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A B S T R A C T

Automated negotiation plays a crucial role in the decision support for bilateral energy transactions. In fact, an
adequate analysis of past actions of opposing negotiators can improve the decision-making process of market
players, allowing them to choose the most appropriate parties to negotiate with in order to increase their out-
comes. This paper proposes a new model to estimate the expected prices that can be achieved in bilateral
contracts under a specific context, enabling adequate risk management in the negotiation process. The proposed
approach is based on an adaptation of the Q-Learning reinforcement learning algorithm to choose the best
scenario (set of forecast contract prices) from a set of possible scenarios that are determined using several
forecasting and estimation methods. The learning process assesses the probability of occurrence of each scenario,
by comparing each expected scenario with the real scenario. The final chosen scenario is the one that presents
the higher expected utility value. Besides, the learning method can determine which is the best scenario for each
context, since the behaviour of players can change according to the negotiation environment. Consequently,
these conditions influence the final contract price of negotiations. This approach allows the supported player to
be prepared for the negotiation scenario that is the most probable to represent a reliable approximation of the
actual negotiation environment.

1. Introduction

The Electricity Markets (EM) restructuring placed several challenges
to governments and to the companies that are involved in generation,
transmission, and distribution of electrical energy. The privatization of
previously state owned companies, the deregulation of privately owned
systems, and the internationalization of companies, are some examples
of the transformations that have been applied [1].

Environmental concerns related to the use of fossil fuels have led to
an increase in renewable energy generation sources. The considerable
increase of distributed generation units makes EM more competitive,
and consequently encourages a decrease in electricity prices [2,3].
However, some recurrent problems that are being addressed all over the
world must be considered, such as the dispatch ability, limitations in
the power system network, and the integration and large participation
of small producers in the EM, among others [3]. Despite these pro-
blems, some global solutions are being adopted, some examples are the
case of evolution of European EM. The majority of European countries

have joined together into common market operators, resulting in joint
regional EM composed of several countries, which supports transactions
of huge amounts of electrical energy and allows the efficient use of
renewable based generation in places where it exceeds the local needs
[4].

Nowadays several market models exist, with a set of complex rules
and particular regulations, creating the need to anticipate market be-
haviour. Some implemented market types have the clearing mechanism
based on the optimization of offers, such as most electricity markets in
the U.S. [5] and other based on symmetric or asymmetric bids, as is the
case of most European countries [4]. However, electricity trade
worldwide is also supported by means of bilateral contracts negotiation
[6], which are the scope of this study.

The common behaviour of market players in contracts negotiation is
mainly based on the definition of prices and quantities in energy
transactions with each competitor. Hence, relevant information con-
cerning competitors’ history of previous negotiations can be used to
improve the decision-making process, considering the characteristics of
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the moment of negotiation, namely to improve the forecasting of pos-
sible contract prices before the negotiation process [6]. It is essential to
consider the concept of context awareness, since it influences the prices
and quantities of energy to be negotiated. One example is the new ways
of participating in EM, such as renewable resources, which has hardly
influenced the players’ participation in the negotiation process, due to
the dependency of environment factors, such as wind or solar intensity,
that influence the final price of electricity. Other examples of contexts
are the different types of days such as business days, weekends, holi-
days, or other days with special situations that affects energy con-
sumption. A unique review of context analysis mechanism of EM ne-
gotiating players is presented in [7], which proposed a methodology of
analysing the past negotiation context to distinguish days and periods
with similar characteristics.

Those introduced aspects have significant implications in the in-
crease of the complexity and unpredictability in EM. Hence, the con-
stant change of the EM environment requires the need to understand
market’s mechanism and how the interaction between the players af-
fects the markets. It has contributed to the increased use of simulation
and decision support tools, in order to achieve the best possible results
of each market context for each participating entity [2]. Several mod-
elling tools based in Multi-agent software for the study of electricity
markets have emerged [8]. Some relevant examples are Electricity
Market Complex Adaptive System (EMCAS) [9], Agent-based Modelling
of Electricity Systems (AMES) [10], Genoa Artificial Power Exchange
(GAPEX) [11], and Multi-Agent System for Competitive Electricity
Markets (MASCEM) [12].

Current tools are directed to the study of market mechanisms and
interactions among participants, but are not suitable for supporting the
decision of the negotiating players in obtaining higher profits in energy
transactions. A new multi-agent adaptive learning system – AiD-EM
(Adaptive Decision Support for Electricity Markets Negotiations) – has
been integrated with MASCEM market simulator with the purpose of
providing effective decision support to electricity markets’ negotiating
players [8]. This decision support system is modelled for different
market negotiation types, namely the participation in auction based
markets and the automated negotiation of bilateral contracts. The latter
negotiation type is addressed in this paper, namely through the DECON
system (Decision Support for Energy Contracts Negotiation). DECON
implements several methodologies to analyse competitor players’ ne-
gotiation profiles, enabling the adjustment of the adopted negotiation
strategies and tactics in each step of automated negotiation [13].
Techniques such as adaptive learning and game theory [14], which
explores the study of algorithms that can learn from and make pre-
dictions or decisions on data, allows the assessment of each current
negotiation context1 and to dynamically learn over time [15,16]. Such
concepts should be adopted in order to overcome the current gap in the
literature related to the lack of analysis of past information about op-
ponents, and the inadequate exploration of the pre-negotiation stage, as
identified in the review on automated negotiation presented in [13].

In the literature, is possible to find some tools that support bilateral
contracts negotiation such as EMCAS [17], General Environment for
Negotiation with Intelligent Multi-Purpose Usage Simulation (GENIUS)
[18] and the Multi-Agent Negotiation and Risk Management in Elec-
tricity Markets (MAN-REM) [19]. EMCAS is a multi-agent simulator
that is able to simulate electricity market bilateral contracts, established
between a demand agent and a generation company agent [17]. The
generation agents decides the price of the demand agents’ proposals
that may or may not be accepted by the proposers. GENIUS is a multi-
agent simulator that facilitates and evaluates the strategies of auto-
mated negotiators [18]. The tool supports domain-independent

bilateral negotiations and considers three negotiation phases: Prepara-
tion (negotiation protocol and domain), Negotiation, and Post-nego-
tiation (negotiation analysis). MAN-REM simulates the bilateral con-
tracts negotiation through the combination of small multi-agent
simulators. The tool models the buyer, seller, trader (distribution), and
market operator (validation) agents. Three negotiation phases are
considered: Pre-Negotiation (contract’s preferences and response to
counter-offers definition), Actual Negotiation, and Post-Negotiation
(final agreement) [19]. The analysed tools presents a lack of explora-
tion of the pre-negotiation phase, only focusing the actual negotiation.
The GENIUS simulator has the most complete exploration of the pre-
negotiation phase, but also lacks opponents analysis. In summary, al-
though some advances have been made regarding the pre-negotiation
phase, several problems are yet far from being adequately addressed,
such as the definition of models to choose the most appropriate parties
to negotiate with, and how relevant information regarding competitors’
history of previous negotiations can be used to improve the decision
making process, namely regarding the choice of the most suitable ne-
gotiation strategies and tactics. The absence of automated negotiation
models directed to negotiations between electricity market players also
brings out several relevant challenges that must be addressed promptly
in order to provide market players with adequate decision support so-
lutions to enable market players to adapt to the constantly changing
electricity market environment, and learn how to take the most ad-
vantages out of market participation.

In order to overcome these limitations, this paper presents a new
learning model which has the aim of supporting the decisions of players
in the pre-negotiation of bilateral contracts, achieving an advantageous
position that allows to identify the ideal negotiators to trade with, en-
hancing the outcomes of the negotiation process. This method is based
on the application of reinforcement learning algorithm (RLA), namely
an adaptation of the Q-Learning algorithm, to learn which is the fore-
casting method that is able to provide a potential contract price that is
closer to reality. The proposed algorithm determines the best method
depending on the negotiation context. The forecast scenarios are de-
termined using several different methods, such as data mining techni-
ques [20], artificial neural networks (ANN) [21], support vector ma-
chines (SVM) [8], fuzzy logic [22], among other methods [8], where
each methods suggests an expected price for each amount of energy.
However, no method presents a better performance than all others in
every situation, only in particular cases and contexts [8]. Thus, these
contract prices forecasting are submitted to some error degree. Because
of that, the quality of definition of the best forecast method is essential
for supporting the decision process. The proposed model is im-
plemented and integrated in the DECON decision support system to
enable its experimentation and validation.

After this introductory section, Section 2 presents a discussion on
the need of decision support tools for bilateral negotiation in EM, and
an overview of the developed methodology for DECON. Section 3
provides the proposed learning method to estimate bilateral contract
prices using a Q-Learning based approach. Section 4 presents a case
study that shows the experimental results of the proposed methodology,
using the alternative negotiation scenarios furnished by DECON and
historic bilateral contracts data. Finally, Section 5 presents the most
relevant conclusions of this work.

2. Bilateral contracts negotiation

Bilateral contract is a EM rigid model that enables players to directly
negotiate with each other, establishing a fixed price for a quantity of
energy for an agreed period. When a player wishes to participate in the
bilateral market, it contacts potential players offering his power and
price proposal. The target players analyse the proposal and, if inter-
ested, they can accept it or try to renegotiate it. Before reaching an
agreement, the supplier must be sure that it is feasible to deliver energy
in the buyer’s location, and for that the system operator’s feedback is

1 Negotiation context refers to characteristics or circumstances under which
the negotiation process occurs, e.g. if it is a business day or weekend, the season,
the current global consumption, the current amount of generation, etc.
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needed.

2.1. Bilateral negotiation markets

Electricity markets are usually composed of several market types
[23], based on several different models such as: day-ahead spot; intra-
day, both usually auction based; and bilateral contracts. In the scope of
electricity markets, bilateral contracts are long-term contracts estab-
lished between two entities, buyer and seller, for energy transaction,
without the involvement of a third entity. The transaction is usually
carried out several weeks or months after the contract is made [24] and
usually has the following specifications: start and end dates and times;
Price per hour (Eur/MWh) and amount of energy (MW), variable
throughout the contract and, finally, a range of hours relative to the
delivery of the contract. Players can use customized long-term con-
tracts, trading ’over the counter’ and electronic trading to conduct bi-
lateral transactions [25]. In MIBEL [26], there are four types of bilateral
contracts: the first type are Forward Contracts, that consist in energy
exchange between a buyer and a seller for a future date, for the price
negotiated at that moment; the second type are Future Contracts, which
are similar to Forward Contracts except that they are managed by a
third party responsible for ensuring compliance with the agreement; the
third type are Option Contracts, that are similar to the Forward and
Future contracts with the difference that the two entities only guarantee
a buy/sell option; the last one are Contracts for Difference, that allows
concerned entities to protect themselves from the energy price change
between the agreement establishment date and the agreed exchange
date. With the exception of Contracts for Difference, this type of ne-
gotiation allows players to control the price at which they will transact
energy, in contrast to what happens in spot markets, due to the pro-
posals’ instability. In establishing a Forward or Future contract, players
are committing themselves to transact energy for a given price at a
future time, with the risk of making a transaction at a lower price than
the expected and lose competitive power. Option Contracts or Contracts
for Difference can avoid this risk. The first allows the player to choose
not to go through with the exchange while the second ensures that the
transaction is carried out at the market price. However, the first option
also has the risk of not guaranteeing whether or not the other party will
exercise their option to exchange and the second option does not allow
better prices than the market. This way, it is possible to understand the
risk associated with the negotiation of bilateral contracts and the need
that players have of tools that help them reduce this risk and even

optimize their profits.

2.2. Decision support for bilateral contracts negotiation

Bilateral negotiation is a recurrent theme in the literature in several
fields, including in AI (artificial intelligence) [27]). A relevant review of
automated negotiation methodologies for computational agents with
focus in AI has been presented in [13]. In the scope of this work, au-
tomated negotiation plays an important role in the decision support for
energy transactions, since the supported player can negotiate simulta-
neously with several competitor players, where each negotiation will
involve mainly an iterative exchange of proposals and counter-propo-
sals, regarding the prices for the energy. This complex scenario implies
high effort and time for players, and consequently exists the risk or the
possibility to breach an agreement (total or partial) by some party.
Thus, decision support solutions using automated negotiation models
are suitable to analyse competitors’ past actions and modelling com-
petitors’ profiles, and study the best possible negotiation strategies and
tactics to be used throughout the negotiation process, considering dif-
ferent competitor players and negotiation context, to obtain the best
possible outcomes for supported player. However, automated negotia-
tion methodologies in the specific scope of electricity market players’
negotiation is completely absent from literature.

A relevant multi-agent system approaches the problem of lack of the
decision support for automated negotiation for computational agents:
Decision Support for Energy Contracts Negotiation (DECON) that has
been presented in [14] According to this decision support methodology,
it considers two phases for automated negotiation, the pre-negotiation
step, and the actual negotiation process. The decision support for the
pre-negotiation step is the focus of this paper. To provide as much
benefit as possible for the supported player in the undertaken nego-
tiations, this decision support stage aims to identify the most appro-
priate competitor(s) that should be approached. Additionally, expected
prices and energy amounts of each targeted competitor are estimated to
increase the decision support for current negotiation process. From
Fig. 1, it is possible to observe the framework of DECON.

The DECON system is composed by three main parts which are
detailed in [14]. The proposed methodology of this paper addresses the
learning process which is based on RLA to perceive which, from all the
alternative potential negotiation scenarios, is the most likely to occur
under the current context. The defined scenarios are based on the op-
ponents’ historic data analysis, using forecast methods such as ANN and

Fig. 1. Pre-negotiation decision support process [14].
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SVM, among others. This way, it guarantees that the suggested action,
for the supported player, is the best potential action under the scenario
s and context c with the larger probability of occurrence, as detailed in
Section 3. Finally, depending on the risk that supported player is willing
to take and using a reputation profile model, regarding the subject
competitor players, several decision methods are included with the
application of game theory [28].

3. Proposed methodology

The behaviour of electricity markets players is normally based on
strategies whose purposes are to define energy price and transacted
amounts. Consequently, it is essential that the negotiators could be able
to predict the expected prices, resulting from potential negotiations.
Using historical data obtained from previous agreements, several fore-
casting methodologies are applied in DECON system to prognosticate
the expected established contract price for each player, for different
transacted amounts. As previously mentioned, no method presents a
better performance than all others in every circumstance, only in par-
ticular cases and contexts [8]. Therefore, these forecasting methods are
subject to some error degree. Hence, it is crucial to determine the best
forecast method for supporting the decision process. These issues mo-
tivated the development of the present work that proposes to undertake
a learning process to recognize the forecast contract price, which pre-
sent the higher probability of occurrence in each current context.

The learning process allows an agent to acquire a skill or knowledge
that is not available. In fact, an analysis and appropriate learning can
improve the results of the participation of stakeholders. The proposed
method uses a learning process based on the assessment of likelihood of
occurrence of each alternative negotiation scenario.2 Thus, this ap-
proach allows the supported player to be prepared for the negotiation
scenario that is the most likely to occur and perform the action that
generates better results. Besides, the contextualization of the learning
process is enabled, obtaining expected negotiation scenarios that most
reflect each current circumstances and context.

3.1. Context awareness

Context is present everywhere, and unquestionably influences the
way information is processed in every situation [29–31]. While context
is critical to information processing in all kinds of situations, it is almost
fully absent from the modern information technology infrastructure.
There is some work done in providing computer systems with context
awareness [32], namely in multi-agent simulation [33]. However, the
concept of context awareness is very far from being widely used in the
computer system’s area. The fact that this is an important issue to
consider and its lack of consideration in decision support systems made
it essential to include context analysis in this work. The analysis and
definition of different contexts of negotiation are performed to support
an adequate acting of negotiating players, adapting their actions to best
suit the context they are encountering at each moment.

In the considered model, the context analysis consists in analysing
the past observations, regarding important contextual aspects that af-
fect the negotiation process, e.g. day, hour, season, electricity market
price, amount of transacted power in the market, the wind intensity
verified in that period of the day (this is important because it affects the
production of wind plants, and therefore the total negotiated amount of
power), the solar intensity, the type of the day (whether it is a working
day or weekend; if it is a holiday, or a special situation day, e.g. a day of
an important event, such as an important game in a certain sport, which
affects the energy consumption in that day, both because of the

consumption in the stadium, and for increasing the number of people
with the TV on to watch it).

The analysis of these data is performed by means of a clustering
process, which groups observations according to their similarity. Each
cluster (group) corresponds to a specific and distinct context [7]. Once
the contexts are defined, when a new observation occurs (e.g. a new
established energy contract), the contextual information is used to
classify this new observation into the most similar group (context) from
those defined in the first stage. In this way it is possible to determine the
context to which the new event most relates to.

3.1.1. Clustering
The clustering mechanism analyses the characteristics of each

period throughout the days, and assigns each period of each day to the
cluster that presents the most similar characteristics. The clustering is
performed using the K-Means clustering algorithm [34]. The K-Means
clustering methodology considers a set of observations …x x x( , , , )n1 2 ,
where each observation is a d-dimensional real vector, and n is the
number of considered observations. The clustering process aims at
partitioning the n observations into ⩽k n( ) clusters = …C C C C{ , , , }k1 2 so
that the Within-Cluster Sum of Squares (WCSS) is minimized (1).

∑ ∑ −
= ∈
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i

k

x C
i
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2

i (1)

where μi is the mean of points in Ci, i.e. the cluster centroid.
The dimension of the vector that characterizes each observation

∈ …x p n, {1, , }p is equal to the sum of five vectors of equal size, each
containing the observable information regarding each of the five
characteristics presented before in this section (in the bullet points); i.e.

=x mp pw ws si sp{ , , , , }p p p p p p , where mpp represents the set of market
price values associated to each hour of each day that compose each
observation, pwp represents the amounts of transacted power, wsp re-
presents the wind speeds that have been verified, sip, the solar in-
tensities, and spp is the indication of special cases, where the value of 0
indicates a business day, 1 signifies a weekend day, 2 represents a
holiday, and 3 a special situation day, e.g. days in which relevant events
occur during certain hours of a day. The length of each of the five
vectors that compose xp are dependent on the amount of data that is
considered as part of each observation.

With the objective of minimizing Eq. (1), the clustering process
executes an iterative process between two steps: (i) the assignment step,
where each observation xp is assigned to the cluster C t( ) whose mean
value yields the minimum WCSS in iteration t, as presented in (2); and
(ii) the update step, where the new means of each cluster are calculated,
considering the newly assigned observations, determining the new
centroid μi of each cluster, as in (3).
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The execution of the algorithm stops when the convergence process
is completed, i.e. when the assignments of observations to different
clusters no longer change. By minimizing the WCSS objective, in Eq.
(1), the K-Means clustering methodology assigns observations to the
nearest cluster by distance. This means that each subject will be
grouped in the same cluster as the ones that are more similar.

3.1.2. Classification
The proposed classification model intends to enable identifying the

context in which new observations or events should be associated to.
The ANN used in this proposed method is a feedforward neural net-
work. Feedforward networks consist of a series of layers. The first layer
has a connection from the network input. Each subsequent layer has a
connection from the previous layer. The final layer produces the

2 Negotiation scenario refers to the negotiation setting that the envisaged
player will encounter when facing negotiations, e.g. the expected available
counterparts, their target prices and trading volume.
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network’s output.
The considered ANN is a Multi-Layer Perceptron (MLP) feedforward

neural network, which considers the contextual information about the
event in time. The output is the corresponding context. A study that
supports this MLP topology is shown in [21].

The training algorithm is backpropagation using the gradient des-
cent method [35]. The squared error function E for the single output
neuron is defined as in (4).

= −E t y1
2

( )2
(4)

where t is the target output for a training sample, and y is the actual
output of the output neuron. For each neuron j, its output oj is defined
by feedforward calculation, as in (5).

∑= ⎛

⎝
⎜

⎞

⎠
⎟

=

o f w xj
k

n

kj k
1 (5)

where n is the number of input units to neuron j, and wkj is the weight
between neurons k and j. The logistic function is used as activation
function f, as in (6).

=
+ −f z

e
( ) 1

1 z (6)

This classification process enables identifying the context that a new
observation (contract) belongs to; hence enabling the introduction of
the context-aware dimension in the learning process, as proposed in this
paper.

3.2. Context aware Q-learning model

The context aware bilateral contract price estimation approach is
based on the application of the Q-Learning reinforcement learning al-
gorithm [36], due to dynamic environment such as bilateral negotia-
tions, where an agent learns through attempt and error. Q-Learning is a
very popular reinforcement learning method. It is an algorithm that
allows the autonomous establishment of an interactive action policy.3 It
is demonstrated that the Q-Learning algorithm converges to the optimal
proceeding when the learning Q state-action pairs is represented in a
table containing the full information of each pair value [37].

The proposed methodology considers an adaptation of the Q-
Learning algorithm to undertake the learning process. The basic con-
cept behind the proposed Q-Learning adaptation is that the learning
algorithm can learn a function of optimal evaluation over the whole
space of context-scenario pairs (c× s), thus introducing a context
awareness component to the standard algorithm. This evaluation de-
fines the Q confidence value that each scenario can represent the actual
encountered negotiation scenario s in context c. For instance, an agent
that operates in an environment formed by a set of possible contexts
where the agent can choose actions within a set of possible actions, so
each time that the player performs an action, it receives a reinforcement
value. Thus, the only learning source is the agents’ own experience,
whose goal is to acquire an actions policy that maximizes its overall
performance [37]. The Q function performs the mapping as in the Eq.
(7).

× →Q c s U: (7)

The U is the expected utility value when selecting a scenario s in
context c. The expected future reward, when choosing the scenario s in
context c, is learned through trial and error according to Eq. (8).

= + + −+ +Q c s Q c s α c s r s c t γU c Q c s( , ) ( , ) ( , )[ ( , , ) ( ) ( , )]t t t t t t t t t t t t t1 1 (8)

The ct is the kind of context when performing under scenario st at
time t:

• Q c s( , )t t t represents the value of the previous iteration (each itera-
tion represents each new contract established in the given scenario
and context). Generally, = = ∀Q c s t c s( , ) 0, 0, ,t t t .

• < ⩽α c s α( , )(0 1)t t is the learning rate which determines the extent
to which the newly acquired information will replace the old in-
formation (e.g. assuming a value of 0 learns nothing; on the other
hand, a value of 1 represents a fully deterministic environment).

• r s c t( , , ) is the reward, which represent the quality of the pair
context-scenario ×c s( ). It appreciates the positive actions with high
values and negative with low values, all of them are normalized on a
scale from 0 to 1. The reward r is defined in Eq. (9).

= − −r s c t RP EP( , , ) 1 | |c t a p s c t a p, , , , , , , (9)

The RPc t a p, , , represents the real price that has been established in a
contract with an opponent p, in context c, in time t, referring to an
amount of power a; and EPs c t a p, , , , is the estimation price of scenario
that corresponds to the same player, amount of power and context in
time t. All r values are normalized so that ∈ ∀r s c t s c t( , , ) [0, 1], , , .

• ∈γ [0, 1] is the discount factor which determines the importance of
future rewards. A value of 0 only evaluates current rewards, and
higher values than 0 takes into account future rewards.

• +U c( )t t 1 is the estimation of the optimal future value which de-
termines the utility of scenario s, resultant in context c. Ut is calcu-
lated as in Eq. (10).

=+ +U c Q c s( ) max ( , )t t
s

t1 1 (10)

The proposed adaptation of the Q-Learning algorithm is executed as
shown in the flowchart of Fig. 2:

Fig. 2 shows the learning process of the proposed methodology. The
several steps of this model can be executed as follows:

• For each c and s, initialize =Q c s( , ) 0;
• Observe new event (new established contract);

• Repeat until the stopping criterion is satisfied:
– Select new scenario for current context;
– Receive immediate reward r s c t( , , );
– Update Q c s( , ) according to the Eq. (8);
– Observe new context ′c ;
– → ′c c .

After each update, all Q values are normalized according to the Eq.
(11), to facilitate the interpretation of values of each scenario in a range
from 0 to 1.

′ =Q c s Q c s
Q c s

( , ) ( , )
max[ ( , )] (11)

The proposed learning model assumes the confidence of Q values as
the probability of a scenario in a given context. Q c s( , ) learns by
treating a forecast error, updating each time a new observation (new
established contract) is available again. Once all pairs context-scenario
have been visited, the scenario that presents the highest Q value in the
last update is chosen by the learning algorithm as the most likely sce-
nario to occur in actual negotiation under the corresponding context.

4. Case study

This section presents a case study with the goal of demonstrating the
performance of the proposed methodology. For this case study, a his-
torical database, concerning the past log of established contracts of
different electricity market players, is used to apply the proposed

3 Policy refers to the strategy or procedure to determine which actions to try
in each moment taking into account the need for the balance between ex-
ploration of unknown actions and exploitation of the best actions found so far.
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methodology and assess its performance. The used data is based on real
data extracted from MIBEL (Mercado Ibérico de Eletricidade), the
Iberian Electricity Market [4]. The dataset can be consulted in [38] and
is composed by the executed physical bilateral contracts declared in the
Spanish System Operator, in the period between 1 July 2007 and 31
October 2008 (16months/ 488 days). Each negotiation day is com-
posed by 24 negotiation periods (one per hour), in a total of 11712
periods. The negotiations were performed by 132 different players (88
Buyers and 44 Sellers) which established 1797996 contracts. Table 1
presents a detailed overview of the dataset.

The overall goal is to update the Q value of each forecast method
(scenario) and context whenever there are new contracts. It is also
important to test different combinations of input parameters, such as
discount factor and learning rate; to analyse the evolution of Q values;
and to have a suitable learning mechanism, which chooses the most
likely forecast method to occur (i.e. the scenario with a lower forecast
error in current context).

Hence, by means of a previous sensitivity analysis, a good balance
among the learning parameters has found to be essential to guarantee a
good quality of the Q-Learning algorithm results. It is possible to con-
clude that this balance should be chosen considering the players’ ex-
pected interaction (i.e. the number of established contracts). It has been
experimented that, when using high learning rate values (LR), where
learning is fast, the value of Q function will only reflect the latest
iterations and Q values vary more. This way, it is not as reliable but the
algorithm is adapted faster, therefore it is suitable for situations in
which the expected number of contracts is small (e.g., contexts where
contracts occur infrequently). On the other hand, with smaller LR, the
algorithm is not able to adapt as fast, but it is more consistent because
the previous historic results have more influence. However, a learning
process that is too slow is not also advisable, since the new information
observed becomes almost irrelevant for the learning process. Thus, a
suitable balance between the consideration of new events and the
previous values already learned by the system is crucial. Regarding the
other learning parameter, the discount factor (DF), it has been con-
cluded that high values are the most suitable values for a quality con-
vergence, since otherwise the variation is very large at every iteration.

Finally, the last specification has the aim of performing a complete
study to analyze the influence of contexts in the undertaken bilateral
negotiation. For that purpose, two different simulation studies are
conducted: a test without considering the negotiation context (all es-
tablished contracts were undertaken in the same conditions); and a case
considering a set of different negotiation contexts. Both simulations
(with and without contexts) consider exactly the same data, the only
difference is that the contextual dimension is not considered in the first
simulations (all contracts are assumed to be undertaken under the same
contextual conditions), while when considering the contexts, each
contract is associated to a specific context.

In order to evaluate the results of the case study, a negotiation based
simulation environment [39] is used, namely the MASCEM agent based
simulator, through the integration of the proposed method in the
DECON decision support system.

4.1. Input data review

The first step of this study is to perform an analysis of the input data
to validate the Q-Learning algorithm results. This analysis is essential to
anticipate the forecast method that is the most likely to occur, in the
current context, for each competitor player, for each case in the es-
tablished contracts log. In this way it is possible to assess the achieved
results, by comparing them to what would be expected.

On the one hand are analysed the forecast contract prices that result
from 5 different algorithms, generated by DECON, for each subject
player, where there is an expected price for each amount of energy
(from 1 until 10MW). The Fig. 3 shows the different scenarios. It is
visible that Scenario 1 has high contract prices for low amounts of

Fig. 2. Flowchart of the proposed learning model.

Table 1
Dataset Overview.

MIN AVG STDEV MAX

Contracts/Period 128 157 17,78 180
Contracts/Day 147 3753 485,78 4287
Contracts/Player 2 27244 58653,22 288160
Contracts/Player/Period 1 5 6,83 29
Power/Period/Contract 1 69,04 6,25 3575
Power/Player/Contract 1 89,05 223,17 3575
Power/Period 7718 10813 1346,38 14128
Power/Day 8210 258405,89 34317,46 316801
Power/Player 30 1875400,33 4503101,94 26081833
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power and low prices for high amounts too. The opposite occurs in
Scenario 2, with low contract price values for low power amounts and
large prices for large amounts of energy. Scenario 3 always present a
large contract price to any amount of energy. The latter Scenario,
Scenario 5, shows intermediate values with exception to the high power
amounts, where it shows high prices.

On the other hand, it is also analysed the historic log of negotia-
tions. The Fig. 4 presents the previous established bilateral contracts
with information about the negotiated price and power, without con-
text awareness. It can be observed that the first contracts always have
large prices for almost all power amounts, but at the end (from contract
37 onwards) starts to change the trend, with low contract prices for
high power amounts.

By matching Figs. 3 and 4, it can be seen that the best expected
scenario until contract 36 is scenario 3, as it defines a high price re-
gardless of the defined traded amount. From contract 37 onwards, the
best expected scenario is scenario 1, as it defines high prices for low
amounts of traded energy, and low prices for large volumes. This is
supported by Table 2 which shows the comparison of the average error
between the predicted price by each scenario and the actual verified
price. The error evaluation is measured using the Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE) and Standard Devia-
tion (STD).

From Table 2 it is possible to confirm that the scenario that presents
the most accurate prediction (lower error) until contract No. 37 is
scenario 3. In the total of all contracts, the scenario with the smaller
prediction error is scenario 1, although with only a slight difference
from scenario 3.

4.2. Results

This subsection presents the results of the implemented learning
model for each competitor player. As previously mentioned, to validate
the Q-Learning results, it is essential to compare the data input with the
obtained results, which must be in accordance with the expected sce-
nario, throughout the iterations. Since the reinforcement learning

algorithm learns throughout established contracts in time, it is also
presented the evolution and convergence of Q values over each itera-
tion. This study is conducted for two different test cases: with and
without context awareness.

4.2.1. Learning without context awareness
Fig. 5 presents the learning process.
By observing Fig. 5, it is possible to verify the evolution of the Q

value throughout the 50 established contracts, for each scenario. A DF
of 0.8 and LR of 0.3 are used, to consider a quick learning rate, with the
aim of facilitating the fast adaptation to the most recent perceived
events. As it can be seen, the most probable scenario is Scenario 3, from
the first contract until contract 36, where Scenario 1 surpass the Q
value of Scenario 3. To allow a more detailed analysis, the Table 3
presents the normalized Q value for each scenario at every 5 new
contracts.

The normalized Q values of Table 3 allow a better identification of
the most probable scenario (the value of 1 indicates the recommended
scenario by the algorithm, until the last observation). By comparing the
results with the previous analyses of the data input, it is visible in

Fig. 3. Forecast contract prices for each scenario.

Fig. 4. Historic log of established contracts.

Table 2
Comparison of the prediction error of the five considered scenarios.

No. contracts Scenario MAE MAPE (%) STD

37 1 5.27 9.15 5.63
2 18.85 27.45 10.40
3 4.83 7.25 4.72
4 23.44 32.51 12.27
5 9.54 14.16 8.23

50 1 5.02 8.16 5.61
2 19.31 26.98 12.31
3 5.24 9.26 6.81
4 18.32 25.31 12.84
5 11.06 16.83 9.16

Fig. 5. Q-Learning algorithm evolution throughout established contracts.
Parameters: LR=0.3; DF= 0.8.

Table 3
Normalized Q values of each scenario throughout 50 iterations.

Contract Scenario

1 2 3 4 5

5 0.76 0.55 1 0.22 0.64
10 0.77 0.57 1 0.27 0.62
15 0.79 0.50 1 0.25 0.64
20 0.84 0.47 1 0.23 0.67
25 0.86 0.44 1 0.23 0.67
30 0.92 0.40 1 0.23 0.68
35 0.96 0.39 1 0.22 0.70
40 1 0.42 0.94 0.34 0.71
45 1 0.44 0.89 0.48 0.68
50 1 0.41 0.88 0.52 0.65
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Table 3 and Fig. 5 that the best scenarios (higher Q value) are the
Scenario 3 for first contracts (exactly till contract 36) and, from then
forward, is the Scenario 1, as identified in Table 3. Nevertheless, it was
predicted that Scenario 4 could also occur for the last contracts. How-
ever, the algorithm learned properly due to the past trend of high
contract prices and low power amounts, which Scenario 1 also had.
These results match the best expected scenarios, as identified in
Table 2.

The Table 4 present a summary of the results for each scenario of
each analysed case (without context analysis). The presented values are
the last learned Q value for each Scenario. Thus, the scenario that
presents the highest Q value is identified as the most likely scenario to
occur under actual negotiation. From this table it can be concluded that
in the end of the 50 contracts, the best scenario has been identified.
Scenario 1 is predicted as the best scenario, as identified in Tables 2 and
3, and matching the expected result shown in Table 2.

4.2.2. Context aware learning
This sub-section presents a test that considers the current context of

the negotiation, since it usually influences the negotiation environment
of players, as previously mentioned. Table 5 shows the average pre-
diction error achieved by the different scenarios for each context.

From Fig. 5 it is visible that scenarios with lowest prediction error
are: Scenario 1 for Contexts 2 and 4, and Scenario 3 for Contexts 1 and
3. Fig. 6 shows the evolution of Q-Learning for each scenario of Context
1.

In Fig. 6, it can be observed that Player 1 has a small number of
contracts in Context 1, which does not give enough iterations to the
learning algorithm to guarantee a good learning process. Therefore, in
this case, it is necessary a high LR value to achieve faster learning. The
Scenario 3 was the best forecast method, followed by Scenario 2 and 5.
The evolution of the learning process can be seen in more detail in
Table 6, which presents the normalized Q values through the iterations.

By analysing the context 2 from Fig. 7, it becomes evident that there
are two scenarios whose evolution is almost the same (Scenarios 1 and
3). In this case, the number of established contracts is higher, and
therefore, it is recommended a lower LR value than in the previous
case. It is not able to adapt so fast, but it is more consistent because the
previous results have more impact, increasing the results’ reliability.
The Table 7 shows the normalized Q values throughout iterations
among Player 1 and supported player.

In Context 3, presented in Fig. 8, it is visible that the Scenario 3 is
clearly the best scenario method. To adapt the learning process to this

Table 4
Q last values (contract 50) of each scenario.

Scenario

1 2 3 4 5

4.14 1.71 3.65 2.16 2.68

Table 5
Comparison of the prediction error of the five considered scenarios in each of
the four considered contexts.

Context Scenario MAE MAPE(%) STD

1 1 13.94 18.43 16.34
2 8.75 12.48 6.36
3 3.26 4.12 2.36
4 19.74 27.39 17.47
5 12.89 17.62 9.20

2 1 3.67 5.26 4.62
2 19.84 28.53 15.62
3 3.82 5.48 4.89
4 26.84 39.98 18.74
5 10.31 14.53 8.38

3 1 3.91 7.52 4.93
2 9.93 14.45 8.22
3 3.74 7.16 4.53
4 14.42 19.36 12.60
5 6.22 9.36 6.83

4 1 5.46 8.63 7.31
2 20.31 33.16 16.82
3 24.17 38.28 18.45
4 8.02 12.21 8.24
5 15.16 21.75 13.82

Fig. 6. Q-Learning algorithm evolution throughout established contract in
Context 1. Parameters: LR= 0.9; DF=0.8.

Table 6
Normalized Q values of each scenario throughout iterations in Context 1.

Contract Scenario

1 2 3 4 5

1 0.50 0.81 1 0.26 0.47
2 0.39 0.77 1 0.21 0.51
3 0.42 0.76 1 0.22 0.48
4 0.38 0.75 1 0.21 0.50

Fig. 7. Q-Learning algorithm evolution throughout established contract in
Context 2. Parameters: LR= 0.6; DF=0.8.

Table 7
Normalized Q values of each scenario throughout iterations in Context 2.

Contract Scenario

1 2 3 4 5

5 0.91 0.34 1 0.20 0.68
10 1 0.34 1 0.18 0.72
15 0.98 0.31 1 0.21 0.71
20 1 0.31 0.98 0.19 0.70
25 1 0.30 0.97 0.19 0.69
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context (small number of iterations), it is necessary a LR with a high
value, like happened in context 1. The Table 8 presents a summary of
normalized Q values throughout iterations for each scenario corre-
sponding to the specifications of Fig. 6.

It can be observed in Fig. 9 that the learning process for the Context
4 is also in accordance with the one predicted in the priori-analyses of
the simulation. The Scenario 1 presents the highest Q value, followed
by Scenario 4. This case is similar to Context 3 in terms of number of
established contracts, so the same learning parameters are chosen.
Table 9 shows the Q normalized values throughout iterations for inputs
and parameters described for Fig. 9.

The Table 10 presents the last learned Q value for each scenario, for
each context of each case study (with context awareness).

When comparing the summary results tables of different study cases
(Table 4 without context analysis and Table 10 with context analysis), it
is possible to verify that the proposed model does not learn likewise.
For instance, in the case of Player 1 in Contact Log 1, the most probable
scenario is Scenario 1, when considering the same negotiation en-
vironment. On the other hand, when considering different contexts, the
most probable scenario is not always Scenario 1, as it is only suitable in
some situations of negotiation (namely in contexts 2 and 4, as observed

in Table 5). The same can be verified in the remaining cases, which
demonstrates the importance of context analysis to obtain a contract
price estimation that is more adapted to reality.

When learning on the same exact data, without considering the
contextual dimension, the traditional Q-Learning algorithm is able to
learn the overall best scenario that best fits the general data. However,
when adding a contextual dimension, the proposed model is able to
learn the best specific action in each specific scenario, thus being able
to achieve a higher quality of results, adapted to the context.

This way, by comparing the expected results, presented in the pre-
analysis of the input data and in Table 5, with the actual results, for the
different test cases, it is possible to validate the proposed approach. The
proposed algorithm is able to learn which of the potential scenarios is
the closest approximation of the negotiation environment that the
supported player will face.

4.2.3. Sensitivity analysis
This section provides an overview of the sensitivity analysis per-

formed to find the best parametrization of the proposed method in the
different performed tests. Fig. 10 presents several heat maps showing
the quality of the results (overall prediction errors) achieved by the
method when applied to the cases with no contextual learning, and to
each of the contexts independently. The heat maps include the combi-
nations between the values of the LR and DF. The dark green zones in
the graphs represent the combinations of LR and DF that present the
best performance in each test, while the dark red zones represent the
worst combinations between the parameters.

From Fig. 10 it can be seen that the best combination of parameters
when considering no contextual learning is LR= 0.3 and DF=0.8. The
best combination when applying the proposed method to Context 1 is
LR=0.9 and DF=0.8. The higher LR in this case is a result from the
low number of contracts under this context, which mean that a very fast
learning process is required. In Context 2, the best parametrization is
LR=0.6 and DF=0.8. Note that this is the context for which there is
the larger number of contracts, which enables decreasing the LR and
perform a more sustainable learning process throughout the time, al-
though not as low as in the case with no contextual learning (much
larger number of considered contracts). For contexts 3 and 4 the best
parametrization is LR= 0.9 and DF=0.8. These two contexts also
have a small number of contracts, but still much more than in Context
1. It can be seen that, although the best combination of parameters is
found for high values of LR in order to cope with the small number of
contracts, the green zone in these two graphs extends further

Fig. 8. Q-Learning algorithm evolution throughout established contract in
Context 3. Parameters: LR=0.9; DF= 0.8.

Table 8
Normalized Q values of each scenario throughout iterations in Context 3.

Contract Scenario

1 2 3 4 5

2 0.84 0.62 1 0.33 0.65
4 0.77 0.61 1 0.30 0.62
6 0.82 0.55 1 0.34 0.68
8 0.83 0.53 1 0.30 0.66
10 0.98 0.68 1 0.42 0.82

Fig. 9. Q-Learning algorithm evolution throughout established contract in
Context 4. Parameters: LR=0.9; DF= 0.8.

Table 9
Normalized Q values of each scenario throughout iterations of in Context 4.

Contract Scenario

1 2 3 4 5

1 0.81 0.74 0.54 0.45 1
3 1 0.64 0.50 0.80 0.84
6 1 0.42 0.34 0.74 0.55
9 1 0.41 0.34 0.94 0.51
11 1 0.34 0.29 0.88 0.42

Table 10
Q last values of each scenario (with context awareness).

Context Scenario

1 2 3 4 5

1 1.00 1.98 2.63 0.54 1.32
2 4.59 1.37 4.44 0.89 3.16
3 3.60 2.51 3.67 1.53 3.00
4 3.62 1.22 1.06 3.18 1.53
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downwards when compared to the graph of Context 1, which means
that the slightly larger number of contracts starts to enable a small
decrease in the LR with still good results. These identified combinations
of parameters are those used in the performed tests.

4.3. Illustrative example

This subsection includes an illustrative scenario considering only
two contexts: Weekends and Business days, in which the proposed
methodology learns over a total of 2500 contracts for each context. The
proposed methodology is run with a LR of 0.3, allowing a slow learning,
and DF of 0.8, favouring future rewards, considering the available
amount of data. Five alternative forecasting methods are used, namely
3 alternative models based on ANN, one SVM one approach that simply
calculates the average of past values. Figs. 11 and 12 present the nor-
malized Q value of each scenario under Weekends and Business days

contexts, respectively, over all the analysed contracts.
The Fig. 11 proves that SVM scenario is really dominant, being the

scenario with the maximum Q value during more contracts. However, it
is not always the most probable scenario. In fact, the SVM scenario were
very far from reality in the first 708 contracts, the period in which
ANN1 dominated [102, 707], after the initial success of the Average
scenario [1, 101]. Then, the SVM scenario is only surpassed by ANN1
[1314, 1516], and ANN2 [2122, 2425]. The success of each ANN method is
measured by the amount of contracts considered. The fewer the number
of contracts, the better the results. The Average scenario only had
success in the beginning of the learning process, as it is a simple
average, which does not requires much learning to know its potential,
contrary to the other scenarios. Having seen the learning process of the
Business days context, it may be interesting to see how it compares to a
different context, which in this case is the Weekend (Fig. 12).

It is visible in Fig. 12 that SVM scenario does not have as much

Fig. 10. Sensitivity analysis results for the combination between LR and DF in the different performed tests.

Fig. 11. The learning process for the Business days context.

Fig. 12. The learning process for the Weekend context.
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success as the one presented in the Business days context.

4.4. Benchmark study – statistical analysis

This subsection shows a comparison of the results achieved by the
proposed model, as described in Section 4.3, the results of the standard
Q-Learning (Section 4.2) and also the results under the same simulation
settings, of using other reference state of the art reinforcement learning
algorithms, namely Roth-Erev [40], UCB1 [41] and EXP3 [42].
Table 11 shows the global results, i.e. normalized confidence values (or
Q values) in each of the 5 considered scenarios, in each of the 4 con-
sidered contexts. Table 12 shows the comparison of the average pre-
diction errors resulting from the scenarios chosen in each iteration by

the different algorithms in each context. This enables assessing the
overall quality of the learning methods in each context. Note that it is
not expected that the achieved error values match those achieved by
the best scenarios themselves, as presented in Table 5, because due to
the required exploration phase of the reinforcement learning algorithms
several different scenarios, even if bad, must be tried, which results in
an overall trial and error procedure. However, these average errors
enable assessing the algorithms quality in terms of exploration vs ex-
ploitation balance, and their capability of converging to the best sce-
nario, as shown by the confidence values in each scenario, as shown by
Table 11. The bold values in Table 11 highlight the maximum value (1)
in each line, which refers to the scenario that is identified as the best
one for each context.

Table 11 shows that, as discussed in Section 4.3, the proposed model
is able to learn and identify the best scenario for each of the four
considered contexts, namely scenario 3 for contexts 1 and 3, and sce-
nario 1 in contexts 2 and 4. On the other hand, all the other state of the
art reinforcement learning algorithms are able to effectively learn the
best global scenario (scenario 1), but, by not including a contextual
dimension, they are not able to identify the best scenario for the specific
contexts. In summary, the current algorithms are able to learn the best
overall approaches, but lack the adaptation capabilities to be able to
identify different performances under different contexts.

From Table 12 it can be seen that the proposed method is the al-
gorithm that achieves the lowest prediction errors in all four contexts,
as result from this method’s context aware learning capability. How-
ever, some other methods reach very close results in the contexts in
which the prediction is from Scenario 1 (identified by all methods as the
best one, as seen from Table 11), namely in contexts 2 and 4. Never-
theless, the results from the proposed method are still better in these
contexts because it is able to converge faster to the best scenario, by
considering the different contexts as independent, while the other
methods need for exploration (and more trial and error) to reach the
best overall scenario. Tables 13 and 14 present the average prediction
errors for each context for two additional data sets. These are identical
to the original one used in the tests presented in the previous sections,
but refer to: data set 1: January 2014 to December 2015; data set 2:
January 2016 to December 2017.

From Tables 13 and 14 it is visible that the proposed method is still
able to reach the lowest prediction errors from all considered bench-
mark algorithms in nearly all contexts in both data sets. The only

Table 11
Comparative results between the proposed model and state of the art re-
inforcement learning algorithms.

Algorithm Context Scenario

1 2 3 4 5

Proposed Model 1 0.38 0.75 1.00 0.21 0.50
2 1.00 0.30 0.97 0.19 0.69
3 0.98 0.68 1.00 0.42 0.82
4 1.00 0.34 0.29 0.88 0.42

1 1.00 0.41 0.88 0.52 0.65
Standard 2 1.00 0.41 0.88 0.52 0.65
Q-Learning 3 1.00 0.41 0.88 0.52 0.65

4 1.00 0.41 0.88 0.52 0.65

Roth-Erev 1 1.00 0.28 0.92 0.41 0.56
2 1.00 0.28 0.92 0.41 0.56
3 1.00 0.28 0.92 0.41 0.56
4 1.00 0.28 0.92 0.41 0.56

UCB1 1 1.00 0.23 0.76 0.53 0.72
2 1.00 0.23 0.76 0.53 0.72
3 1.00 0.23 0.76 0.53 0.72
4 1.00 0.23 0.76 0.53 0.72

EXP3 1 1.00 0.32 0.63 0.45 0.42
2 1.00 0.32 0.63 0.45 0.42
3 1.00 0.32 0.63 0.45 0.42
4 1.00 0.32 0.63 0.45 0.42

Table 12
Comparison of average prediction errors of the different algorithms in each
context.

Context Algorithm MAE MAPE (%) STD

1 Proposed Model 7.45 9.89 8.98
Standard Q-Learning 11.24 16.28 14.04
Roth-Erev 10.49 14.87 13.41
UCB1 15.36 21.04 18.93
EXP3 18.56 24.90 21.39

2 Proposed Model 4.28 6.46 5.89
Standard Q-Learning 4.88 7.23 6.68
Roth-Erev 4.46 6.83 6.03
UCB1 5.89 9.31 8.72
EXP3 6.53 10.85 9.38

3 Proposed Model 5.37 8.21 6.98
Standard Q-Learning 9.16 13.28 9.37
Roth-Erev 8.43 12.73 9.14
UCB1 12.54 18.02 12.71
EXP3 15.11 22.02 17.37

4 Proposed Model 6.22 9.35 8.31
Standard Q-Learning 6.81 9.97 9.02
Roth-Erev 7.47 10.28 11.07
UCB1 6.74 9.63 8.86
EXP3 7.26 10.15 10.62

Table 13
Comparison of data set 2 average prediction errors of the different algorithms in
each context.

Context Algorithm MAE MAPE (%) STD

1 Proposed Model 5.78 10.20 8.89
Standard Q-Learning 7.38 10.92 9.21
Roth-Erev 7.19 11.20 10.20
UCB1 7.40 9.07 9.07
EXP3 7.42 10.49 10.77

2 Proposed Model 5.75 8.77 7.62
Standard Q-Learning 9.68 14.33 10.26
Roth-Erev 8.74 12.07 9.06
UCB1 11.34 19.25 12.40
EXP3 15.11 23.57 18.26

3 Proposed Model 4.39 6.66 6.43
Standard Q-Learning 5.22 6.62 6.82
Roth-Erev 4.53 7.17 5.55
UCB1 6.44 9.68 9.38
EXP3 6.27 11.06 10.13

4 Proposed Model 7.51 9.02 9.44
Standard Q-Learning 10.61 17.33 14.39
Roth-Erev 9.65 15.13 12.20
UCB1 15.43 20.01 18.38
EXP3 20.09 23.63 20.29
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exception in context 4 of data set 3, in which Roth-Erev is able to
achieve slightly lower average prediction errors.

The Kruscal-Wallis test is the nonparametric test used to compare
three or more independent samples. Indicates if there is a difference
between at least two of them. This is used to test the null hypothesis
that all populations have equal distribution functions against the al-
ternative hypothesis that at least two of the populations have different
distribution functions. In this way it is assumed that equality of
averages when equality of equal distributions exists [43].

By the test Kruscal-Wallis it is possible to obtain the value of p= 0
that gives us indication of rejection of the null hypothesis that all data
samples come from the same distribution at a 1% significance level.
Given the result of the test that gives the indication of the null hy-
pothesis, the comparison between the pairs of groups is made in order
to verify which of the samples differ from each other.

The Bonferroni procedure is performed in order to make the com-
parison in pairs. Fig. 13 represents the 95% confidence interval for all
sample groups (5 methods, in which group 1 is the proposed method),
in the total of all executions using the three data sets. In this way, it is
possible to see which groups differ in the value of the average, using the
Bonferroni procedure.

By analyzing the graph of Fig. 13, it is possible to observe that all
methods have significantly different mean values. Table 15 shows the
results of this analysis.

Since the p-value is equal to 1 in all these group tests, the null hy-
pothesis where the groups are considered to have similar means with an
error of 5% is accepted.

Taking into account this analysis, it is concluded that the applied
benchmark methods achieve significantly different results, thus sup-
porting the relevance of the proposed approach.

5. Conclusions

The EM restructuring and the growth in penetration of distributed
energy resources, introduced the need of a better preparation, by the
part of the participating players in this dynamic environment, which
trade constantly in different situations. Currently, automated negotia-
tions are an active area of research within the field of computing,
particularly with the development of artificial intelligence. However, in
EM field there is not significant works to support automated negotiation
decisions, as previously mentioned in the introductory section, espe-
cially those regarding the analysis of previous information from com-
petitor players, and in particular regarding the pre-negotiation stage of
negotiations.

This paper proposes a model, integrated into the DECON system, to
provide decision support for the pre-negotiation step of bilateral con-
tracts in the electricity market. In summary, the pre-negotiation is a
stage that has great importance because it performs all the preparation
and planning of actual negotiation. This process aims to identify the
ideal negotiators that supported player could trade with to obtain the
greatest possible benefit.

A common behaviour of the players, when performing bilateral
negotiations, is the strategic definition of prices for different energy
amounts of each competitor player, to have an adequate forecasting
about possible contract price, before the negotiation. The proposed
methodology is focused in the bilateral contract price estimation ap-
proach, based on the application of an adaptation of the Q-Learning
reinforcement learning algorithm. This way, the implemented model
can learn which of the potential scenarios is the most probable to re-
present a reliable approximation of the actual negotiation between the
supported player and the competitor in matter, depending on the ne-
gotiation context. The potential negotiation scenarios are determined
by using an explicitly modelling of gathered information about past
actions of opposing negotiators. Additionally, is performed an analysis
and definition of different contexts of bilateral contract negotiation in
EM. This way, it is possible to properly represent the behaviour of ne-
gotiating players, as they usually adapt their actions to the distinct
circumstances they are encountering in each moment.

From the analysis of the implemented learning process, it can be
concluded that a balance of the learning parameters is very important
for the quality of the results of the Q-Learning algorithm. Therefore, the
LR should be selected according to the number of expected observa-
tions. In relation to the DF parameter, it is possible to conclude that, for
this study, higher values are more desirable. Regarding the context
study, the results of the case study show that the context awareness
provides the Q-Learning algorithm with a more realistic learning. The
context definition process considers some influential conditions that
affect the agreement of contract prices. Therefore, it can be concluded
that suiting actions to different contexts allows to adapt the behaviour
of negotiating entities to the different circumstances, improving their
decision making-process.

Finally, it is noteworthy that it is also demonstrated that the si-
mulated process is in accordance with the previous analysis of the input

Table 14
Comparison of data set 3 average prediction errors of the different algorithms in
each context.

Context Algorithm MAE MAPE (%) STD

1 Proposed Model 5.90 8.48 6.92
Standard Q-Learning 9.04 12.57 10.07
Roth-Erev 7.98 12.44 9.27
UCB1 11.34 16.53 11.51
EXP3 15.00 22.41 18.64

2 Proposed Model 7.03 10.07 8.66
Standard Q-Learning 11.64 17.01 13.57
Roth-Erev 10.84 15.64 12.52
UCB1 16.33 19.77 19.93
EXP3 18.72 25.96 22.54

3 Proposed Model 5.74 9.66 8.64
Standard Q-Learning 6.45 10.37 9.32
Roth-Erev 7.18 9.57 10.55
UCB1 7.18 9.58 8.30
EXP3 7.70 10.71 11.30

4 Proposed Model 4.61 6.73 5.66
Standard Q-Learning 4.62 7.35 6.56
Roth-Erev 4.46 6.23 6.14
UCB1 5.63 9.45 8.94
EXP3 5.98 10.33 9.46

Fig. 13. Bonferroni confidence interval by 95%.

Table 15
Bonferroni procedure.

Group pairs p-value

1 1 1
1 3 1
1 4 1
1 5 1
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data. The scenario which should be chosen as the most reliable was
effectively the scenario that has obtained the largest Q values, at the
end of learning process.

As future work, other learning techniques can be experimented,
such as adapting Roth-Erev algorithm, models based on the Bayes
theory of conditional probability. Moreover, promising emerging ap-
proaches such as adaptive probabilistic behavioural learning [44], bulk
negotiation behavioural learning [45], and probabilistic decision
making [46], will also be considered as alternative approaches, in
specific for the actual negotiation process. This way it is possible to
compare their results with the proposed model to facilitate the choice of
the most appropriate learning method for each type of problem.
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