update their
value functions for rock, paper, and scissors. Finally,
in a hybrid-learning model, the value functions for
chosen and unchosen actions were updated using two
separate learning rates. Namely,

Qr+1(x) = Qi(x) + aalactual_reward; — Qi(x)},
if x was chosen, and

Qr1(x) = Qi(x) + anlfictive_rewardy(x) — Qx(x)},

if x was not chosen

(26.3)
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where fictive_reward,(x) denotes the fictive reward that
could have been obtained from choosing x in trial ¢. In
addition, ap and op denote the learning rate for the
actual and fictive outcomes, respectively. The results
from these analyses showed that the hybrid learning
model accounted for the monkey’s choices during the
rock-paper-scissors task better than the model-free
reinforcement learning model and the belief learning
model (Abe and Lee, 2011). In addition, the learning
rates for the fictive outcome were always smaller than
those for the actual outcomes (Figure 26.4B), indicating
that actual outcomes exerted more powerful influence
on the animal’s subsequent choices.

CORTICAL MECHANISMS OF
REINFORCEMENT LEARNING
DURING ITERATIVE GAMES

Neural Activity Related to Values and Choices

One of the first areas hypothesized to be important
in representing the value of visual targets in a manner
that could be used to select strategic actions was the
lateral intraparietal area (area LIP). Area LIP was
selected for study because it is situated at the end of
visual processing stream and its outputs impact
regions of the brain involved in planning and execut-
ing upcoming saccades (Bisley and Goldberg, 2003;
Grefkes and Fink, 2005; Pare and Wurtz, 2001).
Previous work had demonstrated that activity in this
region may encode the saliency of visual targets in a
manner that can be used to allocate attentional
resources and/or to select between upcoming saccade
goals (Andersen, 1995; Goldberg et al., 2006). A pio-
neering study conducted by Platt and Glimcher (1999)
demonstrated that important economic variables such
as the probability and magnitude of reward impact the
firing rates of LIP neurons and, in doing so, provided
an alternative decision theoretic framework for study-
ing the role of brain regions in simple sensory-to-
motor transformations.

Given that area LIP lies at a nexus between sensory
and motor processing and is influenced by economic
variables, Dorris and Glimcher (2004) hypothesized
that it could play an important role in representing the
subjective value of choice targets, a neural correlate of
economic objects like expected utility, during competi-
tive games. In their experiment, monkeys competed
against a computer opponent during the mixed-
strategy inspection game (Figure 26.2B). From the
monkey’s perspective the target opposite the response
field yielded a certain small amount of juice each
time it was selected. The target in response field was
“risky” in that it could pay double the certain amount

503

or nothing. The payoff matrix was experimentally
manipulated across blocks of trials so that the mixed-
strategy Nash equilibrium solution for the monkey
ranged from choosing the target in the center of the
neuron’s response field from 10—90% of the time.
This equilibrium was manipulated by manipula-
ting the computer opponent’s “cost of inspection”
(Figure 26.2B, variable I). Effectively, if I is low, the
equilibrium shifts so the risky option is chosen infre-
quently, whereas if I is high, the equilibrium shifts so
the risky option is chosen frequently. Importantly, the
computer opponent’s probability of inspecting remains
50% at equilibrium independent of the value of I, a
core feature of game theory. Experimentally, Dorris
and Glimcher (2004) found that both humans and mon-
keys approached the predicted equilibrium frequencies
when playing this computer opponent although they
tended to choose the risky option slightly too often
when the cost of inspection was low. They reasoned
that if LIP encoded the probability of movement, its
activation would vary across blocks of trials as those
movement probabilities changed. If, however, LIP
encoded the subjective value (or expected utilities) of
the targets, its activation should remain relatively con-
stant as game theory suggests that this value remains
constant at mixed strategy equilibrium, independent of
movement probabilities. This latter interpretation is a
critical feature extension of the Nash equilibrium con-
cept presented in Chapter 2, and follows from the fact
that the theoretical conclusion drawn by Nash is that
subjective value (or expected utility) should be, on
average, equal between the options mixed during
mixed-strategy equilibrium play. LIP activity was,
indeed, shaped by the subjective value of choice stimu-
li; firing rates varied along with changing value under
forced-choice conditions (Dorris and Glimcher, 2004;
Platt and Glimcher, 1999) and remained constant
throughout the behavioral equilibria established dur-
ing mixed-strategy conditions (Dorris and Glimcher,
2004; Figure 26.5A).

Although the Nash equilibrium concept rests on the
idea that there can be no incentive to change one’s
overall strategy once at behavioral equilibrium (Nash,
1950), it does not specify what this means at a trial-by-
trial level. The precise signals obtained from recording
single neurons allow us to examine whether LIP is cor-
related to subjective value trial by trial as a function of
the choice the subject actually made. To estimate sub-
jective value on a trial-by-trial basis, Dorris and
Glimcher (2004) optimized a simple model-free rein-
forcement learning algorithm, similar to ones
described above and in Chapter 15. They fit the model
to the monkey’s pattern of behavioral choices using
maximum likelihood methods in order to try and pre-
dict dynamically the monkey’s pattern of choice from
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Encoding the subjective value of visual targets in area LIP. (A) Activity of a neuron during mixed-strategy inspection game
task. Despite changes in the probability of preferred responses, LIP activity remained relatively constant which is consistent with an overall
equivalency in subjective value at mixed-strategy equilibria. (B) Trial by trial variability in activity during the visual epoch was significantly
correlated to a behavioral estimate of subjective value. Adapted from Dorris and Glimcher, (2004).

trial-to-trial. Briefly, they hypothesized subjective
value of each option was incremented, if reward was
received for choosing the risky option, or decremented,
if reward was withheld for choosing the risky option.
The only free parameter was the learning rate at which
value was updated based on this reward information.
The iterative nature of this reinforcement learning
algorithm resulted in an estimate of subjective value
derived from all of the subject’s previous choices with
the most recent choices being weighted most heavily.
The authors found that trial-by-trial fluctuations in LIP
activity co-varied with this trial-by-trial behavioral
estimate of subjective value (Dorris and Glimcher,
2004; Figure 26.5B).

In addition to area LIP, activity that reflects both tar-
get value and saccade choices has also been identified
in many other brain areas, including the prefrontal cor-
tex. Activity of neurons in each of these regions is
related to the value functions for specific actions or
their transformations. Lee and colleagues demon-
strated this in a series of studies in which activity was
recorded from individual neurons in the dorsolateral
prefrontal cortex (dIPFC; Barraclough et al., 2004), the
dorsal anterior cingulate cortex (ACC; Seo and Lee,
2007), and LIP (Seo et al., 2009). The results from these
studies showed that immediately before the animal
chose its target (during the delay period, Figure 26.2A),
neurons in all of these areas encode not only the ani-
mal’s upcoming choice, but also the sum of the value
functions for two different actions and their difference.

This was demonstrated by using the following regres-
sion model to examine neuronal firing rates:

S¢ =bg + b1 C; + ba{Qi(right) — Q;(left)}

_ (26.4)
+ bs3{Q(right) + Q,(left)}

where S, denotes the spike rate of a given neuron dur-
ing the delay period in trial t, C; the animal’s choice
(C;=1 if the animal chose the rightward target and 0
otherwise), and the value function for target x in trial
t, Qi(x), were estimated from the model-free reinforce-
ment learning descried above. The difference in the
value functions used in this model might be used by
the animal to determine its choice, whereas their sum
might be related to the state value function (Belova et al.,
2008; Cai et al., 2011; Lee et al., 2012; Seo and Lee 2008).
The state value function corresponds to the average of
action value functions weighted by the probability of
taking each action, and therefore indicates the overall
goodness of options faced by the animal at any given
time. During the matching pennies game, for example,
both actions are chosen with roughly equal probabili-
ties, so the average of the value functions is a good
estimate of the state value function. The results of this
analysis revealed that signals related to the sum of
the value functions are widespread in the brain at the
level of single neurons (Lee and Seo, 2011; Seo and
Lee, 2007, 2008; Seo et al., 2009). In addition, a signifi-
cant proportion of the neurons in the dIPFC and LIP,
but not in the ACC, also modulated their activity
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according to the difference in the value functions
(Seo and Lee, 2007, 2008). These results suggest that the
cortical network consisting of the prefrontal and parietal
areas might be important for value-based action selec-
tion during iterative competitive games (Lee et al., 2012).
It also seems likely that the value-related signals
observed in these brain areas during matching pennies
game are likely to contribute to reinforcement learning
in non-social context as well, in which the subject’s
choices are well described by model-free reinforcement
learning algorithms (Sugrue et al., 2004).

Neural Activity Related to Choice and Reward
Histories

The results described in the previous section sug-
gest that the neurons in multiple cortical areas, such as
the dIPFC and LIP, might play an important role in
integrating the signals related to the animal’s previous
choices and their outcomes to update the value func-
tions. To test this directly, Lee and colleagues applied
the following regression model that includes the previ-
ous choices of the animal and computer opponent as
well as the animal’s choice outcomes:
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where 1, is a row-vector consisting of three dummy
variables corresponding to the animal’s choice (0 and 1
for the leftward and rightward choices, respectively),
the computer’s choice (coded in the same way as the
animal’s choice), and the reward (1 for rewarded trials
and 0 otherwise) in trial {, and B is a vector of 13
regression coefficients. Thus, the regression coefficients
in this model quantify how strongly the activity of a
given neuron is modulated by the current and past
choices of the animal and their outcomes as well as the
choices of the computer opponent. This analysis was
performed separately for the spike rates measured
with a series of non-overlapping 0.5-s bins defined rel-
ative to the time of target onset or feedback onset. The
results showed that many neurons in the dIPFC and
LIP encoded signals related to the animal’s choice and
its outcome as well as the computer’s choice not only
in the current trial, but also those in the last several
trials (Seo and Lee, 2007, 2008; Seo et al., 2009;
Figure 26.6). The activity related to the previous
choices of the computer opponent might of course be
related to the value functions for alternative choices,
since during the matching pennies game animals are
rewarded for choosing the same target as the
computer.

The signals related to the animal’s previous choices
might function as temporary memory signals encoding
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Cortical areas (A) and summary of neural activity (B) examined during the matching pennies task. (A) Locations of the dor-
sal anterior cingulate cortex (ACCd), dorsolateral prefrontal cortex (DLPFC), and lateral intraparietal area (LIP). (B) The time course of signals
related to the animal’s choice (top), reward (middle), and their conjunctions (bottom). Each row shows the proportion of neurons in each corti-
cal area that significantly modulated their activity according to the animal’s choice, reward, or their conjunctions (or computer’s choice) in the
current (trial lag =0) and three previous (trial lag =1, 2, 3) trials. A large symbol indicates that the effects were found in significantly more

neurons than expected by chance.
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theory, how delayed rewards are attributed to previ-
ous actions is referred to as the problem of temporal
credit assignment, and the memory signals related to
the animal’s previous choices, often referred to as eligi-
bility trace, can be used to resolve this problem, an
issue discussed in Chapter 15. Thus, the neural activity
related to the animal’s previous choices that were
found in both the dIPFC and LIP might correspond to
the eligibility traces hypothesized in temporal-differ-
ence learning models.

Activity related to the animal’s reward history was
also found in the prefrontal cortex and posterior parie-
tal cortex. Signals related to the reward history were
particularly strong in the ACC, consistent with the
idea that the medial prefrontal cortex, including the
ACC, plays an important role in monitoring the out-
comes of different actions. The activity related to the
animal’s reward history might also play an important
role in computing the average rate of reward and how
a particular reward deviates from the reward expected
from the animal’s reward history, the reward predic-
tion error (Seo and Lee, 2007). Interestingly, the signals
related to the animal’s choice and reward histories
found in these different cortical areas were heteroge-
neous and their time constants were well described by
a power function, suggesting that the time constants
for signals related to previous choices and outcomes
might be relatively long in a small number of neurons
(Bernacchia et al., 2011). This raises the possibility that
neurons in these different cortical areas might provide
a reservoir of time constants that can be selected flexi-
bly according to the optimal time scale specific for a
particular behavioral task (Beherens et al., 2007; see
also Chapter 23).

Neural Activity Related to Fictive Outcomes

The analyses of behavioral data from the rock-
paper-scissors experiment described above have
shown that not only the actual outcomes of the actions
chosen by the animal, but also fictive outcomes from
alternative unchosen actions, influence the animal’s
subsequent choices. To determine whether the prefron-
tal cortex is involved in incorporating both actual and
fictive outcomes into different value functions, the
activity of individual neurons in the dIPFC and orbito-
frontal cortex (OFC) was recorded in monkeys playing
the rock-paper-scissors game (Abe and Lee, 2011).
Consistent with findings from previous studies, the
results from this study showed that neurons in both
dIPFC and OFC often encode the actual outcomes
from the animal’s choices. The activity related to actual
outcome was often seen during the feedback period in
which the information about the actual outcome from

26. BRAIN CIRCUITRY FOR SOCIAL DECISION MAKING IN NON-HUMAN PRIMATES

the chosen target and the fictive outcomes from uncho-
sen target were revealed to the animal (Figure 26.2C).
For example, the OFC neuron illustrated in
Figure 26.7A increased its activity with the magnitude
of reward obtained by the animal during the feedback
period of winning trials. Neurons in both dIPFC and
OFC also encoded the outcomes from specific actions.
For example, some neurons changed their activity
according to the outcomes from choosing rock, while
others modulated their activity according to the out-
comes from choosing paper. This tendency was stron-
ger in the dIPFC than in the OFC, suggesting that the
dIPFC might play a more important role in updating
the action value functions (Abe and Lee, 2011).

More importantly, neurons encoding fictive out-
comes were also found in both dIPFC and OFC. The
OFC neuron illustrated in Figure 26.7B changed its
activity only slightly during the feedback period of
the winning trials, but increased its activity systemat-
ically according to the magnitude of fictive reward
that the animal could have earned in tie or loss trials
by choosing one of the remaining targets. For some
neurons in both dIPFC and OFC, the activity related
to the fictive reward from the unchosen winning tar-
get changed according to the position of the winning
target, and this tendency was stronger in the dIPFC
than in the OFC. These results suggest that the
dIPFC and OFC might play an important role in
encoding not only the actual outcomes from chosen
actions, but also fictive outcomes from unchosen
actions, and might use those signals to update the
value functions for both chosen and unchosen actions
as prescribed in model-based reinforcement learning.

RESPONSE SELECTION BY THE
FRONTAL EYE FIELDS AND
SUPERIOR COLLICULUS

The frontoparietal areas outlined above (i.e., dIPFC,
ACC, OFC, LIP) appear to represent important statis-
tics related to social decision making ranging from the
previous history of choices and their outcomes, to the
evaluation of choices and their outcomes, to valuation
functions and even to knowledge about “what could
have been.” However, it is unlikely that any of these
regions ultimately selects or executes the choice
response. This is evidenced by the difficulty in trigger-
ing saccades with micro-stimulation in these areas, the
poor correlations of activity with saccadic reaction
times and the relatively mild effects on saccade genera-
tion that result from lesion of these areas. The mid-
brain superior colliculus (SC) and, one of its main
sources of cortical inputs, the frontal eye fields (FEF),
are, by contrast, intimately involved in selecting
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Example neurons recorded in the orbitofrontal cortex of monkeys that encoded actual (A) and fictive (B) outcomes during
the rock-paper-scissors task. The activity of each neuron was plotted according to the animal’s choice (rows), computer’s choice (columns),
and the payoff from the winning target (different colors). The gray background corresponds to the 0.5-s feedback period.

saccades and generating saccadic commands. Saccades
are evoked with electrical micro-stimulation in these
areas at low currents, activity patterns are predictive
of both when and where a saccade will occur, both
project to the brainstem circuits that directly control
muscle forces and saccades can no longer be generated
if these two structures are ablated (Dorris et al., 1997,
Glimcher and Sparks, 1992; Grantyn et al., 2004;
Robinson, 1972; Schiller et al., 1980). In this section, we
discuss how activity within the FEF and SC evolves to
select one saccade response over another during the
mixed-strategy game, matching pennies (Abunafessa
and Dorris, 2011; Thevarajah et al., 2009).

This matching pennies experiment borrowed the
most sophisticated computer opponent from Lee and
colleagues (2004), the level 2 algorithm outlined above
(Figure 26.2A), with two important exceptions. First,
during each experimental session the locations of the
choice targets were tailored to the response field of the
neuron under study. Recall that each neuron is most
active for initiating saccades with a particular vector
(for example a 10° saccade to the right). Once this vec-
tor was experimentally identified, one choice target
was presented at that location (inside the response
field) and the other choice target was presented at the
mirror-image location relative to fixation (opposite the
response field or 10° to left in this example). Second, a
temporal warning period was introduced between the
removal of the fixation point and the presentation of
the choice targets. Therefore, the monkeys learned dur-
ing a trial both where and when the targets would be

presented. That, coupled with the requirement that a
saccade choice be completed very rapidly after target
presentation, encouraged choice selection during the
temporal warning period. Behavioral choices were
allocated to each target in equal proportions in a rela-
tively unpredictable pattern replicating the behavioral
patterns that Lee and colleagues (2004; Figure 26.4)
had previously observed. Examination of SC neuronal
activity revealed that one saccade becomes increas-
ingly selected over the other as the time of target pre-
sentation approaches (Figure 26.8B). Interestingly, this
neuronal selection process closely mirrors the process
seen in perceptual decision making when neuronal
activity accrues as a function of the quality of sensory
evidence (e.g., Horwitz et al., 2004). This suggests that
similar principles that underlie well characterized
accumulator models (see Chapters 3 and 19) apply to
both perceptual and social forms of decision making.
In other words, the degree to which neuronal activa-
tions segregate over time provides insight into the
time course of response selection preceding strategic
actions. Indeed, if the length of the warning period is
changed the rate of neuronal selectivity scales accord-
ingly (Thevarajah et al., 2009).

To understand how this neuronal selection process
becomes biased in favor of one of the choice targets at
the level of the SC requires measuring neuronal activ-
ity from regions of the saccadic circuit that provide
inputs to the SC. Abunafessa and Dorris (2011)
recorded activity from the frontal eye fields (FEF)
while monkeys played the matching pennies task. The
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FEF are strongly inter-connected with large portions of
the frontal and parietal lobes and provide strong
inputs to the SC. In addition, the FEF are particularly
active during voluntary, goal-directed saccades, thus
making them a likely candidate to be involved in
choosing saccades during the mixed-strategy matching
pennies task (Schall, 2002). Importantly, Abunafessa
and Dorris recorded from the same monkeys in the
same task as the SC studies, therefore, any differences
in neuronal processing between the FEF and SC are
unlikely to result from any differences in behavioral
strategies. These authors found that neuronal selectiv-
ity occurred earlier and reached a higher overall level
in the FEF than the SC, during the time leading up to
the presentation of the choice targets (Figure 26.8). One
might expect that neuronal selectivity would be stron-
ger in the SC because it is closer to the ultimate motor
output and integrates information across multiple
frontoparietal areas described above. A possible expla-
nation is that neuronal selectivity in the FEF reflects
the ongoing decision process but, because the thresh-
old level which neuronal activity must surpass to trig-
ger a saccade is presumably located in the SC, this
decision information is either not passed on to the SC
as the decision evolves or the SC is partially inhibited
prior to the presentation of the choice targets to pre-
vent early crossing of the threshold and premature
saccades.

This pre-target activity in the SC is modulated by
the history of previous choices and their outcomes in a
manner similar to that observed in higher cortical
structures (Thevarajah ef al., 2010). A win-stay bias is
particularly evident, that is, if a monkey chooses a sac-
cade and it is rewarded during the matching pennies
task, then on the subsequent trial, the pre-target activ-
ity in the SC representing that rewarded saccade
grows at a faster rate. Faster accumulation of activity
at a particular locus on the SC map is associated with
a higher probability of choosing that action and faster
reaction times. Interestingly, Thevarajah and collea-
gues (2010) found that trial-by-trial estimate of action
value derived by applying the hybrid EWA model
(Camerer and Ho, 1999) was correlated to trial-by-trial
pre-target SC activity. This provided strong evidence
that competition between neuronal populations within
the brain’s pre-motor structures is being regulated in a
manner predicted by learning models to select strate-
gic actions.

Direct perturbation of neural circuits has also been
used in decision tasks to provide functional evidence
regarding the contribution of a brain region to choice
behavior (Carello and Krauzlis, 2004; Dorris et al.,
2007; Gold and Shadlen, 2000; Salzman et al., 1990).
Using a micro-stimulation paradigm adapted from
Gold and Shadlen (2000, 2003; and discussed in
Chapter 19), Thevarajah and colleagues (2009) tested
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whether the predictive activity in the SC outlined above
is functionally related to the process of response selec-
tion under game theoretic conditions (Figure 26.9A).
To test this hypothesis, on a small proportion of match-
ing pennies trials, the ongoing decision process was
perturbed with a short burst of micro-stimulation
(Figure 26.9B). This stimulated SC location elicited sac-
cades orthogonal to the direction of the choice targets.
Because saccade trajectories are determined by popula-
tion activity across the topographically organized SC
map (Lee et al., 1998), stimulation-induced saccades
deviate towards regions of pre-existing activity — effec-
tively revealing what option the monkey was in the
process of selecting. The authors found that these
stimulation-induced saccades deviated towards the
location the animal ultimately chose (Figure 26.9C). As
the stimulation was applied closer to the time when the
choice targets were presented the deviations became
more pronounced. The pattern of stimulation-induced
deviations over time tracked the time course of the neu-
ronal selection process observed when recording from
the SC of these monkeys (Figure 26.8B). Therefore,
interrupting developing saccade plans at a range of
times preceding the presentation of the choice targets
opened a window into the time course of the gradual
response selection process during mixed strategy
decision making (Figure 26.9D).

-4
Horizontal position (degrees)

-2 0 2

Lastly, Thevarajah and colleagues (2009) applied
sub-threshold stimulation to the SC in the time leading
up to saccadic choices in the matching pennies task.
This low level stimulation was enough to bias activity
in the SC stimulation site but not enough to directly
trigger saccades. The result was that the monkeys’
strategies shifted from the predicted Nash equilibrium
of equal responses to the two targets in favor of
responses towards the site of stimulation. This pro-
vided direct, causal evidence that the SC is involved in
the selection of mixed strategy saccades and, more
generally, highlights how artificially perturbing activ-
ity within decision circuits can provide insight into the
functional role that a particular brain region plays in
the decision process.

CONCLUSIONS

This chapter has outlined the important advances
that have been made in understanding the neural cir-
cuits subserving social decision making by combining
state-of-the-art neurophysiological techniques in non-
human primates with microeconomic tasks and statis-
tical analyses. The invasive techniques used in non-
human primates allow neural activity to be recorded at
high spatial and temporal resolution and correlated to
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specific stages of game play, behavior or parameters of
learning models. Furthermore, the functionality of
localized patterns of neural activities on game play
can be examined through artificial manipulation.
These techniques have allowed researchers to begin
to unravel the key fronto-parietal, basal ganglia and
brainstem structures that are critical for social
decision making. Particularly fruitful has been ana-
lyzing behavior and neural signals within the frame-
work of learning models. This allows us to
understand the mechanisms by which value repre-
sentations are constructed according to the animal’s
previous choices and their outcomes and how choices
are selected from these value representations on a
trial-by-trial basis.

Once the important statistics of choices and out-
comes during a particular game are calculated and
various quantities of learning models are updated in
associative frontoparietal cortices, the actual selection
and execution of the choice must be made. The evi-
dence suggests there is a competition between neuro-
nal populations in premotor regions of the brain (the
FEF and SC for saccades) that represent the available
actions. Gradually, the activity in one population
begins to dominate over the others and, once a thresh-
old level of activation is reached, a movement, or
choice, is triggered. It seems likely that a similar com-
petition occurs for purely perceptual decisions where
the race to action threshold is influenced by the quality
of sensory information. For social decisions, the com-
petition is shaped by economic factors such as the rela-
tive value of the targets, the history of past choices and
their outcomes, and even fictive information repre-
senting the outcomes of what “could have been.”
Although more work has to be done, the higher order
statistics and learning parameters coded in frontopar-
ietal networks appear to shape the competition in spa-
tially organized maps of potential actions such as
those within the FEF and SC to bias the competition in
favor of the option with the highest subjective value
for the chooser. The fact that neuronal circuits are
inherently noisy may actually be beneficial to social
decision making; it could be a source of stochasticity
ensuring that the most valuable action is only more
likely — but not deterministically — to occur.
Therefore, our brain circuits for social decision making
might be designed to exploit the most valuable options
during game play while injecting some stochasticity to
prevent opponents from exploiting us.
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