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Abstract

Software-Defined Networking (SDN) architecture has emerged in response to limitations of traditional
networking architectures in satisfying today’s complex networking needs. In particular, SDN allows network
administrators to manage network services through abstraction of lower-level functionality. However, SDN
is a logically centralized technology. Therefore, scalability, and especially the control plane (i.e. controller)
scalability in SDN is one of the problems that needs more attention. In this survey paper, we first discuss
the scalability problems of controller(s) in an SDN architecture. We then comprehensively survey and sum-
marize the characterizations and taxonomy of state-of-the-art studies in SDN control plane scalability. We
organize the discussion on control plane scalability into two broad approaches: Topology-related approaches
and Mechanisms-related approaches. In Topology-related approaches, we study the relation between topol-
ogy of architectures and scalability issues. It has sub-categories of Centralized (Single) Controller Designs
and Distributed approaches. Distributed approaches, in turn, have also sub-categories: Distributed (Flat)
Controller Designs, Hierarchical Controller Designs, and Hybrid Designs. In Mechanisms-related approaches,
we review the relation between various mechanisms used to optimize controllers and scalability issues. It has
sub-categories of Parallelism-based Optimization and Control Plane Routing Scheme-based Optimization.
Furthermore, we outline the potential challenges and open problems that need to be addressed further for
more scalable SDN control planes.

Keywords: Scalability, Software-Defined Network, Control Plane, OpenFlow, SDN, Survey

1. Introduction

Increasing cloud services, server virtualization,
sharp growth of mobility and content-like video have
led researchers to rethink today’s network archi-
tectures. In traditional architectures, network de-
vices and appliances are complex and difficult for
(re)configuration and (re)installation since they re-
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quire highly skilled personnel. Adding or moving
a device from a network requires extra costs. It is
also time-consuming because IT people need to deal
with multiple switches, routers, etc. and update
ACLs, VLANs and other mechanisms [1]. Further-
more, as business demands or user needs increase day
by day, application developers, carriers, and enter-
prises delve into evolving new services and facilities.
However, vendor dependency is an obstacle deterring
them from developing new networking applications
and services for their networks due to slow equip-
ment product cycle, application testing and deploy-
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ment. Therefore, today’s data centers, carriers, and
campuses need more dynamic architectures.

Software Defined Networking (SDN) [2]-[6] archi-
tecture has emerged in response to the aforemen-
tioned limitations of traditional networking architec-
tures. SDN aims to decouple the control plane and
data plane. This separation provides network op-
erators/administrators with efficient use of network
resources and eases provisioning of resources. Also,
SDN brings ease of programmability in changing the
characteristics of whole networks. This simplifies the
management of the network, since it is decoupled
from the data plane. Therefore, network operators
can easily and quickly manage, configure, and op-
timize network resources with dynamic, automated
and proprietary-free programs in SDN architecture
[7]. Google’s datacenter WAN, B4 [8], is one of
the examples for SDN adopted in a large-scale net-
work with the aforementioned purposes. In addition,
since the network is logically centralized in SDN, con-
trollers have a global visibility of the whole network
unlike conventional networking. Hence, they can dy-
namically optimize flow-management and resources.

Despite the advantages of centralized control in
SDN architectures, SDN faces some issues challeng-
ing its nature (i.e. centralized control) due to day
by day increasing network demands. Although net-
work operators enhance the performance of the net-
work controllers, it still cannot be enough to meet
the high network demands such as flow request and
monitoring network statistics. For example, one of
the earlier SDN controllers, NOX [9], can serve only
30K flow requests per second with a response time
less than 10 ms. This insufficiency appears more
in large-scale networks or data centers compared to
small networks. Kandula et al. [10] report that a
cluster of 1500 servers receives 100K flows per second
on average. Also, Erickson [11] states that a network
with 100 switches can result in 10 million flow ar-
rivals per second in the worst case. These numbers
indicate that the control plane in an SDN architec-
ture is prone to suffer from scalability issues due to
its centralized nature. Furthermore, Sezer et al. [1]
state that one of the main challenges in SDN is the
scalability issue, which especially needs more atten-
tion by researchers. Therefore, understanding and

improving the scalability of the SDN control plane
(i.e. controller) is a critical problem for successful
adoption of SDN for large scale networks or networks
with many flows.

1.1. Survey Organization

In this paper, we survey scalability problems of the
control plane (i.e. controllers) in SDN architectures
as opposed to other general SDN surveys. We discuss
the main causes that make the control plane suffer
from scalability issues in an SDN architecture. We
also present characterizations and classifications of
proposals based on the primary concepts exploited to
alleviate the controller scalability issues. In addition,
we point out the main challenges along with existing
proposals in controller scalability.

We note that data plane scalability in SDN is not
a part of this paper’s scope. However, as a brief note,
data plane scalability in SDN is mostly dominated by
(1) processing power, (2) capacity of memory/buffer,
and (3) software implementation of data plane de-
vices. For a more detailed and comprehensive discus-
sion on data plane scalability in SDN, we would like
the readers to direct following studies: [12]-[19].

In the remaining sections of the paper, Section 2
gives a light-weight overview of the SDN framework
with OpenFlow protocol. In Section 3, we discuss
the Scalability concept regarding its meaning and
present some scalability metrics proposed in the lit-
erature to quantitatively measure the scalability of
systems both in general and SDN context as well as
contributors to scalability issues in SDN. Section 4
presents our organization of the studies over control
plane scalability in SDN. Section 5 outlines the rela-
tion between topology of architectures and scalability
issues while Section 6 discusses the relation between
other mechanisms used to optimize the controller per-
formance and scalability issues. Section 7 presents
a comparative discussion over control plane scalabil-
ity proposals. In Section 8, we outline the potential
challenges and open issues that need to be addressed
further for fully scalable SDN control planes in the
future in a nutshell. Finally, Section 9 wraps the pa-
per up with concluding remarks.
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2. An Overview of SDN Architecture and
OpenFlow Protocol

SDN architecture with OpenFlow protocol enables
network operators to treat flows in a finer-granular
way compared to the traditional networks by means
of controllers. In a traditional network, flows (or
packets) are mainly treated based on a single or a
few attribute combinations of packet headers, such
as longest destination IP prefixes, destination MAC
addresses, or a combination of IP addresses and
TCP/UDP port numbers etc. SDN allows to manage
flows based on more attributes of packet headers by
means of a Controller-Data Plane Interface (C-DPI)
such as OpenFlow protocol [20]-[23].

As shown in Fig. 1, Open Networking Foundation
(ONF)1 vertically splits SDN architecture into three
main planes [24]:

• Data Plane: The data plane is the bottom
plane and consists of network devices such as
routers, physical/virtual switches, access points
etc. These devices are accessible and managed
through C-DPIs by SDN controller(s). The net-
work elements and controller(s) may commu-
nicate through secure connections such as the
TLS connection. OpenFlow protocol is the most
prevalent standard C-DPI used for communica-
tion between controller(s) and data plane de-
vices.

• Control Plane: An SDN control plane com-
prises a set of software-based SDN controller(s)
to provide control functionality in order to su-
pervise the network forwarding behavior through
C-DPI. It has interfaces to enable communi-
cation among controllers in a control plane
(Intermediate-Controller Plane Interface, i.e. I-
CPI [25], optionally secured using the TLS), be-
tween controllers and network devices (C-DPI),
and also between controllers and applications
(Application-Controller Plane Interface, i.e. A-

1https://www.opennetworking.org/
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Figure 1: An Overview of an SDN Control Plane. Main compo-
nents in a control plane of an SDN network are a controller(s)
and interfaces (e.g. A-CPI, C-DPI, and I-CPI).

CPI). An A-CPI2 renders possible the commu-
nication between network applications/services
and controller(s) for network security, manage-
ment etc. A controller consists of two main
components: Functional components and control
logic. Controllers include more than one func-
tional components such as Coordinator, Virtu-
alizer etc. to manage controller behaviors. Fur-
thermore, SDN control logic in a controller maps
networking requirements of applications into in-
structions for network element resources [24].

• Application Plane: An SDN application plane
consists of one or more end-user applications
(security, visualization etc.) that interact with
controller(s) to utilize an abstract view of the
network for their internal decision making pro-
cess. These applications communicate with con-
troller(s) via an open A-CPI (e.g. REST API).
An SDN application comprises an SDN App
Logic and A-CPI Driver.

In an SDN network with OpenFlow protocol and
OpenFlow-enabled switches, there are three main

2An A-CPI is mostly called “Northbound Interface” by the
SDN community.
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parts in a switch: Flow Table, Secure Channel, and
OpenFlow Protocol. An OpenFlow switch maintains
a number of flow tables containing a list of flow en-
tries. Each flow entry consists of 3 parts: A “Rule”
field to define the flow entry based on certain header
attributes such as source/destination addresses, an
“Action” field to apply on a packet matching the val-
ues in the “Rule” field, and a “Stats” field to maintain
some counters for the entries [23]. A Secure Channel
(e.g. TLS) is the interface that connects data plane
elements to a remote controller. Switches are man-
aged and configured by the controller over the secure
channel. In addition, the controller receives events
from the switches and sends packets out to switches
through this channel.

In SDN, a controller can work in three operational
modes to setup a new flow rule (a.k.a flow entry):
reactive mode, proactive mode, and hybrid mode [26]:

• Reactive Mode—In the reactive mode, when a
new packet arrives to a network device (e.g.
switch), the switch does a flow rule lookup in
its flow tables. If no match for the flow is found,
the switch forwards it to the controller using C-
DPI so that the controller decides how to handle
the packet. After the controller processes the
packet according to the network policies, it cre-
ates and sends a flow entry to be installed in
the network device. Future flows matching with
this flow entry based on packet header attributes
will be treated according to the corresponding
matching rule.

• Proactive Mode—In the proactive mode, flow en-
tries are setup in flow tables of the switches be-
fore new flows arrive at the switches. When a
packet arrives at a switch, the switch already
knows how to deal with that packet. In this
case, the controller is not involved in any flow
rule setup process.

• Hybrid Mode—In the hybrid mode, a controller
benefits advantages of both reactive and proac-
tive modes. It is quite possible that network ad-
ministrators proactively install certain flow en-
tries in data plane devices and the controller(s)

reactively modify (delete/update) them or even
add new flow entries based on incoming traffic.

While the proactive mode brings some concerns re-
garding inefficient use of switch memory, the reactive
mode provides more agile, flexible, and dynamic en-
vironment for both controllers and switches [26].

2.1. Scalability Support in OpenFlow Protocol

There are also some scalability related improve-
ments in OpenFlow specifications. One improvement
is the group table3 mechanism specified in version 1.1
[27] and later. This mechanism enables multiple flow
table entries to point to the same group identifier, so
that the group table entry is performed for multiple
flows. For example, if you need to update the action
on this set of flow table entries (all have the same
action), the controller can only update the pointed
group table entry action instead of updating the ac-
tion of all flow table entries. Another improvement
is that it provides multiple controller support as of
its version 1.2 [28] through the controller role change
mechanism. This scheme enables a switch to estab-
lish communication with a single controller or mul-
tiple controllers in parallel under different controller
roles such as master, equal, and slave.

3. Scalability and Its Causes in SDN

Scalability is a frequently-claimed attribute of var-
ious systems. It is a multi-dimensional topic. While
the basic notion is intuitive, the term scalability does
not evoke the same concept to everybody. Therefore,
there is no general precise agreement on neither its
definition nor content. While some people may re-
fer to scalability as optimization of processing power
to CPUs, others may define it as a measure of par-
allelization of applications across different machines.
However, regardless of its meaning to someone, it is a
desired property indicating positive sense regarding
a system, architecture, algorithm and so on.

3A group table consists of group entries. A group entry
consists of a group identifier, a group type, counters, and a list
of action buckets.
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Furthermore, trade-offs concerning some concepts
such as performance, resiliency, availability, reliabil-
ity and flexibility have to be taken into account by
network designers and managers while designing a
network architecture [29]. A “solution” proposed as
a scalability cure for a network may introduce trade-
offs that harm other useful properties of the network.
For example, in the context of SDN, proactive rule in-
stallation in SDN switches decreases the load of the
controller, thus reducing the processing time and flow
initiation overhead in the controller. However, this
constraints the flexibility coming from reactive flow
installation and reduces decision-making dynamicity
of the controller and management of the network.
Also, controller distribution is one way to overcome
computational load on controller but it brings consis-
tency and synchronization problems as well. There-
fore, scalability is not an independent problem that
can be exclusively dealt with but is a combination
of issues that introduces trade-offs to be explicitly
stated while proposing a remedy.

3.1. Existing Scalability Metrics in General

There are several research efforts [30]-[36] propos-
ing a metric to measure scalability of systems. Most
of these metrics are for homogeneous environments.
The majority of these proposals revolve around two
major types of scalability metrics: Isospeed scalabil-
ity and Isoefficiency scalability.

The Isospeed scalability is characterized by the fact
that an achieved average unit speed of an algorithm
on a given machine can remain constant with in-
creasing number of processors and problem size for
an algorithm-machine combination [30]. In [31], the
authors present a metric to describe the scalability of
an algorithm-machine combination in homogeneous
environments. Their scalability function is defined

as ψ(p, p′) = p′W
pW ′ where p and p′ are the initial and

scaled number of processors of the systems respec-
tively, and W and W ′ are the initial and scaled prob-
lem size (workload) respectively.

The Isoefficiency scalability is described as the
ability of parallel machine to keep the parallel effi-
ciency constant when the system and problem size
increase [32]. The parallel efficiency is defined as

speedup over the number of processors, i.e. E = S
p .

Speedup is also given by the ratio of problem size (W )
and parallel execution time (Tp), i.e. S = W

Tp
where

Tp = W+T0(W,p)
p with T0(W,p) extra communication

overhead [33].
Pastor and Orero [34] define heterogeneous scala-

bility by presenting a heterogeneous efficiency func-
tion. They attempt to extend the homogeneous Isoef-
ficiency scalability model to heterogeneous comput-
ing and, therefore, their work inherits the limitation
of parallel speedup, requiring the measurement of
solving large-scale problem on single node. Sun et
al. [35] propose a scalability metric called Isospeed-
efficiency for general heterogeneous computing sys-
tems. This metric combines the roots of both Isospeed
scalability and Isoefficiency scalability metrics by
means of a concept called “Marked Speed” to de-
scribe the computing power for a stand-alone node
and a combined computing system.

3.2. Scalability in SDN

In SDN networks, controller performance is one of
the primary concerns while designing more scalable
networks. There are many studies exploring perfor-
mances of controllers with respect to different net-
work workload, implementations, architectures and
so on [37]-[41]. Although studies evaluate scalabil-
ity performance of controllers they propose regarding
various performance metrics, such as path installa-
tion time, link utilization, and so on, depending on
their target problem, the most prominent and con-
sidered metrics are control plane throughput, which
refers to the number of flow requests handled per
second, and (flow setup) latency, which refers to the
delay to respond flow requests, in SDN context. In
SDN, a controller needs to proactively or reactively
set up (i.e. handle) and tear down flow-level forward-
ing state in OpenFlow switches. Once set up, the flow
forwarding state remains cached on the OpenFlow
switches so that this process is not repeated for sub-
sequent packets in the same flow. This setup process
includes a latency as well. It is perceived that this
flow setup process is to be likeliest source of control
plane (i.e. controller) performance bottleneck by the
SDN community. Hence, the number of flow requests
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handled per second (throughput) and flow setup la-
tency come into prominence in evaluation of control
plane scalability performance. Therefore, the term
Scalability, particularly control plane scalability in
SDN context, is characterized by the aforementioned
two metrics, throughput and flow setup latency, as
well as in this paper. A more detailed comparison
of studies in terms of their scalability performance in
terms of throughput and flow setup latency metrics
is given in Section 7.

There are also few research efforts proposing a met-
ric to quantify scalability of SDN networks. Hu et al.
[42] present a metric for SDN control plane scalabil-
ity. They use the scalability metric, which is based
on productivity of a distributed system, presented in
[36] to quantify the scalability of SDN control plane
by adapting to the SDN case. A similar work in [43]
also proposes a metric to quantify control plane scal-
ability by ratio of workload (number of flows enter-
ing the network through the data plane) and over-
head (number of messages processed in the control
plane). However, we should note that these metrics
have been proposed recently. Therefore, we will see
their adoption by SDN research community as one of
the metrics for scalability performance measurement
by the time.

3.3. Contributors to Scalability Issues in SDN

SDN is a logically centralized architecture, there-
fore scalability is one of the crucial issues to be ad-
dressed in SDN as in many traditional networks [44].
However, in particular, scalability concerns of the
control plane in SDN are intrinsic to SDN owing to
its separated structure. In this section, we point out
the main reasons that make the control plane a scal-
ability bottleneck in SDN.

• Separation of Control Plane and Data
Plane: The separation of the data plane and
control plane is a contributor to scalability is-
sues of the SDN architecture, particularly con-
trol plane scalability, since this decoupling re-
quires the management of network devices from
a remote controlling mechanism (i.e. controller).
Since data plane devices have no longer ability to

make decisions about traffic packets a communi-
cation has to be established with controllers to
receive corresponding decisions about the pack-
ets. This communication brings extra message
burden for both controllers and data plane de-
vices. Therefore, this separation may result in
significant signaling overhead between control
plane and data plane, depending on the network
architecture (e.g. distributed, hierarchical etc.)
and applications on top of the controller. Hence,
this makes the control plane play a bottleneck
role regarding the scalability of the system.

• Quantity of Events/Requests Handled by
a Controller: This problem pertains more to
the single controller designs than to the dis-
tributed (flat), hierarchical or hybrid designs
since it results from the centralization of com-
putation at a single central entity. An increase
in the number of network devices reinforces the
foregoing problem for controllers. As the net-
work grows with respect to the size of the nodes
(e.g. hosts, switches etc.), the controller will
have to cope with more events and flow re-
quests, which can make the controllers a bot-
tleneck point due to its limited computation re-
sources such as CPU and memory. Therefore,
the number of control messages sent by data
plane devices to the controller(s) becomes one
point to be addressed because the controller may
not be able to handle all the incoming requests.
For example, a NOX controller can handle up to
30K requests/sec, which is enough for small to
mid-size networks [45]. However, that number
may not be enough for some network settings,
such as data centers, depending on the number
of servers and the switches [10, 46]. This issue
may also result in delay in programming of data-
plane (devices) since it may increase flow rule
setup process delay at controller, which eventu-
ally affects the speed of the network.

• Controller-Switch Communication Delay:
As stated in [47], the controller’s placement (dis-
tance between network devices and controller) is
one of the factors that introduces latency into

6
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the flow setup time. Flow setup latency is typ-
ically determined by switch packet processing
time, RTT (round-trip-time) between controller
and switches, and controller packet processing
time. If the controller-switch communication de-
lay (determined by RTT) is high, then result-
ing flow setup latency becomes high too, which
causes longer flow rule addition, deletion or up-
date in switch flow tables. This, in turn, may
result in congestion in both control plane level
and data plane level and longer failover time in
the network. Hence, scalability of the controller
degrades. Although this delay depends on phys-
ical distance between controllers and data plane
devices, a well-defined placement of controllers
may minimize the delay. This particularly be-
comes important in WAN compared to small
scale networks. Azodolmolky et al. [48] outline a
comprehensive analytical model for the behavior
of a scalable SDN deployment regarding bound-
ary performance of event processing delay and
buffer space of SDN controllers by means of the
network calculus as a mathematical framework.

SDN brings the possibility of various network in-
novations, but lacks uniform definitions and standard
implantation in reality. Many essential issues of the
controller (plane), however, need to be well addressed
so as to improve the development and usages of SDN.

4. Classification of Control Plane Scalability
Proposals

As discussed in Section 3, there is no consensus
on the definition of scalability. Therefore, it is not
easy to present an unified classification for scalability
solutions. The organization that we present in this
paper reflects our own point of view over the proposed
studies in SDN control plane scalability.

As shown in Fig. 2, we organize the discussion on
control plane scalability into two broad approaches.
The first approach is Topology-related Approaches
with sub-categories of Centralized (Single) Controller
Designs and Distributed approaches. In this cate-
gory, we study the relation between topology of ar-
chitectures and scalability issues. Distributed ap-

Control Plane 
Approaches

Mechanisms-related
Approaches

Centralized (Single) 
Controller Designs

Distributed 
Approaches

Distributed 
(Flat) Controller 

Designs

Topology-related
Approaches

Hierarchical 
Controller 

Designs

Hybrid 
Designs

Parallelism-based 
Optimization

Control Plane 
Routing Scheme-

based Optimization

Figure 2: Taxonomy of Control Plane Approaches in SDN. The
proposed approaches are categorized into two categories with
sub-categories. Topology-related approaches revolve around
structure of the framework to distribute the total workload
that the controllers handle. Mechanisms-related approaches
offer different ways of optimization for controllers and applica-
tion implementations.

proaches are Distributed (Flat) Controller Designs,
Hierarchical Controller Designs and Hybrid Designs.
Reducing the workload on a controller will result in a
better performance of the controller regarding scala-
bility. Therefore, distribution of control plane (i.e.
controller) workload among controllers is one way
related to the scalability. Hybrid designs represent
the studies that leverage the data plane by devolving
some limited control functions to the switches to par-
tition the control plane workload. This approach is
hybrid due to involvement of both the control plane
and data plane in the network control. It differs from
the distributed (flat) and hierarchical designs in the
way that switches are involved in decision processing
and network control. We explain these approaches
further in the corresponding subsections throughout
the paper.

In the second approach, Mechanisms-related Ap-
proaches, we review the relation between various
mechanisms used to optimize controllers and scalabil-
ity issues. Enhancing controllers with respect to their
performance by some optimization techniques results
in better scalability performance too. In addition, re-
ducing the events resulting from routing mechanism
of a controller is another way to increase the scal-
ability in control plane since routing process brings
worth considering load to controller.

7
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Also, some proposals may seem to belong more
than one category. Hence, we classify and present
such proposals by mainly focusing on their primary
approaches.

Table 1 shows the network types targeted by the
studies. Most of the proposals target data centers,
enterprise networks or WAN networks since these net-
works are more vulnerable to the control plane scal-
ability issues.

Proposals

Network
Types Campus Cloud DC Enter

prise
WAN

Beacon [11] X
DEFO [49] X
DevoFlow [50] X
DIFANE [51] X
DISCO [52] X X X
D-SDN [53] X
ElastiCon [54] X X
Ethane [55] X X
Fibbing [56] X X X X X
FlowBroker [57] X
HyperFlow [58] X X
Kandoo [59] X X X
Logical xBar [60] X
Maestro [61] X X
McNettle [62] X
NOX [9] X X
NOX-MT [37] X X
Onix [63] X X X X
ONOS [64] X X
Orion [65] X
Tavakoli et al. [66] X
Tam et al. [67] X
Yazici et al. [68] X X
Bari et al. [69] X
Karakus et al. [70] X
Owens et al. [71] X X X X
Soliman et al. [72] X

Table 1: Network types targeted by the studies. Most of
the proposals target data centers (DC), enterprise networks
or WAN networks.

5. Topology-related Approaches

In this approach, we review the relation between
topology of architectures and scalability issues. The
proposals that use different topology models, illus-
trated in Fig. 3, can be classified in four prevalent ar-
chitectures: Centralized (Single) Controller Designs,
Distributed (Flat) Controller Designs, Hierarchical

Controller Designs, and Hybrid Designs. These de-
signs have their own intrinsic advantages and disad-
vantages with respect to control plane scalability. We
explain these architectures and present the related
studies in corresponding subsections below.

5.1. Centralized (Single) Controller Designs

This type of architecture settings revolve around a
single central controller [55, 9] with a global network
view. The design of this architecture is simple and it
is easy to manage the network. This design may meet
the needs of small to mid-size networks. However, it
is not efficient to handle the burden of environments
such as data centers and large-scale networks due to
number of events/requests that the controller must
handle as stated in the Section 3. Therefore, a single
controller design is considered less scalable compared
to distributed (flat) controller, hierarchical controller
and/or hybrid designs.

The authors in [55] develop a new networking ar-
chitecture called “Ethane” that targets the enterprise
networks although it is first deployed in campus net-
work. In an Ethane network, network managers are
able to define policies and each request that is not
matching a flow entry has to traverse through the
controller. There are three concerns that the au-
thors address and resolve in this architecture. First,
Ethane renders that high-level policies become the
authority part to control the network. Second, the
packet paths are managed by policies in order to have
better control and global network view. Third, the
Ethane network requires a precise binding between a
packet and its origin to be able to identify where the
packet coming is from.

NOX [9] is inspired by the need for a centralized
and uniform programmatic interface that would make
a network more manageable. NOX is a network op-
erating system that is more than just a controller
platform for a network. As in most SDN controller
platforms, NOX treats the packets based on the first
packet of a flow traversing through the controller.
This flow-based method helps in having more gran-
ular control over the traffic in a network. In [66],
the authors investigate whether generalized solutions
such as NOX can handle characteristic requirements
of specialized environments such as datacenters.
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(a) Centralized (Single) Controller
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Controller

Controller-to-Controller Path

(b) Distributed (Flat) Controller Design

Root Controller

Controller

Controller

Controller

(c) Hierarchical Controller Design

Controller
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Figure 3: An Overview of Topology-related Architectures. The two-sided solid, dashed, and dashed-dotted arrows represent
two-way data path among network devices, control path between controller and data devices, and controller-to-controller path
among controllers, respectively. In 3a (Centralized (Single) Controller Design), there is one main controller with global network
state. In 3b (Distributed (Flat) Controller Design), every controller is responsible for different sites/parts of network(s) with
partial or full shared network view. In 3c (Hierarchical Controller Design), there are levels in which controllers are responsible
for different sites (sub-domains) and a Root controller on top with global network view for global applications like routing. In
3d (Hybrid Design), data plane devices are also involved in network control.

5.2. Distributed Approaches

In this approach, we classify and present the stud-
ies [51]-[56] that distribute the control plane work-
load on controllers based on topological models, such
as flat, hierarchical as well as hybrid designs. As
using distributed controllers brings advantages such
as load distribution and avoiding centralized (single)
controller failure, it brings some challenges such as
overhead from controller communication, latency due
to state synchronization, and (policy/state) consis-
tency among controller instances that are being ad-
dressed by researchers. We discuss these challenges
in Section 8.

5.2.1. Distributed (Flat) Controller Designs

In this structure, each controller manages a sub-
network/domain of the whole network. There are
two strategies for distributed controller architectures
to implement controller’s network view. In the lo-
cal view strategy, each controller has its own local

network view and each of its neighboring local net-
works is abstracted as a logical node. In the global
view strategy, on the other hand, each controller has a
global view of the whole network. In both cases, the
controllers need to communicate through controller-
to-controller channels to exchange needed state in-
formation (e.g. reachability information) regarding
their domains.

HyperFlow [58] is logically centralized albeit its
distributed architecture is an event-based control
plane for OpenFlow. In HyperFlow, the authors ex-
ploit local controllers, serving all requests for their
own remote sites, due to an increase in the flow setup
times and flow initiation rates. It is actually imple-
mented as a NOX [9] application that is responsible
for: (a) global network view synchronization between
controllers, (b) communication to switches controlled
by another controller from a different site, and (c)
managing responses coming from switches in other
sites to the request-originator controllers. A system
called “publish/subscribe” message paradigm is ex-
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ploited to accomplish these tasks through controllers
from different sites.

In [63], the authors propose a new distributed net-
work platform called “Onix” for large-scale networks
in response to deficiencies (e.g. providing consis-
tent network state distribution, global network view
among network applications, and failure recovery
mechanisms) in a common control platform. Onix in-
stances propagate network states to other instances
to be able to scale large networks. The authors fol-
low three approaches to improve scalability in Onix
architecture; (1) Network Information Base (NIB)4

partitioning by controller instances for less work, (2)
cluster aggregation for a hierarchical structure, and
(3) consistency and durability of the network states
for applications. A similar work, Software Transac-
tional Networking (STN) [73], also proposes a dis-
tributed control plane along with a scheme with a
middleware to resolve policy consistency among dis-
tributed controller over the data plane. While Onix
expects application writers to provide the necessary
logic to detect and resolve conflicts of network state
due to concurrent control, STN propose concurrent
policy composition mechanisms that can be used by
any application in a general fashion.

Tam et al. [67] study the feasibility of using multi-
ple controllers to improve scalability without global
network view and limited network topology informa-
tion stored in controllers in a data center environ-
ment. They leverage flow routing example to see
practicability of these controllers and propose two
approaches, path-partition and partition-path, for the
corresponding purpose.

In [68], the authors propose a distributed cluster-
based controller architecture and a framework to re-
tain the communication and coordination between
controllers to obtain a more scalable network. This
cluster-based architecture brings flexibility to the
network regarding adding or removing controllers
since it does not involve network applications. The
controllers select a master controller that is in charge

4NIB is a data structure to store network state and is
roughly analogous to the Routing Information Base (RIB) used
by IP routers.

of delineation between controllers and switches.
Distributed controller architectures are proposed

to mitigate the scalability issues of SDN networks.
However, distributed controller architecture may not
achieve the planned scalability because of the unbal-
anced load across the controllers since network ad-
ministrators decide which and how many switches
connect to a controller when they setup the network.
Therefore, this may cause an overload in the con-
troller.

ElastiCon [54] distributes the workload evenly
through the controllers by means of a controller pool.
This elastic distributed controller architecture dy-
namically shifts the workload across the controllers
by adding or removing controllers to the controller
pool and/or rebalancing the load of an individual
controller based on threshold values.

Phemius et al. [52] present the “DISCO” (DIs-
tributed Sdn COntrol plane) framework consisting
of multiple controllers controlling different SDN do-
mains that share aggregated network-wide informa-
tion for a consistent network view on each controller.
The DISCO framework has two main parts. While
the intra-domain part is responsible for controller’s
own domain functionalities, the inter-domain part
manages the flows across the distributed networks by
exchanging the aggregated network state information
such as reservation, topology etc. The difference of
the DISCO framework from the other distributed ar-
chitectures is its capability of differentiation of intra-
domain and inter-domain information along with het-
erogeneous inter-domain links such as MPLS tunnels
and SATCOM links.

Bari et al. [69] address difficulties of deploying
multiple distributed controllers in a large-scale WAN
network. They present a framework that readjusts
the required active controllers with some assigned
switches in accordance with current network dynam-
ics to reduce flow setup time, horizontal overhead
(between controllers) and vertical overhead (between
controllers and switches). Their proposed manage-
ment framework is responsible for (re)assignment of
switches to controllers in case of a need.

ONOS [64] is another distributed SDN control plat-
form aimed at improving scalability, performance and
availability of networks. ONOS addresses how a net-
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work OS can scale horizontally to avoid becoming
a performance bottleneck and avoid being a single
point of failure. In ONOS, a large-scale WAN net-
work can be divided into multiple parts controlled by
different ONOS instances. These distributed ONOS
instances construct a global network view for the net-
work.

It is worth to mention another collaborative,
open-source controller platform, the “OpenDaylight”
(ODL) project [74]. The ODL is a Linux Founda-
tion collaborative project to promote use of SDN.
The ODL community has come together to estab-
lish an open reference controller framework to freely
program and control an SDN architecture.

5.2.2. Hierarchical Controller Designs

In hierarchical architectures [59], [60]-[53], [57, 70]
local controllers handle local applications’ require-
ments with frequent events, and a main more power-
ful controller, usually called as “Root”, deals with
non-local applications’ needs requiring global net-
work view and rare events as opposed to local con-
trollers. Although controllers may have a global view
of the whole network in the distributed (flat) con-
troller designs, lower-tier controllers (which are more
localized compared to upper-tier controllers) do not
maintain a global view of the network in the hier-
archical controller designs. Therefore, this design is
different from the distributed (flat) design regarding
network views of the controllers.

Kandoo [59] focuses on scaling a controller by de-
creasing the number of frequent events on the control
plane since these events bring more overhead than
others to the control plane. Kandoo’s architecture
comprises of two layers to sustain scalability. The
bottom layer consists of local controllers which are
not connected to each other and do not maintain
a network wide state while the top layer is a logi-
cally centralized controller, connected to all bottom
layer controllers, with the global network view. Fre-
quent and resource-greedy events like flow arrivals
are processed by the local controllers at the bottom
layer, thereby preventing the root (top layer) con-
troller from coping with more numbers of events.

McCauley et al. [60] discuss “Logical xBar” that is
a recursive building block used to construct a central-

ized abstract hierarchical control plane. It exploits
the idea of aggregating smaller units for forwarding
into larger ones. The proposed control plane design
has two building blocks: 1) Logical xBar, which is
a programmable entity that can switch packets be-
tween ports, and 2) Logical Server which handles the
forwarding table management and the control plane
computations. In the proposed design, the network
itself does not necessarily need to be physically hi-
erarchical, instead aggregation of logical xBars and
logical Servers bring that abstracted hierarchy on the
network.

Flat and hierarchical control plane structures may
still suffer from certain issues. In flat control plane
architecture, the controllers may face increasing com-
putational complexity resulting from growing large
size networks. On the other hand, the centralized hi-
erarchical architectures suffer from path stretch prob-
lems [75].

In [65], the authors propose the “Orion”, a hierar-
chical control plane for large-scale networks managed
by the same administrator to alleviate the above-
mentioned two problems. Orion has three layers: the
bottom layer consists of network devices of areas; the
middle layer consists of area controllers; and the top
layer contains sub-domain controllers. Sub-domain
controllers have global network views for their own
domains and synchronize this information with each
other by a distributed protocol.

In [53], the authors introduce Decentralize-SDN,
D-SDN, framework that distributes a control plane
not only physically but also logically in a SDN. D-
SDN exploits the hierarchy of controllers in which
main controllers (upper layer) delegate control to sec-
ondary controllers (bottom layer) to manage certain
network devices.

Marconett and Yoo [57] propose the “FlowBroker”
architecture for a better collaboration between mul-
tiple domains in terms of load balancing and net-
work performance. The FlowBroker architecture ex-
ploits the idea of hierarchy with domain controllers
and one or more super-controllers, called as Brokers,
atop. Each domain controller may attach to more
than one Broker according to their reputations that
reflect performance of a Broker regarding load bal-
ancing and reliability. The FlowBroker architecture
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allows Brokers to cooperate between them to share
abstracted network states coming from the domain
controllers below level. They report that as the do-
main count increases from 6 to 10, the difference be-
tween utilizing 1 broker or 5 broker agents equals a 5
to 8% decrease in maximum link utilization, a 28 to
84% reduction in end-to-end delay, and 69 to 151%
reduction in traffic loss.

Karakus and Durresi [70] propose a hierarchy-
based network architecture along with an inter-AS
routing approach with QoS. The authors use an idea
of levels in which networks with controllers reside on
top. There is also a main controller that works like
a broker on top of networks to keep the global net-
work state and view. Their experiment results indi-
cate that a network controller in a hierarchic setting
handles 50% less number of traffic than a network
controller in a non-hierarchic environment.

5.2.3. Hybrid Approach

This approach differs from the distributed (flat)
and hierarchical designs in a way that data plane de-
vices are involved in decision processing and network
control. Therefore, this approach is considered hy-
brid due to involvement of both the control plane
and data plane in the network control. In this subsec-
tion, we present several SDN architectures [51, 50, 56]
that leverage the data plane by devolving some lim-
ited control functions (such as sending rules to other
network devices to be added, deleted or updated in
their flow tables etc.) to network devices for con-
trol plane workload partitioning, thereby improving
scalability. This might happen either by installing
rules proactively or reactively in the switches. Also,
it is obvious that keeping flows as much as possible
in the data plane reduces overhead and improves the
controller performance regarding throughput and la-
tency.

“DIFANE (DIstributed Flow Architecture for Net-
worked Enterprises)” [51] is an architecture that pre-
serves traffic in the data plane through managing
packets in switches called ”Authority Switches”. In
DIFANE, the authority switches are assigned rules by
means of the controller that maintains an algorithm
to partition the rules and minimizes rule fragmenta-
tion along with the authority switches.

“DevoFlow (Devolved Flow)” [50] addresses fre-
quent interactions between the control plane and the
data plane for the sake of full control and global
view over the network. Since this redundant interac-
tion on almost every flow setup brings extra overhead
and delay, the authors propose DevoFlow to reduce
the interaction while preserving the required amount
of visibility by conveying some functionalities of the
control plane to the data plane. More efficiency and
scalability are achieved because the controller con-
trols only significant, and long-lived flows such as
elephant flows. Use of wild-card rules which aggre-
gate multiple rules into one minimizes the controller-
switch communication as well. DevoFlow lets the
switches make local decisions through cloning rules,
multi-path support, and re-routing. However, there
are some issues that remain open in DevoFlow such
as how to manage some network applications includ-
ing QoS, security, and traffic engineering.

Fibbing [56, 76] is another hybrid SDN architec-
ture that applies a central control over traditional dis-
tributed link-state protocols such as OSPF and IS-IS.
In Fibbing architecture, the controller is still central-
ized and responsible for path computation based on
requirements from operators as in SDN case. How-
ever, the actual computation of Forwarding Base In-
formation (FIB) entries and their installation on data
plane devices is done by the distributed control plane
of traditional protocols run on the network. In this
way, Fibbing takes advantages of centralized control
(SDN) and distributed traditional protocols for scal-
ability.

6. Mechanisms-related Approaches

In Section 5, we have discussed topology-related
approaches. In this section, we discuss other mecha-
nisms used to optimize controller(s). Mechanisms-
related approaches primarily exploit various opti-
mization techniques in order to alleviate the foregoing
scalability issues in SDN networks. They aim to em-
power the controller performance so that it can han-
dle more packet flows per second (i.e. throughput),
improve the latency, and reduce overhead. One way
to increase throughput and improve latency is to ex-
ploit the parallelism in multi-core systems by means
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of some methods such as multi-threading, I/O batch-
ing etc. while another way is reducing the events pro-
cessed in the control plane. These events mostly re-
sult from routing decisions made by the controller(s).
Some research efforts propose better optimized rout-
ing decision mechanisms to reduce events to be pro-
cessed in the control plane.

6.1. Parallelism-based Optimization

Parallelism, such as multi-threading, I/O batching
and so on, is an optimization technique to improve
I/O performance, reduce overhead and memory con-
sumption of the controllers [61, 62, 37, 11]. These
help increase controler’s performance and therefore
improve the scalability of the control plane.

Maestro [61] uses a multi-core architecture to lever-
age the parallelism in order to increase controller
speed along with a hassle-free programming model
for application writers. Maestro uses the batching
of packets to individual destinations to improve pro-
cessing and communication efficiency besides multi-
threading structure. It is designed to evenly partition
the workload in cores to increase the performance (i.e
throughput) by keeping all processor cores busy by
means of the “pull” fashion instead of the “push”
fashion. It is pointed out that Maestro can achieve
600K requests/sec which implies that a distributed
architecture of Maestro is needed to meet today’s
data center requirements.

McNettle [62] exploits multi-core opportunities of
the Glasgow Haskell Compiler (GHC)5 [78] and the
run-time system. A certain number of CPU cores
supports the McNettle system to scale up and the
control algorithms requiring a global network state of
flow arrival rates. In McNettle, when a packet can-
not be associated with a flow rule, a packet-miss mes-
sage is sent by a corresponding switch to invoke the
packet-miss function included in message handlers
forming McNettle programs. The authors claim that
McNettle may scale up to 5K switches with 46 cores
over a single controller with up to 13M flows/sec.

5GHC is an open source compiler for Haskell [77] (a func-
tional programming language).

NOX-MT [37], the successor of NOX, is also a
multi-thread controller which surpasses its prede-
cessor (NOX) regarding throughput and response
time. It embodies the fact that performance of a
controller can be improved to certain levels by ex-
ploiting some optimization techniques such as multi-
threading, I/O batching, malloc implementations etc.
The authors leverage a performance measurement
benchmark, Cbench [79], to emulate the switches and
compare results of three different controllers, Beacon,
Maestro and NOX, with NOX-MT regarding con-
troller responsiveness, throughput performance and
controller latency. The NOX-MT outperforms the
other controllers by handling 1.8M flow requests/sec
with an average response time of 2 ms.

Erickson [11] reveals “Beacon” that provides an
easy-to-handle environment for programmers, ex-
tra abilities to manage applications, and better
performance. One incentive design decision be-
hind the Beacon is to enable network opera-
tors/administrators in order to manage (adding
and/or removing) applications while running the
Beacon. The Beacon is reinforced for a high perfor-
mance by multi-threaded designs: “Shared Queue”
and “Run-To-Completion”. In “Shared Queue” de-
sign, the pipeline threads take the messages from the
shared queue in order to process by corresponding ap-
plications. In case of the “Run-To-Completion” de-
sign, on the other hand, there are no pipeline threads
and each message is processed by I/O threads. The
evaluation results show that the Beacon outperforms
some other controllers such as Maestro [61], NOX
etc. by responding 1.35M messages/sec with a sin-
gle thread. It also scales linearly with 12 threads by
responding more that 12.8M messages/sec.

6.2. Control Plane Routing Scheme-based Optimiza-
tion

Reducing the processed events resulting from rout-
ing decisions of the controller(s) is another way to
increase the scalability and performance of the con-
trol plane in an SDN architecture. In [71, 72, 80]
the authors aim for a better and less event-producing
routing schemes managed directly by controller(s) in
order to scale up the OpenFlow-based networks.
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Gao et al. [80] leverage a Dynamically Reconfig-
urable Processor (DRP) to increase the scalability
of the controller. The authors exploit an emulated
network-on-chip, called “diorama network”, to per-
form routing. In the diorama network, they send
emulated packets from source nodes to destination
nodes through the network in order to figure out the
shortest path. Their study is motivated by the fact
that since routing by controllers affects the perfor-
mance of controllers, slow routing decisions will in-
crease the response time of controllers to switches in
the data plane. An issue that is not investigated by
the authors is how the proposed design copes with
link failures in the network.

Source routing and its variations are also utilized
to increase controller scalability and performance in
SDN [71, 72]. The underlying motivation behind
these studies relies on reducing the state distributed
by the controller to data plane devices. This state
distribution on each switch on a path takes a long
time and pushes the controller response time. Hence,
it increases the delay and network convergence time.
It exploits the idea of inserting path information in
packet headers so that each node can acquire the next
node information where the packets are to be sent
without communicating with the controller. This
approach is different from the traditional OpenFlow
hop-by-hop routing model in which each node com-
municates to the controller to learn what to do and
where to send the flows.

QuagFlow [81] and RouteFlow [82] (evaluation of
the QuagFlow) are some other projects that aim
at certain objectives: (1) utilization of cheap net-
work devices with minimal embedded software, (2)
enabling use of legacy IP routing protocols, OSPF,
RIP, BGP etc., without re-writing in a centralized
way, and (3) ensuring interoperability with legacy
network devices. They provide a transparent unifi-
cation of the Quagga routing software suite [83] and
OpenFlow-enabled hardware. They run control logic
of underlying OpenFlow switches through a virtual
network composed by virtual machines (VMs), which
execute a routing engine (e.g. Quagga). These VMs
are connected to each other to represent the physical
topology. The virtual environment is kept in exter-
nal servers communicating with a controller applica-

tion. Decisions made by the legacy IP protocols are
converted to flow rules by the controller application
and installed to switch flow tables by the controller.
Therefore, there is no requirement for modification of
the existing routing protocols.

Scalability in carrier-grade networks also requires
attentions from researchers due to some reasons such
as number of and geographical distances between de-
vices. Hartert et al. [49] propose a solution frame-
work, DEFO (Declarative and Expressive Forwarding
Optimizer), to achieve high scalability as well as ro-
bustness at carrier-grade networks. Their solution
is based on two logical layers: connectivity layer and
optimization layer. While the connectivity layer is re-
sponsible for default forwarding behavior and defines
connectivity paths, the optimization layer defines ex-
ceptions to this default forwarding behavior and im-
plements optimized paths, which are overwritten con-
nectivity paths and computed by stitching connectiv-
ity paths together.

7. Comparison of Control Plane Scalability
Proposals

Controllers are the main entities in decision-
making processes in SDN networks. They perform
crucial tasks affecting performance of the whole net-
work. Currently, there exist more than 35 differ-
ent publicly-available and proprietary SDN Open-
Flow controllers created by different research groups,
vendors, and organizations from both academia and
industry, written in different languages, and having
different performances. This rapid growing of con-
trollers has raised questions regarding performance
benchmarking of these controllers. Some research ef-
forts [45, 84] have been proposed to evaluate per-
formances of the controllers with respect to cer-
tain metrics. In [45], the authors present a lim-
ited analysis of controllers’ performances by using
a new benchmarking framework called “hcprobe”.
Similarly, Jarschel et al. [84] also introduce a tool
called “OFCBenchmark” to benchmark OpenFlow
controllers. As stated earlier, the performance of an
SDN controller is characterized by several metrics,
but, throughput and flow setup latency latency are
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the most considered ones by the SDN research com-
munity. In terms of the control plane scalability, the
throughput metric typically represents the number of
flows that a control plane (i.e. controller) can han-
dle in certain amount of time while the flow setup
latency denotes the time elapsed from arrival of a
“packet in” message from a switch to installation of
the corresponding flow rule in the switch flow table.

Table 2 shows performance related results of stud-
ies with respect to some scalability related metrics
such as throughput and flow setup latency.

Proposals

Metrics
Throughput
(Flows/sec)

Flow Setup
Latency

Beacon [11] up to 12.8M avg 24.7 µs
DevoFlow [50] - -
DIFANE [51] up to 3M min 0.4 ms
DISCO [52] - -
D-SDN [53] - -
ElastiCon [54] up to 30K min 1 ms
Ethane [55] up to 11K min 1.5 ms
Fibbing [56] - min 0.89 ms
FlowBroker [57] - -
HyperFlow [58] - -
Kandoo [59] up to 1.3M -
Logical xBar [60] - -
Maestro [61] up to 3.5M avg 55 ms
McNettle [62] up to 13M max 10 ms
NOX [9] up to 30K avg 49 ms
NOX-MT [37] up to 1.8M avg 2ms
Onix [63] up to 200K min 2 ms
ONOS [64] up to 19K avg 34 ms
Orion [65] up to 50K min 11 ms
Tam et al. [67] - -
Yazici et al. [68] up to 36K -
Bari et al. [69] - min 5 ms
Karakus et al. [70] - -
Owens et al. [71] - -
Soliman et al. [72] - -

Table 2: Scalability related some metrics such as control plane
throughput in terms of the number of flows handled and flow
setup latency by control plane from the studies.

Since some studies evaluate performance of their sys-
tems regarding different metrics such as path instal-
lation time [67], ratio of elephant to mouse flows [59],
link utilization [57] and so on, it is difficult to show
all the metrics used in studies in a table. In addition,
we note that these numbers heavily depend on the
evaluation environments. In other words, each study
uses different network dynamics and parameters such
as workload, network topology, number of controllers,
applications for testing etc. during their experiments.

Also, these controllers are designed for different prob-
lems. Therefore, we highly recommend readers to in-
dividually examine the corresponding studies in order
to rightly evaluate their scalability performances with
respect to their characteristics.

Using different number of threads shows that single
threaded controllers, such as Ethane and NOX, are
very limited regarding the throughput because they
cannot handle a large number of flows. However, the
controllers that are multi-threaded, such as Beacon,
Maestro, McNettle, and NOX-MT, can handle a large
number of flows per second. The authors in [68] re-
port that the average number of controller responses
per second per switch when one, two, three, and
four controllers are used are approximately 6K, 12K,
25K, and 36K, respectively. ElastiCon’s throughput
performance with respect to the number of controllers
varies from 30K to 72K, its response time perfor-
mance for packet-in arrivals up to 2K packets/sec re-
garding 1-controller, 2-controllers, and 4-controllers
cases varies from 1.1 ms to 13.8 ms, 1.0 ms to 4.3
ms, 1.0 ms to 2.2 ms, respectively. In Orion ar-
chitecture, the total number of new flows that area
controller(s) can handle per second varies from 8K
to around 50K with respect to the number of area
controllers. It is also reported that minimum average
flow setup delay between areas is around 11 ms while
maximum of which reaches to around 25 ms depend-
ing on the number of domain controllers, areas, and
switches in an area. In [69], the authors state that
their framework shows around 160 ms and 5 ms aver-
age flow setup time performance for 1-controller and
n-controllers cases, respectively, on RF-I topology (79
nodes, 294 links) while it is 185 ms and 12 ms, re-
spectively, on RF-II topology (108 nodes, 306 links).
In ONOS, 45.2 ms and 34.1 ms latency values are re-
ported for the time elapsed from a network event de-
tection to sending first corresponding OFPT FLOW MOD

message for rerouting 1K flows and path installation,
respectively. In DIFANE, packets experience 0.4 ms
round-trip time at 100 single-packet flows/sec send-
ing rate. While NOX-MT has an average response
time of 2 ms, Beacon has the minimum average la-
tency with 24.7 µs among the others.

Table 3 illustrates some features, such as the con-
troller that works with, used programming language
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Proposals

Features
Controller Programming

Language
Evaluation Setup

Beacon [11] Beacon Java Used Cbench for tests run on Amazon’s Elastic Computer Cloud using a
Cluster Compute Eight Extra Large instance containing 16 cores.

DEFO [49] DEFO Scala Used many different real and realistic topologies with different number of
nodes and links and compared it to Cisco MATE [85], a traffic engineering
tool.

DevoFlow [50] Any Depends on
controller used

Implemented a flow-level data center network simulator. Used a three-level
Clos topology w/ 168 switches and a two-dimensional HyperX topology w/
97 switches.

DIFANE [51] Any Depends on
controller used

Used XORP [86] to run the link-state routing protocol and kernel-level
Click-based OpenFlow switches as a authority switches.

DISCO [52] Any DISCO Used Floodlight [87] controllers and Mininet [88] SDN simulator to create
3 SDN WANs w/ 4 switches each and connected to each other.

DRP [80] Any Depends on
controller used

Constructed an emulated network (w/ 6 routers and 10 links) on a commer-
cially available dynamically reconfigurable processor DAPDNA-2.

ElastiCon [54] Any Java Used modified Floodlight controller, k=4 fat tree topology and a modified
version on Mininet to run the Open vSwitch [89] instances on different hosts.

Ethane [55] Ethane
Controller

C++/Python Deployed at Stanford’s Computer Science department for over 4 months and
managed over 19 switches and 300 hosts.

Fibbing [56] Fibbing
Controller

Python/C Used ISP topologies [90] whose sizes range from 80 nodes to over 300.
All measurements were performed using OSPF on a Cisco ASR9K router
equipped with 12GB of DRAM as well as on a Juniper M120 router equipped
with 2GB of DRAM.

FlowBroker [57] Any Java Used Floodlight controller and Mininet tool to test 5 different scenarios.
HyperFlow [58] NOX C++ Used 10 servers each equipped with a gigabit NIC and running as a storage

node.
Kandoo [59] Kandoo C/C++/Python Used a simple tree topology where each switch is controlled by one local

controller and kandoo root controller atop in modified version of Mininet
and Open vSwitch.

Maestro [61] Maestro Java Implemented an emulator to generate flow requests from hosts on a common
79-switch topology going to Maestro controller.

McNettle [62] McNettle Haskell Used a modified version of Cbench and ran the controller on a DELL Pow-
eredge R815 server with 48 cores.

NOX [9] NOX C++/Python Ran it in their internal network of roughly 30 hosts for over 6 months.
NOX-MT [37] NOX-MT C++/Python Used Cbench representing 100K hosts and 32 emulated switches.
Onix [63] Onix C++ Evaluated Onix in two ways: with micro-benchmarks to test Onix’s per-

formance as a general platform, and with end-to-end performance measure-
ments of an in-development Onix application in a test environment.

ONOS [64] Any Java Used Floodlight controller and connected a 6-node ONOS cluster to an
emulated Mininet network of 206 software switches and 416 links. Also
demonstrated in Internet2 [91] topology.

Orion [65] Any Java Used Floodlight controller as area controllers. Conducted different exper-
iments for different number of domain (from 1 to 2 ) and area controllers
(from 1 to 6) and switches (from 20 to 120).

Tam et al. [67] Any Depends on
controller used

Used 4 controllers on topology of an irregular network with 28 nodes and
66 links.

Yazici et al. [68] Any Java Used Beacon controllers for the experimental setup with 4 controllers and
4 emulated switches to run Cbench instances.

Bari et al. [69] Any Python Used POX [92] controller and Mininet to simulate RF-I (79 nodes, 294 links)
and RF-II (108 nodes, 306 links) ISP topologies.

Karakus et al.[70] Any Depends on
controller used

Used a topology with 4 different autonomous domains with 4 switches each
and a Broker conntected to domain controllers.

Owens et al. [71] VSDN
Controller

C/C++ Used NS-3 [93] tool to simulate a 6-node network with increasing connection
requests for the controller.

Soliman et al. [72] Any Depends on
controller used

Used Internet2 OS3E topology with 34-nodes.

Table 3: Some features such as the controller that works with, used programming language and evaluation setup characteristics
of the studies.
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in controller implementation and evaluation setup
characteristics, of the studies. Most of the proposals
work with any SDN controller with some modification
efforts. However, the Floodlight [87] controller is the
most used one in the evaluation phase of the stud-
ies due to its good documentation, active community
support, and integration with REST API. Also, Java
is the prevalent programming language used in imple-
mentation of the studies due to their controller choice
although some studies do not report which program-
ming language they used.

Table 4 illustrates the approaches used by the stud-
ies to achieve control plane scalability. Topology-
related approaches uses single, distributed (flat) or
hierarchical controller designs. Mechanisms-related
approaches exploit multi-threading, I/O batching,
better routing schemes etc. There are also hybrid
(i.e. both the control plane-centric and data plane-
centric) studies. We note that some research efforts
belong to more than one approach because they more
or less exploit some other approaches too. However,
they have been classified based on their main meth-
ods, which are discussed in corresponding sections.

Controller designers may consider two architec-
tural design goals while designing their controllers
to improve scalability performance: (1) they can
utilize static switch partitioning—distribution and
allocation of connected network devices to worker
threads running in the controller—and packet batch-
ing—where multiple bytes are read from or written
to the underlying network using a socket buffer—
techniques to achieve high throughput and (2) work-
load adaptive packet batching and task batching—a
strategy used to allocate already received packets to
the worker threads for processing, hence directly im-
pacting the latency of the controller—to reduce flow
setup latency.

8. Challenges and Existing Proposals in SDN
Control Plane

While SDN is becoming a mature technology, the
control plane scalability issues deserve more research
efforts from both academia and industry. In this sec-
tion, we discuss the general problems in an SDN con-
trol plane. However, each of these problems affects

the scalability of the control plane in SDN. Therefore,
these problems need to be taken care of by network
operators while designing/operating their SDN net-
works. In the following, we state the main SDN con-
trol plane challenges along with existing proposals.

• Controller(s) Failure: In a traditional net-
work, when one or more network nodes fail,
flows are routed through alternative paths/nodes
to maintain the traffic continuity. However, in
an SDN architecture, failure of the controller(s)
may result in a chaos for the specific part(s) of
the network controlled by the failed controller(s)
due to two main critical reasons: (i) The con-
trollers are responsible for all configurations, op-
erations, and validations of the network topolo-
gies, resources etc. and (ii) data plane devices
lack an ability for an online “detour” of flows.
This problem may become worse in the single
controller design case. In addition, distributing
the load of a failed controller to other controllers
brings extra load on them, which reduces perfor-
mances thereby their scalability. This distribu-
tion may even result in a cascading failures of
controllers because it can exceed the capacity of
them.

One way to address this problem is to enhance
the network with backup/standby controllers
[94, 95]. In case of the main controller failure,
these backup controller(s) may take the respon-
sibility of the network operations over from the
main controller. In this case, controllers need
to be synchronized to be in a consistent status
regarding network states.

In [96], the authors present a disaster-aware con-
trol plane design to reduce controller-related in-
terruptions. They model the problem of design-
ing a disaster-resilient control plane problem re-
garding the number of controllers, their place-
ment, and the control plane topology. Pashkov
et al. [97] propose a fault-tolerant control plane
design, High-Available Controller (HAC) archi-
tecture, to address the fast recovery of the con-
trol plane by adding an additional cluster mid-
dleware between the controller core and con-
troller network services and applications.

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Proposals

Approaches
Topology-related Approaches Mechanisms-related Approaches

Centralized
(Single)
Controller
Designs

Distributed Approaches Parallelism-based
Optimization

Control Plane
Routing-based
Optimization

Distributed
(Flat) Con-
troller Designs

Hierarchical
Controller
Designs

Hybrid
Designs

Beacon [11] X
DEFO [49] X X
DevoFlow [50] X X
DIFANE [51] X
DISCO [52] X
DRP [80] X X
D-SDN [53] X
ElastiCon [54] X
Ethane [55] X
Fibbing [56] X X X
FlowBroker [57] X
HyperFlow [58] X X
Kandoo [59] X
Logical xBar [60] X
Maestro [61] X
McNettle [62] X
NOX [9] X X
NOX-MT [37] X X
Onix [63] X
ONOS [64] X
Orion [65] X
Tavakoli et al. [66] X
Tam et al. [67] X X
Yazici et al. [68] X X
Bari et al. [69] X
Karakus et al. [70] X X
Owens et al. [71] X
Soliman et al. [72] X

Table 4: Approaches used by the studies to achieve control plane scalability. Topology-related approaches utilizes central
(single), distributed (flat), hierarchical controller and hybrid designs. Mechanisms-related approaches exploit multi-threading,
I/O batching, better routing schemes etc. We note that some research efforts belong to more than one approach because they
exploit some other approaches in their designs too. However, they have been classified based on their primary approaches,
which are discussed in the corresponding (sub)sections.

• State/Policy Distribution/Consistency:
Another important problem regarding scala-
bility is the network state distribution and
consistency between controllers of a control
plane. This problem mainly happens in the
distributed and/or hierarchical architectures
due to distribution of network states among
controller replicas. In addition, this distribu-
tion needs to be fast and reliable to provide
the consistency between controller instances
[98]. Moreover, policy consistency [73] in a
distributed control plane is required because
network-wide policies do not come from a single
component of a network, but rather, they are
formed by different functional modules such as
routing, monitoring, and access control as well

as multiple human operators controlling differ-
ent parts of the network. These conflicts may
result in serious inconsistencies such as violation
to another policy and wrong forwarding of the
packet etc. on the data plane. Therefore, more
efficient algorithms and mechanisms are needed
to maintain state/policy consistency among the
distributed controllers.

Distributing network state among local con-
trollers in the same domain does not necessarily
deal with security issues. However, the Internet
consists of many networks managed by different
authorities. Therefore, the logically centralized
control model of SDN must be extended to ac-
count for inter-domain traffic. This extension
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requires peering, thereby state sharing, among
different administrative domains to have a rela-
tive global network view in order to determine
the next hop. However, this distribution has to
be secure, private, and consistent. In addition,
some other critical questions regarding this shar-
ing are how and what to exchange with other
domains. Yin et al. [99] state that the types
of messages exchanged among controllers may
be various such as reachability information, flow
setup/tear-down/update requests, network pa-
rameters (bandwidth, delay, loss etc.), service-
level agreements (SLAs), virtual network infor-
mation and so on. In [25, 100, 101], the authors
propose a West-East (WE) Bridge mechanism to
enable different SDN administrative domains to
securely peer and cooperate with each other.

• Flow Rule Setup Latency: This problem
refers to the delay in new flow rule setup process
in the context of control plane scalability [40]. As
explained earlier, proactive mode and reactive
mode are two prominent modes to setup a new
flow rule. The proactive mode mode does not
impose any latency in the flow rule setup from
the controller’s point of view. In the reactive
mode, the controller response time (i.e. delay) is
crucial. Controllers having longer flow rule setup
latencies may not meet requirements of certain
applications such as fast fail-over and reactive
routing of latency-sensitive flows. Therefore,
such control planes cannot be scalable enough to
satisfy the network needs. However, this delay
can be relatively reduced by imposing more con-
troller and switch resources such as CPU, mem-
ory etc. and devolving some control functions to
the switches.

In [102], the authors conduct various setup ex-
periments to test the latency of various con-
trollers by changing the number of switches,
number of threads, and controller workload.
They conclude that adding more threads beyond
the number of switches does not improve latency,
and serving more switches than available CPUs
increases controller response time.

Some studies [50, 51] mitigate the flow rule setup

latency by leveraging the idea of Control Func-
tion Devolvement. This idea relies on the dele-
gation of some of the control functions to the
data plane so as to alleviate the load on the
controller(s), thereby reducing controller-switch
communication frequency.

• Controller Placement: In addition the num-
ber of controllers, placement of the controller(s)
[47] has impacts on performance of the net-
work as well. Suboptimal controller placement
affects many other problems such as flow rule
setup latency due to controller-switch commu-
nication delay, controller-controller communica-
tion delay, control plane overhead, fault toler-
ance, resiliency and so on. Although there are
some studies addressing this problem in the liter-
ature [103]-[110], we believe it is still an ongoing
issue and needs further attention of researchers.

Hu et al. [103] propose algorithms to automate
the controller placement decisions given a phys-
ical network and the number of controllers. The
main objective of these algorithms is to maxi-
mize resiliency of SDN to failures. In [104, 105],
the authors address the controller placement
problem to maximize the reliability of control
networks.

Rath et al. [106] present a non-zero-sum game-
based distributed technique to discuss optimal
controller placement in SDN. Hock et al. [107]
introduce the Pareto-based Optimal COntroller-
placement (POCO) framework, which brings
network operators a range of options to select
the controller placement based on their partic-
ular needs regarding the metrics like latency,
load balancing etc. In [108], the authors focus
on the controller placement problem for WAN.
They use the Spectral Clustering placement al-
gorithm to partition a large network into several
small SDN domains. Jimenez et al. [109] uti-
lize the algorithm called “k-Critical” to discover
the minimum number of controllers and their lo-
cations to create a robust control topology that
deals with failures and balances the load among
the selected controllers.
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Furthermore, control plane overhead is affected
by the placement of controllers due to traffic
between switches and controllers (packet in and
flow mod messages) and among controllers (e.g.
state sharing). Obadia et al. [110] challenge the
problem of minimizing control overhead by opti-
mizing the number of controllers and their place-
ment. This approach differs from others because
they target minimization of control overhead in-
stead of minimization of switch-controller delay.

9. Conclusions

Software Defined Networking is a promising emerg-
ing architecture for many networking environments
such as data centers, enterprise networks, campus
networks, cloud networks, and WAN. The major ad-
vantages of SDN are its programmability and agility.
However, the scalability issues in the control plane
is one major problem in SDN that needs more re-
search attention. In the paper, we have firstly given
an overview of the SDN architecture and OpenFlow
protocol along with its support mechanisms for scala-
bility. We have discussed the scalability as a concept
in general and presented various metrics proposed for
quantification of scalability. We have seen that there
is no consensus on the definition of scalability. In
other words, while the basic notion is intuitive, scal-
ability does not evoke the same concept to every-
body. In the context of SDN, scalability is character-
ized by the two prominent metrics, throughput and
flow setup latency. Also, we have pointed out the
main reasons that make the control plane a scalabil-
ity bottleneck in SDN: Separation of Control Plane
and Data Plane, Quantity of Events/Requests Han-
dled by a Controller, and Controller-Switch Commu-
nication Delay. Furthermore, we have presented our
organization for taxonomy of scalability-centric stud-
ies in two broad approaches: Topology-related ap-
proaches and Mechanisms-related approaches. While
the former reviews the relation between topology of
architectures and scalability issues, the latter dis-
cusses the relation between various mechanisms used
to optimize controllers and scalability issues. Fi-
nally, we have outlined the potential challenges and
open problems that need to be addressed further

for more scalable SDN control planes: Controller(s)
Failure, State/Policy Distribution/Consistency, Flow
Rule Setup Latency, and Controller Placement.
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