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a b s t r a c t

Very large high dimensional data are common nowadays and they impose new challenges to data-driven
and data-intensive algorithms. Computational Intelligence techniques have the potential to provide
powerful tools for addressing these challenges, but the current literature focuses mainly on handling
scalability issues related to data volume in terms of sample size for classification tasks.

This work presents a systematic and comprehensive approach for optimally handling regression tasks
with very large high dimensional data. The proposed approach is based on smart sampling techniques for
minimizing the number of samples to be generated by using an iterative approach that creates new sam-
ple sets until the input and output space of the function to be approximated are optimally covered. Incre-
mental function learning takes place in each sampling iteration, the new samples are used to fine tune the
regression results of the function learning algorithm. The accuracy and confidence levels of the resulting
approximation function are assessed using the probably approximately correct computation framework.

The smart sampling and incremental function learning techniques can be easily used in practical appli-
cations and scale well in the case of extremely large data. The feasibility and good results of the proposed
techniques are demonstrated using benchmark functions as well as functions from real-world problems.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/)
1. Introduction

Computer-based simulations of tremendously complex math-
ematical systems describing multifaceted physical, chemical, dy-
namical and engineering models are usually associated with
very expensive costs in terms of processing time and storage.
Complex mathematical models are present in a wide variety of
scientific areas such as the simulation of atmospheric processes
in numerical weather prediction (Han & Pan, 2011; Hsieh & Tang,
1998; Lynch, 2006;Morcrette, 1991), climatemodeling (Flato et al.,
2013), (Gordon et al., 2000), chemical transport (Grell et al., 2005),
(Menut et al., 2013), radiative transfer (Gimeno García, Trautmann,
& Venema, 2012) and large eddy simulations (Sagaut, 2006). Other
scientific disciplines such as genetics, aerodynamics, or statisti-
cal mechanics also make use of highly complex models. The input
space of thesemodels can be of high dimensionalitywith hundreds
or more components. The usage of more realistic models usually
introduces new dimensions leading to an exponential increase in
volume, i.e. ‘‘Big Data’’ (Hilbert & López, 2011; Lynch, 2008).
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The speeding-up of such models is a crucial problem in prac-
tical applications like weather forecasting, remote sensing, and
climate modeling among others. These complex models can be
approximated using for example neural networks (Haupt, Pasini, &
Marzban, 2009; Loyola, 2006; Qazi & Linshu, 2006), support vector
machines (Tripathi, Srinivas, & Nanjundiah, 2006), kernel smooth-
ing models (Cervellera & Macciò, 2013), and the resulting com-
putational intelligence systems are being deployed in operational
environments, see for example Krasnopolsky and Chevallier (2003)
and Loyola (2006).

Related work found in the literature usually addresses function
approximations from complexmathematicalmodels in the general
framework of statistical machine learningwhere it is assumed that
the training samples are created independently according to an
unknown probability density function (Krasnopolsky & Schiller,
2007). However, having a mathematical model to parameterize,
we can freely choose the sample points that better characterize
the input and output spaces of the model. The selection of samples
to be used in function approximation problems is less explored in
the literature, sometimes it is called design of experiments (Sacks,
Welch, Mitchell, & Wynn, 1989) or active learning (Enăchescu,
2013).

In this study we develop a general function approximation
framework in which the choice of the samples describing the
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function is an integral part of the learning problem. The goal is to
find a regression model that accurately approximates a function
f : X → Y with input X ⊂ Rn and output Y ⊂ Rm from a
set of training samples T = {xi, yi} for i = 1 to s, subject to the
constraint of minimizing the number of calls to the target function
f , i.e. minimizing the number of samples s. The dimensionality
of the data needed to solve this problem is characterized by
the number of samples s and the dimensionality of the mapping
represented by f with n inputs and m outputs.

On one side, the complexity of a function does not necessarily
increase for a high dimensional input space; moreover the limiting
factor for an accurate function approximation is the intrinsic
complexity of the target function and not the dimension of the
input data space (Kolmogorov, 1957). Accuracy of approximation
can be achieved in high dimensional cases for target functionswith
lower complexity (Gnecco, Kůrková, & Sanguineti, 2011). On the
other side, systematically sampling the input space with k values
per dimension will require in total s = kn calls to f , therefore the
number of samples s for mappings with high dimensional input
size grows exponentially with the input dimension n.

These difficulties are usually referred as ‘‘the curse of dimen-
sionality’’ problem (Vapnik, 2006) and it has severe consequences
not only for the time needed to create the training dataset but also
for the algorithms needed to solve function approximation prob-
lems that must deal with very large number of samples of high di-
mensionality, i.e. ‘‘Big Data’’.

The data volume component of Big Data is a hot topic in ma-
chine learning, see for example Jin andHammer (2014) andO’Leary
(2013) and the references therein. But the main focus on the cur-
rent literature is the sample size and not the sample dimension
problem. Only a few studies address the big dimension problem
such as for example theoretical investigations of computational
models efficiency in high dimensional context (Kainen, Kůrková,
& Sanguineti, 2012) and for classification tasks wherein the explo-
sion of features brings about new challenges to computational in-
telligence (Yiteng, Yew-Soon, & Tsang, 2014).

In this article we focus on the under-explored topic of big di-
mensionality for regression tasks. The paper is organized as fol-
lows: Section 2 gives an overview of data sampling methods and
discrepancymeasurements. Section 3 shows a comparison of sam-
plingmethods and evaluates their performance for high dimension
input problems. Section 4 presents the smart sampling and incre-
mental function learning (SSIFL) algorithm that optimally solves
this kind of function approximation problems and Section 5 shows
the results of applying SSIFL to a number of benchmark and real-
world functions. Finally, the conclusions are given in Section 6.

2. Data sampling methods

Generally speaking a good sampling method should create
training data that accurately represents the underlying function
preserving the statistical characteristics of the complete dataset.
This section presents first a survey of samplingmethods grouped in
four categories that can be applied to generating high dimensional
sample data.

2.1. Stochastic methods

Pseudo-Random number generators (PR) (Marsaglia & Tsang,
2000;Matsumoto&Nishimura, 1998) are commonly used to create
samples in a given range. PR methods are fast and simple to use,
but they are not distributed uniformly enough especially for the
cases of low number of sampling points and/or large number of
dimensions. PR sampling is sometimes called ‘‘pure’’ or ‘‘plain’’
Monte Carlo (Swiler, Slepoy, & Giunta, 2006).
2.2. Deterministic methods

Uniform populations can be created using quasi-random or
sub-random sequences that cover the input space quickly and
evenly, the uniformity and coverage improves continually as more
data points are added to the sequence. Deterministic methods can
be divided into two subcategories (Kazimipour, Li, & Qin, 2013)
described in the next subsections.

2.2.1. Low discrepancy methods
Low Discrepancy methods have the support of theoreti-

cal upper-bounds on discrepancy. Halton, Sobol, Niederreiter,
Hammersley, and Faure are well known sequences from this
category.

In this work we use Halton sequences, shortened as (HA),
which are constructed according to a deterministic algorithm
that uses prime numbers as bases for each dimension (Halton,
1960). Halton sequences work well in low dimensionality, but
they lose uniformity in high dimensions. Workaround solutions
such as using big prime numbers, setting leap values, scrambling
and shuffling improve the sampling uniformity in such cases.
The HA method is computationally efficient even for very high
dimensional spaces.

2.2.2. Experimental design methods
Experimental Design methods are commonly used for initializ-

ing the population of evolutionary algorithms in order to accelerate
convergence speed and improve stability. The most representative
methods in this category are:

• Uniform Design: a space-filling method based on prime
numbers that generates points uniformly scattered on the input
domain (Peng, Wang, Dai, & Cao, 2012).

• Orthogonal Design: based on Latin squares for creating
orthogonal arrays (Leung &Wang, 2001).

2.3. Geometrical methods

2.3.1. Uniform grid
Uniformgrid (UG) is the simplest samplingmethod inwhich the

samples are created using node points at fixed intervals uniformly
distributed for every dimension. UG is commonly used for creating
look-up tables to accelerate complexmodel computations (Perkins
et al., 2012; Richter, Heege, Kiselev, & Schläpfer, 2014).

Using a uniform grid is convenient for storing the look-up tables
in multi-dimensional arrays. As we will show in Sections 3.2 and
3.3, the coverage of the input space using UG is very poor for low
number of sampling points and high dimensions.

2.3.2. Latin hypercube
Latin hypercube sampling (McKay, Beckman, & Conover, 1979)

partitions the input space into bins of equal probability and dis-
tributes the samples in such a way that only one sample is lo-
cated in each axis-aligned hyperplane. This method and variations
like nearly-orthogonal Latin hypercube (Cioppa, 2002) and Dis-
tributedHypercube and ImprovedHypercube sampling (Beachkof-
ski &Grandhi, 2002) are very popular in computermodel problems.
A Particle Swarm Optimization algorithm for solving large-scale
Latin hypercube design problems was proposed recently (Aziza &
Tayarani-N., 2014).

Latin hypercube sampling is useful when the underlying
function has a low order distribution but this method produces
clustering of sampling points at high dimensions.
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Fig. 1. Sampling sequences generated with (a) uniform grid, (b) pseudo-random, (c) Halton, (d) CVT, and (e) LCVT. The top panel shows the sequences corresponding to 2-D
input space with a total of 25 (white circle) and 100 (black points) samples. The bottom panel shows plots of the same sampling sequences for a 9-D input space sampled
with 2 points per dimension giving a total of 29

= 524 samples projected to the dimension 7 and 9.
2.3.3. Centroidal Voronoi Tessellation
Centroidal Voronoi Tessellation (CVT) generates sample points

located at the center of mass of each Voronoi cell covering the in-
put space. The CVT algorithm starts with an initial partition and
then iteratively updates the estimate of the centroids of the cor-
responding Voronoi sub regions. Recent advances in mathematical
and computational studies and in practical applications of CVT are
presented in Du, Gunzburger, and Ju (2010).

One important advantages of CVT is that sampling points may
be easily distributed according to a prescribed density function.
One drawback of the CVT method lies in being computationally
demanding for high dimensional spaces.

2.3.4. Opposite methods
The Opposition Based Learning initialization is a well-known

method used to initialize the population in evolutionary algo-
rithms (Rahnamayan, Tizhoosh, & Salama, 2008). The sequence
of opposite points (complimentary point with respect to given
bounds) is created from the original sequence, then both sequences
aremerged and a fitness function is used to select the best samples.
The Quasi-opposition Based Learning (Rahnamayan, Tizhoosh, &
Salama, 2007) is an improvement on the previous method that in-
creases the sequence uniformity by creating opposite points using
a random range.

The opposite sampling methods are computationally very
effective and straightforward to use.

2.4. Hybrid methods

Hybrid methods combine different sampling methods with the
aim of improving the sampling coverage and uniformity. A sam-
pling method can be used as (a) pre-processing step, e.g. the
computation of CVT samples can be initialized with stochastic or
deterministic methods and (b) as post-processing, e.g. using geo-
metrical methods to reorganize or create new samples.

In this work we use Latinized CVT (LCVT) (Romero, Burkardt,
Gunzburger, & Peterson, 2006). We create first a Halton sequence
as initial population, then the CVT sample is computed and finally
the sequence is Latinized.

2.5. Sampling in high dimensional space

The sampling methods usually perform very well in low di-
mensions, the top panels of Fig. 1 contrast the 2-D input space
sequences created using 25 and 100 points drawn from uniform
grid, pseudo random, Halton, CVT, and LCVT methods. A visual in-
spection of the sampling sequences in a 2-D space gives a fast qual-
itative feedback on the degree of uniformity achieved and how it
varies over the input space. In the 2-D case using a uniform grid
sampling is very appealing, the points arewell spread and the sam-
ples with 25 and 100 points are complementary. Note that the Hal-
ton sequences with 25 and 100 points overlap whereas the corre-
sponding sequences created with the other sampling methods do
not. Aworkaround solution for creating complementary Halton se-
quences is to use different prime numbers as basis of different se-
quences. The random sequence is less uniform than the other ones.

Most of the sample strategies have problems with high dimen-
sional sequences as can be appreciated in the bottom panels of
Fig. 1 showing sampling sequences for a 9-D input space with 2
points per dimension given a total of 512 samples. The plots show
the sampling points projected into dimensions 7 and 9. All the
points with uniform grid sampling concentrate on only 4 places as
this sampling algorithm allocate two fixed grid points per dimen-
sion. Halton haswell known spurious correlation problems (Robin-
son & Atcitty, 1999) that leave large empty regions not covered,
this problem can be at least partially solved using alternative al-
gorithms like scrambled Halton. The points created with the CVT
algorithm concentrate mainly in four regions reflecting the good
volumetric but bad spatial uniformity of the samples when pro-
jected to single dimensions. Only LCVT behaves qualitatively better
than pure random.

Developing algorithms for creating good sampling uniformity
in high dimensional spaces with low computational cost remains
an area of active research.

2.6. Sampling non-uniform distributions

A sequence of uniformly distributed points can be mapped
into another sequence that reflects a desired non-uniform join
probability distribution function using different techniques like
the rejectionmethod orweighted sampling (Moskowitz & Caflisch,
1996). In this paper we use the more generic procedure described
in Romero et al. (2006). The cumulative distribution function
CDF(x) for a random variable x is

CDF(x) =

 x≤1

0
PDF(x′)dx′ (1)
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where PDF(x) is the probability density function of the random
input x. Since the CDF is defined in the unit hypercube domain it is
possible to inverse-map sequences uniformly distributed between
0 and 1 into sequences {xi} drawn from the density function PDF(x).

2.7. Importance sampling

Importance sampling is a commonly used method for variance
in Monte Carlo integration (Moskowitz & Caflisch, 1996) and
system reliability analysis (Patelli, Pradlwarter, & Schuëller, 2011).
An importance function h is introduced which mimics the
behavior of the function f to approximate, sampling points are
generated according to the distribution of h instead of being
uniformly distributed. In this workwe create importance sampling
sequences following the distribution of h by first creating a
uniformly distributed sequence and then computing the inverse-
map using (1) and the normalized h (integral equals 1) as a density
function.

The top panel of Fig. 2 depicts the sampling sequences corre-
sponding to the top panel of Fig. 1 transformed using as impor-
tant sampling function an exponential function. The middle panel
of Fig. 2 illustrates the sampling sequences corresponding to the
bottom panel of Fig. 1 transformed using as important sampling
function a 2-D Gaussian probability distribution with standard de-
viation of 0.8 and 1.2. Finally the bottom panel of Fig. 2 shows
histograms resulting from the sampling sequences of the middle
panel. The problems of the sampling methods in this 9-D case are
more evident in the histograms. All samples fromuniformgrid con-
centrate on 4 positions, similarly the samples from CVT concen-
trate on 4 regions.

3. Comparison of sampling methods

This section presents a systematic comparison of selected
sampling methods from the different categories described in the
previous chapter. First the benchmark functions used for the
comparison are presented, then we describe how to quantitatively
assess the goodness of the sampling methods both in: the input
space (uniformity measures) and in the output space (statistical
measures). Finally the results of the different sampling methods
applied to a number of benchmark function are discussed.

3.1. Benchmark functions

Three benchmark functions commonly used to test the perfor-
mance of global optimization algorithms are used in this work.
Asymmetric benchmark functions containingmultipleminima and
maximawere selected to better evaluate the effects of the different
sampling strategies.

3.1.1. Shifted Ackley function
A number of unimodal and multimodal basic functions like

Sphere, Rosenbrock, Rastrigin, Weierstrass, Griewank, and Ackley
are commonly used for testing optimization problems.We selected
the shifted Ackley’s function defined in a multi-dimensional input
space as

FSA(x) = −20 exp

−0.2

1/n
n

i=1

z2i


− exp


1/n

n
i=1

cos(2πzi)


+ 20 + e + f _biasi (2)

with z = (x−o) the shifted global optimum. This function ismulti-
modal, shifted, separable and scalable, see Tang et al. (2008).
3.1.2. Composition function
More complex functions can be created by combining basic

functions

FCO(x) =

n
i=1

{wi ∗ [fi(xi − oi)/(λi ∗ Mi) + biasi] + f _biasi} . (3)

The various parameters used in this equation define the way the
basic functions are combined, see CF5 in Liang, Suganthan, and Deb
(2005) for details.

3.1.3. Fast Fractal Double Dip function
This multimodal function is defined as

FFD(x) =

n
i=1

fractal(xi + twist(x(i mod n)+1)). (4)

Specifics about this function including the definition of twist() and
fractal() can be found in Tang et al. (2008).

Fig. 3 shows 3-D plots of the functions Shifted Ackley,
Composition, and Fast Fractal Double Dip for the case of 2-D input
space.

3.2. Discrepancy as measure of uniformity in the input space

Discrepancy is a quantity that measures the uniformity of a set
of points in a hyper dimensional cube and it is usually employed
in the integral approximation field. Given a dataset of s points
P = {x1, . . . , xs} with x ⊂ Rn the n-dimensional unit cube In =

[0, 1)n , n ≥ 1, the infinite star discrepancy D∗
s (P) is defined as

D∗

s (P) = sup
J∈I∗

A(J, P)

s
− V (J)

 (5)

where I∗ is the family of all subintervals of In = [0, 1)n of the
form

n
i=1 [0, Ji), V (J) is the volume of a subinterval J , and A(J, P) is

the number of points of P belonging to J (Niederreiter, 1992). The
star discrepancy describes the relationship between the number
of points in a subinterval and its volume. D∗

s (P) varies between
0 and 1; low discrepancy values indicate that the points are well
scattered over the input space. The optimal sampling methods are
the ones that rapidly converge to a star discrepancy of 0 as the
number of sample points increases.

The computation ofD∗
s (P) for n ≥ 2 is a time consuming and not

an easy task (Thiémard, 2001). Alternatives more suitable for high
dimensional data are the L2-star discrepancy (Braaten & Weller,
1979)

DL2
s (P) =

1
s

s
k=1


A(J(k), P)

s
− V (J(k))

2

(6)

and themodified L2-star discrepancy (Qazi & Linshu, 2006) defined
as

DML2
s (P) =


4
3

n

−
21−n

s

s
d=1

n
i=1


3 − x2di


+

1
s2

s
d=1

s
j=1

n
i=1


2 − max


xdi, xji


. (7)

The discrepancy of 5-D input space sequences as function of the
number of samples created using different sampling methods
is depicted in Fig. 4. The three plots correspond to discrepancy
computed with (5), (6), and (7). The best sampling methods are
HA and LCVT with similar convergence rates of discrepancy; both
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Fig. 2. Sampling sequences (black points) created from the sequences from Fig. 1 resampled using important sampling functions represented as color surface plot on the
background. (top panel) 2-D input space with 100 samples and exponential important sampling function. (middle panel) A 9-D input space with 512 samples projected to
the dimension 7 and 9 and resampled with a 2-D Gaussian probability distribution important sampling function. (bottom panel) Histogram showing the distribution of the
samples shown in the middle panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Plots of the benchmark functions for a 2-D input space: (a) Shifted Ackley, (b) Composition, and (c) Fast Fractal Double Dip.
a b c

Fig. 4. Discrepancy measurements in (a) infinite, (b) L2 and (c) modified L2 star norms for 5-D input space sequences as function of the number of samples. The five curves
per plot correspond to different sampling methods: uniform grid (UG), CVT, pseudo-random (PR), LCVT and Halton (HA).
outperform pseudo random sequences by a factor of 10 regarding
the number of samples needed to reach a given discrepancy. The
worst sampling method is by far the uniform grid; it needs 105

samples to reach similar discrepancy levels achievedwith only 102

samples created with HA or LCVT.
It is important to note that discrepancy is calculated using
the 5-D samples and not their 2-D projections depicted in the
plots. Spurious correlation problems on samples projected into
single dimensions, like the ones from HA shown in the bottom
of Fig. 1, are not reflected in such discrepancy measurements.
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Fig. 5. (a) Modified L2-star discrepancy as function of the number of samples for 9-D input space for LCVT (cyan) and HA (orange) sampling sequences, LCVT performs better
than Halton for sequences with less than 700 samples. (b) Sampling method with lower discrepancy as function of the input space dimension and the number of samples,
LCVT outperforms Halton in case of low dimensions and relative few samples. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
The left plot of Fig. 5 shows the modified L2-star discrepancy
as function of the number of samples for a 9-D input space for
LCVT and HA sampling sequences, the error bars correspond to
the worst discrepancy computed in the 2-D projections. As it can
be appreciated, LCVT outperforms HA when relative few samples
are available but the situations change around 700 samples
where HA has a lower discrepancy as LCVT. The right plot of
Fig. 5 shows the inflection point between LCVT and HA modified
L2-star discrepancy as function of the input space dimension and
the number of samples.

3.3. Statistical measures of the response function in the output space

The goodness of a sampling method with respect to the
coverage in the output space of a response function f can be
assessed by the multivariate function integration expressed as

I(f ) =


Cn

f (x)dx (8)

with Cn
= [0, 1)n. The samplemean gives an approximation to I(f )

by

Î(f , P) =
1
s

s
i=1

f (xi) (9)

where P = {xi} for i = 1 to s is a set of points in Cn. If the sampling
points xi are i.i.d. uniformly distributed on Cn then it is known
that the sample mean is unbiased. The Koksma–Hlawka inequality
gives an upper bound for the approximation errorI(f ) − Î(f , P)

 ≤ D(P)υ(f ) (10)

where D(P) is the discrepancy of P as defined in Section 3.2, and
v(f ) is a measure of the variation of f as defined in Fang, Ma, and
Winker (2002). If the sampling method used to create P converges
to a discrepancy of 0 as the number of sample points increases,
then this inequality ensures that the sample mean converges to
the multivariate function integral. Therefore the convergence rate
of the sample mean from the output space of a response function
depending on the number of sample points can be used tomeasure
the goodness of a sampling method.

The efficacy of sampling methods is commonly compared
using estimates of response function mean and standard deviation
(Romero et al., 2006). In this work we propose to use not only the
mean and standard deviation, but also the higher order statistics
skewness (measure of the asymmetry) and the Kurtosis (measure
of the peakedness) as they provide complementary information of
f computed from the samples in P .

Fig. 6 depicts the statistical moments of the Fast Fractal Double
Dip function for a 5-D input space and the Composition function
for a 10-D input space as function of the number of samples. The
uniform grid sampling for the case of 10 dimensions does not
converge even with a large number of samples, the performance
of CVT is slightly better, while PR, LCVT and HA nicely converge
with increasing samples.

The convergence of the statistical moments on the response
function can be used to take an informed decision on the adequate
number of samples required to properly cover the output space.

4. Smart sampling and incremental function learning algo-
rithm

In this section we present the Smart Sampling and Incremental
Function Learning Algorithm (SSIFL) based on the results from
the previous section. First the problem is formalized, then the
algorithm SSIFL stages are listed and then finally the single steps
are described in detail in the following subsections.

The goal of the SSIFL algorithm is to find a Probably Approxi-
mately Correct Computation (PACC) regression model f̂ that accu-
rately approximates a Lebesgue measurable function f : X → Y
with input X ⊂ Rn and output Y ⊂ Rm from a set of finite training
samples T = {xi, yi} for i = 1 to s, subject to the constraint of min-
imizing the number of calls to the function f needed to create the
training samples s.

Following the PACC framework from Alippi (2014) and using as
figure of merit u(x) =

f (x) − f̂ (x)
, we have that f̂ is a PACC of

function f at accuracy τ and confidence η when

Pr
f (x) − f̂ (x)

 ≤ τ


≥ η, ∀x ∈ X . (11)

In other terms, the function f̂ is approximately correct in the sense
that it approximates f at level τ with probability η. If τ is small,
then f̂ provides a value which approximates the true f with high
probability.
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b

c

d

Fig. 6. Statistical moments (a) mean, (b) standard deviation, (c) skewness, and (d) kurtosis of the response function in the output space as function of the number of sample
patterns for two of the benchmark functions depicted in Fig. 3. The left panels correspond to the Fast Fractal Double Dip function for a 5-D input space and the right panels
correspond to the Composition function for a 10-D input space.
The PACC formalism allows a probabilistic performance es-
timation of τ and η from a finite dataset as described in
Section 4.6. Theminimumnumber of samples sPACC required for as-
sessing inequality (11) can be calculated using the Chernoff bound
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(Chernoff, 1952) as

sPACC ≥
1

2ε2
ln

2
δ

(12)

where ε ∈ (0, 1) are the expected accuracy and confidence 1 − δ

levels, δ ∈ (0, 1). According to this inequality, the accuracy is
more demanding on the number of samples (quadratic bound)
than the confidence (linear bound). It is important to note that the
Chernoff bound does not depend on the input dimension of f , that
means that the PACC framework allow us to escape the curse of
dimensionality problem for assessing τ and η (Alippi, 2014).

The SSIFL algorithm is described in the following table. The algo-
rithmnumbered steps are described inmore detail in the following
subsections, the step numbers are the same as the corresponding
subchapter numbers.

4.1. Initialization phase

The number of samples to create the approximation function
with input space dimension n is selected using the following
sequence

s(n, i) =


id if n ≤ 9
10i if n ≥ 10.

(13)

This equation creates a sequence of the form {2d, 3d, 4d, . . .} for
9 input dimensions or less, for larger dimensions the sequence is
{102, 103, 104, . . .}. For given dimension and index, the sequence
s(d, i) determines the number of samples following a good
compromise on the number of samples to generate per iteration.
Alternative formulations can be used as well.

The accuracy ε and confidence δ levels are selected, then sPACC
is computed using (12) and sval is selected from the sequences
defined by (13) such that s(n, sval − 1) ≤ sPACC ≤ s(n, sval). In
other terms, the minimum number of samples used to create the
training, testing and validation datasets is selected such that it
satisfies the Chernoff bound for the given ε and δ.

The number of iteration is set to 0 and the function approxima-
tor f̂ (θ0) is created using the initial model parameters θ0. In case
that a neural network is used, then the model parameters are the
network weights and biases.
4.2. Smart sampling during initialization

The sampling method LCVT or HA is selected based on the right
plot of Fig. 5 and using the current input space dimension n and
the number of samples s to generate. Once the sampling method
is selected then the set of inputs X = {x1, . . . , xs} with X ⊂ Rn is
created.

In case that a probability density function of f () is available then
the input sequence is resampled using the important sampling
technique as described in Section 2.7.

In the next step, the output Y = {f (xi)} for i = 1 to s with
Y ⊂ Rm is created. This is usually the most time consuming part of
the sampling generation process, the processing time needed for
computing f (x) for only a few samples is usually larger than the
time needed for creating the complete input sequence.

Finally the dataset Train = {xi, yi} for i = 1 to s samples is
created and the Test dataset is initialized with an empty set.

It is important to note that by using LCVT or HA the input space
is uniformly covered independently of the number of samples
generated.

4.3. Smart sampling during iteration

First the Train dataset from the previous iteration is used as
the new Test dataset and then a new Train dataset is created
using the generic procedure described in the previous subsection.
The number of samples of the Train dataset is increased in each
iteration according to the sequences defined by (13) and starting
with s(n, sval). In other words, the first training dataset contains
the same amount of samples as the testing dataset (satisfying
the Chernoff bound) and then new samples are created in each
iteration.

It is worth noticing that the test and training datasets gener-
ated in each smart sampling iteration are complementary (no du-
plicated inputs) and they cover the full input/output space.

4.4. Incremental function learning

The goal of learning is to build a PACC approximator of the target
function f ()

f̂ (θ) ≈ f () (14)
with θ the parameter vector describing the family of models. In
case that artificial neural networks are used as approximators, then
θ represents the weights and biases of the network.

In each iteration, the parameter vector θ is updated based on
the information present in training dataset Train. Overfitting is
avoided using the early-stopping technique based on the average
approximation error over the testing dataset Test.

The training algorithm is selected according to the dimen-
sions of the network input/output and the number of training
samples. For small- and medium-sized dimensionality the Leven-
berg–Marquardt algorithm can be used, but with large- and high-
size dimensions a backpropagation algorithm working in parallel
over a multi-core architecture (Schuessler & Loyola, 2011) is pre-
ferred.

The smart sampling procedure described in the previous sub-
sections ensures that the size of the training dataset is continuously
increased in every iteration. That means that the target function is
learned from the training data in an incremental way during each
iteration.

The proposed incremental function learning optimizes the
function approximation problem by learning first the ground
structure of the target function with relative few sampling points
that cover the complete input/output space and then fine-tuning
the model parameters to better approximate the target function
using more and more sampling points in every iteration. This
process is visualized in Fig. 7 showing the incremental learning
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Fig. 7. Incremental learning of the Rosenbrock function in 5-D input space. The plots show the approximation results from (a) 45 samples, (b) 65 and (c) 85 samples. After a
few iterations the learned function accurately approximates the target function (d).
of the Rosenbrock function in 5-D, the learned function accurately
approximates the target function after a few iterations.

4.5. Check convergence

The iteration over smart sampling for creating training datasets
and incremental function learning is repeated until pre-defined
convergence criteria are reached.

The first criteria are the convergence of the statistical moments
of the target function output from iteration to iteration as de-
scribed in Section 3.3. The difference between the statistical mo-
ments of Y from the current iteration Yi = f (Xi) and the previous
iterations Yi−1 = f (Xi−1) should be smaller than a given delta to
ensure that the target function is well represented by the gener-
ated sampling points.

Interestingly, using the minimum number of samples sPACC
for calculating the expectation E[f (X)] of the function f (X) by
estimating the empirical mean Êsm [f (X)] = 1/n

sm
i f (xi) ensures

that the following inequality

P
Êsm [f (X)] − E [f (X)]

 ≤ ε


≥ 1 − δ (15)

holds for any accuracy level ε ∈ (0, 1) and confidence δ ∈

(0, 1) (Alippi, 2014). That means that the convergence check on
the first statistical moment is actually a convergence check on the
expectation of the target function as function of the number of
samples.

The second criteria are the convergence of the histograms of the
network parameters θ from iteration to iteration. Following the
Bayesian formalism applied to neural networks (MacKay, 1995),
learning means changing our belief about the network parameters
θ from the prior P(θ) to the posterior P(θ |T ) as a consequence of
seeing the training data Train

P(θ |Train) =
P(Train|θ)P(θ)

P(Train)
. (16)

P(Train|θ) is the likelihood and P(Train) is called the evidence
for the neural network. In other terms, the posterior distribution
incorporates the prior knowledge and the information conveyed
by the training dataset.

The Occam factor (MacKay, 1995) that penalizes a neural
network for having the parameters θ defined as

Occam factor =
σθ |Train

σθ

(17)

where σθ |Train is the width of the evidence and the prior is uniform
on a large interval σθ . The second convergence criteria are reached
when the ratio of the Occam factors from iteration to iteration is
close to one. This ratio is difficult to compute directly but it can
be approximated by the ratio of the FWHM from the histogram of
the network parameters θi and θi−1 from the previous and current
iteration.

The third and last stop criterion is the check that a maximum
allowed number of iterations are reached.

4.6. Determine approximator accuracy and confidence levels

The PACC formalism allows a probabilistic performance estima-
tion of the accuracy τ and confidence η of f̂ (x) from Eq. (11) by
defining a p(γ ) such that

p(γ ) = Pr
f (x) − f̂ (x)

 ≤ γ


. (18)
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Following the method from Alippi (2014), this probability can be
approximated with p̂(γ ) defined as

p̂(γ ) =
1
s

s
i=1

L
f (xi) − f̂ (xi)

 ≤ γ


,

L (u(xi) ≤ γ ) =


1 if u(xi) ≤ γ
0 if u(xi) > γ

(19)

and evaluated over the finite dataset xi ∈ Val. The Val dataset is
created using the generic procedure described in Section 4.2 and
using s(n, sval) sampling points, thatmeans that the Val dataset has
at least sPACC element and therefore the Chernoff bound holds.

The value γ̄ is defined as the smallest value from an arbitrary
incremental set of points {γ1, . . . , γk} with γi < γj, ∀i < j from
which p̂(γi) ≥ 1 − ε, ∀γi ≥ γ̄ . Selecting k ≥ sPACC points,
the Chernoff bound discrepancy

p(γ̄ ) − p̂(γ̄ )
 ≤ ε holds with

probability 1 − δ and therefore p(γ̄ ) ≥ 1 − ε.
The PACC accuracy of f̂ is then τ = γ̄ with confidence η = 1−ε

(Alippi, 2014).

5. Results

This section shows the results of using the SSIFL algorithm
for two benchmark functions and one function from a real-world
problem. Note that the selected asymmetric benchmark functions
withmultipleminima andmaxima are very complex not only from
the sampling but also from the function approximation point of
view.

5.1. Regression of 5-D input space benchmark function

The Shifted Ackley function FSA defined in (2) with an input
space dimension of 5 is approximated using the SSIFL algorithm.
This function is characterized by a nearly flat outer region and a
deep hole at the shifted center, see left plot in Fig. 3. Therefore
we use a Gaussian probability distribution important sampling
function center at the hole.

The expected accuracy and confidence levels are set to ε = 0.03
and δ = 0.01; then sPACC is calculated using (12) given 2944 as
result and the corresponding sval is set to 55

= 3125.
The initial feedforwardneural networkwith three hidden layers

of 25–10–5 neurons is created and the Levenberg–Marquardt
algorithm is used to train the NN. Moreover, the activation
functions used are tangent sigmoid for the hidden layers and linear
for the output layer.

In the first iteration the input sequence for the Test and Train
datasets are created using LCVT with 55 and 65 samples respec-
tively, the input sequences are resampled using the Gaussian im-
portance sampling function and the Shifted Ackley function is
evaluated in the resampled input sequences to generate the target
output. The NN is then trained with the Test and Train datasets.

In the second iteration the Test dataset is replaced with the
Train dataset from the previous iteration containing a total of 65

samples. The new Train dataset is created by first generating a
LCVT input sequence with 75 new samples, the input sequence
is resampled with the Gaussian importance sampling function
and the corresponding target outputs are computed using the FSA
function. The NN from the previous iteration is re-trained with the
new Train and Test datasets.

A total of three iterations are needed before the convergence
criteria are reached. Table 1 summarizes the smart sampling
(target function mean and standard deviation) and incremental
function learning (epochs needed, RMS on the training dataset, and
Occam factor) results for each iteration.

Finally a validation dataset Valwith sval = 45 samples is created
and it is used to compute the accuracy and confidence levels of the
final neural network. The results are 0.9959 and 0.99 respectively,
as mean value of the target function is −118.454, a mean accuracy
at the 0.84% level is reached.

5.2. Regression of 100-D input space benchmark function

The Rosenbrock function defined as FRO =
n/2

i=1


100(x22i−1 −

x22i−1)
2

+ (x2i−1 − 1)2

with an input space dimension of 100

is approximated using the SSIFL algorithm. First the expected
accuracy ε = 0.02 and confidence δ = 0.03 are defined; then
sPACC = 5250 is calculated and finally the corresponding sval is set
to 104.

The initial feedforward neural networkwith one hidden layer of
100 neurons is created; the NN will be trained using the conjugate
gradient backpropagation algorithm. Furthermore, the activation
functions used are tangent sigmoid for the hidden layers and linear
for the output layer.

The NN is trained with Test and Train datasets created by
evaluating the target function FRO on HA input sequences with
104 and 105 samples respectively. In the second iteration the
Test dataset is replaced with the Train dataset from the previous
iteration containing a total of 104 samples and a new Train dataset
is created evaluating the Rosenbrock function over a new input HA
sequence with 106 samples. The NN from the previous iteration is
re-trainedusing backpropagation and taking as input the new Train
and Test datasets.

The third and last iteration contains 107 new Train samples.
Finally the accuracy and confidence levels of the final neural
network are computed using a validation dataset Valwith sval = 45

samples. The results for each single iteration are summarized in
Table 2.

5.3. Regression of 62-D output space function from a real-world
problem

The operational processing of atmospheric remote sensing data
usually requires the usage of very complex and extremely time
consuming radiative transfer (Gimeno García et al., 2012) models.
In this subsection we apply the SSIFL algorithm to accurately
approximate a radiative transfer model problem characterized
by a 5 dimension input space representing the satellite viewing
geometry and surface conditions. In contrast to the benchmark
functions, the function from this real-world problem has not a
single output value but the output space covers 62 dimensions.

The expected accuracy and confidence levels are set to ε = 0.05
and δ = 0.02; the calculated sPACC is 921 and the corresponding sval
is set to 45

= 1024.
The initial feedforward neural network is created using one

hidden layer with 70 neurons. The hidden layers are activated
by a tangent sigmoid function and the output layer by a linear
function. The weights are initialized using the Nguyen–Widrow
algorithm and the training is performed using the conjugate
gradient backpropagation.

In the first iteration the input sequence for the Test and Train
datasets are created using HAwith 35 and 45 samples respectively.
The forward model is evaluated using both 5-dimensional input
sequences in order to generate the corresponding outputs in the
62-dimension space. The NN is then trainedwith the Test and Train
datasets.

In the second iteration the Test dataset is replacedwith the Train
dataset from the previous iteration containing a total of 45 samples
and a new Train dataset is created using 55 new samples. The NN
from the previous iteration is re-trained with the new Train and
Test datasets.

This iteration process is repeated seven times until the
convergence criteria are reached. In the final iteration the Test
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Table 1
SSIFL results for the Shifted Ackley function FSA in 5 dimensions.

Iteration Train samples Test samples FSA mean FSAStdDev NN epochs NN MSE Occam ratio

1 65(7776) 55
−118.757 1.0441 34 0.000688 0.9381

2 75(16 807) 65
−118.759 1.0446 17 0.000626 1.0659

3 85(32 768) 75
−118.454 1.0454 17 0.000598 0.9378
Table 2
SSIFL results for the Rosenbrock function FRO in 100 dimensions.

Iteration Train samples Test samples FRO mean FROStdDev NN epochs NN MSE Occam ratio

1 105 104 5830.62 789.85 42 459310 0.9964
2 106 105 5809.56 768.17 272 308080 0.9575
Table 3
SSIFL results for the real-world remote sensing (FRTM ) function with 5 input and 62 output dimensions.

Iteration Train samples Test samples FRTM Av.mean FRTMAv.StdDev NN epochs NN MSE Occam ratio

1 55 45 0.082274 0.069293 9700 2.0e−06 1.0100
2 65 55 0.082301 0.069333 4315 1.7e−06 0.9564
3 75 65 0.082296 0.069340 50662 8.2e−07 1.0268
4 85 75 0.082333 0.069367 12918 6.9e−07 0.9851
5 95 85 0.082319 0.06935 142 6.9e−07 0.9823
6 105 95 0.082291 0.069338 70625 5.7e−07 1.0141
7 115 105 0.082289 0.069343 200000 2.8e−07 1.0081
8 125 115 0.082286 0.069342 61291 2.5e−07 0.9797
and Train datasets contain a total of 115 (161051) and 125

(248832) new samples, Table 3 summarizes the smart sampling
and incremental function learning results for each iteration.

It is important to note that the generation of the almost half
a million sample points is a very CPU demanding task; the time
needed for training the NNs is minor compared with the time
needed for computing the radiative transfer modeling outputs.

In the final step the validation dataset Val with sval = 35 sam-
ples is created and it is used to compute the accuracy 0.001606684
and confidence levels 0.98 of the final neural network.

5.4. Regression of 280-D input space function from a real-world
problem

In the previous subsectionswepresented the results of applying
SSIFL to regression problemswhere the samples are created as part
of the algorithm with the constraint of minimizing the number
of calls to the target function. In this subsection we show how
to apply SSIFL to problems with pre-existing datasets that follow
an unknown probability distribution function. The SSIFL algorithm
can be easily adapted for such problems: the smart sampling is
not used for creating new patterns, but it is used for resampling
patterns from the pre-existing dataset.

The smart sampling technique described in Sections 4.2 and
4.3 is adapted as follows. After creating the set of s inputs X =

{x1, . . . , xs} with X ⊂ Rn and n the input space dimension, the
patterns {ei, yi} with e ⊂ Rn and y ⊂ Rm from the pre-existing
dataset that are closest to xi are selected as the Train dataset.
Depending on the type of the input attributes different distance
measurements can be applied to find the ei closest to xi.

We apply the adapted SSIFL to the ‘‘Blog feedback’’ dataset
(Buza, 2014) with 280 input dimensions downloaded fromUCI and
consisting of 52397 and 7624 pre-existing training and validation
data.

In the first SSIFL iteration the input sequences xi using HA are
created with 102 and 103 samples and 280 dimensions. Test and
Traindatasets are then created by resampling from the pre-existing
{ei, yi} patterns that are nearest to the HA sequence points, the
closest patterns are selected using the Euclidean distance between
the points ei and xi. Note that the distance in all dimensions
are equally weighted by normalizing the input attributes of the
pre-existing data to [0, 1]. A feedforward neural network with
one hidden layer of 100 neurons is trained using the resampled
datasets.

In the second iteration the Test dataset is replaced with the
Train dataset from the previous iteration and a new Train dataset is
created resampling 104 patterns from the remaining pre-existing
dataset. The third and final iteration uses the remaining 41397
samples from the pre-existing dataset as the Train dataset. TheNNs
from the previous iterations are re-trained with the new Train and
Test datasets. See Tables 3 and 4 for a summary of the results from
applying SSIFL to this problem.

Finally the accuracy of the trained NNs is assessed comput-
ing the mean square error (MSE) over the pre-existing validation
dataset containing 7624 samples. The NN trainedwith 10000 sam-
ples is already quite accurate with only a 8.4% worst MSE than the
one from the NN trained with the complete dataset. As compari-
son the MSE of NNs trained with 10000 randomly subsamples are
on average 66.1% worst. In this way we demonstrate that SSIFL op-
timally sub-samples and accurately approximates the underlying
function of pre-existing datasets.

6. Conclusions

In this paper we presented a novel approach (SSIFL) for
computing a regression model that accurately approximates
functions defined over high dimensional input spaces. This has
been achieved under the constraint of minimizing the number of
calls to the target function for generating the training data. We
smartly combine previously published deep theoretical methods
and tools into a practical sampling and function learning algorithm
and we showed the applicability of the proposed technique to
high-dimensional regression problems.

The sampling method used for generating the training dataset
plays a key-role in order to reach high performance of the regres-
sion model. Different sampling methods have been evaluated and
systematically analyzed in this study. Following a comprehensive
discrimination analysis, in this paper we showed that the LCVT
and HA sampling sequences are superior in handling data in high
dimensionality and therefore they have been selected among all
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Table 4
SSIFL results for the real-world blog problem with 280 input dimensions.

Iteration Train samples Test samples NN epochs NN MSE Occam ratio

1 1000 100 159 0.0003592 4.1621
2 10000 1000 106 8.161e−05 0.8903
3 41397 10000 124 0.000478 1.2640
the other techniques for the proposed smart sampling technique.
However, due to high computational effort needed for calculating
the sequence, it might be more convenient to use the HA method
in very high dimensional spaces, which has been already pointed
out in this study to reach good achievements in reasonable com-
putational time.

Smart sampling allows the easy incorporation of a priori in-
formation about the probability distribution of the target func-
tion (importance sampling). The number of samples to be created
(i.e., the calls to the target function) is minimized by incrementally
creating the new training dataset until it contains an optimal rep-
resentation of the target function.

Incremental function learning takes place in each iteration: the
training datasets from previous iterations are reused as the test
datasets for the current iteration. The novel SSIFL technique pro-
posed in this paper confirmed to be very efficient in order to min-
imize the mean square error in each function learning iteration.
Learning takes place in an incremental way, the regression model
is improved in each iteration based on themodel from the previous
iteration and the new train and test datasets.

Finally, the accuracy and confidence levels of the regression
function are determined using a probabilistic performance estima-
tion method.

The SSIFL algorithm has been proven to scale well for very high
input dimensions dataset as shownwith two benchmark functions
with 5-D and 100-D. Furthermore the practical applicability and
goodness of SSIFL method has been confirmed in two real-world
applications with 62-D and 280-D. It is worth noting that SSIFL is
(a) a generic approach that may be used for problems where the
training patterns are either created or resampled in an optimalway
and (b) it can be combined with any regression tool such as neural
networks, support vector machines and many others.
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