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Highlights of the paper

The traditional synchronization problem for coupled delayed neural networks has been investigated under the com-

mon assumption that network interactions are described by unsigned graphs, where all the edges are positive. To

the best of our knowledge, the bipartite synchronization of coupled delayed neural networks with a signed graph

topology, which contains negative edges, has rarely been considered up to present.

In this paper, we study the bipartite synchronization in a network of delayed neural networks under a signed graph

topology, which consists of both positive and negative edges, based on the pinning control approach. The main

novelties of this paper can be highlighted as follows.

1) A distributed pinning control algorithm is proposed to achieve bipartite leader-following synchronization in a

network of delayed neural networks under signed graph topology. Some remarks are provided to discuss how to

effectively select the pinned nodes for the signed network.

2) Under some assumptions on the interaction graph and node dynamics, by developing some tools from M-matrix

theory and stability of delayed systems, some novel criteria in terms of low-dimensional linear matrix inequalities

(LMIs) are derived to reach bipartite leader-following synchronization in the network when the node delay is differ-

entiable and bounded. Furthermore, a simple algebraic condition is given to estimate an upper bound for the node

delay.

3) When the node delay is only bounded but may not be differentiable, some bipartite synchronization conditions are

established based on the descriptor method and the reciprocally convex approach. Hence, the results of this paper

also improve some existing results for the synchronization of coupled delayed neural networks with unsigned graphs

where the node-delay is usually assumed to be differentiable or a constant.
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Abstract

This paper considers the bipartite leader-following synchronization in a signed network composed by an array of coupled

delayed neural networks by utilizing the pinning control strategy and M-matrix theory, where the communication links

between neighboring nodes of the network can be either positive or negative. Under the assumption that the node-delay is

bounded and differentiable, a sufficient condition in terms of a low-dimensional linear matrix inequality is derived for reaching

bipartite leader-following synchronization in the signed network, based on which a simple algebraic formula is further given

to estimate an upper bound of the node-delay. When the node-delay is bounded and non-differentiable, some criteria are

established by using the descriptor method and the reciprocally convex approach such that the bipartite leader-following

synchronization problem for the signed network can be successfully solved. Finally, numerical simulations are provided to

illustrate the effectiveness of theoretical analysis.

Key words: Coupled delayed neural networks; bipartite synchronization; signed graph; pinning control; M-matrix.

1 Introduction

In the past few decades, the delayed neural networks (DNNs) have been successfully applied to solve many practical

problems such as speech recognition (Waibel (1989)), image processing (Wöhler & Anlauf (1999)), optimization
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(Liu, Cao, & Xia (2005)), cryptography (Yu & Cao (2006)), and secure communication (Lakshmanan et al. (2018)).

Since Pecora and Carroll laid the foundation for chaotic synchronization in the 1990s (Pecora & Carroll (1990)), the

synchronization problem for a class of DNNs, including Cohen-Grossberg, cellular and memristive neural networks,

has been one of the most active research topics and has been intensively investigated by lots of researchers via

different control approaches (see Huang et al. (2014); Yang & Ho (2016); Wan et al. (2016); Zhang, Zhao, & Huang

(2016); Li et al. (2018), and the references therein).

With the rapid development of communication technology and computer science, much effort has been devoted to the

synchronization problem of coupled delayed neural networks (CDNNs), which is much more challenging than that of

a single delayed neural network. Chen, Zhou, & Liu (2004) studied the synchronization in an array of symmetrically

interconnected neural networks with a time delay. Lu, Ho, & Liu (2007) further considered the synchronization in

CDNNs whose coupling matrices may not necessarily be symmetric. Yu, Cao, & Lü (2008) investigated the synchro-

nization problem for CDNNs with a discrete communication delay. Cao, Chen, & Li (2008) and Zhang & Gao (2017)

studied the synchronization in CDNNs whose communication delays include both discrete and distributed delays.

Yang, Guo, & Wang (2017) explored the synchronization in CDNNs with impulsive interactions between neighboring

nodes. Note that the synchronization in the above literature is reached via the interaction of network nodes without

introducing any external forces to the network. More specifically, this kind of synchronization phenomenon can be

called leaderless synchronization or self-synchronization.

In practical applications, some CDNNs may not achieve leaderless synchronization due to a number of reasons such as

unconnected network structure and weak coupling. Hence, the leader-following synchronization problem for CDNNs

has been considered by designing some appropriate controllers such that all the network nodes finally synchronize to

the manifold of a prescribed leader. To reduce the control cost for reaching leader-following synchronization in large-

scale networks, the pinning control approach is usually adopted by only placing controllers on some critical network

nodes which are called pinned nodes (Wang & Chen (2002); Chen, Liu, & Lu (2007); Song & Cao (2010); Song et

al. (2013); Wen et al. (2014)). The synchronization of networked systems under pinning control is called pinning

synchronization for brevity. In the past few years, some progress has been made in the pinning synchronization

of CDNNs. Lu, Ho, & Wang (2009) stabilized CDNNs subject to stochastic perturbations by pinning the fewest

number of network nodes. Li & Cao (2011) considered the pinning-controlled cluster synchronization problem for

CDNNs, where the nodes can be partitioned into a set of subgroups. Song, Cao, & Liu (2012) discussed the pinning

synchronization in CDNNs based on the in and out degrees of network nodes. He, Qian, & Cao (2017) addressed

the pinning synchronization of CDNNs by designing some distributed impulsive controllers.

In the coordination control of traditional networks, the interaction digraphs are all assumed to be unsigned where all

the communication links are positive (Wang & Chen (2002); Chen, Liu, & Lu (2007); Yu, Cao, & Lü (2008); Song &

Cao (2010); Wen et al. (2014); He, Qian, & Cao (2017)). In recent years, the coordination control of networks under

signed interaction digraphs, where there may exist negative communication links, has received increasing attention

(Altafini (2013); Hu & Zheng (2014); Fan, Zhang, & Wang (2014); Valcher & Misra (2014); Meng, Du, & Jia (2016);

Zhai & Li (2016a,b); Meng (2017); Guo et al. (2018)). Different from the traditional synchronization of unsigned

networks that all the nodes synchronize to a homogenous state (Yu, Cao, & Lü (2008); Song & Cao (2010); Wen

et al. (2014); He, Qian, & Cao (2017)), signed networks may exhibit an interesting phenomenon named as bipartite

synchronization, where a set of nodes synchronize to some manifold s(t) and the remaining nodes synchronize to

−s(t) (Altafini (2013); Hu & Zheng (2014); Meng, Du, & Jia (2016); Zhai & Li (2016a,b)). The bipartite collective

behaviors of signed networks with linear dynamics have been intensively studied (Altafini (2013); Hu & Zheng (2014);

2



Fan, Zhang, & Wang (2014); Valcher & Misra (2014); Meng, Du, & Jia (2016); Meng (2017); Guo et al. (2018)).

Note that some progress has also been made in the bipartite synchronization of signed networks with nonlinear

dynamics (Zhai & Li (2016a,b)). More recently, some researchers have analyzed the effect of time-delays on the

bipartite synchronization of signed networks with first-order integrator dynamics (Guo et al. (2018)).

It should be noticed that most of the existing results for the synchronization of CDNNs are based on the assumption

that the interaction graphs are unsigned, where the weights for the communication links between neighboring nodes

are all positive. To the best of our knowledge, the bipartite synchronization of CDNNs with both positive and negative

communication links has rarely been considered. Moreover, the coordination control of signed networks with both

nonlinear dynamics and time delays has not received enough attention up to present. Therefore, it is imperative to

address some challenging issues on the bipartite synchronization problem for a network of delayed neural networks

with each node actually being a delayed nonlinear system, and to analyze the effects of the node-delay, node dynamics

and network structure on the bipartite synchronization of the network.

The main novelties of this paper can be highlighted as follows. Firstly, a distributed pinning control algorithm is

proposed to achieve bipartite leader-following synchronization in a network of delayed neural networks under signed

graph topology. Some discussions are provided to address how to effectively select the pinned nodes for the signed

network. Secondly, under some assumptions on the interaction graph and the node dynamics, by developing some

tools from the property of M-matrix and the stability theory of delayed systems, some novel criteria in terms of

low-dimensional linear matrix inequalities (LMIs) are derived to reach bipartite leader-following synchronization

in the network when the node-delay is differentiable and bounded. Furthermore, a simple algebraic condition is

given to estimate an upper bound for the node-delay. Thirdly, when the node-delay is only bounded but may not

be differentiable, some bipartite synchronization criteria are established based on the descriptor method and the

reciprocally convex approach. It is worth pointing out that the results of this paper also improve some existing

results for the synchronization of coupled delayed neural networks with unsigned graphs where the node-delay is

usually assumed to be differentiable or a constant.

The rest of this paper is organized as follows. Section 2 provides some mathematical preliminaries. Section 3 formu-

lates the bipartite leader-following synchronization problem for a network of delayed neural networks and proposes a

pinning algorithm for the network. Sections 4 and 5 study the pinning bipartite synchronization in the network with

differentiable and non-differentiable node-delays, respectively. In Section 6, simulations are given to demonstrate the

theoretical results. Finally, some conclusions and future trends are stated in Section 7.

2 Preliminaries

This section provides some mathematical preliminaries and supporting lemmas to derive the main results of the

paper.

2.1 Notations

Let Re(z) denote the real part of a complex number z and In be the n-dimensional identity matrix. Let sign(·)
denote the standard sign function. For matrix A ∈ Rn×n, define As , (A+AT )/2 as the symmetric part of A. The
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symbol ⊗ represents the Kronecker product (Horn & Johnson (1991)). Let




A B

∗ C


 be a symmetric matrix where

the asterisk ‘*’ stands for the transpose of matrix B. Let col(x1, . . . , xn) , (xT
1 , . . . , x

T
n )

T be the column stack vector

of xi ∈ Rni , i = 1, . . . , n. For a Hermitian matrix X , write X > 0 (X < 0) if X is positive (negative) definite.

2.2 M-matrix theory

Some results related to M-matrix theory are useful to study the bipartite synchronization problem for coupled

delayed neural networks.

Lemma 1 (Horn & Johnson (1991)) For a nonsingular matrix Υ ∈ Rn×n with all off-diagonal elements being

non-positive, the following statements are equivalent

1) Υ is a nonsingular M-matrix;

2) All the eigenvalues of Υ are located in the open right-half plane;

3) A diagonal matrix Ξ = diag(ξ1, · · · , ξn) > 0 can be found such that ΞΥ+ΥTΞ > 0 holds.

2.3 Some supporting results

Lemma 2 (Jensen’s inequality) (Gu (2000)) For matrix M ∈ Rn×n > 0, scalars β > α, and vector function

ω : [α, β] → Rn such that all the integrations in the following are well defined, then one has

(β − α)

∫ β

α

ωT (θ)Mω(θ)dθ ≥
(∫ β

α

ω(θ)dθ

)T

M

(∫ β

α

ω(θ)dθ

)
.

Lemma 3 (Schur complement) (Boyd et al. (1994)) The following linear matrix inequality (LMI)




Q(x) S(x)

ST (x) R(x)


 > 0,

where Q(x) = QT (x) and R(x) = RT (x), is equivalent to either of the following conditions:

1) Q(x) > 0, R(x)− ST (x)Q−1(x)S(x) > 0;

2) R(x) > 0, Q(x)− S(x)R−1(x)ST (x) > 0.

Lemma 4 (Reciprocally convex approach) (Park, Ko, & Jeong (2011); Fridman (2014)) For any two real vectors y1

and y2, scalar 0 < α < 1, matrix R > 0 and any matrix S satisfying




R S

ST R


 ≥ 0, one has 1

αy
T
1 Ry1+

1
1−αy

T
2 Ry2 ≥

yT




R S

ST R


 y, where y = col(y1, y2).
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3 Problem formulation

Consider a signed network, whose interaction is denoted by the signed graph Gs, composed by N identical nodes

with each node being a delayed neural network described as follows:

ẋi(t) = −Cxi(t) +Af(xi(t)) +Bf(xi(t− τ(t))) − σ

N∑

j=1

|asij |
(
xi(t)− sign(asij)xj(t)

)
+ ui(t), (1)

where xi(t) = (xi1(t), . . . , xin(t))
T ∈ Rn is the state variable of node i, C = diag(c1, . . . , cn) > 0, A,B ∈ Rn×n

represent the weight and delayed weight matrices for the i-th neural-network node, respectively (Cao, Chen, & Li

(2008); Yu, Cao, & Lü (2008)), f(xi(t)) = (f1(xi1(t)), . . . , fn(xin(t)))
T ∈ Rn is a continuous vector function, τ(t) ≥ 0

is called node-delay, σ > 0 is the coupling strength, asij is the (i, j)-th entry of the adjacency matrix As associated

with the underlying signed graph Gs of network (1) defined as follows: asii = 0 for all i = 1, . . . , N ; for i 6= j, asij 6= 0

if there is a directed communication link from nodes j to i and asij = 0 otherwise (Altafini (2013); Hu & Zheng

(2014)), and ui is the control input to be designed.

The initial condition of network (1) is given by xi(t) = φi(t), t ∈ [−r, 0], i = 1, . . . , N , where r = supt≥0 τ(t) and

φi(t) belongs to the set of all continuous real-valued functions on the interval [−r, 0] (Yu, Cao, & Lü (2008)).

The leader node of network (1) is described by

ṡ(t) = −Cs(t) +Af(s(t)) +Bf(s(t− τ(t))), (2)

where s(t) = (s1(t), . . . , sn(t))
T ∈ Rn.

Remark 1 It is necessary to provide some explanations for the coupling terms in the signed network (1). Let the

pair (j, i) denote the directed link (or called edge) from nodes j to i in the signed graph Gs. When asij > 0, the link

(j, i) is positive and the coupling term is given by asij (xi(t)− xj(t)) which means that the interaction between nodes i

and j is cooperative; when asij < 0, that is, the link (j, i) is negative, the coupling term is given by −asij (xi(t) + xj(t))

indicating that the nodes i and j has competitive relationship (Altafini (2013); Hu & Zheng (2014)). If the graph

Gs is unsigned, that is, asij ≥ 0 holds for any i 6= j, network (1) collapses into a traditional coupled neural network

considered in the previous literature (Chen, Zhou, & Liu (2004); Cao, Chen, & Li (2008); Yu, Cao, & Lü (2008);

Song, Cao, & Liu (2012)).

To derive the main results of this paper, some assumptions are needed to be made for the interaction graph Gs and

the node function f(·) of network (1).

Assumption 1 The signed graph Gs of network (1) is structurally balanced. That is, the node set V = {1, . . . , N}
of signed graph Gs can be partitioned into two disjoint subsets V1 and V2 such that the induced subgraphs associated

with V1 and V2 are both unsigned, and any link between these two unsigned subgraphs is always negative.

Assumption 2 In network (1), for any k ∈ {1, . . . , n}, the node function fk(·) is an odd function satisfying the

Lipschitz condition, that is,

fk(−z) = −fk(z), ∀z ∈ R,

|fk(b)− fk(a)| ≤ δk|b− a|, δk > 0, ∀a, b ∈ R.
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Assumption 3 The augmented graph composed by the leader node (2) and the nodes of network (1) contains a

directed spanning tree with the leader node being the only root, that is, the leader node (2) has a directed path to

every node of network (1).

Under Assumption 1, define a diagonal matrix W = diag(w1, . . . , wN ) where wi ∈ {1,−1}. Then, network (1) is said

to achieve bipartite leader-following synchronization if limt→∞ ‖xi(t)−wis(t)‖ = 0, i = 1, . . . , N . Obviously, if

W = IN , the bipartite leader-following synchronization reduces to the traditional leader-following synchronization.

One can apply the pinning control strategy to solve the bipartite leader-following synchronization problem for signed

network (1). Let Vpin = {i1, . . . , il} ⊂ V (1 ≤ l < N) be the set of pinned nodes. Under Assumption 1, consider a

pinning control algorithm for network (1):

ui(t) = −σdi(xi(t)− wis(t)), i = 1, . . . , N, (3)

where wi = 1 if i ∈ V1 and wi = −1 if i ∈ V2, and di is the pinning feedback gain defined as follows: di > 0 if i ∈ Vpin

and di = 0 if i /∈ Vpin.

Remark 2 Letting the diagonal matrix W = IN , the pinning control algorithm (3) can be used to solve the traditional

leader-following synchronization of complex networks with unsigned interaction graphs (Wang & Chen (2002); Chen,

Liu, & Lu (2007); Song & Cao (2010)). Hence, the pinning control algorithm (3) for signed network (1) generalizes

the pinning control algorithms for unsigned networks. However, it is worth noting that when applying algorithm (3)

to a signed network, one should consider the network structure. If Assumption 1 is not satisfied, the graph Gs is not

structurally balanced and it will be quite difficult to investigate the bipartite leader-following synchronization of signed

network (1). Actually, for a signed network with first-order integrator dynamics, when the network is not structurally

balanced, Meng, Du, & Jia (2016) have shown that the network can not achieve bipartite synchronization and may

only achieve interval bipartite synchronization.

4 Bipartite leader-following synchronization of network with a differentiable node-delay

In this section, by using M-matrix theory, we study the bipartite leader-following synchronization problem for signed

network (1) with a differentiable node-delay under pinning algorithm (3).

Assumption 4 The node-delay τ(t) in signed network (1) is bounded and differentiable satisfying 0 < τ(t) ≤ τ̄ and

0 ≤ τ̇ (t) ≤ µ < 1.

For signed network (1), based on the adjacency matrix As, let Ls = (lsij)N×N = B − As be the Laplacian matrix

of network (1), where B = diag(b1, . . . , bN) with bi =
∑N

k=1,k 6=i |asik| (Altafini (2013); Hu & Zheng (2014)), yielding

lsij = −asij, i 6= j and lsii =
∑N

k=1,k 6=i |asik|. Obviously, if there exists some k ∈ {1, . . . , N} such that asik < 0 holds,

Ls is not a zero-row-sum matrix due to
∑N

k=1 l
s
ik 6= 0, which is quite different from the diffusion property of the

traditional Laplacian matrix for an unsigned network (see Wang & Chen (2002); Chen, Liu, & Lu (2007); Yu, Cao,

& Lü (2008); Song & Cao (2010)).

Based on the adjacency matrix As of signed network (1), define Au = (auij)N×N =
(∣∣asij

∣∣)
N×N

. Obviously, all the

elements of Au are non-negative where all the diagonal entries are zeros. Let Gu and Lu = (luij) be the graph and
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Laplacian matrix associated with Au, respectively, where luij = −|asij | for i 6= j and luii =
∑N

k=1,k 6=i |asik|. One can see

that Gu is an unsigned graph and can easily obtain Lu = B − Au. Note that Lu is a zero-row-sum matrix.

Let

H = (hij) = Lu +D, (4)

where D = diag(d1, . . . , dN ) is the matrix of pinning feedback gains in protocol (3).

The following two lemmas are important to study the bipartite leader-following synchronization of signed network

(1) under pinning algorithm (3).

Lemma 5 (Song et al. (2013)) Under Assumption 3, the matrix H defined in (4) is a nonsingular M-matrix.

Lemma 6 (Altafini (2013)) If a signed graph Gs is structurally balanced, a gauge transformation matrix W =

diag(w1, . . . , wN ) with wi ∈ {1,−1} can be found such that WAsW = Au, where As =
(
asij
)
and Au =

(
wia

s
ijwj

)
=(∣∣asij

∣∣) are the adjacency matrices for signed and unsigned graphs, respectively.

The following theorem presents some conditions for reaching bipartite leader-following synchronization in the signed

network (1) under algorithm (3).

Theorem 1 Under Assumptions 1–4, the pinning control algorithm (3) can solve the bipartite leader-following

synchronization problem for signed network (1) if there exist matrices P ∈ Rn×n > 0, Q ∈ Rn×n > 0 and R ∈
Rn×n > 0, and parameters β > 0, γ > 0 such that the following LMI condition holds:

Γ =




Γ11 0 PA PB 0

∗ Γ22 0 0 0

∗ ∗ −βIn 0 0

∗ ∗ ∗ −γIn 0

∗ ∗ ∗ ∗ −R




≤ 0, (5)

where Γ11 = −PC −CTP − 2αP +Q+ τ̄2R+ β∆T∆, Γ22 = γ∆T∆− (1− µ)Q, ∆ = diag(δ1, . . . , δn) describes the

Lipschitz condition in Assumption 2, and α is a positive constant satisfying

0 < α < σ min
1≤i≤N

{Re (λi)}, (6)

in which λi is the i-th eigenvalue of matrix H.

Proof . By the definition of the Laplacian matrix Ls, applying pinning control algorithm (3) to network (1) gives

ẋi(t) = −Cxi(t) +Af(xi(t)) +Bf(xi(t− τ(t))) − σ

N∑

j=1

lsijxj(t)− σdi (xi(t)− wis(t)) , i = 1, . . . , N. (7)

7



Recall that Ls = B − As and Lu = B − Au. Considering Assumption 1 and Lemma 6, it is easy to show that

Lu = WLsW holds, indicating that luij = wil
s
ijwj = −|asij | for i 6= j and luii =

∑N
k=1,k 6=i |asik|.

One can use coordinate transform to analyze the bipartite synchronization in network (7). Let x̄i(t) = wixi, i =

1, . . . , N , which also gives xi = wix̄i(t). Then, it follows from (7) that

˙̄xi(t) = −Cx̄i(t) +Awif(wix̄i(t)) +Bwif(wix̄i(t− τ(t))) − σ

N∑

j=1

luij x̄j(t)− σdi (x̄i(t)− s(t)) , i = 1, . . . , N. (8)

By Assumption 2, recall that fk(·) (k ∈ {1, . . . , n}) is an odd function. Since wi ∈ {−1, 1}, wif(wix̄i(t)) = f(x̄i(t))

holds for any i ∈ {1, . . . , N}. Then, from (8), one has

˙̄xi(t) = −Cx̄i(t) +Af(x̄i(t)) +Bf(x̄i(t− τ(t))) − σ

N∑

j=1

luij x̄j(t)− σdi (x̄i(t)− s(t)) , i = 1, . . . , N. (9)

For i = 1, . . . , N , let

ei(t) = (ei1(t), . . . , ein(t))
T , x̄i(t)− s(t)

ηi(t) = (ηi1(t), . . . , ηin(t))
T , f(x̄i(t)) − f(s(t)). (10)

Recall that Lu is a zero-row-sum matrix. From (2) and (9), one can obtain the following error system:

ėi(t) = −Cei(t) +Aηi(t) +Bηi(t− τ(t)) − σ

N∑

j=1

luijej(t)− σdiei(t), i = 1, . . . , N. (11)

If system (11) is asymptotically stable, ei(t) tends to zero as t → ∞, that is, wixi(t) → s(t), i = 1, . . . , N . Considering

w2
i = 1, one has xi(t) → wis(t), i = 1, . . . , N . Therefore, the bipartite leader-following synchronization problem of

network (1) is transformed to the stability problem of the error system (11).

In view of the definition of matrix H in (4), one can rewrite (11) as

ėi(t) = −Cei(t) +Aηi(t) +Bηi(t− τ(t)) − σ

N∑

j=1

hijej(t), i = 1, . . . , N. (12)

By Lemma 5, H = Lu +D is a nonsingular M-matrix under Assumption 3, ensuring Re(λi) > 0, i = 1, . . . , N . From

condition (6) and Lemma 1, one can show that σH − αIN is a nonsingular M-matrix and there exists a matrix

Ξ = diag(ξ1, · · · , ξN ) > 0 such that

[Ξ (σH − αIN )]s > 0. (13)

From Assumption 2, it is easy to obtain

eTi (t
′)∆T∆ei(t

′)− ηTi (t
′)ηi(t

′) ≥ 0, ∀t′ ∈ R. (14)
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Construct the following Lyapunov-Krasovskii functional candidate:

V (t) =

N∑

i=1

ξie
T
i (t)Pei(t) +

N∑

i=1

ξi

∫ t

t−τ(t)

eTi (ζ)Qei(ζ)dζ +

N∑

i=1

ξiτ̄

∫ 0

−τ̄

∫ t

t+θ

eTi (ζ)Rei(ζ)dζdθ, (15)

where matrices P,Q,R > 0 satisfy LMI condition (5).

Let e(t) = col(e1(t), . . . , eN(t)) and η(t) = col(η1(t), . . . , ηN (t)). Considering Assumption 4, Jensen’s inequality in

Lemma 2, inequalities (13) and (14), calculate V̇ (t) along the trajectory of system (12) as follows:

V̇ (t) = −2

N∑

i=1

ξie
T
i (t)PCei(t) + 2

N∑

i=1

ξie
T
i (t)PAηi(t) + 2

N∑

i=1

ξie
T
i (t)PBηi(t− τ(t))

−2σ

N∑

i=1

ξie
T
i (t)

N∑

j=1

hijPej(t) +

N∑

i=1

ξie
T
i (t)Qei(t)− (1− τ̇ (t))

N∑

i=1

ξie
T
i (t− τ(t))Qei(t− τ(t))

+

N∑

i=1

ξiτ̄
2eTi (t)Rei(t)−

N∑

i=1

ξiτ̄

∫ t

t−τ̄

eTi (ζ)Rei(ζ)dζ

≤ −2eT (t) (Ξ⊗ (PC)) e(t) + 2eT (t) (Ξ⊗ (PA)) η(t) + 2eT (t) (Ξ⊗ (PB)) η(t− τ(t))

−2eT (t) [σ (ΞH)⊗ P ] e(t) + 2αeT (t) (Ξ⊗ P ) e(t)− 2αeT (t) (Ξ⊗ P ) e(t)

+eT (t) (Ξ⊗Q) e(t)− (1− µ)eT (t− τ(t)) (Ξ⊗Q) eT (t− τ(t))

+τ̄2eT (t) (Ξ⊗R) e(t)−
N∑

i=1

ξi

(∫ t

t−τ̄

ei(ζ)dζ

)T

R

(∫ t

t−τ̄

ei(ζ)dζ

)

+β

N∑

i=1

ξi
[
eTi (t)∆

T∆ei(t)− ηTi (t)ηi(t)
]

+γ
N∑

i=1

ξi
[
eTi (t− τ(t))∆T∆ei(t− τ(t)) − ηTi (t− τ(t))ηi(t− τ(t))

]

=
N∑

i=1

ξiy
T
i (t)Γyi − 2eT (t) ([Ξ (σH − αIN )]s ⊗ P ) e(t), (16)

where yi(t) = col
(
ei, ei(t− τ(t)), ηi(t), ηi(t− τ(t)),

∫ t

t−τ̄ ei(ζ)dζ
)
.

Then, it follows from LMI condition (5) and inequality (13) that the error system (12) is globally asymptotically

stable. Therefore, the pinning control algorithm (3) solves the bipartite leader-following synchronization problem of

signed network (1). This completes the proof. �

Remark 3 From the proof of Theorem 1, one can see the Assumption 1 on the network topology and Assumption 2

on the node-function are necessary to investigate the bipartite leader-following synchronization of signed network (1).

Remark 4 By using the property of M-matrix, Theorem 1 provides a low-dimensional LMI condition (5) whose

dimension is 5n × 5n determined by that of a single network node rather than by the size of the network, that is,

5n << N holds for a large-scale network.

Remark 5 For LMI condition (5), let P = R = In, Q = (1/(1 − µ))δ2mIn, and β = γ = 1, where δm =

max1≤k≤n{δk}. Let M = 2C+2αIn−(1/(1−µ))δ2mIn−∆T∆−AAT −BBT , in which 0 < α < σmin1≤i≤N{Re (λi)}.
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Considering Schur complement in Lemma 3, one sees that condition (5) is equivalent to τ̄2In −M ≤ 0. If α is large

enough such that τ̄2In − M ≤ 0 holds, LMI condition (5) is satisfied, which gives τ̄ ≤ √
ρmin with ρmin being the

minimum eigenvalue of matrix M , that is,
√
ρmin is an upper bound for the node-delay τ(t). Then, an important

conclusion can be drawn as follows: if the coupling strength σ is sufficiently large, a parameter α can always be found

such that τ̄2In − M ≤ 0 holds, indicating that pinning control algorithm (3) solves the bipartite leader-following

synchronization problem of signed network (1) under Assumptions 1–4.

Remark 6 By Assumption 3 and the proof of Theorem 1, one can select the pinned nodes and design the pinning

feedback gains based on the unsigned graph associated with the adjacency matrix Au, which can be easily carried out

by using the pinning control strategies for the traditional unsigned networked systems (Wang & Chen (2002); Chen,

Liu, & Lu (2007); Song & Cao (2010); Song et al. (2013); Wen et al. (2014)).

5 Bipartite leader-following synchronization of network with a non-differentiable node-delay

In the previous section, we have studied the bipartite leader-following synchronization in signed network with a

differentiable node-delay. However, in some practical cases, the node-delay may not be differentiable. In this section,

we relax the restriction on the node-delay to investigate the bipartite synchronization problem of signed network

with a bounded node-delay.

Assumption 5 The node-delay τ(t) in signed network (1) is non-differentiable and bounded satisfying 0 ≤ τ(t) ≤ τ̄ .

The following result addresses the bipartite leader-following synchronization of signed network (1) with a non-

differentiable and bounded delay.

Theorem 2 Suppose that Assumptions 1–3 and 5 are satisfied. Under algorithm (3), the bipartite leader-following

synchronization can be achieved in signed network (1) if there exist matrices Pk ∈ RNn×Nn > 0, k = 1, 2, 3, S ∈
RNn×Nn > 0, M ∈ RNn×Nn > 0, T ∈ RNn×Nn, G = diag(g1, . . . , gN ) > 0 and K = diag(k1, . . . , kN ) > 0 such that

Ω =




Ω11 Ω12 Ω13 T P2A1 P2A2

∗ Ω22 0 0 P3A1 P3A2

∗ ∗ Ω33 S − T 0 0

∗ ∗ ∗ −S −M 0 0

∗ ∗ ∗ ∗ −G⊗ In 0

∗ ∗ ∗ ∗ ∗ −K ⊗ In




< 0, (17)

and




S T

T T S


 ≥ 0, (18)
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where

Ω11 = P2A0 +AT
0 P2 − S +M +G⊗ (∆T∆),

Ω12 = P1 − P2 +AT
0 P3, Ω13 = S − T,

Ω22 = −2P3 + τ̄2S, Ω33 = −2S + T + T T +K ⊗ (∆T∆),

A0 = −IN ⊗ C − σ(H ⊗ In), A1 = IN ⊗A, A2 = IN ⊗B. (19)

Proof . Letting e(t) = col(e1(t), . . . , eN (t)) and η(t) = col(η1(t), . . . , ηN (t)), rewrite the error system (12) in the

proof of Theorem 1 as follows:

ė(t) = A0e(t) +A1η(t) +A2η(t− τ(t)), (20)

where A0, A1 and A2 are defined in (19).

Consider the following Lyapunov-Krasovskii functional candidate

V (t) = eT (t)P1e(t) +

∫ t

t−τ̄

eT (ζ)Me(ζ)dζ + τ̄

∫ 0

−τ̄

∫ t

t+θ

ėT (ζ)Sė(ζ)dζdθ. (21)

where matrices P1, M and S satisfy LMI condition (17).

In view of the descriptor method (Fridman (2014)), let y(t) = col(y1(t), . . . , yN (t)) , ė(t) where yi(t) = ėi(t). Then,

from (20), one has

A0e(t) +A1η(t) +A2η(t− τ(t)) − y(t) = 0. (22)

By inequality (14) in the proof of Theorem 1, it is easy to obtain

eT (t)
(
G⊗ (∆T∆)

)
e(t)− ηT (t) (G⊗ In) η(t) ≥ 0,

eT (t− τ(t))
(
K ⊗ (∆T∆)

)
e(t− τ(t)) − ηT (t− τ(t)) (K ⊗ In) η(t− τ(t)) ≥ 0, (23)

where G = diag(g1, . . . , gN) > 0 and K = diag(k1, . . . , kN ) > 0.

Considering (22)–(23) and y(t) = ė(t), calculate the derivative of V (t) along the trajectory of system (20):

V̇ (t) = 2eT (t)P1ė(t) + eT (t)Me(t)− eT (t− τ̄ )Me(t− τ̄ ) + τ̄2ėT (t)Sė(t)− τ̄

∫ t

t−τ̄

ėT (ζ)Sė(ζ)dζ

≤ 2eT (t)P1y(t) + eT (t)Me(t)− eT (t− τ̄ )Me(t− τ̄ ) + τ̄2yT (t)Sy(t)− τ̄

∫ t

t−τ̄

ėT (ζ)Sė(ζ)dζ

+2
[
eT (t)P2 + yT (t)P3

]
[A0e(t) +A1η(t) +A2η(t− τ(t)) − y(t)]

+eT (t)
(
G⊗ (∆T∆)

)
e(t)− ηT (t) (G⊗ In) η(t)

+eT (t− τ(t))
(
K ⊗ (∆T∆)

)
e(t− τ(t)) − ηT (t− τ(t)) (K ⊗ In) η(t− τ(t)). (24)
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For any τ(t) ∈ (0, τ̄ ), it follows from Jensen’s inequality and the reciprocally convex approach in Lemma 4 that

− τ̄

∫ t

t−τ̄

ėT (ζ)Sė(ζ)dζ

= −τ̄

∫ t

t−τ(t)

ėT (ζ)Sė(ζ)dζ − τ̄

∫ t−τ(t)

t−τ̄

ėT (ζ)Sė(ζ)dζ

≤ − τ̄

τ(t)
zT1 (t)Sz1(t)−

τ̄

τ̄ − τ(t)
zT2 (t)Sz2(t)

≤ −zT (t)




S T

T T S


 z(t), (25)

where z1(t) = e(t)− e(t− τ(t)), z2(t) = e(t− τ(t)) − e(t− τ̄ ), z(t) = col(z1(t), z2(t)), and matrices S and T satisfy

LMI condition (18). Note that z1(t) = 0 when τ(t) = 0 and z2(t) = 0 when τ(t) = τ̄ . By using Jensen’s inequality,

it is easy to show that −τ̄
∫ t

t−τ̄ ė
T (ζ)Sė(ζ)dζ ≤ −zT (t)




S T

T T S


 z(t) still holds for τ(t) = 0 or τ(t) = τ̄ .

Combining (24)–(25), some tedious calculations give

V̇ (t) ≤ ϑT (t)Ωϑ(t), (26)

where ϑ(t) = col(e(t), y(t), e(t − τ(t)), e(t − τ̄), η(t), η(t − τ(t))). It follows from LMI condition (17) that V̇ (t) < 0

holds for any ϑ(t) 6= 0. Then, the error system (20) is asymptotically stable at the origin. Hence, algorithm (3) solves

the bipartite leader-following synchronization problem for signed network (1). The proof is finished. �

Remark 7 In this section, the node-delay for signed network (1) is only assumed to be bounded. It is worth men-

tioning that in the literature on the synchronization of coupled delayed neural networks with unsigned graphs, the

node-delay is usually assumed to be a differentiable function or a constant (Lu, Ho, & Wang (2009); Song, Cao, &

Liu (2012); He, Qian, & Cao (2017)).

Remark 8 It is necessary to discuss the feasibility of LMI conditions (17) and (18) in Theorem 2. Let λi be the i-th

eigenvalue of matrix H. By Lemma 5, under Assumptions 1 and 3, one has Re(λi) > 0, i = 1, . . . , N , and can see

that the eigenvalue-set of matrix A0 = −IN ⊗C−σ(H⊗In) is given by {−σλi−ck, i = 1, . . . , N, k = 1, . . . , n}, which
indicates that A0 is a Hurwitz matrix. Then, a positive definite matrix P2 > 0 and a parameter β > 0 can be found

to satisfy P2A0 + AT
0 P2 < −βINn. Let P1 = P2, P3 = τ̄ (IN ⊗ (∆T∆)), S = P3/τ̄

2, T = 0, M = S/2, G = IN/(2τ̄)

and K = IN/(3τ̄). Obviously, for S > 0 and T = 0, condition (18) always holds. Applying Schur complement, one

can show that LMI (17) is feasible if τ̄ is relatively small and ∆T∆ ≤ βτ̄In holds.

Remark 9 Due to different assumptions on the node-delay τ(t) for signed network (1), note that the dimension of

LMI condition (17) in Theorem 2 is much higher than that of LMI condition (5) in Theorem 1. Since the node-delay

τ(t) in Theorem 2 is only assumed to be bounded, it is difficult to construct an appropriate Lyapunov-Krasovskii

functional including a term explicitly related to τ(t). How to establish some lower-dimensional LMI conditions for

reaching bipartite synchronization in signed network (1) with a non-differentiable node-delay is quite challenging and

deserves to be further investigated in our future work.
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Remark 10 This paper focuses on the leader-following bipartite synchronization of signed network (1). Letting

ui(t) = 0, i = 1, . . . , N , signed network (1) is said to reach bipartite leaderless synchronization if limt→∞ ‖wixi(t)−
wjxj(t)‖ = 0 holds for any i, j = 1, . . . , N(i 6= j) where wi ∈ {1,−1}. Under Assumptions 1–2, considering (9) in the

proof of Theorem 1, one can obtain ˙̄xi(t) = −Cx̄i(t) +Af(x̄i(t)) +Bf(x̄i(t− τ(t)))− σ
∑N

j=1 l
u
ij x̄j(t), i = 1, . . . , N ,

where x̄i(t) = wixi(t). Let ei(t) = x̄i(t)− x̄1(t) and ηi(t) = f(x̄i(t))−f(x̄1(t)), i = 2, . . . , N . Recall that
∑N

j=1 l
u
ij = 0

holds for all i = 1, . . . , N . By some simple calculations, one has the following error system

ėi(t) = −Cei(t) +Aηi(t) +Bηi(t− τ(t)) − σ

N∑

j=2

(
luij − lu1j

)
ej(t). (27)

Define L̄u ,
(
l̄upq
)
∈ R(N−1)×(N−1) where l̄upq = lu(p+1)(q+1)−lu1(q+1), p, q = 1, . . . , N−1. Letting e(t) = col(e2(t), . . . , eN (t))

and η(t) = col(η2(t), . . . , ηN (t)), write the error system (27) in compact matrix form:

ė(t) = A0e(t) +A1η(t) +A2η(t− τ(t)), (28)

where A0 = −IN−1⊗C−σ(L̄u⊗ In), A1 = IN−1⊗A and A2 = IN−1⊗B. It is easy to show that the signed network

(1) achieves bipartite leaderless synchronization if the error system (28) is asymptotically stable. By Lemma 1 in

(Zhang & Tian (2009)), all the eigenvalues of matrix L̄u have positive real parts if the graph of Gu contains a directed

spanning tree, where Gu is the unsigned graph associated with the adjacency matrix Au. Following the similar line

in Theorem 2, one can analyze the stability of system (28). The related details are omitted due to space limit.

6 Numerical results

This section presents some simulations to study the bipartite leader-following synchronization of network (1) under

pinning control algorithm (3).

Consider the signed network (1) composed by seven delayed neural networks (Lu (2002)) shown in Fig. 1, where

σ = 25, f(xi(t)) = (tanh(xi1(t)), tanh(xi2(t)))
T , i = 1, . . . , 7, and the parameters are give by as follows (Lu (2002))

C =



1 0

0 1


 , A =




2.0 −0.1

−5.0 1.5


 , B =



−1.5 −0.1

−0.2 −1


 . (29)

1


2


7
 6


3
 4
 5


1


-1


-1


-1


1


1


1


1


1


1


Fig. 1. A signed graph with seven nodes.
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By the results in (Lu (2002)), the leader node (2) with the parameters in (29) may exhibit rich dynamics including

chaotic behaviors. For example, letting the node-delay τ(t) = 1.0 and the initial condition s(t) = (0.4, 0.6)T , ∀t ∈
[−1, 0], Fig. 2 plots a single-scroll-like chaotic attractor of the leader node (2).

From Fig. 1, one can see that the topology of the signed network (1) is structurally balanced by simply letting

V1 = {1, 2, 3} and V2 = {4, 5, 6, 7}, which indicates that Assumption 1 holds with W = diag(1, 1, 1,−1,−1,−1,−1).

Note that the node function fk(·)(k ∈ {1, 2}) of network (1) is an odd function satisfying the Lipschitz condition

with ∆ = diag(1, 1). Hence, Assumption 2 is satisfied.

-1 -0.5 0 0.5
s

1
(t)

-2

0

2

4

s 2(t
)

Fig. 2. Chaotic trajectory of leader node (2).

Choose node 3 in Fig. 1 as pinned node with the pinning feedback gain d3 = 20 such that Assumption 3 holds. Some

simple calculations give min7i=1{Re(λi)} = 0.9088, where λi is the i-th eigenvalue of matrix H defined in (4).

We now investigate the bipartite synchronization of network (1) under pinning control algorithm (3) with differen-

tiable and non-differentiable node-delays, respectively. For t ∈ [−τ̄ , 0], let s(t) = (0.4, 0.6)T be the initial condition

of leader node (2), and choose the initial condition of each node in signed network (1) from [−0.2, 0.2]× [−0.2, 0.2],

where τ̄ is the bound for the node-delay to be given.

Case 1: Bipartite synchronization of network with a differentiable node-delay

Let τ(t) = 1/(1+e−t). It is easy to obtain 0 < τ(t) ≤ 1 and τ̇(t) = e−t/(1+e−t)2 ≤ µ = 0.25. According to condition

(6) in Theorem 1, choose α = 18 < 25 ×min7i=1 Re(λi) = 22.72. By using MATLAB’s LMI toolbox, one can verify

that LMI condition (5) is satisfied. Applying pinning control to node 3, the state evolutions of signed network (1)

and the leader node (2) are depicted in Fig. 3, where the dotted line denotes the variations of leader node (2). From

Fig. 3, one can clearly see that the signed network (1) achieves bipartite leader-following synchronization.

Remark 11 One can estimate an upper bound for the node-delay by Remark 5. Recall that α = 18 and δm =

max1≤k≤2{δk} = 1. Some simple calculations yield M = 2C + 2αI2 − (1/(1 − µ))δ2mI2 − ∆T∆ − AAT − BBT =

29.3967 9.7500

9.7500 7.3767


, whose eigenvalues are given by 3.6801 and 33.0932. Then, an upper bound of the node-delay is
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Fig. 3. Bipartite leader-following synchronization of signed network with a differentiable node-delay.

estimated to be τ̄ =
√
3.6801 = 1.9184, which means that the bipartite leader-following synchronization of signed

network (1) with algorithm (3) can be reached.

Case 2: Bipartite synchronization of network with a non-differentiable node-delay

Let τ(t) = 0.5 + 0.5| sin(t)|, whose upper bound is 1.0. However, τ(t) is not differentiable with respect to time t.

Considering Theorem 2, one can verify that LMI conditions (17) and (18) hold simultaneously with the help of

MATLAB’s LMI toolbox. Fig. 4 presents the variations of the states of signed network (1) and leader node (2),

indicating that the bipartite leader-following synchronization problem for signed network (1) is successfully solved

by pinning control algorithm (3).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

x i1
(t

) 
an

d 
an

d 
s 1(t

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(s)

-1

-0.5

0

0.5

1

x i2
(t

) 
an

d 
s 2(t

)

Fig. 4. Bipartite leader-following synchronization of signed network with a non-differentiable node-delay.

7 Conclusions

In this paper, we have studied the bipartite leader-following synchronization in a network of delayed neural networks

under signed graph based on pinning control strategy, where only a subset of nodes can access the information of the

leader. By using the property of M-matrix and the theory of algebraic graphs, we have established some conditions to

ensure that the bipartite leader-following synchronization problem of the signed network can be successfully solved.

Both differentiable and non-differentiable cases for the node-delay in the network have been considered by using

some techniques from delayed systems such as Jensen’s inequality and the reciprocally convex approach. Moreover,

when the node-delay is bounded and differentiable, a simple algebraic approach is given to estimate an upper bound

of the node-delay. Simulation results have been provided to validate the effectiveness of our theoretical analysis. It is

worth mentioning that the bipartite leaderless synchronization of the signed network has also been briefly discussed.
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For the coupled delayed neural networks in this paper, the signed interaction graph is assumed to be fixed and the

communication delay between neighboring nodes has not been considered. It would be of interest to investigate the

bipartite synchronization of coupled delayed neural networks with switching network topology and hybrid delayed

coupling in the near future.
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