
Accepted Manuscript

Evolving Spiking Neural Networks for online learning over drifting data
streams

Jesus L. Lobo, Ibai Laña, Javier Del Ser, Miren Nekane Bilbao, Nikola Kasabov

PII: S0893-6080(18)30213-2
DOI: https://doi.org/10.1016/j.neunet.2018.07.014
Reference: NN 3997

To appear in: Neural Networks

Received date : 5 April 2018
Revised date : 11 June 2018
Accepted date : 25 July 2018

Please cite this article as: Lobo, J.L., Laña, I., Del Ser, J., Bilbao, M.N., Kasabov, N., Evolving
Spiking Neural Networks for online learning over drifting data streams. Neural Networks (2018),
https://doi.org/10.1016/j.neunet.2018.07.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neunet.2018.07.014


Evolving Spiking Neural Networks for Online Learning
over Drifting Data Streams

Jesus L. Loboa,∗, Ibai Lañaa, Javier Del Sera,b,c,
Miren Nekane Bilbaob, Nikola Kasabovd

aTECNALIA, 48160 Derio, Spain.
bUniversity of the Basque Country UPV/EHU, 48013 Bilbao, Spain

cBasque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
dKEDRI - Auckland University of Technology (AUT), 1010 Auckland, New Zealand

Abstract

Nowadays huges volumes of data are produced in the form of fast streams, which are
further affected by non-stationary phenomena. The resulting lack of stationarity in the
distribution of the produced data calls for efficient and scalable algorithms for online
analysis capable of adapting such changes (concept drift). The online learning field has
lately turned its focus on this challenging scenario, by designing incremental learning
algorithms that avoid becoming obsolete after a concept drift occurs. Despite the noted
activity in the literature, a need for new efficient and scalable algorithms that adapt to
the drift still prevails as a research topic deserving further effort. Surprisingly, Spiking
Neural Networks, one of the major exponents of the third generation of artificial neural
networks, have not been thoroughly studied as an online learning approach, even though
they are naturally suited to easily and quickly adapting to changing environments. This
work covers this research gap by adapting Spiking Neural Networks to meet the process-
ing requirements that online learning scenarios impose. In particular the work focuses
on limiting the size of the neuron repository and making the most of this limited size
by resorting to data reduction techniques. Experiments with synthetic and real data sets
are discussed, leading to the empirically validated assertion that, by virtue of a tailored
exploitation of the neuron repository, Spiking Neural Networks adapt better to drifts, ob-
taining higher accuracy scores than naive versions of Spiking Neural Networks for online
learning environments.

Keywords: Spiking neural networks, data reduction, online learning, concept drift

∗Corresponding author: jesus.lopez@tecnalia.com (Jesus L. Lobo). TECNALIA. P. Tecno-
logico Bizkaia, Ed. 700, 48160 Derio, Spain. Tl: +34 946 430 50. Fax: +34 901 760 009.

Preprint submitted to Neural Networks June 11, 2018

*Manuscript
Click here to view linked References



1. Introduction

With the increasing number of applications based on fast-arriving informa-
tion flows and applied to real scenarios (Zhou, Chawla, Jin & Williams, 2014;
Alippi, 2014), concept drift has become a paramount issue for online learning en-
vironments. The distribution modeling data captured by sensor networks, mobile
phones, intelligent user interfaces, industrial machinery and others alike is usually
assumed to be stationary along time. However, in many real cases such an assump-
tion does not hold, as the data source itself is subject to dynamic externalities that
affect the stationarity of its produced data stream(s), e.g. seasonality, periodicity
or sensor errors, among many others. As a result, possible patterns behind the pro-
duced data may change over time, either in the feature domain (new features are
captured, part of the existing predictors disappear, or their value range evolves),
or in the class domain (new classes emerge from the data streams, or some of the
existing ones fade along time). This paradigm is what the literature has coined as
concept drift, where the term concept refers to a stationary distribution relating a
group of features to a set of classes.

When the goal is to infer the aforementioned class patterns from data (online
classification), incremental models trained over drifting streams become obso-
lete when transitioning from one concept to another. Consequently, they do not
adapt appropriately to the new emerged data distribution, unless they are modi-
fied to handle efficiently this unwanted effect. In order to minimize the impact
of concept drift on the performance of predictive models, recent studies (Ditzler,
Roveri, Alippi & Polikar, 2015; Webb, Hyde, Cao, Nguyen & Petitjean, 2016;
Khamassi, Sayed-Mouchaweh, Hammami & Ghédira, 2018) have been focused
on the development of efficient techniques for continuous adaptation in evolving
environments or, alternatively, in the incorporation of drift detectors and concept
forgetting mechanisms (Žliobaitė, Pechenizkiy & Gama, 2016).

Indeed, online learning in the presence of concept drift has been a very hot
topic during the last few years (Gama, Žliobaitė, Bifet, Pechenizkiy & Bouchachia,
2014; Ditzler, Roveri, Alippi & Polikar, 2015; Alippi, 2014; Lobo, Del Ser, Bil-
bao, Perfecto & Salcedo-Sanz, 2017), and still remains under active debate in the
community (Khamassi, Sayed-Mouchaweh, Hammami & Ghédira, 2018) due to
the fact that there are many relevant open challenges to tackle (Barddal, Gomes,
Enembreck & Pfahringer, 2017; Gomes, Barddal, Enembreck & Bifet, 2017a;
Krawczyk, Minku, Gama, Stefanowski & Woźniak, 2017; Wang, Minku & Yao,
2018). Online learning environments impose a set of stringent computational
restrictions that every new technique in the field should embrace (Domingos &
Hulten, 2003), enforcing this technique to use mechanisms to adapt to the new
concept when drift occurs with a fast recovery (plasticity) while, at the same time,

2



retaining the acquired knowledge of the old concept (stability). As dictated by the
so-called stability-plasticity dilemma (Grossberg, 1988), a learning model should
have the ability to retain acquired knowledge and also learn new concepts, but
in no way could a model could be designed to do both equally well. While the
ability to accumulate knowledge of the old concept is really treasured over stable
data distributions (there is no drift), plasticity periods (right after drift occurs) re-
quire forgetting part or all previous concepts in order to capture the new upcoming
concept as fast as possible.

The adaptation to the drift can be carried out proactively detecting first the
concept drift, and only the model gets updated when a drift is detected (active
approaches), or updating the model continuously every time new data samples are
received (passive approaches). Focusing on active adaptation, three main mecha-
nisms can be noted in the literature:

• Windowing: a sliding window over the last data instances is used as the ex-
clusive training set for the learning algorithm (Bifet & Gavalda, 2007; Alippi
& Roveri, 2008; Gama, Medas, Castillo & Rodrigues, 2004; Bifet & Gavalda,
2006).
• Weighting: all available samples are considered, but suitably weighted ac-

cording to their age or relevance in terms of classification accuracy (Cohen
& Strauss, 2003; Klinkenberg, 2004).
• Reservoir sampling: a subset of instances is selected for training, and randomly

drawn examples from within the reservoir are discarded upon receiving new
data (Vitter, 1985; Aggarwal, 2006; Ng & Dash, 2008).

Disregarding the particular active adaptation mechanism selected for concept
drift tackling, the goal from a computing perspective is to develop efficient and
scalable learners to meet online processing restrictions, namely(Domingos & Hul-
ten, 2003):

• Each sample must be processed only once “on arrival”.
• The processing time of each data sample must be small and constant.
• The algorithm should only use a preallocated amount of main memory.
• A valid model must be available at every scan of the data stream.
• The algorithm must produce a model that is equivalent to the one that would be

produced by a batch processing algorithm.

Unfortunately, most off-the-shelf classification models need to be retrained if
they are used in a changing environment and fail to scale properly. One of the
most promising machine learning techniques in the field that can overcome this
noted drawback is the Spiking Neural Network (SNN) (Gerstner & Kistler, 2002).

3



The advent of SNNs was propelled by the need for a better understanding of the
information processing skills of the mammalian brain, for which the community
committed itself to the development of more complex biologically connection-
ist systems. SNNs have revealed themselves as one of the most successful ap-
proaches to model the behavior and learning potential of the brain, and exploit
them to undertake practical learning tasks. In essence SNNs leverage spike in-
formation representation so as to construct spike-time learning rules that capture
temporal associations between a large number of temporal variables in streaming
data. Among other applications (e.g. simulation of space-time systems), such
a learned knowledge can be exploited to predict future events. In fact, SNNs
must be regarded as a portfolio of models for different computational uses and
applications, all inspired by the the same design principles (information encoding
and neural processing based on time spikes). One of the successful SNNs is the
Evolving Spiking Neural Networks (eSNNs) (Soltic & Kasabov, 2010; Schliebs
& Kasabov, 2013), where the number of spiking neurons evolves incrementally
in time to infer temporal patterns from data. First proposed in (Kasabov, 2007;
Wysoski, Benuskova & Kasabov, 2006), eSNNs are based on the principles of
evolving connectionist systems (ECOS) and Thorpe’s neural model (Thorpe &
Gautrais, 1998). In SNNs, changes in the input stream data are encoded immedi-
ately as binary events - spikes. As we will motivate in forthcoming sections, they
use one of the most suitable data encoding strategies for adapting to drifts.

Several works have focused on implementing SNNs for online learning envi-
ronments. The most early attempt in this regard is SpikeProp, which was proposed
for training SNNs and similar in concept to the backpropagation algorithm devel-
oped for traditional neural networks (Bohte, Kok & La Poutré, 2000). However, it
is too slow to be used in an online setting, and prone to getting stuck in local min-
ima as a result of its gradient-based learning algorithm. In (Belatreche, Maguire
& McGinnity, 2007) the authors proposed a derivative-free supervised learning
algorithm comprising an evolutionary strategy with a reportedly better perfor-
mance than SpikeProp, but the training process was extremely time-consuming
and hence, not suitable for online learning. ReSuMe (Ponulak, 2005, 2008; Ponu-
lak & Kasiński, 2010) integrated the idea of learning-windows with remote su-
pervision; despite this method was claimed to be suitable for online learning, the
network structure used in this method is fixed and does not adapt to incoming
stimuli. In addition, the desired precise output spike timing is crucial to ReSuMe
learning (Wang, Belatreche, Maguire & McGinnity, 2017). Other studies have ad-
dressed the online learning in a more realistic approach. The method proposed in
(Wysoski, Benuskova & Kasabov, 2010) can perform learning in an online mode
through synaptic plasticity and adaptive network structure. More recently, the

4



SpikeTemp method proposed in (Wang, Belatreche, Maguire & McGinnity, 2017)
offers an enhanced rank-order-based learning method for SNNs with an adaptive
structure where the precise times of incoming spikes are used to determine the
required change in synaptic weights. With these few exceptions, there is a lack of
efficient and scalable SNN-based algorithms in online learning scenarios.

Interestingly for the scope of this work, none of the contributions reviewed
above takes into account the requirement of a limited size for the neuron reposi-
tory, which is of utmost importance to meet the processing requirements of online
learning. Should this crucial aspect not be taken into account, the number of neu-
rons in the repository would increase every time step. Therefore, further efforts
are still needed to devise new online learning mechanisms for SNNs and increase
their applicability to real-world problems. To this end not only the SNN model
should learn incrementally from the data stream, but the content of its neuron
repository should also be limited in size and adapted when concept drift occurs.
To the best of our knowledge, these two issues have not been addressed in the
community. The contribution of our work can be summarized as follows:

1. We develop a new eSNN model that incorporates a set of novel ingredients
for efficiently dealing with online learning applications, such as a limitation of
the size of the neuron repository and the use of a sliding window. The devel-
oped model is able to classify inputs after just one presentation of the training
samples, without requiring the entire training set to be available in advance.
Regarding the limited size of the neuron repository, our work will embrace
the adoption of Data Reduction Techniques (DRTs) (Triguero, Garcı́a & Her-
rera, 2010), which aim to obtain a representative training set with a lower size
when compared to the original one, and with similar or even higher general-
ization capability when fed to a predictive model. They can be divided into
prototype selection (PS) techniques (Li & Wang, 2015; Meena & Devi, 2015),
which consist of choosing a subset of the original training data; and proto-
type generation (PG) techniques (Triguero, Derrac, Garcia & Herrera, 2012;
Hu & Tan, 2016; Escalante, Graff & Morales-Reyes, 2016), which build new
artificial prototypes to better adjust the decision boundaries between classes.

2. We hybridize our proposed eSNNs approach with a drift detector, yielding a
solid learning model to be deployed in a realistic online scenario.

3. We analyze the impact of different data reduction techniques in the newly de-
vised eSNN model over a wide range of online learning datasets, with emphasis
on the predictive performance of the model after a drift occurs, the data reduc-
tion percentage achieved by every DRT, and the implications of the proposed
strategy in the future of the online learning field.

4. As a result of this research work, we provide an online learning technique

5



based on a single classifier, proven to perform competitively in comparison
with other techniques based on ensembles while using less storage capacity.
Single classifier approaches are widely regarded as an attractive solution for
massive data streams due to their reduced computational cost when compared
to their ensemble counterparts (Ditzler, Roveri, Alippi & Polikar, 2015).

The rest of the paper is organized as follows: first, Section 2 provides an
general introduction to the evolving spiking neural networks and their relevance in
online learning scenarios. Section 3 delves into the data reduction methods used in
the proposed approach. Section 4 provides a detailed description of the proposed
approach, while Section 5 presents the experimental setup designed to assess its
performance. Sections 6 and 7 present and discuss the obtained results from such
experiments and finally, Section 8 draws concluding remarks and outlines future
research lines related to this work.

2. Evolving Spiking Neural Network (eSNN)

An eSNN consists of an encoding part, which transforms a real-valued vec-
tor into spikes generated over time, a neuron model, and a learning mechanism
that calculates the connection weights between the input and the output neurons.
eSNNs are now a part of a comprehensive SNN architecture for spatio-temporal
data modeling, NeuCube (Kasabov, 2014), which is able to deal with a wide range
of applications (Kasabov, Scott, Tu, Marks, Sengupta, Capecci, Othman, Dobor-
jeh, Murli, Hartono et al., 2016).

2.1. Architecture
As depicted in Figure 1, the architecture of the eSNN is composed by three

layers (Wysoski, Benuskova & Kasabov, 2010, 2006; Kasabov, 2007; Kasabov,
Dhoble, Nuntalid & Indiveri, 2013). The first layer corresponds to the input data.
The second layer is for encoding purposes, where the real values of the features of
every sample are encoded as trains of spikes, generating the pre-synaptic neurons
and each of them having a receptive field. Receptive fields of neighboring neurons
overlap with each other by adopting the shape of Gaussian or Logic functions, in
all cases covering the whole range of the values of each feature (as explained
below). The number of encoding neurons N (or receptive fields) may vary de-
pending on the nature of the data at hand, and must be tuned for achieving a good
predictive performance of the overall model. The third layer is the evolving output
layer, where a repository of spiking neurons representing samples (divided in one
subrepository per every class in the problem) evolves as new data arrive. Each
output neuron is linked to all input neurons through connections whose weights
are learned from the data instances fed to the model.

6



Input Sample Pre-synaptic/input 
neurons

Receptive
fields

Evolving
neuron repository/

output neurons

C
la

ss
 1

C
la

ss
 2

0.37

2.28

Figure 1: Architecture of feed-forward eSNN (Kasabov, 2007).

2.2. Neural Encoding
In order to learn from real-valued data, each sample is encoded to a sequence

of spikes over time (spike trains) by using a neural encoding technique, e.g. rank
order population (Thorpe & Gautrais, 1997; Bohte, Kok & La Poutre, 2002) or any
other encoding approach alike. The rank order population scheme works on the
basis of the order of the spikes across all the synapses connected to the particular
neuron. It creates the priority in the input spikes depending on the order of spike
arrival to the neuron, which provides extra information to the network regarding
the order of the spike (Thorpe & Gautrais, 1998). In this work we adopt the
Gaussian Receptive Field (GRF) population encoding scheme, where the input
can be distributed over several neurons with overlapping and graded sensitivity
profiles by using Gaussian activation functions. Each encoding neuron is fired
only once during the time coding interval T . As a result, each input sample is
translated into a spatio-temporal spike pattern. Specifically, the center Cj and the

7



width Wj of each GRF of pre-synaptic neuron j are computed as

Cj = Inmin +
2j − 3

2

(
Inmax − Inmin

N− 2

)
(1)

and

Wj =
1

β

(
Inmax − Inmin

N− 2

)
, (2)

where N is the number of receptive fields, whose value impacts on the amplitude
of the input neuron and must be optimized for the problem. The range of the n-th
input variable is assumed to be R[Inmin, I

n
max]. Parameter β ∈ R[1, 2] (also referred

to as overlap factor) establishes the width of receptive fields, thereby their amount
of overlapping and ultimately, in the firing time of the pre-synaptic neuron j. The
output of neuron j is defined as

outputj = exp

(
−(x− Cj)2

2W 2
j

)
, (3)

where x is the input value. The firing time of each pre-synaptic neuron j is defined
as

Tj = bT (1− outputj)c (4)

where T is the simulation or spike interval. Figure 2 exemplifies the GRF encoding
process for the feature of any given sample.

2.3. Neural Model
A simplified Leaky Integrate-and-Fire (LIF) model was formally proposed in

(Thorpe & Gautrais, 1998), but the idea can be tracked to publications as early as
1990. LIF states that the spike response of a neuron depends only on the arrival
time of pre-synaptic spikes, that is, the earlier the spike arrives to a neuron, the
stronger its weight will be when compared to a later spike. Each neuron in this
model can spike at most once, and a neuron fires when its Post-Synaptic Potential
(PSP) reaches its threshold value. The PSP of a neuron i is defined as

PSPi=

{
0, if fired,∑

j wji ·modorder(j), otherwise, (5)

where wj,i represents the weight of the synaptic connection between pre-synaptic
neuron j to output neuron i; mod is the modulation factor with a range R[0, 1];
and order(j) defines the rank of the pre-synaptic neurons spike. The first rank is
assigned as 0 and subsequently, rank is increased by 1 based on firing time of each
pre-synaptic neuron.

8



0.2

0.4

0.6

0.8

1.0 0.96

0.76

0.32

0.13

0.0

1.0

1.0

0.87

0.68

0.24

0.04

Ex
ci

ta
tio

n
Sp

ik
e 

Tr
ai

ns

Input value

Neurons
Sa

m
pl

e

Feature

-2.0 -1.0 0

0

1

2

3

4

5

1.00.7

0.7

0.35

2.0

0.0

0.20.40.60.81.0
Firing time (1 - Excitation)

0.0

Figure 2: Example of population encoding based on 6 GRFs. For an input value of 0.7 (bold
straight line) the intersection points with each GRF are computed (0.96, 0.76, 0.32, 0.13, 0.0, 0.0),
which are in turn translated into firing times (0.04, 0.24, 0.68, 0.87, 1.0, 1.0).

2.4. Supervised Learning
When utilized in a supervised learning setting, the aim of the eSNN learning

method is to produce and update a repository of output neurons, each of them
labeled with a certain class label.

In this classification context, the eSNN training algorithm is algorithmically
described in Algorithm 1. First, the model creates a repository of output neurons
for the training patterns. For each pattern that belongs to a same given class, a new
output neuron is created and connected to all pre-synaptic neurons in the previous
layer through weights wji (see Figure 1). The value of wj,i is calculated based
on the spike order through a synapse j as wj,i = modorder(j), where j is the pre-
synaptic neuron of the output neuron i (line 7). A numerical threshold γi is set for
the newly created output neuron as the fraction C ∈ R(0, 1) of its maximum post-
synaptic potential PSPmax,i, i.e. γi = PSPmax,i · C. The weight vector of a newly
created output neuron is then compared with the already trained output neurons in
the repository. If the Euclidean distance between the newly created output neuron

9



weight vector and that of anyone of the already trained output neurons is smaller
than a similarity parameter (SIM), they are considered to be similar. As a result,
their thresholds and weight vectors are merged according to

wj,i =
wnew + (wj,i ·M)

M + 1
, (6)

and

γi =
γnew + (γi ·M)

M + 1
, (7)

whereM is the number of previous merges of similar neurons through the learning
history of the eSNN. After merging, the weight vector of the newly created output
neuron is discarded, and the new pattern is presented to the model. If none of the
already trained neurons in the repository is found to be similar (as per the SIM
parameter) to the newly produced output neuron, then it is added to the repository.

The testing phase is carried out by propagating the spikes that encode the test
sample to all trained output neurons. The class label for the test sample is assigned
according to the class label of the output neuron which has fired first after reaching
its threshold value γi.

2.5. eSNN in Online Learning
The neural model of eSNN models allows for a very fast real-time simulation

of large networks and a low computational cost. These properties make eSNNs a
very suitable candidate for online learning scenarios, where stringent restrictions
on computational cost and processing time prevail. Besides, the evolving nature of
the network makes it possible to accumulate knowledge as data become available,
without the requirement of storing and retraining the model with past samples.
We will later evince how this evolving nature is also useful for adapting the model
to eventual drifts along the stream.

Several approaches have been developed so far in order to adapt eSNNs to
online learning setups (Wysoski, Benuskova & Kasabov, 2006; Soltic, Wysoski
& Kasabov, 2008; Alnajjar, Zin & Murase, 2008; Ponulak & Kasiński, 2010).
However, most of them are unable to predict inputs after just one presentation
of the training samples, hence requiring the entire training set to be available in
advance. The online learning field has not certainly been as thoroughly addressed
in the eSNN literature as its offline (batch) counterpart. The reason for this lack
of research lies on the aforementioned computational restrictions, which require
adapting the original eSNN learning algorithm to meet these design constraints.

In online learning scenarios tailored predictive scores metric are often pro-
posed to shed light not only on the net accuracy of online learning models, but

10



Algorithm 1: eSNN algorithm
1 Initialize neuron repository, NR = {}
2 Set eSNN parameter mod = [0, 1],C = [0, 1], SIM = [0, 1]
3 Set eSNN encoding parameters β, T,N
4 Calculate Imax, Imin for the training data set
5 for every sample s belonging to class c do
6 Calculate Cj and Wj for encoding s into firing time of multiple

pre-synaptic neurons j
7 Create a new output neuron i and the connection weights as

wj,i = modorder(j)

8 Calculate PSPmax(i) = Σjwj,i ·modorder(j)
9 Compute PSP threshold value γi = PSPmax(i) · C

10 if min distance(Newly output neuron weight vector,Neuron repository
weight vectors in in NR)) ≤ SIM then

11 Update the weight vector and threshold of the most similar neuron
wj,i =

wnew+(wj,i·M)

M+1
and γi = γnew+(γi·M)

M+1

12 Set M = M + 1
13 else
14 Add the weight vector and threshold of the new output neuron to NR
15 end
16 end
17 Go to 1 and repeat for all target classes

also to quantitatively analyze its reaction capability against changes in the data
streams. Discussions in this paper will follow the common practice in this re-
search area by embracing the so-called prequential accuracy metric, proposed in
(Dawid, Vovk et al., 1999) and widely used by the community (Minku & Yao,
2012). This metric quantifies the sample-by-sample progression of the average
accuracy obtained by a learning model in a test-then-train basis (i.e. null verifica-
tion latency), and is given by

preACC(t)=




preACCex(t), if t = tref ,

preACCex(t-1) +
preACCex(t)− preACCex(t-1)

t− tref + 1
, otherwise,

where t is the time between samples in the stream; preACCex(t) = 0 if the predic-
tion of the test example at time t before its learning is wrong; and preACCex(t) =
1 if it is correct. Here, tref serves as a reference time that fixes the first time step

11



used in the calculation. This reference time allows isolating the computation of
the prequential accuracy before and after a drift has started, so that insight on the
reaction of different drift handling strategies can be assessed.

3. Data Reduction Techniques

In eSNN, if the Euclidean distance between the newly created output neu-
ron weight vector and that of anyone of the already trained output neurons is
smaller than SIM, they are considered to be close and they are merged. Close-
ness is decided based on the similarity between the weight vectors {wj,i} of every
output neuron i to the weight vector produced by the newly input sample. This
distance-based prediction strategy can be regarded as that of the k-Nearest Neigh-
bors (kNN), one of the most utilized algorithms in machine learning due to its
simplicity and effectiveness. However, kNN models are known to suffer from
several drawbacks (Kononenko & Kukar, 2007):

• The need for a high storage capacity to retain the set of training samples so as
to perform the decision rule;
• the computational burden associated to the search for the closest example, due

to multiple similarity computations between the test sample and the training
examples; and
• the low tolerance of noisy samples within the training data.

The literature is rich in methods proposed to tackle the above drawbacks. In
this work we will embrace data reduction techniques (DRTs, also referred to as
instance selection approaches) to simultaneously face all such issues in an online
setting. Data reduction techniques (DRTs) aim to obtain a representative training
set with a lower size compared to the original one, yet with similar or even higher
classification accuracy for new incoming data. DRTs can be classified depending
on whether the method at hand is based on filtering and selecting samples from
the training set (prototype selection, PS) or, alternatively, on synthesizing repre-
sentative examples therefrom (prototype generation techniques, PG). For the sake
of completeness, we next overview both categories, and we show how DRTs can
be applied to reduce the number of output neurons in the repository providing an
useful mechanism to limit the size of the repository.

3.1. Prototype Selection Techniques
Prototype selection techniques select a subset of the original training data for

constructing the model, hence discarding the remaining data samples. The main
advantage of these techniques is their capacity to discriminate relevant examples

12



without synthesizing artificial data. A widely used categorization of PS tech-
niques include edition, condensation, and hybrid methods (Garcia, Derrac, Cano
& Herrera, 2012). Edition methods remove noisy instances in order to increase
the classification performance. Condensation methods remove superfluous sam-
ples that do not affect the classification performance. Hybrid methods are based
on combining edition and condensation methods to yield a PS technique leverag-
ing specific computational and/or performance aspects of both approaches.

The exhaustive study of PS techniques presented in (Garcia, Derrac, Cano
& Herrera, 2012) shows the advantages and disadvantages of all DRT methods
falling in this category. Indeed this work empirically proved that the choice of
a certain method depends on diverse factors, in essence a multi-criteria decision
that becomes even more crucial when dealing with online learning in the presence
of concept drift. For example, an edition method usually outperforms a naive
kNN in the presence of noise, but only a few instances will be removed (Garcia,
Derrac, Cano & Herrera, 2012). However, although they allow for a high data
reduction rate while preserving the model accuracy, edition-based PS techniques
are usually the slowest ones due to their greedy search procedure. On the contrary,
condensation PS approaches are fast and achieve high data reduction rates, but
they usually render classification performance scores lower than those of naive
kNN schemes (Garcia, Derrac, Cano & Herrera, 2012).

Figures 3 and 4 show the behavior of the PS techniques on a synthetic dataset,
illustrating the nature of decision boundaries after applying the sample reduction
techniques.

Figure 3: A comparison of the mean accuracies (95.00%, 82.50%, 87.50%, 77.50%) and data re-
duction percentages (0.00%, 11.67%, 78.33%, 16.67%) of kNN, ENN, CNN, and RENN tech-
niques respectively on a synthetic data set. The figure shows training points in solid colors and
testing points semi-transparent.

13



Figure 4: A comparison of the mean accuracies (92.50%, 90.00%, 85.00%) and data reduction
percentages (18.33%, 10.00%, 91.67%) of AllKNN, TCNN, and SSMA techniques respectively
on a synthetic data set. The figure shows training points in solid colors and testing points semi-
transparent.

3.2. Prototype Generation Techniques
Prototype generation techniques build new artificial prototypes to better ad-

just the decision boundaries between classes in kNN classifiers. To this end, PG
methods produce and replace training data samples with new artificial data fill-
ing regions in the domain of the problem lacking representative samples in the
original dataset. The thorough categorization and empirical assessment of PG
techniques reported (Triguero, Derrac, Garcia & Herrera, 2012) drew similar con-
clusions to those obtained for PS schemes in (Garcia, Derrac, Cano & Herrera,
2012): a categorical claim cannot be made in regards to the comparative perfor-
mance of different PG techniques: the choice of one approach or another will
roughly depend on the problem under consideration.

Figure 5 shows the behavior of the PG techniques on a synthetic dataset, il-
lustrating the nature of decision boundaries after applying the sample reduction
techniques.

Figure 5: A comparison of the mean accuracies (95.00%, 92.50%, 85.00%, 90.00%) and data re-
duction percentages (0.00%, 65.00%, 81.67%, 75.00%) of kNN, SGP, SGP2 and ASGP techniques
respectively on a synthetic data set. The figure shows training points in solid colors and testing
points semi-transparent.

As it will be further explained, the reduction power of DRTs at the same time
that their accuracy remains competitive will be used in favor of our proposed
approaches.

14



4. Proposed Approach: Online Evolving Spiking Neural Network (OeSNN)

As in other online learning algorithms, our online version of eSNN (OeSNN)
stores a reduced number of samples taken over aW-sized sliding window. In our
case, however, such samples are not used for statistical tests (Bifet & Gavalda,
2007), but rather for performing the neural encoding procedure described in Sec-
tion 2.2. Every time a new sample arrives in the stream, the neural encoding
is performed for the samples falling in W . This encoding is also used for the
prediction of the test sample, following a test-then-train scheme (Bifet, Holmes,
Pfahringer & Gavalda, 2009). The value ofW can be 1) set fixed, e.g. whenever
a new sample arrives it is stored in the memory and the oldest one is discarded;
or 2) adjusted over time depending on e.g. the information provided by a drift
detector analyzing the statistical characteristics of the stream. A fixed size is of-
ten adopted as a baseline scheme when evaluating new online learning algorithms
(Gama, Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014); our study will follow
this common practice from the related literature.

As explained in previous sections, the learning procedure of the eSNN relies
mostly on the neuron repository. Therefore, the size of this repository should be
upper bounded in order to meet the restrictive storage constraints imposed in an
online learning scenario. The neuron repository collects all the available knowl-
edge in the form of output neurons, so that the more knowledge (neurons) is stored
in this model stage, the more likely it will be to find an output neuron similar to
the one under test, and ultimately the better accuracy will be achieved. Conse-
quently, the proposed OeSNN approach utilizes a fixed size of the neuron repos-
itory NR size: the new output neuron produced by the test sample through the
eSNN structure is stored whenever there is room in the repository, i.e. its current
occupationCNR size is below the net capacity of the reservoirNR size; if there
is no free space (corr. CNR size = NR size), the oldest output neuron will be
replaced by the new output neuron. Intuitively, this repository updating strategy
addresses two different constraints in online learning under concept drift: the need
for a limited size reservoir of output neurons, and an inherent forgetting mecha-
nism to discard outdated concepts when data streams are non-stationary. To the
best of our knowledge there is no prior study elaborating on this dual byproduct
of the eSNN repository.

Other related studies usually divide the data set into training and testing phases,
applying the online learning to the test part after once a well-trained eSNN classi-
fier has been attained (Schliebs & Kasabov, 2013; Wang, Belatreche, Maguire &
McGinnity, 2017; Wang, Belatreche, Maguire & Mcginnity, 2014). However, in
fast streaming scenarios the algorithm must update itself one sample at a time from
the beginning of the data streaming process. This is accomplished by adopting in-

15



cremental methods for warm-start model training while predicting test samples in
parallel. This will be the scheme adopted in this work.

Algorithm 2 reflects the adaptations made to the original eSNN in Algorithm 1
in order to deploy it in online learning scenarios by fulfilling with the restrictions
described before. The aforementioned W-sized sliding window yields a group
of recent samples from which the encoding parameters are computed (lines 4, 8,
and 9). The neuron repository is limited to a fixed size (line 5), which is checked
in order to decide whether the recent sample can be stored directly or instead,
replaces the oldest output neuron in the repository.

At this point it is important to underline that every time a merging process is
performed, only two neurons are involved at most. Therefore, it is likely that the
output neuron repository stores redundant information when processing a stream,
with emphasis during those periods where the data distribution remains stable, i.e.
before the drift occurs and long after the drift event. Here lies the rationale for
further optimizing the information stored within the OeSNN neuron repository by
applying data reduction techniques, which is exposed in the next subsection.

4.1. Data Reduction Techniques for OeSNN Models: OeSNN-PS and OeSNN-PG
Our proposed OeSNN approach sketched in Algorithm 2 is the basis for our

proposed approaches hybridized with DRTs schemes (OeSNN-PS and OeSNN-
PG), in which PS and PG techniques are applied respectively on the neuron repos-
itory. For this purpose we have selected a wide portfolio of DRTs:

• OeSNN-PS, all based on a majority voting between the k most similar instances
to a given unseen observation (the value of k has to be defined beforehand):

– Edited Nearest Neighbor (ENN) (Chang, Pei & Zhang, 2011), which is a
modified editing version of the kNN rule, applies a NN algoritthm and ed-
its the dataset by removing samples which do not agree enough with their
neighborhood. For each sample in the class to be undersampled, the set of
nearest neighbors are computed; if the selection criterion is not fulfilled, the
sample is removed.

– Repeated Edited Nearest Neighbor (RENN) (Wilson, 1972) extends ENN by
repeating the algorithm multiple times so that more data samples are deleted.

– Condensed Nearest Neighbor (CNN) (Hart, 1968) was suggested as a rule
which retains the basic approach of the NN rule, but without imposing its
stringent storage requirements. CNN picks out points near the boundary be-
tween the classes, achieving an important reduction of the sample size while

16



maintaining the underlying distribution. It uses a 1-NN rule to iteratively de-
cide if a sample should be removed or not. Note that it is sensitive to noise
and will add noisy samples.

– AllKNN (Tomek, 1976a) differs from RENN in the fact that the number of
neighbors of the internal kNN algorithm is increased at each iteration so as
to yield a smoother decision region.

– Tomek Condensed Nearest Neighbor (TCNN) (Tomek, 1976b) removes ev-
ery pair of instances x and x′ of different class that form a Tomek link,
i.e. whenever there is no other sample z such that d(x, z) < d(x,x′) or
d(x′, z) < d(x,x′), where d(·, ·) is the distance measure of the problem at
hand.

– Steady-State Memetic Algorithm (SSMA) (Derrac, Garcı́a & Herrera, 2010),
which is an evolutionary prototype selection algorithm that uses a memetic
algorithm in order to perform a local search. In this case, an additional pa-
rameter max it sets the maximum number of iterations performed by the
search algorithm.

• OeSNN-PG, all controlled by parametersmin size cluster and error tol, which
determine the minimum size of the cluster and the error tolerance before split-
ting a group, respectively:

– Self-Generating Prototypes (SGP) (Fayed, Hashem & Atiya, 2007; Oliveira,
Magalhaes, Cavalcanti & Ren, 2012), which is a centroid-based prototype
generation algorithm that uses a space splitting mechanism to generate pro-
totypes in the center of every cluster in which data can be grouped;

– Self-Generating Prototypes 2 (SGP2) (Fayed, Hashem & Atiya, 2007; Oliveira,
Magalhaes, Cavalcanti & Ren, 2012) is the second version of the SGP algo-
rithm. It has a higher generalization power, including merge and pruning
procedures; and

– Adaptive Self-Generating Prototypes (ASGP) (Fayed, Hashem & Atiya, 2007;
Oliveira, Magalhaes, Cavalcanti & Ren, 2012), which has been specially de-
signed to cope with imbalanced data sets.

We propose two different strategies for the resulting hybrid approaches, here-
after labeled as OeSNN-DRT , where

DRT ∈ {ENN,RENN,CNN,AllKNN,SSMA,SGP,SGP2,ASGP}.

In the first strategy data reduction is carried out every time the neuron repository is
full (Algorithm 3), whereas in the second approach a drift detector notifies when
the data reduction process needs to be triggered (Algorithm 4). As will be further
explained, the first one (passive strategy) will be used for those experiments with

17



synthetic data where the drift moment is known beforehand, whereas the second
one (active strategy) will be adopted for the experiments with real data, where the
drift moment is unknown.

One of the differences between the proposed OeSNN approach (Algorithm 2)
and the approaches hybridized with DRTs schemes (Algorithms 3 and 4) is that
the neuron repository size is limited and the merging process is hence unneces-
sary. The main goal of the DRTs is to summarize the underlying characteristics of
the neuron repository over long periods of time, such that every newly included
neuron has relevant information from two perspectives: 1) timeliness, as it re-
places old neurons when the knowledge base in the neuron repository has no free
space; and 2) predictive representativeness, because the new neuron will be fused
with other neurons in the repository if it provides no further information on the
prevailing concepts along the stream. This process can be regarded as a merging
strategy of the whole neuron repository rather than a fusion between any two out-
put neurons. Furthermore, the knowledge stored in the repository becomes more
optimally assigned and hence, leads to a more suitable model design for online
learning environments.

Algorithms 3 (passive strategy) and 4 (active strategy) evince that the opera-
tion of the OeSNN-PS and OeSNN-PG variants is similar to that of the OeSNN
baseline in Algorithm 2. In essence, when the neuron repository is full DRTs are
used to summarize the content of the neuron repository (line 18 in Algorithms 3
and 4). In the case of an active strategy, a drift detector is used (lines 16 and 17)
to infer the moment at which DRTs should be applied: while no drift is detected
and the neuron repository is not full, produced output neurons are always stored in
the repository. When the repository saturates, the oldest output neuron is removed
and the new one is stored instead. When a drift is detected, a DRT is applied to the
neuron repository so as to make more room to store samples of the newly arriving
concept.

Our proposed OeSNN approach and those hybridized with DRTs schemes
(OeSNN-PS and OeSNN-PG in both passive and active operation modes schemat-
ically depicted in Figure 6) have been specially devised for online learning pur-
poses: on the one hand, windowing strategies are usually preferred for sudden
drifts, while on the other hand, instance selection strategies are instead adopted to
handle gradual drifts and reoccurring contexts (Žliobaitė, 2010). Both character-
istics have been included in the proposed approaches by using a sliding window
and neuron repository composed of prototypes.

18



START

Encode s
into time pulses

Create output neuron
i and weights wj,i

Active? Drift?

Repository
full?

DRT

No Yes

Yes

Yes

Repository
full?

No

END

Add new neuron
i to repository

No

Yes

Compute
threshold γi

Remove oldest
neuron from
repository

No

Figure 6: Schematic diagram of the proposed OeSNN-DRT schemes in both passive and active
strategies.

19



Algorithm 3: OeSNN algorithm with DRTs: passive approach
1 Initialize neuron repository, NR = {}
2 Set eSNN parameter mod = [0, 1],C = [0, 1], SIM = [0, 1]
3 Set eSNN encoding parameters β, T,N
4 Set sliding window sizeW
5 Set Neuron repository of size NR size
6 Set current neuron repository size CNR size = 0
7 for every sample s belonging to the class c do
8 Update sliding window with sample s
9 Calculate Imax, Imin for theW samples in the sliding window

10 Calculate Cj and Wj over the sliding window for their encoding into
firing time of multiple pre-synaptic neurons j

11 Create a new output neuron i and the connection weights as
wji = modorder(j)

12 Calculate PSPmax(i) = Σjwji ·modorder(j)
13 Get PSP threshold value γi = PSPmax(i) · C
14 if CNR size < NR size then
15 Add the weight vector and threshold of the new output neuron to NR
16 CNR size = CNR size + 1
17 else
18 Apply a DRT over the neuron repository (PS or PG)
19 Add the weight vector and threshold of the new output neuron to NR
20 Update CNR size
21 end
22 end
23 Repeat above for all target classes

20



Algorithm 2: Proposed OeSNN algorithm
1 Initialize neuron repository, NR = {}
2 Set eSNN parameter mod = [0, 1],C = [0, 1], SIM = [0, 1]
3 Set eSNN encoding parameters β, T,N
4 Set sliding window sizeW
5 Set neuron repository of size NR size
6 Set current neuron repository size CNR size = 0
7 for every sample s belonging to the class c do
8 Update sliding window with sample s
9 Calculate Imax, Imin for theW samples in the sliding window

10 Calculate Cj and Wj over the sliding window for encoding s into firing
time of multiple pre-synaptic neurons j

11 Create a new output neuron i and the connection weights as
wji = modorder(j)

12 Calculate PSPmax(i) = Σjwji ·modorder(j)
13 Get PSP threshold value γi = PSPmax(i) · C
14 if min distance(Newly output neuron weight vector,Neuron repository

weight vectors in in NR)) ≤ SIM then
15 Update the weight vector and threshold of the most similar neuron

wj,i =
wnew+(wj,i·M)

M+1
and γi = γnew+(γi·M)

M+1

16 Set M = M + 1
17 else
18 if CNR size < NR size then
19 Add the weight vector and threshold of the new output neuron

to NR
20 CNR size = CNR size + 1
21 else
22 Remove the oldest weight vector and its threshold, and put the

new ones into NR
23 end
24 end
25 end
26 Repeat above for all target classes

21



Algorithm 4: OeSNN algorithm with DRTs: active approach
1 Initialize DriftDetector()
2 Initialize neuron repository, NR = {}
3 Set eSNN parameter mod = [0, 1],C = [0, 1], SIM = [0, 1]
4 Set eSNN encoding parameters β, T,N
5 Set sliding window sizeW
6 Set Neuron repository of size NR size
7 Set current neuron repository size CNR size = 0
8 Set drift detection = False
9 for every sample s belonging to the class c do

10 Update sliding window with sample s
11 Calculate Imax, Imin for theW samples in the sliding window
12 Calculate Cj and Wj over the sliding window for their encoding into

firing time of multiple pre-synaptic neurons j
13 Create a new output neuron i and the connection weights as

wji = modorder(j)

14 Calculate PSPmax(i) = Σjwji ·modorder(j)
15 Get PSP threshold value γi = PSPmax(i) · C
16 drift detection = DriftDetector()
17 if drift detection = True then
18 Apply a DRT over the neuron repository (PS or PG)
19 Add the weight vector and threshold of the new output neuron to NR
20 Update CNR size
21 Set drift detection = False
22 else
23 if CNR size < NR size then
24 Add the weight vector and threshold of the new output neuron

to NR
25 CNR size = CNR size + 1
26 else
27 Remove the oldest weight vector and its threshold, and insert

the new one into NR
28 end
29 end
30 end
31 Repeat above for all target classes

22



5. Computer Experiments

An extensive experimental benchmark has been designed to shed light on the
performance of the proposed schemes over synthetic and real streaming datasets.
Such experiments are divided into two main blocks:

• In the first set of experiments, the naive OeSNN approach (Algorithm 2) will
be compared to passive OeSNN-PS and OeSNN-PG techniques (Algorithm 3)
when they are applied over synthetic data sets, assuming that the drift moment
is known beforehand.
• In the second set of experiments, the naive OeSNN will be compared to active

OeSNN-PS and OeSNN-PG approaches over real data streams, where drifts are
unknown and therefore motivates the use of a drift detector.

As a result of this experimental design, we will first analyze the performance
of OeSNN-PS and OeSNN-PG approaches with synthetic data sets, and assess
their benefits during the plasticity period (i.e. shortly after the drift). The main
advantage of OeSNN-PS and OeSNN-PG is that while the neuron repository is
not full, it can accept more neurons (the latest ones) inside. But when it is full,
all the information is condensed in a reduced number of neurons (prototypes),
letting more free space to accept more neurons inside until the neuron repository
is full again. Therefore, we should expect OeSNN-PS and OeSNN-PG to react
better (faster) to sudden drifts. Next, a set of experiments with real data sets
and a drift detector are planned to confirm this benefit in a realistic setting. To
numerically quantify the predictive performance of the proposed schemes during
the stability and plasticity periods, the prequential accuracy will be measured at
three different points in time: right before the drift occurs (BD), during the drifting
period (D), and after the drift occurs (AD). The exact time ticks at which this score
is computed will be set explicitly for every dataset in the benchmark, which are
described in the following subsection.

5.1. Datasets
When working with real datasets, it is not possible to know exactly when a

drift occurs, which type of drift arises when a drift is detected, or even if there
is any drift. Consequently, it is not possible to perform a detailed analysis of the
behavior of different algorithms in the presence of concept drift by using only
real-world datasets. In order to analyze the effect of DRTs for facing concept
drift and to complement the analysis of our proposed approaches, we first use the
renowned set of synthetic datasets described in (Minku, White & Yao, 2010).

Results for 4 different problems (Minku, White & Yao, 2010) (labeled as
CIRCLE, LINE, SINEH and SINEV) will be considered, each containing one

23



drift simulated by varying among low and high severity, and low and high speed,
resulting 4 different types of drift for each data set. Severity represents the amount
of changes caused by a new concept, that is the percentage of the input space
which has its label changed after the drift is complete. Speed is the inverse of the
time taken for a new concept to completely replace the previous one. Each dataset
consists of 2000 samples (t ∈ {1, . . . , 2000}), 2 normalized ([0, 1]) continuous
features {X1, X2}, and a binary target class l ∈ {1, 2}. Drift appears at t = 1000
in all datasets, and the drifting period finishes at t = 1099, being BD = 999,
D = 1099, and AD = 1999. The number of samples that belong to class 1 and 2
is always the same.

As for real drifting scenarios we resort to three different datasets. The first
two datasets are well-known in the online learning community, since they have
been used in several relevant studies of online approaches (Minku & Yao, 2012;
Bifet & Gavalda, 2007; Elwell & Polikar, 2011). The third one was published
in Kaggle1, a platform for predictive modeling and analytics competitions and
challenges. It is a brand new dataset, recently used for the first time in a work
on evolving data stream classification (Gomes, Bifet, Read, Barddal, Enembreck,
Pfharinger, Holmes & Abdessalem, 2017b). More details on these three datasets
are next provided:

• The Australian New South Wales Electricity Market (Harries & Wales, 1999;
Gama, Medas, Castillo & Rodrigues, 2004) (labeled as ELEC2) contains 45, 312
instances dated from May 1996 to December 1998. Each example of the dataset
refers to a period of 30 minutes, and has 5 fields (day of week, time stamp, NSW
electricity demand, Vic electricity demand, and scheduled electricity transfer
between states). The class label identifies the change of the price related to a
moving average of the last 24 hours.
• The National Oceanic and Atmospheric Administration of the United States De-

partment of Commerce2 (USDC) has built a database (labeled as NOAA) with
18, 154 daily weather measurements (50 years) from over 7, 000 weather sta-
tions all around the world. Data samples include 8 features, such as temper-
ature, dew point, sea level pressure, visibility, average wind speed, and other
weather related predictors alike. These variables are used to infer whether each
day was rainy or not.
• The Give Me Some Credit3 data set (labeled as GMSC) is a credit scoring dataset

1https://www.kaggle.com
2Available at: ftp.ncdc.noaa.gov/pub/data/gsod. Last access in March 20th, 2018.
3Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last access in March 20th,

2018.

24



aimed at deciding whether a loan should be granted. This is a core decision for
banks due to the risk of unexpected expenses and future lawsuits. The dataset
comprises supervised historical data of 150, 000 borrowers described by 10 fea-
tures.

5.2. Drift Detection
When dealing with real-world streaming data sets, the drift moment is un-

known, and a drift detector is required for those active approaches that need to
know this information as soon as possible in order to trigger their adaptation mech-
anisms. This is the case of our proposed approaches: to this aim, they have been
hybridized with the so-called Early Drift Detection Method (EDDM) (Baena-
Garcı́a, del Campo-Ávila, Fidalgo, Bifet, Gavaldà & Morales-Bueno, 2006). Its
simplicity and capacity to detect repeatedly occurring concept drifts even with
very noisy data (Baena-Garcı́a, del Campo-Ávila, Fidalgo, Bifet, Gavaldà & Morales-
Bueno, 2006) has motivated the selection of EDDM for the experimental bench-
mark discussed in what follows. But there is the possibility of hybridizing with
other drift detection methods in the literature.

5.3. Parameter Configuration
Parameter configuration for synthetic data sets CIRCLE, LINE, SINEH and

SINEV data sets are presented in Table 1. Empirical experiments have been car-
ried out to find the values.

W T β N MOD C SIM k max loop min size cluster error tol
OeSNN 100 20 1.5 10 0.85 0.75 0.15 - - - -

OeSNN-TCNN 100 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-SSMA 100 20 1.5 10 0.85 0.75 - 3 50 - -
OeSNN-ENN 100 20 1.5 10 0.85 0.75 - 3 - - -

OeSNN-RENN 100 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-AllKNN 100 20 1.5 10 0.85 0.75 - 5 - - -

OeSNN-CNN 100 20 1.5 10 0.85 0.75 - 1 - - -
OeSNN-SGP 100 20 1.5 10 0.85 0.75 - - - 0.2 0.3

OeSNN-SGP2 100 20 1.5 10 0.85 0.75 - - - 0.2 0.3
OeSNN-ASGP 100 20 1.5 10 0.85 0.75 - - - 0.2 0.3

Table 1: Parameter values set for the proposed OeSNN approaches when applied over the
CIRCLE, LINE, SINEH and SINEV datasets.

In a real scenario, there is no a priori knowledge about the streaming data that
the algorithm will predict, thus we cannot assume any parameter configuration.
Given this issue, an effective yet unrealistic workaround is to isolate a representa-
tive portion of the dataset to make offline assumptions about the distribution of the
data and to assign a suitable parametric configuration through a heuristic wrapper.

25



We embrace this strategy to initialize the algorithm with a realistic configuration.
Remarkably, the recent literature has widely acknowledged that the parametric
optimization of predictive models for data streams while in operation still remains
an open research problem (Krawczyk, Minku, Gama, Stefanowski & Woźniak,
2017).

Regarding the ELEC2 dataset, we have used the first 12 months (38%) of the
data set to tune the parameters of the algorithms, whereas the remaining months
have been used for prediction and performance assessment. A period of 48 time
steps that corresponds to one day was assumed to study the behavior of our ap-
proaches during the drift (D). The sliding window sizeW was set to 96 samples.
As for the NOAA dataset we proceeded similarly: the first 5 years (10%) of data
were used for parameter tuning, whereas the following years were used for testing
purposes. A period of 2 time steps that corresponds to two days was assumed to
study the behavior of our approaches during the drift (D). The value ofW was set
to 25 samples. Finally, in the GMSC data set the first 20000 samples (16%) of the
dataset were used for model configuration, and the rest for performance assess-
ment. The behavior of our approaches during the drift (D) was studied over 50
time steps. In this case,W was established to 25 samples.

T β N MOD C SIM k max loop min size cluster error tol
OeSNN 20 1.5 10 0.85 0.75 0.15 - - - -

OeSNN-TCNN 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-SSMA 20 1.5 10 0.85 0.75 - 1 50 - -
OeSNN-ENN 20 1.5 10 0.85 0.75 - 3 - - -

OeSNN-RENN 20 1.5 10 0.85 0.75 - 3 - - -
OeSNN-AllKNN 20 1.5 10 0.85 0.75 - 3 - - -

OeSNN-CNN 20 1.5 10 0.85 0.75 - 2 - - -
OeSNN-SGP 20 1.5 10 0.85 0.75 - - - 0.2 0.3

OeSNN-SGP2 20 1.5 10 0.85 0.75 - - - 0.2 0.3
OeSNN-ASGP 20 1.5 10 0.85 0.75 - - - 0.2 0.3

Table 2: Parameter values utilized for the real datasets ELEC2, NOAA and GMSC.

Table 2 summarizes the parameter values for experiments with the real datasets.
The warning level α and the drift level threshold β of the EDDM detector were set
to 0.95 and 0.90, respectively. In order to inspect the impact of the DRTs on the
neuron repository, three storage capacities NR size ∈ {50, 100, 150} have been
simulated for all datasets (either synthetic or real).

6. Results

This section analyzes the behavior of the proposed OeSNN when hybridized
with DRTs schemes (OeSNN-PS and OeSNN-PG), in which PS and PG data re-

26



duction techniques are applied respectively to the neuron repository. The analysis
focuses not only on the accuracy of the approaches during the stability (BD and
AD) and plasticity periods (D), but also on the data reduction percentage they
achieve.

6.1. Impact of the Neuron Repository with Synthetic Data
To begin with, Table 3 shows the prequential accuracies of the naive OeSNN

(i.e. the OeSNN without DRTs that has been detailed in Algorithm 2) when the
neuron repository has a storage capacity of 50, 100, and 150, measured at points
BD, D, and AD for all synthetic datasets. The table is complemented by Figure 7,
which exemplifies the occupancy level of the neuron repository along the stream.
Little variations of the occupancy correspond to those time instants at which the
incoming sample is found to be similar to another one in the neuron repository,
thus triggering the merging process. As evinced in this plot, this procedure oc-
curs frequently depending on the SIM parameter. However, the main drawback
is that this process only involves two neurons at every time, so there is no real
contribution of this merging process to the optimized management of the neuron
repository that stream processing clearly demands.

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.884/0.889/0.888 0.790/0.750/0.760 0.851/0.880/0.873 0.884/0.889/0.888 0.940/0.960/0.950 0.876/0.909/0.904
LINE 0.926/0.935/0.948 0.900/0.910/0.880 0.932/0.950/0.948 0.926/0.935/0.948 0.890/0.940/0.960 0.912/0.922/0.930
SINE 0.907/0.928/0.942 0.880/0.900/0.880 0.921/0.950/0.944 0.907/0.928/0.942 0.940/0.990/0.970 0.929/0.937/0.936
SINEH 0.792/0.811/0.827 0.760/0.770/0.670 0.753/0.795/0.794 0.792/0.811/0.827 0.840/0.840/0.830 0.736/0.781/0.797

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.884/0.889/0.888 0.810/0.730/0.740 0.831/0.845/0.834 0.884/0.889/0.888 0.880/0.890/0.910 0.791/0.834/0.823
LINE 0.930/0.940/0.949 0.850/0.690/0.650 0.912/0.901/0.893 0.930/0.940/0.949 0.890/0.940/0.950 0.879/0.882/0.866
SINE 0.927/0.947/0.956 0.820/0.680/0.610 0.917/0.918/0.880 0.927/0.947/0.956 0.890/0.910/0.920 0.878/0.884/0.865
SINEH 0.792/0.811/0.827 0.670/0.460/0.460 0.773/0.766/0.744 0.792/0.811/0.827 0.830/0.840/0.840 0.699/0.738/0.757

Table 3: Prequential accuracies of the proposed naive OeSNN model with neuron repository sizes
50, 100, and 150 for CIRCLE, LINE, SINEH and SINEV datasets.

27



Figure 7: Evolution of the occupancy of the neuron repository for the proposed OeSNN in the
CIRCLE dataset under low severity and high speed conditions. The averaged occupancy is 98.08%
(50 neurons), 96.56% (100 neurons), and 94.57% (150 neurons).

We now turn the focus on the OeSNN incorporating DTRs in a passive strat-
egy. Tables 4 and 5 summarize the results obtained for the proposed model hy-
bridized with selective data reduction techniques (OeSNN-PS): OeSNN-TCNN,
OeSNN-SSMA and OeSNN-ENN (Table 4), and OeSNN-RENN, OeSNN-AllKNN
and OeSNN-CNN (Table 5) when the neuron repository has a storage capacity
of 50, 100, and 150 neurons, measured in the points BD, D, and AD over syn-
thetic datasets. Figure 8 depicts the evolution of the repository occupancy over
the stream for all the aforementioned OeSNN schemes. Finally, the same set of
results are shown in Table 6 and Figure 9 for OeSNNs based on generative data
reduction techniques (OeSNN-PG).

28



Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.848/0.882/0.895 0.780/0.770/0.894 0.857/0.885/0.915 0.848/0.882/0.895 0.870/0.940/0.940 0.845/0.916/0.922
LINE 0.911/0.932/0.946 0.920/0.930/0.900 0.910/0.927/0.925 0.911/0.932/0.946 0.920/0.910/0.960 0.888/0.910/0.913
SINE 0.892/0.933/0.938 0.900/0.900/0.870 0.888/0.915/0.901 0.892/0.933/0.938 0.940/0.940/0.960 0.893/0.910/0.921
SINEH 0.764/0.802/0.836 0.720/0.740/0.710 0.751/0.801/0.797 0.764/0.802/0.836 0.780/0.850/0.850 0.746/0.811/0.810

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.848/0.882/0.895 0.840/0.750/0.730 0.777/0.780/0.769 0.848/0.882/0.895 0.890/0.920/0.900 0.764/0.772/0.752
LINE 0.932/0.937/0.951 0.650/0.620/0.610 0.755/0.709/0.697 0.932/0.937/0.951 0.910/0.910/0.950 0.780/0.759/0.748
SINE 0.922/0.943/0.942 0.680/0.630/0.630 0.710/0.707/0.701 0.922/0.943/0.942 0.910/0.920/0.920 0.779/0.763/0.748
SINEH 0.764/0.802/0.836 0.560/0.460/0.440 0.664/0.658/0.656 0.764/0.802/0.836 0.760/0.840/0.840 0.661/0.653/0.617

(a) OeSNN-TCNN

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.832/0.861/0.888 0.770/0.780/0.850 0.803/0.836/0.888 0.812/0.864/0.882 0.890/0.890/0.960 0.824/0.879/0.895
LINE 0.902/0.922/0.944 0.890/0.900/0.890 0.889/0.932/0.932 0.898/0.918/0.932 0.860/0.870/0.910 0.866/0.900/0.912
SINE 0.886/0.904/0.917 0.840/0.860/0.870 0.892/0.922/0.924 0.870/0.904/0.916 0.880/0.950/0.940 0.871/0.909/0.928
SINEH 0.768/0.778/0.795 0.770/0.800/0.710 0.727/0.785/0.785 0.753/0.770/0.789 0.760/0.810/0.840 0.727/0.747/0.759

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.817/0.870/0.898 0.750/0.770/0.740 0.785/0.819/0.833 0.828/0.866/0.872 0.870/0.880/0.890 0.740/0.772/0.813
LINE 0.890/0.919/0.927 0.840/0.800/0.870 0.874/0.915/0.916 0.886/0.912/0.929 0.840/0.880/0.910 0.828/0.876/0.880
SINE 0.875/0.914/0.930 0.830/0.780/0.810 0.872/0.910/0.912 0.873/0.918/0.931 0.870/0.890/0.900 0.858/0.861/0.891
SINEH 0.731/0.766/0.784 0.750/0.710/0.660 0.724/0.776/0.773 0.743/0.766/0.784 0.700/0.840/0.830 0.670/0.709/0.716

(b) OeSNN-SSMA

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.727/0.839/0.848 0.700/0.780/0.780 0.710/0.850/0.871 0.727/0.839/0.848 0.700/0.850/0.910 0.716/0.870/0.889
LINE 0.890/0.943/0.938 0.900/0.900/0.910 0.903/0.891/0.904 0.890/0.943/0.938 0.910/0.940/0.900 0.891/0.901/0.901
SINE 0.859/0.908/0.932 0.840/0.880/0.910 0.837/0.881/0.907 0.859/0.908/0.932 0.900/0.900/0.950 0.850/0.882/0.914
SINEH 0.724/0.784/0.807 0.650/0.740/0.720 0.691/0.749/0.735 0.724/0.784/0.807 0.750/0.790/0.810 0.723/0.775/0.751

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.727/0.839/0.848 0.630/0.730/0.730 0.677/0.717/0.713 0.727/0.839/0.848 0.740/0.830/0.880 0.672/0.711/0.717
LINE 0.884/0.930/0.941 0.660/0.640/0.630 0.656/0.652/0.659 0.884/0.930/0.941 0.850/0.840/0.920 0.698/0.696/0.718
SINE 0.885/0.907/0.922 0.630/0.640/0.640 0.672/0.666/0.658 0.885/0.907/0.922 0.880/0.890/0.900 0.736/0.739/0.736
SINEH 0.724/0.784/0.807 0.400/0.350/0.350 0.400/0.410/0.380 0.724/0.784/0.807 0.760/0.770/0.790 0.475/0.493/0.474

(c) OeSNN-ENN

Table 4: Prequential accuracies obtained by (a) OeSNN-TCNN, (b) OeSNN-SSMA and (c)
OeSNN-ENN working with repository sizes of 50, 100, and 150 neurons over the CIRCLE, LINE,
SINEH and SINEV datasets. Prequential accuracies in bold denote an improvement greater than
0.01 in comparison with the traditional OeSNN for the same scenario setup. On the contrary,
prequential accuracies in italics are declared to be worse than the traditional OeSNN if they are at
least 0.01 below the prequential accuracies scored by the latter. Prequential accuracies in regular
text stand for performance gaps less than 0.01 in absolute value.

29



Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.723/0.825/0.833 0.690/0.770/0.810 0.718/0.842/0.876 0.723/0.825/0.833 0.720/0.840/0.880 0.727/0.851/0.881
LINE 0.869/0.943/0.941 0.780/0.900/0.910 0.835/0.891/0.916 0.869/0.943/0.941 0.910/0.940/0.910 0.847/0.901/0.926
SINE 0.859/0.908/0.924 0.840/0.880/0.890 0.837/0.881/0.894 0.859/0.908/0.924 0.900/0.900/0.930 0.850/0.882/0.907
SINEH 0.724/0.783/0.806 0.650/0.740/0.720 0.691/0.749/0.736 0.724/0.783/0.806 0.750/0.790/0.810 0.723/0.772/0.752

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.723/0.825/0.833 0.640/0.750/0.750 0.681/0.734/0.736 0.723/0.825/0.833 0.740/0.830/0.860 0.669/0.724/0.730
LINE 0.884/0.930/0.940 0.660/0.640/0.630 0.656/0.652/0.659 0.884/0.930/0.940 0.850/0.840/0.920 0.698/0.696/0.718
SINE 0.885/0.907/0.919 0.630/0.640/0.640 0.672/0.666/0.659 0.885/0.907/0.919 0.880/0.890/0.900 0.736/0.739/0.735
SINEH 0.724/0.783/0.806 0.400/0.350/0.350 0.400/0.407/0.380 0.724/0.783/0.806 0.760/0.770/0.790 0.475/0.491/0.474

(a) OeSNN-RENN

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.794/0.828/0.852 0.770/0.800/0.820 0.747/0.856/0.876 0.794/0.828/0.852 0.770/0.830/0.880 0.803/0.850/0.886
LINE 0.870/0.894/0.929 0.880/0.860/0.860 0.882/0.891/0.911 0.870/0.894/0.929 0.880/0.890/0.900 0.855/0.874/0.892
SINE 0.879/0.906/0.918 0.780/0.840/0.880 0.839/0.873/0.904 0.879/0.906/0.918 0.930/0.900/0.950 0.847/0.890/0.915
SINEH 0.719/0.793/0.790 0.660/0.780/0.680 0.638/0.785/0.728 0.719/0.793/0.790 0.730/0.800/0.810 0.657/0.801/0.757

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.794/0.828/0.852 0.730/0.800/0.780 0.649/0.781/0.787 0.794/0.828/0.852 0.800/0.820/0.860 0.655/0.743/0.763
LINE 0.922/0.930/0.940 0.700/0.640/0.650 0.809/0.782/0.779 0.922/0.930/0.940 0.870/0.900/0.910 0.845/0.811/0.805
SINE 0.849/0.906/0.918 0.710/0.660/0.660 0.783/0.800/0.782 0.849/0.906/0.918 0.810/0.880/0.890 0.825/0.808/0.816
SINEH 0.719/0.793/0.790 0.460/0.440/0.500 0.488/0.600/0.613 0.719/0.793/0.790 0.720/0.820/0.810 0.565/0.617/0.615

(b) OeSNN-AllKNN

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.795/0.841/0.840 0.740/0.770/0.750 0.807/0.823/0.810 0.837/0.846/0.862 0.930/0.890/0.870 0.825/0.840/0.826
LINE 0.903/0.924/0.938 0.860/0.860/0.910 0.913/0.909/0.937 0.916/0.929/0.945 0.860/0.880/0.910 0.851/0.871/0.879
SINE 0.889/0.916/0.928 0.840/0.860/0.860 0.902/0.918/0.908 0.870/0.902/0.927 0.900/0.960/0.960 0.887/0.916/0.907
SINEH 0.734/0.772/0.804 0.770/0.680/0.720 0.744/0.750/0.762 0.709/0.756/0.782 0.780/0.730/0.830 0.712/0.727/0.740

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.847/0.841/0.848 0.730/0.670/0.680 0.776/0.758/0.760 0.861/0.846/0.849 0.850/0.790/0.780 0.759/0.745/0.731
LINE 0.891/0.911/0.927 0.750/0.730/0.700 0.863/0.829/0.818 0.899/0.922/0.925 0.910/0.920/0.850 0.795/0.801/0.804
SINE 0.856/0.913/0.931 0.750/0.740/0.700 0.841/0.853/0.852 0.884/0.908/0.923 0.840/0.900/0.920 0.799/0.762/0.793
SINEH 0.726/0.773/0.809 0.550/0.540/0.560 0.676/0.693/0.688 0.733/0.787/0.793 0.690/0.780/0.820 0.651/0.662/0.631

(c) OeSNN-CNN

Table 5: Prequential accuracies obtained by (a) OeSNN-RENN, (b) OeSNN-AllKNN and (c)
OeSNN-CNN working with repository sizes of 50, 100, and 150 neurons over the CIRCLE, LINE,
SINEH and SINEV datasets. The same notational criteria hold in terms of statistical significance
between these schemes and the naive OeSNN scheme.

30



(a) OeSNN-AllKNN: 98.47%, 97.19%, 95.96% (b) OeSNN-CNN: 69.93%, 67.60%, 64.71%

(c) OeSNN-ENN: 98.60%, 97.32%, 96.08% (d) OeSNN-RENN: 98.57%, 97.26%, 95.99%

(e) OeSNN-SSMA: 55.83%, 54.97%, 53.40% (f) OeSNN-TCNN: 98.64%, 97.39%, 96.16%

Figure 8: Evolution of the occupancy of the neuron repository for the OeSNN-PS approaches in the
CIRCLE dataset under high severity and high speed conditions. Three percentages are displayed
for every technique, corresponding to the occupancy (in %) for repository sizes equal to 50, 100
and 150 neurons.

31



Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.859 0.750/0.810/0.760 0.823/0.855/0.859 0.860/0.876/0.882 0.860/0.920/0.950 0.843/0.878/0.888
LINE 0.918/0.928/0.932 0.910/0.940/0.920 0.927/0.943/0.951 0.918/0.928/0.932 0.880/0.900/0.910 0.899/0.916/0.923
SINE 0.911/0.922/0.918 0.910/0.890/0.850 0.923/0.930/0.934 0.911/0.922/0.918 0.950/0.960/0.950 0.917/0.923/0.933
SINEH 0.766/0.780/0.785 0.760/0.770/0.760 0.754/0.766/0.787 0.766/0.780/0.785 0.830/0.800/0.830 0.742/0.757/0.762

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.882 0.770/0.750/0.740 0.800/0.812/0.820 0.860/0.876/0.882 0.850/0.870/0.860 0.754/0.797/0.799
LINE 0.925/0.924/0.929 0.820/0.850/0.770 0.897/0.912/0.904 0.925/0.924/0.929 0.870/0.880/0.870 0.858/0.859/0.870
SINE 0.900/0.916/0.928 0.880/0.810/0.760 0.912/0.911/0.912 0.900/0.916/0.928 0.890/0.900/0.890 0.873/0.878/0.883
SINEH 0.766/0.780/0.785 0.690/0.710/0.690 0.741/0.960/0.767 0.766/0.780/0.785 0.850/0.770/0.830 0.707/0.712/0.734

(a) OeSNN-SGP, OeSNN-SGP2

Low drift severity, high drift speed Low drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.882 0.750/0.810/0.760 0.822/0.855/0.859 0.860/0.876/0.882 0.870/0.920/0.950 0.834/0.878/0.888
LINE 0.918/0.928/0.932 0.910/0.940/0.920 0.927/0.943/0.951 0.918/0.928/0.932 0.880/0.900/0.910 0.889/0.916/0.923
SINE 0.911/0.922/0.918 0.910/0.890/0.850 0.923/0.930/0.934 0.911/0.922/0.918 0.950/0.960/0.950 0.917/0.923/0.933
SINEH 0.766/0.780/0.785 0.760/0.770/0.760 0.754/0.766/0.787 0.766/0.780/0.785 0.830/0.800/0.830 0.742/0.757/0.762

High drift severity, high drift speed High drift severity, low drift speed
BD D AD BD D AD

CIRCLE 0.860/0.876/0.882 0.770/0.750/0.740 0.807/0.821/0.823 0.860/0.876/0.882 0.860/0.870/0.860 0.752/0.780/0.798
LINE 0.925/0.924/0.929 0.820/0.850/0.770 0.897/0.912/0.904 0.925/0.924/0.929 0.870/0.880/0.870 0.858/0.859/0.870
SINE 0.900/0.916/0.928 0.880/0.810/0.760 0.912/0.911/0.912 0.900/0.916/0.928 0.890/0.900/0.890 0.873/0.878/0.883
SINEH 0.766/0.780/0.785 0.690/0.710/0.690 0.741/0.760/0.767 0.766/0.780/0.785 0.850/0.770/0.830 0.707/0.712/0.734

(b) OeSNN-ASGP

Table 6: Prequential accuracies of the (a) OeSNN-SGP/OeSNN-SGP2 and (b) OeSNN-ASGP
approach working with the neuron repository sizes of 50, 100, and 150 respectively for CIRCLE,
LINE, SINEH and SINEV data sets. Where prequential accuracies are in bold, there is a notable
improvement in comparison with the traditional OeSNN, whereas prequential accuracies in italics
are worse than the traditional OeSNN. When prequential accuracies are in regular text means that
there is no significant difference.

32



Figure 9: Averaged neuron repository occupancies (52.64%, 50.85%, 50.01%) of the all OeSNN-
PG approaches for the sizes 50, 100, and 150 respectively with the CircleG data set under high
severity and high speed conditions.

6.2. Impact of the Neuron Repository with Real Data
Once OeSNN-PS and OeSNN-PG approaches have been simulated with syn-

thetic datasets, a second set of experiments has been performed with real datasets.
The OeSNN-DRT hybridized with a drift detector (Algorithm 4) has been used in
these simulations to be compared with the naive version of the proposed OeSNN
because no a priori information about the drift moments is known. The drift de-
tector serves as an active strategy to notify when it is necessary to trigger the DRT
at hand. In this second experimental benchmark, averaged prequential accuracy
scores for all cases (OeSNN, active OeSNN-PS and active OeSNN-PG) are jointly
summarized in Table 7 for all real datasets, repository sizes (50, 100, and 150 neu-
rons), and measured at points BD, D, and AD. Statistics during the same periods
for the drift detector are also provided. The averaged prequential accuracies have
been calculated over all BD, D, and AD periods that occur in all drift detections.

33



BD D AD # drifts
OeSNN approach

OeSNN
ELEC2 0.817/0.808/0.806 0.802/0.793/0.784 0.810/0.802/0.796 n.a.
NOAA 0.700/0.675/0.685 0.692/0.640/0.674 0.702/0.630/0.673 n.a.
GMSC 0.907/0.919/0.908 0.901/0.916/0.898 0.912/0.923/0.905 n.a.

Active OeSNN-PS approaches

OeSNN-TCNN
ELEC2 0.827/0.806/0.801 0.822/0.792/0.763 0.834/0.802/0.776 13/117/23
NOAA 0.697/0.689/0.692 0.604/0.689/0.623 0.669/0.686/0.646 50/61/12
GMSC 0.907/0.911/0.907 0.888/0.908/0.906 0.896/0.912/0.906 44/33/50

OeSNN-SSMA
ELEC2 0.819/0.807/0.807 0.792/0.804/0.800 0.802/0.810/0.805 5/106/66
NOAA 0.684/0.706/0.675 0.647/0.567/0.715 0.652/0.540/0.705 85/4/22
GMSC 0.902/0.917/0.908 0.891/0.932/0.896 0.889/0.921/0.907 45/7/19

OeSNN-ENN
ELEC2 0.817/0.804/0.800 0.800/0.784/0.774 0.805/0.801/0.792 106/111/99
NOAA 0.697/0.699/0.695 0.679/0.710/0.646 0.705/0.726/0.687 56/17/57
GMSC 0.908/0.913/0.915 0.907/0.919/0.918 0.913/0.923/0.923 51/49/47

OeSNN-RENN
ELEC2 0.811/0.804/0.804 0.740/0.784/0.788 0.768/0.801/0.800 5/111/100
NOAA 0.693/0.684/0.681 0.659/0.664/0.583 0.639/0.675/0.621 56/71/15
GMSC 0.908/0.913/0.915 0.907/0.923/0.912 0.913/0.924/0.921 51/49/46

OeSNN-AllKNN
ELEC2 0.815/0.811/0.802 0.792/0.784/0.785 0.808/0.801/0.803 106/100/126
NOAA 0.719/0.696/0.728 0.783/0.674/0.669 0.742/0.704/0.716 12/19/8
GMSC 0.908/0.912/0.914 0.911/0.921/0.925 0.912/0.919/0.925 51/46/45

OeSNN-CNN
ELEC2 0.816/0.806/0.800 0.798/0.791/0.787 0.806/0.814/0.802 60/26/114
NOAA 0.684/0.763/0.716 0.702/0.919/0.571 0.650/0.951/0.642 55/1/3
GMSC 0.915/0.911/0.865 0.846/0.915/0.841 0.845/0.886/0.820 5/6/21

Active OeSNN-PG approaches

OeSNN-SGP
ELEC2 0.817/0.813/0.813 0.815/0.807/0.809 0.814/0.810/0.811 112/113/104
NOAA 0.695/0.674/0.683 0.657/0.739/0.720 0.698/0.623/0.698 51/21/28
GMSC 0.911/0.920/0.908 0.914/0.931/0.911 0.913/0.935/0.912 45/6/30

OeSNN-SGP2
ELEC2 0.819/0.811/0.810 0.815/0.805/0.802 0.819/0.810/0.812 113/112/98
NOAA 0.695/0.682/0.688 0.657/0.662/0.754 0.698/0.680/0.741 51/59/39
GMSC 0.911/0.920/0.908 0.914/0.931/0.911 0.916/0.935/0.912 45/6/30

OeSNN-ASGP
ELEC2 0.816/0.812/0.805 0.811/0.806/0.797 0.815/0.809/0.802 117/117/52
NOAA 0.697/0.678/0.687 0.713/0.638/0.693 0.696/0.658/0.686 48/38/69
GMSC 0.912/0.904/0.896 0.875/0.893/0.873 0.882/0.880/0.880 18/13/7

Table 7: Averaged prequential accuracies and number of detected drifts of the OeSNN-DRT ap-
proaches working with the neuron repository sizes 50, 100, and 150 for the real data sets. Where
prequential accuracies are in bold, there is a notable improvement in comparison with the tradi-
tional OeSNN, whereas prequential accuracies in italics are worse than the traditional OeSNN.
When prequential accuracies are in regular text means that there is no significant difference.

6.3. Comparison to Other Methods
In Table 8 a comparison with some of the most recent and well-known online

learning methods in the presence of concept drift is presented, namely, Hoeffd-
ing Trees or also known as Very Fast Decision Trees (HTs, (Domingos & Hul-
ten, 2000)), Random Forests (RFs, (Breiman, 2001)), and Hoeffding Naive Bayes
Tree ensembles (HNBTs, (Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger,
Holmes & Abdessalem, 2017b)). Active implementations of some of the above
detectors are also included in the paper, encompassing drift detectors such as
DDM (Gama, Medas, Castillo & Rodrigues, 2004), EDDM (Baena-Garcı́a, del

34



Campo-Ávila, Fidalgo, Bifet, Gavaldà & Morales-Bueno, 2006), ADWIN (Bifet
& Gavalda, 2007) or EDIST2 (Khamassi, Sayed-Mouchaweh, Hammami & Ghédira,
2015). For the sake of fairness and comparability the table only reports experi-
mental results of schemes published in the literature by other authors. Unfortu-
nately, to the best of our knowledge no prior work for NOAA dataset has been
carried out under similar conditions and evaluation criteria, hence this dataset has
not been considered in this last experimental phase.

TECHNIQUES TYPE ELEC2 GMSC
OeSNN-DRT approaches

OeSNN-TCNN Single 0.822/0.792/0.763 0.888/0.908/0.906
OeSNN-SSMA Single 0.792/0.804/0.800 0.891/0.932/0.896
OeSNN-ENN Single 0.800/0.784/0.774 0.907/0.919/0.918
OeSNN-RENN Single 0.740/0.784/0.788 0.907/0.923/0.912
OeSNN-AllKNN Single 0.792/0.784/0.785 0.911/0.921/0.925
OeSNN-CNN Single 0.798/0.791/0.787 0.846/0.915/0.841
OeSNN-SGP Single 0.815/0.807/0.809 0.914/0.931/0.911
OeSNN-SGP2 Single 0.815/0.805/0.802 0.914/0.931/0.911
OeSNN-ASGP Single 0.811/0.806/0.797 0.875/0.893/0.873

(Khamassi & Sayed-Mouchaweh, 2017)
HTs ensemble + EDIST2 Ensemble (10) 0.848 -

(Gomes, Bifet, Read, Barddal, Enembreck, Pfharinger, Holmes & Abdessalem, 2017b)
Adaptive RFs Ensemble (100) 0.885 0.935
Online Bagging (HNBTs) Ensemble (100) 0.825 0.935
Online Accuracy Updated Ensemble (HNBTs) Ensemble (100) 0.863 0.935
Online Boosting (HNBTs) Ensemble (100) 0.901 0.926
Online Smooth-boost (HNBTs) Ensemble (100) 0.875 0.925
Leveraging Bagging (HNBTs) Ensemble (100) 0.885 0.935

Table 8: Comparison during the drifting phase of the average prequential accuracies of OeSNN-
DRTs and some of the most relevant ensemble based techniques in the literature. The same eval-
uation criteria was used in all works: a test-then-train online scheme and average of prequential
accuracies during the drifting phase as the performance metric.

A first look at the results in this table reveals that the performance of several
OeSNN-DRT approaches occurs to be very competitive with respect to the state
of the art, above all after considering that our OeSNN-DRT approaches are based
on a single model and the rest are based on ensemble models composed of 10
(Khamassi & Sayed-Mouchaweh, 2017) or 100 (Gomes, Bifet, Read, Barddal,
Enembreck, Pfharinger, Holmes & Abdessalem, 2017b) base learners. Neverthe-
less, next Section will elaborate on this comparison in depth.

7. Discussion

A first look in Figures 8 and 9 reveals that DRTs are able to retain the knowl-
edge with a reduced number of output neurons, but not all DRTs achieve a good
classification performance and a relevant data reduction percentage at the same

35



time. This is a key point in online learning scenarios where the storage capacity
is limited.

We start the discussion by analyzing the results of the synthetic data, which
are presented in Tables 3 to 6. The obtained scores for OeSNN-PS show that
in general, OeSNN-TCNN, OeSNN-ENN, OeSNN-RENN and OeSNN-AllKNN
render a degraded performance when compared to the naive OeSNN approach.
Some exceptions deserve further attention at this point: the OeSNN-TCNN ap-
proach has a general better classification performance in the plasticity period D,
mostly in those datasets with low severity and high speed. Similarly, OeSNN-
ENN and OeSNN-RENN yield a better performance in the plasticity period D in
datasets with low severity and high speed when the size of the repository is large
(150 neurons). The OeSNN-AllKNN approach performs best in the plasticity pe-
riod D over datasets with high severity and high speed, again for large repository
sizes. This interesting result advocates for one of our postulated hypothesis: the
larger the neuron repository is, the more important an optimized management of
its contents is in an online learning setup; this fact becomes even more noticeable
when the drift imprints deep changes on the stream data (high severity, high speed
drifts), as the repository needs to be refreshed quickly so as to grasp and learn the
newly evolving concept.

On the contrary, OeSNN-SSMA and OeSNN-CNN (those with higher data
reduction percentages) offer further performance improvements in other periods
over the simulated streams. OeSNN-SSMA has in general better classification
performance in 1) the plasticity period D in datasets characterized by fast drifts,
and 2) in the stable period AD for datasets with high severity and high speed.
Besides, for stable periods BD and AD in many other cases, OeSNN-SSMA out-
performs the proposed OeSNN, remarkably when the size of the repository is the
largest one (150). On the other hand, the OeSNN-CNN approach produces in gen-
eral better accuracy scores in the plasticity period D over datasets with high speed,
and occasionally outperforms the naive OeSNN in other specific conditions. But
it is the OeSNN-SMMA technique which provides better prequential accuracies
and a more efficient use of the neuron repository capacity (more data reduction
percentage) at the same time. Unfortunately, this comes along with a computation
penalty, since the SMMA encompasses a heuristic search demanding for memory
and processing resources that could eventually clash with stringent computational
constraints of the online problem in question.

Regarding OeSNN-PG approaches whose results are compiled in Table 6,
OeSNN-SGP and OeSNN-SGP2 approaches rendered the same results and show
a general better classification performance than the OeSNN approach in the plas-
ticity period D for high speed datasets. They were found to be also competitive

36



in low speed datasets, even in stable periods. The OeSNN-ASGP approach has
similar results than OeSNN-SGP and OeSNN-SGP2, but it performs better in the
CIRCLE data set for low severity and high speed drifts in the stable period BD
when the size of the neuron repository is 150. It also shows a general better classi-
fication performance than the OeSNN approach in the plasticity period D for high
speed data sets, and it is also a competitive technique in the low speed data sets,
even in stable periods.

Once analyzed the impact of applying DRTs to OeSNN, we proceed by analyz-
ing the set of experiments with real datasets leveraging the use of a drift detector
to trigger the application of the data reduction technique. Regarding OeSNN-
PS approaches, in Table 7 one can observe that OeSNN-TCNN, OeSNN-ENN,
and OeSNN-RENN perform competitively in the stability and plasticity periods
for several datasets. However, OeSNN-SSMA, OeSNN-AllKNN and OeSNN-
CNN are the approaches rendering the best overall accuracy scores, with OeSNN-
AllKNN dominating all OeSNN-PS techniques specially in the NOAA and GMSC
datasets. As for OeSNN-PG approaches, Table 7 elucidates that the three ap-
proaches under this category perform better than the naive OeSNN in a wider
spectrum of datasets and regions than their OeSNN-PS counterparts. Nonethe-
less, OeSNN-SGP and OeSNN-SGP2 are the techniques producing better results
in all real datasets.

All in all, from the above experiments insightful conclusions can be drawn:
OeSNN-SMMA, OeSNN-CNN, and all OeSNN-PG approaches (OeSNN-SGP,
OeSNN-SGP2, and OeSNN-ASGP) achieve very high data reduction ratios and a
competitive classification performance in comparison with the naive OeSNN ap-
proach in plasticity periods (D). They allow for more space for newly produced
output neurons to enter the repository, thus favoring a quicker adaptation to the
drift. Besides, these approaches decrease the processing time when the newly out-
put neuron is compared to the rest of the neurons in the repository in the training
phase: the less neurons in the repository, the less the number of pairwise com-
parisons will be needed to find the most similar neuron (SIM parameter for the
merging process), and ultimately the less processing time and less storing space
will be required. Interestingly, OeSNN-PG approaches have revealed themselves
as the most suitable models to be applied right after a drift occurs.

Finally, the results in Section 6.3 certify that OeSNN-DRT schemes perform
very competitively in comparison with other methods from the state of the art,
getting comparable accuracy scores to avant-garde schemes over the ELEC2 and
GMSC datasets. At this point the reader should not overlook the fact that most
online learning methods are based on ensemble classifiers rather than single mod-
els. Ensemble classifier models are widely acknowledged to be more accurate

37



due to their robustness to error variance. Furthermore, they are more flexible to
assimilate new available data into their learning algorithm, and they provide more
straightforward mechanisms to forget irrelevant knowledge once a drift has been
detected (e.g. by simply discarding the oldest classifier from the ensemble). In
contrast, single model approaches generally trade lower accuracy results for a re-
duced computational cost, reason for which they are often regarded as an attractive
solution for massive data streams (Ditzler, Roveri, Alippi & Polikar, 2015). Bear-
ing the previous observations and considering key performance factors such as the
size of the window or the number of base learners utilized in the compared ensem-
bles (10 in the case of HTs ensemble + EDIST2 (Khamassi & Sayed-Mouchaweh,
2017) or 100 in the case of ARFs and HNBTs approaches in (Gomes, Bifet, Read,
Barddal, Enembreck, Pfharinger, Holmes & Abdessalem, 2017b)), we conclude
that OeSNN-DRTs are along with the state of the art related to online learning
and concept drift in terms of accuracy and computational efficiency (since, as al-
ready argued in the introduction, single classifiers are considered more suitable for
online scenarios with stringent timing constraints that jeopardize the adoption of
ensemble-based approaches). This statement stimulates further research around
different extensions of the proposed family of online classifiers, as will be next
outlined.

8. Conclusions and Future Research Lines

This work has presented a portfolio of new adaptations of evolving Spik-
ing Neural Networks (eSNNs) for online learning scenarios under concept drift.
Firstly, we have adapted the traditional eSNN technique to be used on online data
streams by limiting the size of the neuron repository, yielding the so-called Online
eSNN (OeSNN). Secondly, we have embraced the use of selective and generative
data reduction techniques (DRTs) to optimize the contents of the neuron reposi-
tory so as to achieve a better adaptability of the model to changing concepts over
the processed data stream. Both passive and active strategies have been defined to
incorporate DRTs into the OeSNN learning procedure: the active comprises a drift
detector that detects changes along the data stream and triggers the application
of the DRT at hand to the neuron repository. Two different families of OeSNN
models have been proposed: OeSNN-PS (using prototype-selection DRTs) and
OeSNN (corr. using prototype-generation DRTs), both capable of operating in
passive and active modes when processing data streams.

An extensive set of computer experiments over synthetic and real streaming
datasets has been designed and discussed to find performance differences be-
tween the above approaches. Part of the OeSNN-PS variants (OeSNN-SMMA

38



and OeSNN-CNN) and all OeSNN-PG approaches (i.e. OeSNN-SGP, OeSNN-
SGP2, and OeSNN-ASGP) have been proven to attain better predictive scores
during plasticity periods than the naive version of the OeSNN (i.e. the proposed
OeSNN with no DRT included in its learning algorithm). The application of DRTs
to the proposed OeSNN model also allows reducing the required space to store
output neurons, thus decreasing the processing time needed to train with newly
samples: the less neurons in the repository, the less similarity computations dur-
ing the learning phase. This alleviation of the computational resources demanded
by the model is of utmost importance in online learning, where processing times
and storage should be kept as low as possible to process high stream data rates.

Those approaches that use DRTs achieving the lowest occupancy of the neu-
ron repository retain the old concept by generating or selecting prototypes, and at
the same time they adapt better to the new concept by storing more information
(output neurons) of the new concept during the plasticity period after a drift oc-
curs. This is possible due to the fact that high data reduction ratios lead to more
available space in the neuron repository where to store neurons with more recent
information. Thus, the adaptation to the new concept is better (a higher accu-
racy is achieved) and faster (less similarity computations in the training phase as
argued previously). Although the selection of a data reduction technique is not
straightforward (it depends on the characteristics of the dataset), we have found
out empirical evidences which indicate that OeSNN-PG approaches feature a bet-
ter adaptability right after the drift occurs, while performing very competitively in
stability periods.

In summary, this work brings to light the natural capability of the proposed
family of OeSNN-DRTs to:

1. simultaneously learn the new incoming concept while retaining the older one
without incorporating specific forgetting mechanisms (W is used just to com-
pute encoding parameters, there is no windowed adaptation whatsoever as Sec-
tion 2.2 clearly shows);

2. update the model without requiring a retraining mechanism;
3. use less capacity storage by reducing the amount of required neurons for the

overall model to achieve a better balance between stability (performance over
stationary data distributions) and plasticity (reaction against drift events in the
processed data stream);

4. be faster than the traditional OeSNN approach by carrying out less similarity
computations (less output neurons) in the training phase;

5. be competitive in terms of their balance between predictive performance and
complexity in comparison with ensembles of classifiers, which makes OeSNN-
DRTs a better match for scenarios under severe computational restrictions; and

39



6. to provide a realistic solution to be hybridize with a drift detector.

Future efforts can be invested in several research lines. On the one hand,
it is necessary to address the need for incorporating a priori information of the
expected dynamics of the drift (severity and velocity), which can be estimated
in practice when drifts occur in a recurrent fashion, namely, changes that have
multiple underlying modes and reappear periodically over the stream (as in e.g.
financial prediction or dynamic control, among others (Gonçalves Jr & De Barros,
2013)). In this case the most suitable data reduction technique for the plasticity
period could be chosen based on the predicted type of drift. Finally, it will be
also interesting to explore the possibility of building ensembles of OeSNNs and
study their behavior in comparison with other ensemble approaches, as well as
their online parametric configuration.

9. Acknowledgements

This work was supported by the EU project Pacific Atlantic Network for Tech-
nical Higher Education and Research - PANTHER (grant number 2013-5659/004-
001 EMA2); and by the Basque Government through the EMAITEK program.

Bibliography

Aggarwal, C. C. (2006). On biased reservoir sampling in the presence of stream
evolution. In Proceedings of the 32nd international conference on Very large
data bases (pp. 607–618). VLDB Endowment.

Alippi, C. (2014). Intelligence for embedded systems. Springer.

Alippi, C., & Roveri, M. (2008). Just-in-time adaptive classifierspart ii: Designing
the classifier. IEEE Transactions on Neural Networks, 19, 2053–2064.

Alnajjar, F., Zin, I. B. M., & Murase, K. (2008). A spiking neural network with
dynamic memory for a real autonomous mobile robot in dynamic environment.
In Neural Networks, 2008. IJCNN 2008.(IEEE World Congress on Computa-
tional Intelligence). IEEE International Joint Conference on (pp. 2207–2213).
IEEE.

Baena-Garcı́a, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavaldà, R., &
Morales-Bueno, R. (2006). Early drift detection method. In Proc. of the 4th
ECML PKDD International Workshop on Knowledge Discovery From Data
Streams (IWKDDS06) (pp. 77–86).

40



Barddal, J. P., Gomes, H. M., Enembreck, F., & Pfahringer, B. (2017). A sur-
vey on feature drift adaptation: Definition, benchmark, challenges and future
directions. Journal of Systems and Software, 127, 278–294.

Belatreche, A., Maguire, L. P., & McGinnity, M. (2007). Advances in design and
application of spiking neural networks. Soft Computing, 11, 239–248.

Bifet, A., & Gavalda, R. (2006). Kalman filters and adaptive windows for learning
in data streams. In International Conference on Discovery Science (pp. 29–40).
Springer.

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 SIAM international conference on data
mining (pp. 443–448). SIAM.

Bifet, A., Holmes, G., Pfahringer, B., & Gavalda, R. (2009). Improving adaptive
bagging methods for evolving data streams. In Asian conference on machine
learning (pp. 23–37). Springer.

Bohte, S. M., Kok, J. N., & La Poutre, H. (2002). Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing, 48, 17–37.

Bohte, S. M., Kok, J. N., & La Poutré, J. A. (2000). Spikeprop: backpropagation
for networks of spiking neurons. In ESANN (pp. 419–424).

Breiman, L. (2001). Random forests. Machine learning, 45, 5–32.

Chang, R., Pei, Z., & Zhang, C. (2011). A modified editing k-nearest neighbor
rule. JCP, 6, 1493–1500.

Cohen, E., & Strauss, M. (2003). Maintaining time-decaying stream aggregates.
In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems (pp. 223–233). ACM.

Dawid, A. P., Vovk, V. G. et al. (1999). Prequential probability: Principles and
properties. Bernoulli, 5, 125–162.

Derrac, J., Garcı́a, S., & Herrera, F. (2010). Stratified prototype selection based on
a steady-state memetic algorithm: a study of scalability. Memetic Computing,
2, 183–199.

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10, 12–
25.

41



Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Pro-
ceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining (pp. 71–80). ACM.

Domingos, P., & Hulten, G. (2003). A general framework for mining massive data
streams. Journal of Computational and Graphical Statistics, 12, 945–949.

Elwell, R., & Polikar, R. (2011). Incremental learning of concept drift in nonsta-
tionary environments. IEEE Transactions on Neural Networks, 22, 1517–1531.

Escalante, H. J., Graff, M., & Morales-Reyes, A. (2016). Pggp: prototype gener-
ation via genetic programming. Applied Soft Computing, 40, 569–580.

Fayed, H. A., Hashem, S. R., & Atiya, A. F. (2007). Self-generating prototypes
for pattern classification. Pattern Recognition, 40, 1498–1509.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift
detection. In Brazilian symposium on artificial intelligence (pp. 286–295).
Springer.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46, 44.

Garcia, S., Derrac, J., Cano, J., & Herrera, F. (2012). Prototype selection for near-
est neighbor classification: Taxonomy and empirical study. IEEE transactions
on pattern analysis and machine intelligence, 34, 417–435.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press.

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017a). A survey
on ensemble learning for data stream classification. ACM Computing Surveys
(CSUR), 50, 23.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B.,
Holmes, G., & Abdessalem, T. (2017b). Adaptive random forests for evolving
data stream classification. Machine Learning, 106, 1469–1495.

Gonçalves Jr, P. M., & De Barros, R. S. M. (2013). Rcd: A recurring concept drift
framework. Pattern Recognition Letters, 34, 1018–1025.

Grossberg, S. (1988). Nonlinear neural networks: Principles, mechanisms, and
architectures. Neural networks, 1, 17–61.

42



Harries, M., & Wales, N. S. (1999). Splice-2 comparative evaluation: Electricity
pricing. Technical Report, The University of South Wales, .

Hart, P. (1968). The condensed nearest neighbor rule (corresp.). IEEE transac-
tions on information theory, 14, 515–516.

Hu, W., & Tan, Y. (2016). Prototype generation using multiobjective particle
swarm optimization for nearest neighbor classification. IEEE transactions on
cybernetics, 46, 2719–2731.

Kasabov, N., Dhoble, K., Nuntalid, N., & Indiveri, G. (2013). Dynamic evolving
spiking neural networks for on-line spatio-and spectro-temporal pattern recog-
nition. Neural Networks, 41, 188–201.

Kasabov, N., Scott, N., Tu, E., Marks, S., Sengupta, N., Capecci, E., Othman, M.,
Doborjeh, M., Murli, N., Hartono, R. et al. (2016). Design methodology and
selected applications of evolving spatio-temporal data machines in the neucube
neuromorphic framework. Neural Networks, 78, 1–14.

Kasabov, N. K. (2007). Evolving connectionist systems: the knowledge engineer-
ing approach. Springer Science & Business Media.

Kasabov, N. K. (2014). Neucube: A spiking neural network architecture for map-
ping, learning and understanding of spatio-temporal brain data. Neural Net-
works, 52, 62–76.

Khamassi, I., & Sayed-Mouchaweh, M. (2017). Self-adaptive ensemble classifier
for handling complex concept drift. In CEUR Workshop Proceedings. volume
1958.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2015). Self-
adaptive windowing approach for handling complex concept drift. Cognitive
Computation, 7, 772–790.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Dis-
cussion and review on evolving data streams and concept drift adapting. Evolv-
ing Systems, 9, 1–23.

Klinkenberg, R. (2004). Learning drifting concepts: Example selection vs. exam-
ple weighting. Intelligent data analysis, 8, 281–300.

Kononenko, I., & Kukar, M. (2007). Machine learning and data mining: intro-
duction to principles and algorithms. Horwood Publishing.

43



Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017).
Ensemble learning for data stream analysis: A survey. Information Fusion, 37,
132–156.

Li, J., & Wang, Y. (2015). Prototype selection based on multi–objective opti-
misation and partition strategy. International Journal of Sensor Networks, 17,
163–176.

Lobo, J. L., Del Ser, J., Bilbao, M. N., Perfecto, C., & Salcedo-Sanz, S. (2017).
Dred: An evolutionary diversity generation method for concept drift adaptation
in online learning environments. Applied Soft Computing, .

Meena, L., & Devi, V. S. (2015). Prototype selection on large and streaming data.
In International Conference on Neural Information Processing (pp. 671–679).
Springer.

Minku, L. L., White, A. P., & Yao, X. (2010). The impact of diversity on on-
line ensemble learning in the presence of concept drift. IEEE Transactions on
knowledge and Data Engineering, 22, 730–742.

Minku, L. L., & Yao, X. (2012). Ddd: A new ensemble approach for dealing
with concept drift. IEEE transactions on knowledge and data engineering, 24,
619–633.

Ng, W., & Dash, M. (2008). A test paradigm for detecting changes in transactional
data streams. In International Conference on Database Systems for Advanced
Applications (pp. 204–219). Springer.

Oliveira, D. V., Magalhaes, G. R., Cavalcanti, G. D., & Ren, T. I. (2012). Im-
proved self-generating prototypes algorithm for imbalanced datasets. In Tools
with Artificial Intelligence (ICTAI), 2012 IEEE 24th International Conference
on (pp. 904–909). IEEE volume 1.

Ponulak, F. (2005). Resume-new supervised learning method for spiking neural
networks. Institute of Control and Information Engineering, Poznan University
of Technology, 42.

Ponulak, F. (2008). Analysis of the resume learning process for spiking neural net-
works. International Journal of Applied Mathematics and Computer Science,
18, 117–127.

44



Ponulak, F., & Kasiński, A. (2010). Supervised learning in spiking neural net-
works with resume: sequence learning, classification, and spike shifting. Neu-
ral computation, 22, 467–510.

Schliebs, S., & Kasabov, N. (2013). Evolving spiking neural networka survey.
Evolving Systems, 4, 87–98.

Soltic, S., & Kasabov, N. (2010). Knowledge extraction from evolving spiking
neural networks with rank order population coding. International Journal of
Neural Systems, 20, 437–445.

Soltic, S., Wysoski, S. G., & Kasabov, N. K. (2008). Evolving spiking neural
networks for taste recognition. In Neural Networks, 2008. IJCNN 2008.(IEEE
World Congress on Computational Intelligence). IEEE International Joint Con-
ference on (pp. 2091–2097). IEEE.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. In Computational neuro-
science (pp. 113–118). Springer.

Thorpe, S. J., & Gautrais, J. (1997). Rapid visual processing using spike asyn-
chrony. In Advances in neural information processing systems (pp. 901–907).

Tomek, I. (1976a). An experiment with the edited nearest-neighbor rule. IEEE
Transactions on systems, Man, and Cybernetics, (pp. 448–452).

Tomek, I. (1976b). Two modifications of cnn. IEEE Trans. Systems, Man and
Cybernetics, 6, 769–772.

Triguero, I., Derrac, J., Garcia, S., & Herrera, F. (2012). A taxonomy and experi-
mental study on prototype generation for nearest neighbor classification. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views), 42, 86–100.

Triguero, I., Garcı́a, S., & Herrera, F. (2010). Ipade: Iterative prototype adjust-
ment for nearest neighbor classification. IEEE Transactions on Neural Net-
works, 21, 1984–1990.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Transactions on
Mathematical Software (TOMS), 11, 37–57.

Wang, J., Belatreche, A., Maguire, L., & Mcginnity, T. M. (2014). An online
supervised learning method for spiking neural networks with adaptive structure.
Neurocomputing, 144, 526–536.

45



Wang, J., Belatreche, A., Maguire, L. P., & McGinnity, T. M. (2017). Spiketemp:
an enhanced rank-order-based learning approach for spiking neural networks
with adaptive structure. IEEE transactions on neural networks and learning
systems, 28, 30–43.

Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class
imbalance learning with concept drift. IEEE Transactions on Neural Networks
and Learning Systems, .

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Character-
izing concept drift. Data Mining and Knowledge Discovery, 30, 964–994.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited
data. IEEE Transactions on Systems, Man, and Cybernetics, (pp. 408–421).

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2006). Adaptive learning pro-
cedure for a network of spiking neurons and visual pattern recognition. In
International Conference on Advanced Concepts for Intelligent Vision Systems
(pp. 1133–1142). Springer.

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2010). Evolving spiking neural
networks for audiovisual information processing. Neural Networks, 23, 819–
835.

Zhou, Z.-H., Chawla, N. V., Jin, Y., & Williams, G. J. (2014). Big data opportu-
nities and challenges: Discussions from data analytics perspectives [discussion
forum]. IEEE Computational Intelligence Magazine, 9, 62–74.

Žliobaitė, I. (2010). Learning under concept drift: an overview. arXiv preprint
arXiv:1010.4784, .

Žliobaitė, I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift
applications. In Big Data Analysis: New Algorithms for a New Society (pp.
91–114). Springer.

46


