
Accepted Manuscript

Fuzzy c–means-based architecture reduction of a probabilistic neural
network

Maciej Kusy

PII: S0893-6080(18)30211-9
DOI: https://doi.org/10.1016/j.neunet.2018.07.012
Reference: NN 3995

To appear in: Neural Networks

Received date : 8 January 2018
Revised date : 23 June 2018
Accepted date : 20 July 2018

Please cite this article as: Kusy, M., Fuzzy c–means-based architecture reduction of a probabilistic
neural network. Neural Networks (2018), https://doi.org/10.1016/j.neunet.2018.07.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.neunet.2018.07.012

Fuzzy C–Means-Based Architecture Reduction of a

Probabilistic Neural Network

Maciej Kusy

Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, al.
Powstancow Warszawy 12, 35–959 Rzeszow, Poland

Abstract

The efficiency of the probabilistic neural network (PNN) is very sensitive
to the cardinality of a considered input data set. It results from the de-
sign of the network’s pattern layer. In this layer, the neurons perform an
activation on all input records. This makes the PNN architecture complex,
especially for big data classification tasks. In this paper, a new algorithm
for the structure reduction of the PNN is put forward. The solution relies
on performing a fuzzy c–means data clustering and selecting PNN’s pattern
neurons on the basis of the obtained centroids. Then, to activate the pattern
neurons, the algorithm chooses input vectors for which the highest values
of the membership coefficients are determined. The proposed approach is
applied to the classification tasks of repository data sets. PNN is trained by
three different classification procedures: conjugate gradients, reinforcement
learning and the plugin method. Two types of kernel estimators are used to
activate the neurons of the network. A 10–fold cross validation errors for the
original and the reduced PNNs are compared. Received results confirm the
validity of the introduced algorithm.

Keywords: probabilistic neural network, fuzzy c–means, architecture
reduction, classification

1. Introduction

It is known that the complexity of the PNN’s architecture proposed by
Specht (1990) is high. This complexity is an effect of using all of the input

Email address: mkusy@prz.edu.pl (Maciej Kusy)

Preprint submitted to Neural Networks June 23, 2018

*Manuscript
Click here to view linked References

vectors to activate the neurons in the network’s pattern layer. Therefore, to
date, considerable research attention has been paid to the structure optimiza-
tion of the PNN. For example, Burrascano (1990) applies the learning vector
quantization procedure to find representative patterns that can be used to
build neurons in PNNs. This procedure defines a number of records that are
reference vectors, which approximate the probability density functions of the
input classes. Chtioui et al. (1996) present cardinality reduction of the input
data for a PNN by hierarchical clustering. The solution utilizes the technique
of the reciprocal neighbours, allowing for the concentration of examples that
are closest to each other. Zaknich (1997) introduces the quantization method
for PNN structure simplification. The input space is split into a hypergrid of
a fixed-size; for all hypercubes, representative cluster centers are determined.
The number of training vectors in each hyper-cube is therefore reduced to
one. Chang et al. (2008) show an expectation-maximization (EM) method as
the training algorithm for a PNN. The idea relies on predefining a determin-
istic number of clusters as the input data set. A global k–means algorithm is
used as the solution. Kusy and Kluska (2013, 2017) present an application
of k–means clustering and support vector machines to simplify the PNN’s
architecture. The appropriately selected centroids and the support vectors
are chosen to construct the pattern neurons for the network. Luzanin and
Plancak (2014) introduce an approach that uses feature extraction to reduce
the size of the PNN. The approach is performed by a clustering ensemble
and provides cluster prototypes that are subsequently presented to the net-
work as the training set. Kowalski and Kusy (2018) use a sensitivity analysis
(SA) procedure to obtain a reduced set of pattern neurons. SA is applied to
training vectors and relies on discarding those which are least sensitive for a
given class. Kokkinos and Margaritis (2018) introduce a scalable construction
method for PNNs. First, kernel-averaged gradient descent and subtractive
clustering are employed to select representative data centers and their num-
ber for the PNN kernels. Then, the EM method is used to refine the PNN
parameters.

The aim of this study is to propose a new algorithm for the PNN’s archi-
tecture reduction. The solution consists in extracting the most representative
input vectors out of the entire data set on the basis of fuzzy clustering. Se-
lected input records are utilized to create the pattern neurons of the PNN.
The algorithm is tested on a PNN trained by various procedures. Different
kernel functions are applied to activate the neurons of the model. The per-
formance of the original and reduced PNN is collated in the classification

2

tasks using the University of California, Irvine Machine Learning Repository
(UCI–MLR) data sets (Bache and Lichman, 2015). To ensure a thorough
analysis, statistical significance tests are conducted, the computational time
of the algorithm is indicated and a comparison to the existing approaches is
provided.

The remainder of this paper is organized as follows. Section 2 describes
the architecture and the functioning principle of the PNN. In section 3, the
basis of the c–means algorithm is highlighted. Section 4 introduces the al-
gorithm by showing the general underlying idea and its detailed operation.
The input data sets used in the simulations and the algorithm’s parameter
settings are outlined in sections 5 and 6, respectively. In section 7, a com-
parative analysis of the obtained results is presented. Section 8 concludes
the work.

2. Probabilistic neural network

PNN is a feedforward neural network organized into four layers: (a) the
input layer, where the neurons are represented by data features; (b) the pat-
tern layer composed of as many neurons as input vectors; (c) the summation
layer having a single neuron for each class; and (d) the output layer, which
yields the classification result. The architecture of this model is shown in
Figure 1. In general, the functioning of the PNN is based on an evaluation of
the kernel density estimator (KDE) in the summation layer of the network
for each class. Such a KDE can be generalized into the following form

f̂(x) =
1

Lσn

L∑

l=1

K

(
x− x(l)

σ

)
, (1)

where x = [x1, . . . , xn] and x(l) = [x
(l)
1 , . . . , x

(l)
n] are an unknown sample and

the lth training pattern, respectively; σ denotes the smoothing parameter,
and L stands for data cardinality; K (·) is a kernel function that is of the unit
integral and symmetrical with respect to zero, and it performs the mapping
Rn → [0,∞).

The final classification verdict of the PNN is determined using the Bayes
decision rule according to which x is apportioned to a class j if for all classes
for which j 6= k the following inequality holds

pjejfj (x) > pkekfk (x) , (2)

3

Figure 1: The architecture of probabilistic neural network including all pattern neurons.

where j = 1, . . . , J , pj is the probability for x to be assigned to the class j,
ej denotes the error of classifying x into class j, and fj(x) stands for a KDE
(1) for the jth class. With the assumption that pj = pk and ej = ek, x is
designated as the vector belonging to the class j if fj(x) > fk(x).

For real, frequently complex and unbalanced data sets, one usually con-
siders the matrix of smoothing parameters, which refer to each class and
each data feature separately. This strategy is utilized in highlighting how to
compute KDE precisely for PNN. Notably, there exist many types of K (·)
functions that can be applied in KDE. In this work, only two kernels are
regarded: a Gaussian kernel and a Cauchy kernel. The details are shown in
two following sections.

4

2.1. PNN based on additive Gaussian kernel (AGK)

In this approach, KDE is mostly referred to as probability density func-
tion (PDF), where K in (1) has normal distribution. In such a case, the
summation layer neuron representing the jth class computes the signal as
follows (Specht, 1990)

fj(x) =
1

Lj(2π)n/2detΣj

Lj∑

l=1

exp

(
−1

2

(
x− x

(l)
j

)T
Σ−2

j

(
x− x

(l)
j

))
, (3)

where:

� Lj is the number of training cases from the jth class;

� Σj = diag (σj1, σj2, . . . , σjn) stands for the matrix in which σji refers
to the smoothing parameter determined for the jth class and the ith
feature;

� x
(l)
j =

[
x
(l)
j1 , . . . , x

(l)
jn

]
denotes the lth training vector from the jth class.

Thus, the jth summation neuron output amounts to the computation of
the following signal

fj(x) =
1

Lj(2π)n/2
∏n

i=1 σji

Lj∑

l=1

exp

−

n∑

i=1

(
xi − x

(l)
ji

)2

2σ2
ji

 . (4)

2.2. PNN based on product Cauchy kernel (PCK)

The second considered form for K in (1) may utilize a product notation

K(x) = K(x1)· K(x2)· . . . · K(xn), (5)

where

K(xi) =
2

π(x2
i + 1)2

(6)

represents the one-dimensional Cauchy multiplicand (Kowalski and Kulczy-
cki, 2016). Then, the generalized formula for the jth summation layer neuron
is as follows

fj(x) =
1

LjdetΣj

Lj∑

l=1

1

snl
K

(
1

sl

(
x− x

(l)
j

)T
Σ−1

j

)
, (7)

5

where sl is the modification coefficient, which is computed for all input vec-
tors independently. For the details, see (Wand and Jones, 1994).

Using equations (5) and (6), the output of the summation neuron (7) is
expanded to the following form

fj(x) =
2n

πnLj

∏n
i=1 σji

Lj∑

l=1

1

snl

n∏

i=1

1
((

xi−x
(l)
j,i

σjisl

)2

+ 1

)2 . (8)

2.3. Operation of PNN

Once the form of the KDE is chosen to perform the activation in the
summation layer and the PNN’s required parameters are determined, the
network yields the final output in accordance with Bayes’ decision rule

O(x) = argmax
j=1,...,J

fj(x), (9)

where output O(x) is a label of the predicted class.
As shown in Figure 1, the network is not equipped with any weighting

coefficients. Therefore, no iterative algorithm that relies on the minimiza-
tion of weights-based error function is required. The only parameters of the
PNN to be optimized are Σj for the AGK and both Σj and sl for the PCK.
There are various methods that can be utilized for determination of PNN’s
parameters. For example, to compute Σj for PNN activated by PDF in (3),
one usually applies: conjugate gradients (Chtioui et al., 1998; Sherrod, 2017),
genetic algorithms (Mao et al., 2000), reinforcement learning (Kusy and Za-
jdel, 2014, 2015) or particle swarm optimization (Georgiou et al., 2008). In
the case of the PNN with KDE in (7), Σj is optimized by the plug-in method
(Wand and Jones, 1994; Kowalski and Kulczycki, 2016, 2017).

3. Fuzzy c–means algorithm

The fuzzy c–means algorithm (FCM) proposed by Dunn (1973) and then
generalized by Bezdek (1981) belongs to the group of clustering techniques
in which the data are partitioned into a number of groups, usually called
clusters. Partitioning is performed in an approach that ensures a strong re-
lationship between the input records in each cluster. Classical hard clustering
techniques, such as the k–means algorithm (Hartigan and Wong, 1979), re-
quire that each record is assigned into a single cluster. In contrast, FCM

6

allows records to belong to more than one cluster with some degree of mem-
bership. In this way, a fuzzy partition is obtained where each cluster is
associated with a membership function (MF). The MF quantifies the degree
to which an individual record belongs to the cluster.

FCM performs the partitioning of a finite set of L input records X =
{x(1), . . . ,x(L)} into a collection of fuzzy cluster centers C = {c(1), . . . , c(C)}
by iteratively minimizing the following objective function

Im(U,C) =

L∑

l=1

C∑

c=1

(
u(l)
c

)m ‖x(l) − c(c)‖2p, (10)

where U = {u(l)
c }L×C is the membership matrix; each u

(l)
c ∈ [0, 1] expresses

the degree to which x(l) belongs to c(c); m is a weighting exponent (1 <
m < ∞), also called a fuzzifier; and ‖ · ‖p denotes the p–norm in Rn. The

membership coefficients u
(l)
c are initialized with random values.

The fuzzy cluster’s centroid is simply the mean over all input records,
weighted by their degree of belonging to the cluster

c(c) =

L∑

l=1

(
u(l)
c

)m
x(l)

L∑

l=1

(
u(l)
c

)m
, (11)

while the membership values are updated as follows

u(l)
c =

1
C∑

k=1

(‖x(l) − c(c)‖p
‖x(l) − c(k)‖p

) 2
m−1

. (12)

Since the minimization of (10) is performed iteratively, c(c) and u
(l)
c are com-

puted until Im decreases below a specified threshold, a specified number of
iterations is reached or |U(t)−U(t− 1)| < ǫ.

4. Proposed algorithm

This section presents a new algorithm for the reduction of PNN’s pattern
layer. The approach requires an application of the FCM to the original input

7

data set to determine the centroids. On the basis of the centroids, a lower
number of pattern neurons is created. The performance of the reduced PNN
is evaluated using a specified error measure.

4.1. General idea

As the solution, FCM provides an optimal pair (U,C) in the sense of Im
minimization. In the proposed algorithm, both U and C are directly used
to determine the pattern neurons of the PNN.

In the first stage of the approach, FCM is applied to the data records
of all J classes separately. C1, . . . ,CJ sets of centroids are obtained. The
number of the centroids in each Cj is determined in an iterative manner
using the formula suggested by Kusy and Kluska (2017)

Csj = round
(s

N
Lj

)
, s = 1, . . . , N − 1, (13)

where round(·) rounds the argument to the nearest positive integer and N
is a natural number (N > 2). Such a solution provides the possibility of
utilizing an equal percentage of data in the partitioning process, which is
crucial in problems with imbalanced classes. This outcome means that the
algorithm includes in the analysis the input vectors that belong to all classes,
even the least numerous ones. In other words, the records of every class are
represented in the obtained partitions. Since the centroids are determined
for each class independently, U1, . . . ,UJ membership matrices are computed.
For example, let us consider the case of three classes labeled {1, 2, 3}, storing
randomly generated data in R2 with the cardinalities L1 = 200, L2 = 300
and L3 = 400, so that for N = 10 and s = 1, one obtains C11 = 20, C12 = 30,
C13 = 40 centroids, respectively. The total number of the centroids for a
given s is defined as

Cs =
J∑

j=1

Csj. (14)

Therefore, for s = 1, C1 = 90. The 90 centroids are used to create
neurons in the pattern layer of the PNN, which further undergoes training.
The process is repeated N − 1 times, each time determining the network’s
performance.

In the second stage, the algorithm searches the input vectors, for which
the largest values of the membership coefficients u

(l)
cj are found in each matrix

8

Figure 2: Graphical presentation of the idea of selecting representative input vectors for
the PNN’s pattern layer. The rings are the consequence of applying ‖ · ‖2 norm, i.e. the
Euclidean distance to obtain the centroids.

Uj, taking into account the s parameter, at which the network’s highest
performance is attained. These vectors are the nearest to the centroids in
jth class. Out of the entire jth subset, they are selected to build the pattern
neurons of the final PNN. Such a selection depends on the choice of the s
parameter and the m fuzzifier. The whole procedure is repeated for all J
classes. For a given example, the number of pattern neurons is 90. The
PNN is trained using 90 pattern neurons that, unlike in the first stage of
the algorithm, are now original data. The network’s performance is further
assessed.

Figure 2 shows exemplary centroids (marked with ×) determined for a
smaller number of records, also of three classes. For clarity, the utilized
vectors are denoted by red circles, green stars and blue crosses. The data

9

cardinalities are reduced by 10; therefore, L1 = 20, L2 = 30 and L3 = 40,
yielding 2, 3, and 4 centroids for each class, respectively. The vectors lying
on the ring indicate that they have highest u

(l)
cj and that they are placed

within the smallest distance to the centroid – they are chosen to construct
the pattern neurons of the network.

Unlike common clustering-based techniques that use a set of centroids
to construct a PNN’s pattern neurons, the current approach utilizes original
input vectors that are selected on the basis of the highest similarity to the
centroids.

4.2. Detailed algorithm

All the errors utilized in the proposed algorithm are the classification
errors, generally computed as follows

E =
1

L

L∑

l=1

δ
[
O(x(l)) 6= t(l)

]
, (15)

where O(x(l)) denotes the PNN’s output obtained for x(l), and t(l) is the
desired target. In (15), δ [·] = 1 when O(x(l)) 6= t(l) and 0, otherwise.

The pseudocode of the algorithm is presented in Algorithm 1. In the
beginning, the input–output data pairs (X, t) are read (step 1). Thereafter,

for each class, one selects the data subsets Xj = {x(1)
j , . . . ,x

(Lj)
j }, ⋃J

j=1Xj =
X. In step 4, the classification error E is computed for the PNN composed
of all L pattern neurons. In step 5, the fuzzifier m is assigned with the values
in the range (1,∞). Setting N = 10 in the next step is a consequence of the
assumption introduced into (13). Steps 7–29 present the main loop of the
algorithm. This loop operates for each m and s, considering every jth class
separately. Here, the total number of centroids Cs is set to 0 initially. In step
11, the reduced set of input vectors Ps is created and initialized; these will
be used to construct the pattern neurons of the final PNN. Then, the Csj

centroids and the membership matrix Uj are computed in steps 13 and 14,
respectively. Uj stores the coefficients that describe the degree to which all
input vectors from the jth class belong to all centroids that were determined
for this class. In step 15, in each cth column of the matrix Uj (denoted
here with {c} notation), the algorithm seeks an index for which the highest

membership coefficient is attained. Such an index identifies x
(l)
j , which is

closest to the cth centroid in the jth class in terms of fuzzy similarity. This

10

1 Read input data X = {x(1), . . . ,x(L)}, t = {t(1), . . . , t(L)}
2 Extract separate data subsets Xj for each class
3 Select KDE for PNN to compute fj(x)
4 Compute E for full structure PNN
5 Assume values for fuzzifier m
6 N = 10
7 foreach m do
8 % First stage of algorithm
9 for s = 1 to N − 1 do

10 Set number of centroids Cs = 0
11 Initialize set of reduced input vectors Ps = ∅
12 for j = 1 to J do
13 Compute Csj centroids according to (13)
14 Determine membership matrix for jth class {Uj}Lj×Csj

15 Find highest membership indices ij = argmax
c=1,...,Csj

Uj{c}

16 Cs = Cs + Csj

17 Ps = Ps ∪Xj{ij}
18 end
19 Compute centroids-based error Es

20 end
21 % Second stage of the algorithm
22 Find s⋆ = argmin

s=1,...,N−1
Es

23 Determine:
24 – minimum centroids-based error E⋆ = Es⋆

25 – optimal number of centroids C⋆ = Cs⋆

26 – optimal set of reduced input vectors P⋆ = Ps⋆

27 Compute final reduction error E⋆
R

28 Compute PNN reduction ratio R = L/C⋆

29 end
30 return E⋆, C⋆, P⋆, E⋆

R, R

Algorithm 1: The algorithm for the reduction of the PNN’s pattern
layer.

11

means that
∑Csj

c=1 u
(l)
cj = 1, ∀x(l)

j . In step 16, the number of the centroids is
increased while step 17 allows the algorithm to update the reduced set of
input vectors Ps. Both steps are performed in such a way that all J classes
are considered for a given value of the s parameter. Afterwards, the obtained
Cs centroids are adopted to create the neurons in the PNN’s pattern layer.
The network’s performance is evaluated by computing the centroids-based
error (step 19).

Definition 1. Let Cs =
⋃J

j=1Csj be a set of the centroids determined in

sth iteration of Algorithm 1, where Csj = {c(1)sj , . . . , c
(Csj)
sj } is a subset of the

centroids computed for the jth class. The centroids-based error Es is defined
as the classification error in the sense of E in (15) for the PNN, whose pattern
neurons utilize Cs centroids from Cs for activation.

Once the Es errors are determined for each s, in step 22, one finds the
optimal index s⋆ providing the lowest centroids-based error among all Es

values. Thereafter, in steps 24–26, with the use of the s⋆ index, the algorithm
yields the minimum centroids-based error E⋆ = Es⋆, the optimal number of
the centroids C⋆ and the set of reduced input vectors P⋆ that are nearest to
the centroids. Since C⋆ = |P⋆|, C⋆ can also be called a reduced number of
pattern neurons. Next, in step 27, the final reduction error is determined.

Definition 2. The final reduction error E⋆
R is defined as the classification

error in the sense of E in (15) for the PNN, whose pattern neurons utilize
P⋆ input vectors for activation.

The main loop finishes with calculation of the reduction ratio R = L/C⋆.
The loop must operate until all fuzzifier values are examined. Finally, de-
pending on the number of m values, the algorithm returns the indicators E⋆,
C⋆, P⋆, E⋆

R, and R.

5. Input data sets

In this work, in order to assess the performance of the presented algo-
rithm, the reduced and original PNN models are tested in six classification
tasks. The following UCI–MLR data sets are used in the experiments (Bache
and Lichman, 2015): cardiotocography, Parkinson, Haberman, Iris, diabetes
and seeds. All of them are listed in Table 1, along with information on their
cardinality, number of features and class distribution.

12

Table 1: The UCI–MLR data sets used to test the reduced and the original PNN models.

Data set Records Features Class distribution

cardiotocography 2126 22 1655–295–176
Parkinson 195 22 147–48
Haberman 306 3 225–81
Iris 150 4 50–50–50
diabetes 786 8 500–268
seeds 210 7 70–70–70

6. Parameter settings

In this work, Algorithm 1 is applied to a PNN whose summation neuron
signal is computed with the use of AGK and PCK defined in (3) and (7),
respectively. For the AGK-based PNN, two training procedures are used:
conjugate gradients (CG), available in (Sherrod, 2017), and reinforcement
learning (RL). As the RL solution, the Q(0)–learning algorithm is employed
(Kusy and Zajdel, 2014, 2015). In the case of the PCK-based PNN, the
plugin method (PM) is utilized (Kowalski and Kulczycki, 2016, 2017).

The placement of the centroids in Rn strongly depends on the value of the
m fuzzifier. However, there is no theoretical or computational recommenda-
tion for the choice of an optimal m. According to Bezdek (1981), the range
of m useful values seems to be (1, 30). If a test set is available for a given
task, the best strategy for selecting m is essentially performing a vast number
of experiments. For most data, m ∈ [1.5, 3.0] yields good results (Bezdek,
1981). In this study, m = {2, 3, 4}. To determine (10), p = 2; therefore, the
Euclidean norm is utilized.

The full structure PNN classification error E, the centroids-based error Es

and the final reduction error E⋆
R are determined by means of a 10-fold cross

validation procedure. The simulations are repeated 10 times, and all results
are averaged. As presented in step 6 of Algorithm 1, N = 10; therefore,
s = {1, 2, . . . , 9}.

The obtained results are evaluated using statistical significance tests. The
performance between the original and the reduced PNN is explored by means
of a two sample t-test. The statistical significance level is assumed to be
0.95. The null hypotheses states that averaged PNN’s errors before and
after reduction are equal.

13

7. Simulation experiments

This section outlines the results obtained by the PNN in the classifica-
tions tasks of the considered data sets. The network is reduced by means of
Algorithm 1. The CG, RL and PM are utilized as the PNN training pro-
cedures. The appropriate KDEs are selected to activate the signals in the
summation layer of the model.

In subsection 7.1, the PNN’s performance is determined by computing
the centroids-based error Es for s = {1, 2, . . . , 9} and m = {2, 3, 4}. The
presented outcomes refer to the first stage of Algorithm 1 (steps 9–20). On
the basis of the lowest Es value, the minimum centroids-based error E⋆ is
found. E⋆ affects the selection of the pattern neurons for the final PNN.

Subsection 7.2 addresses the second stage of the Algorithm 1. This stage
provides the final outcome of the proposed approach, i.e., the performance
of the PNN composed of the ultimate reduced set of neurons, which utilize
P⋆ input vectors in the pattern layer.

7.1. PNN with pattern neurons established from centroids

Figures 3, 4 and 5 show centroids-based errors Es [%], ∀s, computed
at Cs centroids for the PNN trained using CG, RL and PM procedures,
respectively. In each figure, six sub-plots illustrate Es for m = 2 (red-circle-
solid line), m = 3 (blue-square-dash line) andm = 4 (green-triangle-dash-dot
line) in the classification tasks of (a)–cardiotocography, (b)–Parkinson, (c)–
Haberman, (d)–Iris, (e)–diabetes, and (f)–seeds data sets. Additionally, the
full structure PNN classification error E is presented – it is marked using
a thin black dash-dot-dot line. For each training procedure, the following
main observations can be pointed out: (i) the changes of Es follow a similar
pattern for particular values of the fuzzifier m; (ii) it is always possible to find
Es < E; and (iii) the differences between particular Es values at individual
s are small. Additionally, in the case of the RL training procedure, in two
classification tasks (cardiotocography and diabetes data sets), Es < E holds
for all s. In the cases of the remaining training procedures, Es < E for all s
occurs only for the diabetes data set.

It is difficult to read exact E⋆ values from sub-plots (a)–(f) in Figures 3–5.
Therefore, summary Table 2 is introduced. It shows E⋆ (along with standard
deviations in parentheses) obtained for s⋆ = argmin

s=1,...,N−1
Es and C⋆ = Cs⋆ ,

i.e., the three indicators determined in the early phase of the second stage
of Algorithm 1 (steps 22–25). The full structure PNN classification errors

14

Figure 3: Conjugate gradients: centroids-based errors Es obtained at Cs centroids,
s = {1, 2, . . . , 9} for the following data sets: (a)–cardiotocography, (b)–Parkinson, (c)–
Haberman, (d)–Iris, (e)–diabetes, (f)–seeds. Each sub-plot shows Es determined for
m = {2, 3, 4} and the full structure PNN classification error E (black dash-dot-dot line).

15

Figure 4: Reinforcement learning: centroids-based errors Es obtained at Cs centroids,
s = {1, 2, . . . , 9} for the following data sets: (a)–cardiotocography, (b)–Parkinson, (c)–
Haberman, (d)–Iris, (e)–diabetes, (f)–seeds. Each sub-plot shows Es determined for m =
{2, 3, 4} and the full structure PNN classification error E (black dash-dot-dot line).

16

Figure 5: Plugin method: centroids-based errors Es obtained at Cs centroids, s =
{1, 2, . . . , 9} for the following data sets: (a)–cardiotocography, (b)–Parkinson, (c)–
Haberman, (d)–Iris, (e)–diabetes, (f)–seeds. Each sub-plot shows Es determined for
m = {2, 3, 4} and the full structure PNN classification error E (black dash-dot-dot line).

17

E are included in the last column of this table. The lowest values of all
errors provided in each row are shown in bold. It can be seen that for all
classification cases, each training procedure and all fuzzifier values, E⋆ < E
holds. The statistical significance is presented in this table with the use of
a + symbol placed at the averaged error values. The symbol indicates that
there is a difference between E and E⋆ errors.

Analyzing the results shown in Table 2, it is also worth noting that the
lowest possible value of s⋆ is 1 for a PNN trained by CG and PM procedures,
and 2 for a PNN trained by reinforcement learning. This means that the
application of Algorithm 1 allows the network to reduce its pattern layer
size by almost 10 times for the CG and PM procedures (diabetes data set,
m = {2, 3, 4}) and 5 times for the RL procedure (both Haberman and Iris
data sets at m = {2, 3, 4} and diabetes data set at m = {2, 4}), increasing
its performance at the same time. On the other hand, the highest value of s⋆

is equal to 7 for the network trained with the use of the RL (Parkinson data
set, m = 2) and PM (seeds data set, m = {2, 4}) procedures. In these cases,
the pattern layer is decreased by 1.42 times, making the PNN still improve
its performance.

7.2. PNN with pattern neurons established from reduced data

In contrast to the analysis presented in subsection 7.1, the outcomes
delineated in the current part of the paper pertain to the PNN in which the
elements of P⋆ are used to build the pattern neurons of the network. The
number of reduced pattern neurons is also equal to C⋆; however, the original
input vectors are now utilized in the PNN architecture. The discussion is
based on the final reduction error E⋆

R and the reduction ratio R returned by
Algorithm 1.

Tables 3, 4 and 5 present the results obtained by the PNN trained with
the use of CG, RL and PM procedures, respectively. For each classification
task, each training procedure and all fuzzifier values, E⋆

R and R are outlined
in the tables. Moreover, for comparison purposes, the full structure PNN
classification error is provided. The standard deviations for all error results
are placed in parentheses. For each classification outcome, an additional
row is inserted with the ranking score (RS), which is simply the number
from the set {0, 1, 2, 3}, where 0 and 3 denote the worst and the best PNN’s
performance, respectively. In the last column, a decrease of the classification
error after the reduction expressed in terms of % is introduced; it is defined

18

Table 2: The optimal s⋆ index, the optimal number of the centroids C⋆ and the minimum
centroids-based error E⋆ determined for m = {2, 3, 4} for the PNN trained according to
Algorithm 1 with the use of CG, RL and PM procedures. The last column indicates the
full structure PNN classification error.

m = 2 m = 3 m = 4
Data set s⋆ C⋆ E⋆ s⋆ C⋆ E⋆ s⋆ C⋆ E⋆ E

Conjugate gradients

cardiotocography 4 850 0.33+ 4 850 0.40+ 4 850 0.45+ 1.31
(0.08) (0.12) (0.22) (0.16)

Parkinson 3 58 0.34+ 3 58 0.34+ 5 98 1.02+ 1.74
(0.69) (0.69) (0.65) (0.41)

Haberman 3 92 15.87+ 3 92 15.65+ 2 61 15.41+ 23.14
(1.76) (1.11) (1.31) (1.31)

Iris 3 45 0.89+ 6 90 1.11+ 6 90 1.11+ 2.40
(1.09) (0.70) (0.99) (0.33)

diabetes 1 77 8.05+ 1 77 4.42+ 1 77 3.64+ 21.98
(2.52) (0.64) (0.97) (0.39)

seeds 3 63 0.95+ 5 105 1.14+ 3 63 0.95+ 2.29
(0.77) (0.38) (0.77) (0.36)

Reinforcement learning

cardiotocography 4 850 0.96+ 4 850 1.08+ 5 1064 1.03+ 6.31
(0.08) (0.20) (0.17) (0.14)

Parkinson 7 137 9.62 6 117 9.43 4 78 9.51 9.69
(1.45) (0.92) (0.74) (0.30)

Haberman 2 61 12.14+ 2 61 11.24+ 2 61 12.24+ 19.61
(1.41) (1.90) (1.12) (0.52)

Iris 2 30 0.00+ 2 30 0.00+ 2 30 0.00+ 1.20
(0.00) (0.00) (0.00) (0.27)

diabetes 2 154 14.46+ 3 230 14.78+ 2 154 14.35+ 24.14
(1.29) (0.91) (0.61) (0.40)

seeds 5 105 2.33+ 4 84 1.75+ 4 84 2.25+ 4.48
(0.92) (0.61) (1.23) (0.71)

Plugin method

cardiotocography 4 850 1.84+ 3 639 1.37+ 2 425 1.69+ 3.36
(0.09) (0.24) (0.20) (0.11)

Parkinson 4 78 7.18+ 4 78 7.49+ 5 98 7.84+ 9.66
(1.88) (0.83) (0.61) (0.46)

Haberman 4 122 21.76+ 3 92 21.45+ 6 184 24.01+ 28.59
(2.06) (0.85) (1.37) (1.17)

Iris 2 30 0.00+ 2 30 0.00+ 3 45 0.00+ 5.07
(0.00) (0.00) (0.00) (0.33)

diabetes 1 77 19.86+ 1 77 19.57+ 1 77 18.86+ 32.43
(0.95) (1.67) (0.97) (1.20)

seeds 7 147 6.48 6 126 4.94+ 7 147 6.38 6.67
(0.28) (0.48) (0.47) (0.30)

19

Table 3: Conjugate gradients: the full structure PNN classification error (E for L neurons),
the PNN reduction ratio R, the final reduction error (E⋆

R for C⋆ neurons) and the ranking
score RS = {0, 1, 2, 3}; the values in the right most column are the decreases of the
classification error after reduction.

m = 2 m = 3 m = 4
Data set E R E⋆

R R E⋆
R R E⋆

R Ed [%]

cardiotocography 1.31 2.50 0.31+ 2.50 0.52+ 2.50 0.75+ 76.34
(0.16) (0.14) (0.21) (0.14)

0 3 2 1
Parkinson 1.74 3.62 1.03+ 3.62 0.69+ 1.99 1.43 60.34

(0.41) (0.84) (0.84) (1.04)

0 2 3 1
Haberman 23.14 3.33 16.52+ 3.33 16.74+ 5.02 17.38+ 28.61

(1.31) (1.27) (0.87) (0.80)

0 3 2 1
Iris 2.40 3.33 3.78+ 1.67 1.53+ 1.67 0.25+ 89.58

(0.33) (1.42) (0.54) (0.46)

1 0 2 3
diabetes 21.98 9.97 9.25+ 9.97 12.99+ 9.97 9.25+ 57.92

(0.39) (2.29) (1.72) (1.20)

0 2 1 3
seeds 2.29 3.33 1.59+ 2.00 1.55+ 3.33 2.18 32.31

(0.36) (0.79) (0.82) (0.77)

0 2 3 1

as follows

Ed = 1− 1

E
min

m={2,3,4}
E⋆

R(m), (16)

where E⋆
R(m) denotes the final reduction error E⋆

R achieved for a particular
value of m. As in the case of Table 2, Tables 3–5 show the statistical signif-
icance of the test by means of a + symbol placed at E and E⋆

R, indicating
that both errors differ in their values.

The application of Algorithm 1 for the PNN trained using the CG pro-
cedure yields E⋆

R < E in all classification cases (refer to bold numbers in
each row of Table 3). The ranking score for the original network reaches the
value of 1 for the Iris data set. For the remaining data sets, RS = 0. This
means that the full structure PNN is the third best classifier only once while
in other cases it is the worst prediction model. The largest decrease of the
classification error after reduction is attained for the Iris data set; it occurs
when the PNN’s pattern layer neurons are decreased from 150 to 90, yielding
Ed = 89.58% (m = 4). On the other hand, the lowest decrease of the error

20

Table 4: Reinforcement learning: the full structure PNN classification error (E for L
neurons), the PNN reduction ratio R, the final reduction error (E⋆

R for C⋆ neurons) and
the ranking score RS = {0, 1, 2, 3}; the values in the right most column are the decreases
of the classification error after reduction.

m = 2 m = 3 m = 4
Data set E R E⋆

R R E⋆
R R E⋆

R Ed [%]

cardiotocography 6.31 2.50 1.13+ 2.50 1.11+ 2.00 1.05+ 83.36
(0.14) (0.20) (0.09) (0.14)

0 1 2 3
Parkinson 9.69 1.42 9.25 2.50 9.44 2.50 10.35 4.54

(0.30) (0.90) (1.25) (1.28)

1 3 2 0
Haberman 19.61 5.02 10.86+ 5.02 13.45+ 5.02 14.97+ 44.62

(0.52) (1.06) (1.26) (1.05)

0 3 2 1
Iris 1.20 5.00 0.00+ 5.00 0.00+ 5.00 0.00+ 100.00

(0.27) (0.00) (0.00) (0.00)

0 3 3 3
diabetes 24.14 4.99 20.96+ 3.34 20.27+ 4.99 19.28+ 20.13

(0.40) (1.36) (1.23) (1.10)

0 1 2 3
seeds 4.48 2.00 2.00+ 2.50 2.66+ 2.50 1.72+ 61.61

(0.71) (0.87) (1.10) (0.79)

0 2 1 3

is observed for the Haberman data set. In this case, Ed = 28.61%, but such
a result is obtained for the number of pattern neurons that are over 3 times
lower (m = 2). Of note is also the fact that in the diabetes data set clas-
sification task, for all values of the fuzzifier m, almost 10 times less pattern
neurons are required to achieve a better performance of the simplified PNN.
The value of Ed is also remarkable since it is equal to 57.92% (m = 4).

In the case of Algorithm 1 applied to the PNN trained by means of the
RL procedure, E⋆

R < E also holds in all classification problems (Table 4).
Similarly, the ranking score computed for the full structure PNN is equal to
1 only once (Parkinson data set) while for the other data sets, RS = 0. In
terms of all the attained results, the occurrence of E⋆

R = 0 at m = {2, 3, 4}
for the Iris data set classification tasks is the most prominent observation.
It is notable that this occurs when the number of the pattern neurons is 5
times smaller than that of the original PNN. A very good result is achieved
for the cardiotocography data set as well. Here, Ed = 83.36% for the network
whose number of neurons in the pattern layer is reduced from 2126 down to

21

Table 5: Plugin method: the full structure PNN classification error (E for L neurons), the
PNN reduction ratio R, the final reduction error (E⋆

R for C⋆ neurons) and the ranking score
RS = {0, 1, 2, 3}; the values in the right most column are the decreases of the classification
error after reduction.

m = 2 m = 3 m = 4
Data set E R E⋆

R R E⋆
R R E⋆

R Ed [%]

cardiotocography 3.36 2.50 5.44+ 3.33 6.25+ 5.00 5.88+ –
(0.11) (0.38) (0.24) (0.23)

3 2 0 1
Parkinson 9.66 2.50 7.68+ 2.50 13.57+ 1.99 12.60+ 20.49

(0.46) (1.22) (1.10) (0.87)

2 3 0 1
Haberman 28.59 2.51 19.97+ 3.33 21.59+ 1.66 23.88+ 30.15

(1.17) (1.13) (0.65) (1.10)

0 3 2 1
Iris 5.07 5.00 0.00+ 5.00 0.00+ 3.33 0.14+ 100.00

(0.33) (0.00) (0.00) (0.37)

0 3 3 2
diabetes 32.43 9.97 33.39 9.97 30.89+ 9.97 30.62+ 5.58

(1.20) (0.86) (1.55) (1.84)

1 0 2 3
seeds 6.67 1.43 5.74+ 1.67 5.31+ 1.43 7.11+ 20.39

(0.30) (0.80) (0.64) (0.56)

1 2 3 0

1064 (m = 4). Only for the Parkinson data set (m = 2), both Ed and R are
not impressive because they reach the values of 4.54% and 1.42, respectively.
However, such outcomes still favor the proposed algorithm.

In contrast to previous examinations, the use of Algorithm 1 to simplify
the PNN trained by the plugin method yields E⋆

R > E in a single classification
case (Table 5). For the cardiotocography data set, the full structure PNN
classification error has the lowest value among all compared results (E =
3.36%); therefore, RS = 3. As in the case of the PNN trained by the RL
procedure, E⋆

R = 0 at m = {2, 3} for the Iris data set classification problem.
The size of the pattern layer is also 5 times smaller. It means that 120
neurons must be discarded to provide an ideal prediction for the network.
The smallest decrease of the classification error after reduction occurs for
the diabetes data set (Ed = 5.58%), but it is worth emphasizing that it is
observed when almost 10 times less neurons are required in the pattern layer.

22

7.3. Computational time

The improvement of the reduced PNN, except for the decrease of the
classification error, should also be verified in terms of the run-time indicator.
Tables 6, 7 and 8 show: tC⋆ – the computational time needed to obtain
the optimal number of centroids, tP⋆ – the computational time required to
complete the classification task by means of the PNN on the optimal set of
reduced input vectors, and tL – the computational time involved to train the
full structure PNN for CG, RL and PM training procedures, respectively. All
the results are provided in seconds for the optimal s⋆ index shown in Table
2 since for its particular values, the final reduction error E⋆

R is determined.
The simulations are conducted on a 64-bit Windows 10 Pro operating system
with an Intel Core i7 2.7-GHz processor and 32-GB RAM.

Table 6: Conjugate gradients: the averaged computational times (in seconds) involved
in: determining the optimal number of the centroids (tC⋆), training the PNN on the
optimal set of the reduced input vectors (tP⋆), completing the classification task for the
full structure PNN (tL) in particular data set classification problems. All the values are
shown for the optimal s⋆ index and m = {2, 3, 4}.

m = 2 m = 3 m = 4
Data set s⋆ tC⋆ tP⋆ s⋆ tC⋆ tP⋆ s⋆ tC⋆ tP⋆ tL

cardiotocography 4 19.85 57.82 4 19.18 59.57 4 19.10 67.87 343.50
Parkinson 3 0.15 0.53 3 0.13 0.54 5 0.17 2.31 8.69
Haberman 3 0.21 0.36 3 0.18 0.27 2 0.15 0.21 2.47
Iris 3 0.04 0.08 6 0.07 0.55 6 0.06 0.26 1.26
diabetes 1 0.42 0.78 1 0.41 1.03 1 0.40 1.13 37.18
seeds 3 0.05 0.56 5 0.06 1.52 3 0.05 0.91 6.67

To confirm the need of the introduced architecture reduction of a PNN,
the following inequality should be fulfilled

∀(s⋆, m) tC⋆ + tP⋆ < tL, (17)

where the left side represents the total computational time required to train
the simplified PNN while the right side is the original network training time.
As shown in all Tables 6–8, the inequality (17) holds for all values of the s⋆

index and the m fuzzifier; therefore, the proposed reduction is by all means
valid.

23

Table 7: Reinforcement learning: the averaged computational times (in seconds) involved
in: determining the optimal number of the centroids (tC⋆), training the PNN on the
optimal set of the reduced input vectors (tP⋆), completing the classification task for the
full structure PNN (tL) in particular data set classification problems. All the values are
shown for the optimal s⋆ index and m = {2, 3, 4}.

m = 2 m = 3 m = 4
Data set s⋆ tC⋆ tP⋆ s⋆ tC⋆ tP⋆ s⋆ tC⋆ tP⋆ tL

cardiotocography 4 19.85 1123.57 4 19.18 1241.17 5 23.73 1755.56 8198.21
Parkinson 7 0.21 18.51 6 0.19 14.15 4 0.16 6.46 36.41
Haberman 2 0.16 0.18 2 0.15 0.18 2 0.15 0.17 3.65
Iris 2 0.03 0.16 2 0.03 0.16 2 0.03 0.16 0.29
diabetes 2 0.74 4.25 3 1.05 9.24 2 0.78 4.31 102.37
seeds 5 0.06 2.62 4 0.05 1.73 4 0.04 1.74 9.73

Table 8: Plugin method: the averaged computational times (in seconds) involved in: de-
termining the optimal number of the centroids (tC⋆), training the PNN on the optimal set
of the reduced input vectors (tP⋆), completing the classification task for the full structure
PNN (tL) in particular data set classification problems. All the values are shown for the
optimal s⋆ index and m = {2, 3, 4}.

m = 2 m = 3 m = 4
Data set s⋆ tC⋆ tP⋆ s⋆ tC⋆ tP⋆ s⋆ tC⋆ tP⋆ tL

cardiotocography 4 19.85 179.01 3 14.72 99.38 2 9.94 44.59 1274.63
Parkinson 4 0.18 1.75 4 0.16 1.73 5 0.20 2.67 10.65
Haberman 4 0.22 0.83 3 0.18 0.49 6 0.22 1.76 3.52
Iris 2 0.03 0.11 2 0.03 0.12 3 0.04 0.16 0.69
diabetes 1 0.42 0.60 1 0.41 0.61 1 0.40 0.61 51.33
seeds 7 0.07 1.14 6 0.07 0.69 7 0.07 1.15 2.17

7.4. Evaluation of the performance of the proposed algorithm in comparison
to existing approaches

As mentioned in section 1, ample attention has been paid to the struc-
ture reduction of the PNN with the use of k–means-based approaches. The
solutions are frequently tested on UCI–MLR data sets. Therefore, to evalu-
ate the results achieved by the proposed algorithm, the outcomes obtained
by selected works that were previously published are also presented. The
following methods are used in the comparison:

� clustered data-based PNN trained by means of an evolutionary algo-

24

rithm (Georgiou et al., 2008);

� global and fast global k–means-based PNN trained using the expectation–
maximization method (Chang et al., 2008);

� k–means-based PNN trained with the conjugate gradient procedure
(Kusy and Kluska, 2017);

� clustered noise-injected PNN (Mukherjee, 2017).

The results achieved by the above methods are collated in Table 9 along
with the best outcomes provided by the proposed algorithm for each training
method. It can be seen that for the cardiotocography, Haberman and Iris

Table 9: The comparison of the lowest classification errors obtained by the reduced PNN
trained by means of CG, RL, PM training procedures and the errors achieved by other
solutions available in the literature.

Proposed algorithm Existing approaches
Data set CG RL PM Result Source

cardiotocography 0.31 1.05 5.44 0.90 (Kusy and Kluska, 2017)
Haberman 16.52 10.86 19.97 22.20 (Kusy and Kluska, 2017)
Iris 0.25 0.00 0.00 4.29 (Chang et al., 2008)
diabetes 9.25 19.28 30.62 30.70 (Georgiou et al., 2008)

31.00 (Chang et al., 2008)
28.14 (Chang et al., 2008)
9.10 (Kusy and Kluska, 2017)
29.46 (Mukherjee, 2017)

data sets, it is possible to find at least one PNN training procedure that
allows the proposed algorithm to provide a lower classification error. Only in
the case of the diabetes database, Kusy and Kluska (2017) receive a better
network’s performance with a 0.15 error margin.

7.5. Summary

The results and detailed analysis presented in subsections 7.1–7.4 lead to
the following general observations:

25

1. In comparison to the plugin method, the application of Algorithm 1
in the CG and RL training procedures provides much better reduction
results for a PNN in which both the centroids and representative input
vectors create the pattern layer.

2. In 43.75% of all obtained classification results, E⋆
R < E⋆. In particular,

for:

(a) CG training: E⋆
R < E⋆ for two out of six data sets;

(b) RL training: E⋆
R < E⋆ for three out of six data sets; in a single

case E⋆
R = E⋆;

(c) PM training: E⋆
R < E⋆ for two out of six data sets; in a single

case E⋆
R = E⋆.

Such an outcome may suggest that it is enough to use the centroids to
construct the pattern neurons of a PNN. However, the main objective
of the current work, is to acquire original input vectors to build the
pattern layer of the network.

3. On the basis of the ranking score, it is impossible to advise the best
value of the m fuzzifier. If one accumulates RS values for each m
separately across all classification cases, one obtains:

(a) CG training: the total RS is equal to 12 (m = 2), 13 (m = 3) and
10 (m = 4);

(b) RL training: the total RS is equal to 13 (m = 2), 12 (m = 3) and
13 (m = 4);

(c) PM training: the total RS is equal to 13 (m = 2), 10 (m = 3) and
8 (m = 4).

4. Excluding the case of the use of Algorithm 1 in the cardiotocography
data classification task, where no error reduction occurs within the
PM training (Table 5), general comments on the reduction ratio are as
follows:

(a) R > 1 in all presented results;

(b) R ≃ 10 for the PNN trained by means of the CG and PM proce-
dures in the diabetes classification problem;

26

(c) for each training procedure, the minimum and maximum values
of R for m = 3 are similar to the corresponding values of R for
m = 4.

5. The smallest two values of the decreases in the classification error after
reduction are equal to only 4.54% and 5.58%. On the other hand, the
largest decrease reaches 100%. In the remaining cases, Ed > 20%.

6. For the PNN with pattern neurons established from centroids, in 49 out
of 54 possible comparisons, the performed two sample t-tests indicate
that the averaged values of E⋆ and E are significantly different.

7. For the PNN with pattern neurons established from reduced data, in
48 out of 54 possible comparisons, the performed two sample t-tests
show that the averaged values of E⋆

R and E are significantly different.

8. The total computational time involved in training a PNN on the opti-
mal set of reduced input vectors is always smaller than the run-time of
the original network.

9. The gain in computational time is the most prominent in the case of
the diabetes data classification task; here, the reduced PNN operates
much faster, in particular:

(a) CG training: 31.0 times (m = 2), 25.8 times (m = 3) and 24.3
times (m = 4);

(b) RL training: 20.5 times (m = 2), 9.9 times (m = 3) and 20.1
times (m = 4);

(c) PM training: 50.3 times (m = 2), 50.3 times (m = 3) and 50.8
times (m = 4).

10. In comparison to the results available in the literature, in all but one
classification tasks, the proposed algorithm provides the lowest classi-
fication error.

It is also worth noting that Algorithm 1 can be very simply adjusted to en-
able selection of indices corresponding to two (or more) highest membership
coefficients in Uj , j = 1, . . . , J . This provides the possibility to identify two
(or more) input vectors closest to a cluster center. The size of the pattern
layer of the PNN will therefore grow, and its performance may change.

27

8. Conclusions

In this paper, a new algorithm for the reduction of a PNN’s pattern layer
was proposed. It relied on computing the centroids from the original input
data by means of the FCM algorithm. The new set of the pattern neurons
was established based on the input vectors that were nearest to the cen-
troids in terms of a fuzzy similarity. Three different values of the m fuzzifier
were chosen. Various PNN training procedures were selected for evaluation
purposes, in particular: conjugate gradients, reinforcement learning and the
plugin method. The algorithm was tested on six repository data classification
tasks by collating the full structure PNN classification error, the minimum
centroids-based error and the final reduction error, all obtained by means of a
10-fold cross validation procedure; the PNN reduction ratio and the decreases
in the classification error after reduction were also computed. Furthermore,
in order to make the comparison more comprehensive, a two sample t-test was
performed to confirm the statistical significance of the results, the computa-
tional time of the algorithm was indicated and a comparison to the existing
approaches was performed. As shown, the algorithm provided satisfactory
outcomes in all the evaluated factors, making it useful in reduction tasks in
general.

Acknowledgment

The work was supported by Rzeszow University of Technology, Depart-
ment of Electronics Fundamentals Grant for Statutory Activity (DS 2018).

References

Bache, K., Lichman, M., 2015. Uci machine learning repository. Tech. rep.,
School of Information and Computer Science, University of California,
Irvine, CA, USA, School of Information and Computer Sciences.
URL http://archive.ics.uci.edu/ml

Bezdek, J. C., 1981. Pattern Recognition with Fuzzy Objective Function
Algorithms. Kluwer Academic Publishers, Norwell, MA, USA.

Burrascano, P., 1990. Learning vector quantization for the probabilistic neu-
ral network. IEEE transactions on neural networks/a publication of the
IEEE Neural Networks Council 2 (4), 458–461.

28

Chang, R. K. Y., Loo, C. K., Rao, M., 2008. A global k-means approach
for autonomous cluster initialization of probabilistic neural network. In-
formatica 32 (2).

Chtioui, Y., Bertrand, D., Barba, D., 1996. Reduction of the size of the
learning data in a probabilistic neural network by hierarchical clustering.
application to the discrimination of seeds by artificial vision. Chemometrics
and Intelligent Laboratory Systems 35 (2), 175–186.

Chtioui, Y., Panigrahi, S., Marsh, R., 1998. Conjugate gradient and approxi-
mate newton methods for an optimal probabilistic neural network for food
color classification. Optical Engineering 37 (11), 3015–3023.

Dunn, J. C., 1973. A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters. Journal of Cybernetics 3 (3),
32–57.

Georgiou, V. L., Alevizos, P. D., Vrahatis, M. N., 2008. Novel approaches to
probabilistic neural networks through bagging and evolutionary estimating
of prior probabilities. Neural Processing Letters 27 (2), 153–162.

Hartigan, J. A., Wong, M. A., 1979. Algorithm as 136: A k-means clustering
algorithm. Applied statistics, 100–108.

Kokkinos, Y., Margaritis, K. G., 2018. Simulating parallel scalable proba-
bilistic neural networks via exemplar selection and em in a ring pipeline.
Journal of Computational Science 25, 260–279.

Kowalski, P. A., Kulczycki, P., 2016. A complete algorithm for the reduction
of pattern data in the classification of interval information. International
Journal of Computational Methods 13 (03), 1650018–1–1650018–26.

Kowalski, P. A., Kulczycki, P., 2017. Interval probabilistic neural network.
Neural Computing and Applications 28 (4), 817–834.

Kowalski, P. A., Kusy, M., 2018. Sensitivity analysis for probabilistic neural
network structure reduction. IEEE Transactions on Neural Networks and
Learning Systems 29 (5), 1919–1932.

Kusy, M., Kluska, J., 2013. Probabilistic neural network structure reduction
for medical data classification. In: Artificial Intelligence and Soft Comput-
ing. Springer, pp. 118–129.

29

Kusy, M., Kluska, J., 2017. Assessment of prediction ability for reduced
probabilistic neural network in data classification problem. Soft Computing
21 (1), 199–212.

Kusy, M., Zajdel, R., 2014. Probabilistic neural network training procedure
based on q(0)–learning algorithm in medical data classification. Applied
Intelligence 41 (3), 837–854.

Kusy, M., Zajdel, R., 2015. Application of reinforcement learning algorithms
for the adaptive computation of the smoothing parameter for probabilistic
neural network. Neural Networks and Learning Systems, IEEE Transac-
tions on 26 (9), 2163–2175.

Luzanin, O., Plancak, M., 2014. Hand gesture recognition using low-budget
data glove and cluster-trained probabilistic neural network. Assembly Au-
tomation 34 (1), 94–105.

Mao, K., Tan, K.-C., Ser, W., July 2000. Probabilistic neural-network
structure determination for pattern classification. Neural Networks, IEEE
Transactions on 11 (4), 1009–1016.

Mukherjee, S., 2017. Improving generalization of k-means clustering based
probabilistic neural network using noise injection. In: International Con-
ference on Soft Computing and its Engineering Applications. IEEE, pp.
1–5.

Sherrod, P. H., 2017. Dtreg predictive modelling software.
URL http://www.dtreg.com

Specht, D. F., 1990. Probabilistic neural networks. Neural Networks 3 (1),
109–118.

Wand, M. P., Jones, M. C., 1994. Kernel smoothing. Crc Press.

Zaknich, A., 1997. A vector quantisation reduction method for the probabilis-
tic neural network. In: Neural Networks, 1997., International Conference
on. Vol. 2. IEEE, pp. 1117–1120.

30

