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a b s t r a c t

Speech Emotion Recognition (SER) can be regarded as a static or dynamic classification problem, which
makes SER an excellent test bed for investigating and comparing various deep learning architectures.
We describe a frame-based formulation to SER that relies on minimal speech processing and end-to-end
deep learning tomodel intra-utterance dynamics.We use the proposed SER system to empirically explore
feed-forward and recurrent neural network architectures and their variants. Experiments conducted
illuminate the advantages and limitations of these architectures in paralinguistic speech recognition and
emotion recognition in particular. As a result of our exploration, we report state-of-the-art results on the
IEMOCAP database for speaker-independent SER and present quantitative and qualitative assessments of
the models’ performances.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, deep learning in neural networks has achieved
tremendous success in various domains that led to multiple
deep learning architectures emerging as effective models across
numerous tasks. Feed-forward architectures such as Deep Neural
Networks (DNNs) and Convolutional Neural Networks (ConvNets)
have been particularly successful in image and video processing as
well as speech recognition, while recurrent architectures such as
Recurrent Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) RNNs have been effective in speech recognition and natural
language processing (LeCun, Bengio, &Hinton, 2015; Schmidhuber,
2015). These architectures process and model information in
different ways and have their own advantages and limitations.
For instance, ConvNets are able to deal with high-dimensional
inputs and learn features that are invariant to small variations
and distortions (Krizhevsky, Sutskever, & Hinton, 2012), whereas
LSTM-RNNs are able to deal with variable length inputs andmodel
sequential data with long range context (Graves, 2008).

In this paper, we investigate the application of end-to-end deep
learning to Speech Emotion Recognition (SER) and critically ex-
plore how each of these architectures can be employed in this task.
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margaret.lech@rmit.edu.au (M. Lech), lawrence.cavedon@rmit.edu.au
(L. Cavedon).

SER can be regarded as a static or dynamic classification problem,
which has motivated two popular formulations in the literature
to the task (Ververidis & Kotropoulos, 2006): turn-based process-
ing (also known as static modeling), which aims to recognize emo-
tions from a complete utterance; or frame-based processing (also
known as dynamic modeling), which aims to recognize emotions
at the frame level. In either formulation, SER can be employed in
stand-alone applications; e.g. emotion monitoring, or integrated
into other systems for emotional awareness; e.g. integrating SER
into Automatic Speech Recognition (ASR) to improve its capabil-
ity in dealing with emotional speech (Cowie et al., 2001; Fayek,
Lech, & Cavedon, 2016b; Fernandez, 2004). Frame-based process-
ing is more robust since it does not rely on segmenting the input
speech into utterances and canmodel intra-utterance emotion dy-
namics (Arias, Busso, & Yoma, 2013; Fayek, Lech, & Cavedon, 2015).
However, empirical comparisons between frame-based processing
and turn-based processing in prior work have demonstrated the
superiority of the latter (Schuller, Vlasenko, Eyben, Rigoll, & Wen-
demuth, 2009; Vlasenko, Schuller, Wendemuth, & Rigoll, 2007).

Whether performing turn-based processing or frame-based
processing, most of the research effort in the last decade has been
devoted to selecting an optimal set of features (Schuller et al.,
2010). Despite the effort, little success has been achieved in real-
izing such a set of features that performs consistently over differ-
ent conditions and multiple data sets (Eyben, Scherer et al., 2015).
Thus, researchers have resorted to brute-force high-dimensional
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features sets that comprise many acoustic parameters in an at-
tempt to capture all variances (Tahon&Devillers, 2016). Such high-
dimensional feature sets complicate the learning process in most
machine learning algorithms, increase the likelihood of overfitting
and hinder generalization. Moreover, the computation of many
acoustic parameters is computationally expensive and may be dif-
ficult to apply on a large scale or with limited resources (Eyben,
Huber, Marchi, Schuller, & Schuller, 2015). Therefore, it is highly
pertinent to investigate the application of deep learning to SER
to alleviate the problem of feature engineering and selection and
achieve an SER with a simple pipeline and low latency. Moreover,
SER is an excellent test bed for exploring various deep learning ar-
chitectures since the task itself can be formulated inmultipleways.

Deep learning has been applied to SER in prior work, as dis-
cussed in Section 2. However, with different data subsets and un-
der various experiment conditions involved in prior studies, it is
difficult to directly compare various deep learning models. To the
best of our knowledge, our work provides the first empirical ex-
ploration of various deep learning formulations and architectures
applied to SER. As a result, we report state-of-the-art results on the
popular Interactive Emotional Dyadic Motion Capture (IEMOCAP)
database (Busso et al., 2008) for speaker-independent SER.

The remainder of this paper is divided into seven sections. In
the following section, related work is reviewed, highlighting re-
cent advances. In Section 3, a review of deep learning is presented
focusing on the architectures and methods used in this paper. In
Section 4, the proposed SER system is explained. In Section 5, the
experimental setup is described, depicting the data, its preprocess-
ing, the computational setup and the training recipe. Experiments
performed and their results are presented in Section 6 and dis-
cussed in Section 7. Finally, the paper is concluded in Section 8.

2. Related work

Work on SER prior to 2011 is well reviewed in the literature
(Ayadi, Kamel, & Karray, 2011; Petta, Pelachaud, & Cowie, 2011;
Ververidis & Kotropoulos, 2006). Since DNNs displaced Gaussian
Mixture Models (GMMs) for acoustic modeling in ASR (Hinton
et al., 2012; Mohamed, Dahl, & Hinton, 2012), researchers have
attempted to employ DNNs for other speech applications as well,
and specifically for SER. Stuhlsatz et al. (2011) proposed a DNN
Generalized Discriminant Analysis to deal with high-dimensional
feature sets in SER, demonstrating better performance than
Support Vector Machines (SVM) on the same set of features. In Li
et al. (2013) a hybrid DNN—Hidden Markov Model (HMM) trained
on Mel-Frequency Cepstral Coefficients (MFCCs) was proposed for
SER and compared to a GMM—HMM indicating improved results.
Han, Yu, and Tashev (2014) used a DNN to extract features from
speech segments, which were then used to construct utterance-
level SER features that were fed into an Extreme Learning
Machine (ELM) for utterance-level classification outperforming
other techniques. In Fayek, Lech, and Cavedon (2016a), a DNN
was used to learn a mapping from Fourier-transform based filter
banks to emotion classes using soft labels generated frommultiple
annotators to model the subjectiveness in emotion recognition
which yielded improved performance compared to ground truth
labels obtained by majority voting between the same annotators.

More recently, alternative neural network architectures for
SER were also investigated. Mao, Dong, Huang, and Zhan (2014)
used a ConvNet in a two-stage SER scheme that involves learning
local invariant features using a sparse auto-encoder from speech
spectrograms, processed using Principal Component Analysis
(PCA) followed by salient discriminative feature analysis to extract
discriminative features demonstrating competitive results. Tian,
Moore, and Lai (2015) compared knowledge-inspired disfluency
and non-verbal vocalization features in emotional speech against

a feature set comprising acoustic parameters aggregated using
statistical functionals, by using LSTM-RNNs as well as SVM, where
the former was shown to yield better results given enough data.

This study differs from prior studies in several ways. We focus
on a frame-based formulation for SER, aiming to achieve a sys-
tem with a simple pipeline and low latency by modeling intra-
utterance emotion dynamics. Moreover, most previous studies
relied on some form of high-level features, while in this paper we
strive for minimal speech processing and rely on deep learning to
automate the process of feature extraction. Furthermore, we use
uniform data subsets and experiment conditions promoting com-
parisons across various deep learning models, which has not been
investigated in previous studies.

3. Deep learning: An overview

Deep learning in neural networks is the approach of composing
networks into multiple layers of processing with the aim of
learning multiple levels of abstraction (Goodfellow, Bengio, &
Courville, 2016; LeCun et al., 2015). In doing so, the network can
adaptively learn low-level features from raw data and higher-level
features from low-level ones in a hierarchical manner, nullifying
the over-dependence of shallow networks on feature engineering.
The remainder of this section reviews the architectures, learning
procedures and regularization methods used in this paper.

3.1. Architectures

The two most popular neural network architectures are the
feed-forward (acyclic) architecture and the recurrent (cyclic)
architecture (Schmidhuber, 2015). Feed-forward neural network
architectures comprise multiple layers of transformations and
nonlinearity with the output of each layer feeding the subsequent
layer. A feed-forward fully-connected multi-layer neural network
— also known as Deep Neural Network (DNN) — can be modeled
by iterating over Eqs. (1) and (2):

h(l)
= y(l−1)W(l)

+ b(l) (1)

y(l)
= φ(h(l)) (2)

where l ∈ {1, . . . , L} denotes the lth layer, h(l)
∈ Rno is a vector of

preactivations of layer l, y(l−1)
∈ Rni is the output of the previous

layer (l − 1) and input to layer l,W(l)
∈ Rni×no is a matrix of

learnableweights of layer l, b(l)
∈ Rno is a vector of learnable biases

of layer l, y(l)
∈ Rno is the output of layer l, y(0) is the input to the

model, y(L) is the output of the final layer L and themodel, andφ is a
nonlinear activation function applied element-wise. The activation
function used in this paper for feed-forward architectures is the
Rectified Linear Unit (ReLU) as in Eq. (3) due to its advantages over
other activation functions, such as computational simplicity and
faster learning convergence (Glorot, Bordes, & Bengio, 2011).

φ(z) = max(0, z). (3)

To provide a probabilistic interpretation of the model’s output,
the output layer L utilizes a softmax nonlinearity instead of the
nonlinear function used in previous layers as in Eq. (4):

softmax(zk) =
ezk

K
k=1

ezk
(4)

where K is the number of output classes.
A popular variant of the feed-forward neural network architec-

ture is the Convolutional Neural Network (ConvNet) (LeCun et al.,
1990), which leverages three ideas: sparse interactions; parame-
ter sharing; and equivariant representations. This can be achieved
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by replacing the affine transformation in Eq. (1) with a convolu-
tion operation as in Eq. (5) and adding another layer called pooling,
which aims tomerge semantically similar features using a subsam-
pling operation such as maximization.

h(l)
= y(l−1)

∗ W(l)
+ b(l) (5)

where in this case, W(l)
∈ Rm×j×k is a tensor of m learnable

filters, each of which is of height j and width k. Following recent
work (He, Zhang, Ren, & Sun, 2016; Simonyan & Zisserman, 2015),
subsampling is performed in this work by adjusting the stride in
convolution layers rather than an explicit pooling layer.

The recurrent architecture extends the notion of a typical feed-
forward architecture by adding inter-layer and self connections
to units in the recurrent layer (Graves, 2008), which can be
modeled using Eq. (6) in place of Eq. (1). This makes such type of
architectures particularly suitable for tasks that involve sequential
inputs such as speech.

h(l)
t = y(l−1)

t W(l)
y + s(l)t−1W

(l)
s + b(l) (6)

where t denotes the time step, h(l)
t ∈ Rno is a vector of

preactivations of layer l at time step t, y(l−1)
t ∈ Rni is the output

of the previous layer (l − 1) at time step t and input to layer l
at time step t,W(l)

y ∈ Rni×no is a matrix of learnable weights of
layer l, s(l)t−1 ∈ Rno is the state of layer l at the previous time step
(t − 1),W(l)

s ∈ Rno×no is a matrix of learnable weights of layer l,
and b(l)

∈ Rno is a vector of learnable biases of layer l. For recurrent
architectures, sigmoid functions such as the logistic function as
in Eq. (7) and the hyperbolic tangent (tanh) function were used
as the activation function instead of ReLUs, as ReLUs amplify the
exploding gradient problem in recurrent architectures due to their
unbounded nature.

σ(z) =
1

1 + e−z
(7)

A popular variant of the recurrent architectures is the Long
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997),
which uses an explicit memory cell to better learn long-term
dependencies. An LSTM cell can be modeled using Eqs. (8)–(12):

i(l)t = σ

Wyiy

(l−1)
t + Whih

(l)
t−1 + Wcic

(l)
t−1 + b(l)

i


(8)

f(l)t = σ

Wyf y

(l−1)
t + Whf h

(l)
t−1 + Wcf c

(l)
t−1 + b(l)

f


(9)

c(l)
t = ftc

(l)
t−1 + it tanh


Wycy

(l−1)
t + Whch

(l)
t−1 + b(l)

c


(10)

o(l)
t = σ


Wyoy

(l−1)
t + Whoh

(l)
t−1 + Wcoc

(l)
t + b(l)

o


(11)

h(l)
t = o(l)

t tanh(c(l)
t ) (12)

where σ is the logistic sigmoid function in Eq. (7), and i, f, o and
c are the input gate, forget gate, output gate and cell activation
vectors respectively, all of which are the same size as the vector
h. The weight matrices from the cell to gate vectors, e.g. Wci, are
diagonals such that each element in each gate vector only receives
input from the same element of the cell vector (Graves, Mohamed,
& Hinton, 2013).

3.2. Learning

Learning is formulated as an optimization problem tominimize
a cost function. The cost function used in this paper is the cross-
entropy cost function in Eq. (13):

C = −

K
k=1

ŷk log(y
(L)
k ) (13)

where ŷ ∈ {0, 1}K is a one-of-K encoded label and y(L) is the output
of the model.

The gradients are computed by differentiating the cost function
with respect to the model parameters using a mini-batch of data
examples sampled from the training data and backpropagated to
prior layers using the backpropagation algorithm (Rumelhart, Hin-
ton, & Williams, 1986). Training recurrent architectures requires
modification to the backpropagation algorithm to compute the
gradients with respect to the parameters and states of the model,
which is known as the backpropagation through time algorithm
(Werbos, 1988).

Gradient descent or one of its variants is used to update the
parameters of the model using the gradients computed. A per-
parameter adaptive variant of gradient descent called RMSProp
(Dauphin, de Vries, & Bengio, 2015; Tieleman & Hinton, 2012) was
used in this paper, which uses gradient information to adjust the
learning rate as in Eqs. (14) and (15):

r := ηr + (1 − η)(∂C/∂w)2 (14)

w := w − α
∂C/∂w
√
r + ϵ

(15)

where r is a leaky moving average of the squared gradient and
η and α are hyperparameters denoting the decay rate and the
learning rate respectively.

3.3. Regularization

Deep architectures are prone to overfitting, which makes reg-
ularization an essential ingredient in their success. In this paper,
three regularization techniques were used: l2 weight decay, which
penalizes the l2 norm of theweights of themodel; dropout (Srivas-
tava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014), which
stochastically omits units in the model during training prevent-
ing co-adaptation of units; and Batch Normalization (BatchNorm)
(Ioffe & Szegedy, 2015),which aims to reduce the internal covariate
shift in deep architectures by normalizing the means and standard
deviations of layer preactivations as in Eq. (16):

BatchNorm(z(l)
; γ , β) = β + γ

z(l)
−E(z(l))Var(z(l)) + ϵ

(16)

where γ ∈ Rno , β ∈ Rno are model parameters that determine the
mean and standard deviation of the layer preactivations respec-
tively andE and Var are estimates of the sample mean and sample
variance of the normalized preactivations respectively.

Unlike l2 weight decay, which is employed by simplymodifying
the cost function, dropout and BatchNorm require modifying the
architecture of the model in that BatchNorm can be treated as an
additional layer added before the nonlinearity layer, while dropout
is applied after the nonlinearity layer.

4. Proposed speech emotion recognition system

Fig. 1 is a sketch of the proposed SER system which follows
a frame-based processing formulation that utilizes Fourier-
transform based filter bank speech spectrograms and a deepmulti-
layered neural network to predict emotion class probabilities for
each frame in the input utterance.

Let X ∈ RN×T be a speech utterance or speech stream sliced into
a time-series sequence of T frames, each of which is a RN vector of
audio features. The aim is to rely on minimal speech processing
and thus each frame is represented by Fourier-transform based
log Mel-scaled N filter banks. The goal of the model is to predict
p(yt |x), where x ∈ X is a number of concatenated frames,
xt−l∥ · · · ∥xt∥ · · · ∥xt+r , where xt is the target frame, l is the number
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Fig. 1. Overview of the proposed SER system. A deepmulti-layered neural network
composed of several fully-connected, convolutional or recurrent layers ingests a
target frame (solid line) concatenatedwith a number of context frames (dotted line)
to predict the posterior class probabilities corresponding to the target frame.

of past context frames and r is the number of future frames,
and yt is the predicted output for frame xt , which is either one
emotion class or silence. Silence was added to the output classes
since silence as well as unvoiced speech were not removed from
the input speech utterance as it has been shown that silence and
other disfluencies are effective cues in emotion recognition (Tian,
Lai, & Moore, 2015).

The proposed model is a deep multi-layered neural network.
We experiment with several neural network architectures as
presented in Section 6. It is important to note that the model is
able to deal with utterances of variable length, independent of
the choice of architecture since the model predicts p(yt |x), ∀t ∈

{1, . . . , T }: this only requires the target frame xt and past l and
future r context frames, which are fixed prior. Since emotions
manifest in speech in a slow manner, one may not necessarily
predict the class of every single frame in an utterance or speech
stream but may rely on predicting the class of a frame sampled
every few frames, depending on application requirements. The
output of the model may be aggregated over the entire utterance
to perform utterance-level classification if desired.

5. Experimental setup

In this section, we introduce the data and its preprocessing, the
computational setup and training recipe used in this paper.

5.1. Data and preprocessing

The popular Interactive Emotional Dyadic Motion Capture
(IEMOCAP) database (Busso et al., 2008) was used. It comprises
12 h of audio-visual recordings divided into five sessions. Each
session is composed of two actors, a male and a female, perform-
ing emotional scripts as well as improvised scenarios. In total, the
database comprises 10 039 utterances with an average duration
of 4.5 s. Utterances were labeled by three annotators using cate-
gorical labels. The database predominantly focused on five emo-
tions: anger, happiness, sadness, neutral and frustration; however,

annotators were not limited to these emotions during annotation.
Ground truth labelswere obtained bymajority voting,where 74.6%
of the utterances were agreed upon by at least two annotators. Ut-
terances that were labeled differently by all three annotators were
discarded in this study. To be consistent with other studies on the
same database (Kim, Lee, & Provost, 2013; Mariooryad & Busso,
2013; Shah, Chakrabarti, & Spanias, 2014), utterances that bore
only the following four emotions were included: anger, happiness,
sadness and neutral, with excitement considered as happiness.

An eight-fold Leave-One-Speaker-Out (LOSO) cross-validation
scheme (Schuller, Vlasenko et al., 2009) was employed in all
experiments using the eight speakers in the first four sessions.
Both speakers in the fifth session were used to cross-validate the
hyperparameters of the models and to apply early stopping during
training and therefore were not included in the cross-validation
folds so as to not bias the results (Refaeilzadeh, Tang, & Liu, 2009).

Audio was analyzed using a 25 ms Hamming window with a
stride of 10 ms. Log Fourier-transform based filter banks with 40
coefficients distributed on a Mel scale were extracted from each
frame. The mean and variance were normalized per coefficient for
each fold using themean and variance computed using the training
subset only. No speaker dependent operations were performed.

Since the datawas labeled at an utterance-level, all frames in an
utterance inherited the utterance label. A voice activity detector
was then used to label silent frames and silence was added as an
additional class to the four previously mentioned emotion classes;
i.e. a frame has either the same label as its parent utterance or the
silence label. The underlying assumption here is that frames in an
utterance convey the same emotion as the parent utterance, which
concurs with the same assumption made when a categorical label
was assigned to the entire utterance; nevertheless, this assumption
is eased by labeling silent and unvoiced frames as silence.

5.2. Computational setup

Due to the large number of experiments carried out in this
paper, several computational resources were exploited at differ-
ent stages. Some experiments were carried out on a cluster of
CPUs, while others were carried out using Graphics Processing
Units (GPUs) to accelerate the training process. The Kaldi toolkit
(Povey et al., 2011) was used for speech processing and analysis.
The neural networks and training algorithms were implemented
in Matlab and C. Training time varied significantly between dif-
ferent models with an average duration of 2 days; however the
largest model took 14 days to train on a GPU. The code is available
at http://github.com/haythamfayek/SER.

5.3. Training recipe

The parameters of the neural networks were initialized from
a Gaussian distribution with zero mean and

√
2/ni standard

deviation, where ni is the number of inputs to the layer, as
recommended by He et al. (2016). Mini-batch stochastic gradient
descent with a batch size of 256 and RMSProp per-parameter
adaptive learning rate were used to optimize the parameters with
respect to a cross-entropy cost function. The base learning rate
was set to α = 1 × 10−2 and annealed by a factor of 10 when
the error plateaus. The decay rate was set to η = 0.99. Fully-
connected layers were regularized using dropout with a retention
probability P = 0.5. Convolutional layers were regularized using
l2 weight decay with penalty λ = 1 × 10−3. LSTM layers were
regularized using dropout with a retention probability P = 0.5
and the gradients were clipped to lie in range [−5, 5]. BatchNorm
was used after every fully-connected or convolutional layer. The
validation set was used to perform early-stopping during training,
such that training halts when the learning rate reaches α = 1 ×

10−8; and the model with the best accuracy on the validation set
during training was selected. These hyperparameters were chosen
based on experimental trials using the validation set.

http://github.com/haythamfayek/SER
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Fig. 2. Test accuracy and UAR of a DNN with various number of context frames.

6. Experiments and results

As is standard practice in the field of automatic emotion
recognition, results are reported using Accuracy and Unweighted
Average Recall (UAR) to reflect imbalanced classes (Schuller, Steidl,
& Batliner, 2009). Both metrics are reported for the average of
the eight-fold LOSO cross-validation scheme. The output of the
model during evaluation was the class with the highest posterior
probability as in Eq. (17):

ℓt = argmax
k=1,...,K

p(yt |x) (17)

whereK = 5 is the number of output classes and ℓt is the predicted
label of frame t .

6.1. Feed-forward architectures

The first experiment was conducted to investigate the number
of context frames required for SER. We hypothesized that unlike
ASR, SER does not rely on future context but does require a large
number of past context frames. Therefore, themodelswere trained
in two configurations: (1) the first configuration was to predict
p(yt |x), where x is xt−c∥ · · · ∥xt∥ · · · ∥xt+c for various values of c ,
i.e. predict the class label of the center frame; (2) the second
configuration was to predict p(yt |x), where x is xt−c∥ · · · ∥xt for
various values of c , i.e. predict the class label of the final frame.
The model used in this experiment was a DNN with 5 hidden
layers; each was composed of 1024 fully-connected units with
BatchNorm, ReLU and dropout layers interspersed in-between and
a softmax output layer. This architecturewas selected based on the
best UAR on the validation set, whichwas excluded from the cross-
validation scheme. Fig. 2 is a plot of the test accuracy and UAR of
the model in both configurations for various numbers of context
frames.

Two observations are immediately evident from the results in
Fig. 2: (1) the performance of the system is directly proportional
to the number of context frames until it starts to plateau after
220 frames and (2) the future context has a minor contribution
to the performance of the system as hypothesized. Since a large
number of context frames lead to an increase in the dimensionality
of the input and may increase overfitting (as shown in Fig. 2),
a good trade-off between the number of context frames and the
performance of the system would lie between 2–3 s of speech.

ConvNets are able to learn features that are insensitive to small
variations in the input speech which can help in disentangling
speaker-dependent variations aswell as other sources of distortion

such as noise. Moreover, ConvNets are able to deal with high-
dimensional input, which in this case is due to the large number
of context frames required. In this experiment, we present
an in-depth exploration of various ConvNet architectures and
demonstrate the effect of the number of convolutional and fully-
connected layers, number of filters, size of filters and type of
convolution (spatial vs temporal) on the performance of the
system. Table 1 lists various ConvNet architectures and their
respective test accuracy and UAR. All experiments were conducted
using 259 past context frames and no future context frames,
which correspond to approximately 2.6 s of speech; i.e. the input
dimensionality is 40 filter banks × 260 frames.

From the results listed in the first segment of Table 1, the
benefit of network depth can be observed. The best results were
obtained using 2 convolutional layers followed by 2–3 fully-
connected layers. Adding more layers to the network did not yield
any performance gain and resulted in overfitting. The results in
the second segment of Table 1 demonstrate the effect of the filter
size on the performance of the model. It can be seen that similar
to other speech applications, SER requires a relatively large filter
with an optimal size of 10×10. Temporal convolution did perform
slightlyworse than spatial convolution as demonstrated in the final
segment of Table 1.

6.2. Recurrent architectures

In the next set of experiments, we investigate how LSTM-
RNNs can be employed for the proposed SER system. LSTM-RNNs
can be trained in several ways, such as Sequence-to-Sequence,
where a model is trained to ingest a sequence of frames and
output a sequence of class labels; or Sequence-to-One, where a
model is trained to ingest a sequence of frames and output a
class label. Sequence-to-Sequence trainingmay seem to be a better
fit to the proposed system; however, preliminary experiments
demonstrated the superiority of Sequence-to-One training, as
Sequence-to-Sequence training failed to converge in most cases
or had poor performance otherwise. Therefore, Sequence-to-One
training was used in our experiments: the model was trained to
ingest a sequence of frames, frame-by-frame, and predict a class
label for the final frame, p(yt |x), where x is xt−c∥ · · · ∥xt and c is
the number of context frames (sequence length).

LSTM-RNNs can handle sequences of arbitrary lengths. How-
ever, the effect of the sequence length, on which the model was
trained, on the ability of the model to handle arbitrary sequence
lengths is not well-studied. Hence, several models were trained
using various training sequence lengths {20, 60, 100, 200}, where
LSTM-RNN-c denotes the training sequence length c on which the
model was trained; it was then evaluated on a number of test se-
quence lengths {20, 60, 100, 200, 260, 300}. An extra model was
trained on sequence length c chosen randomly at each iteration
such that c ∈ {20, 60, 100, 200}, denoted LSTM-RNN-R. Themodel
used in this experiment was a 2-layered LSTM-RNNwith 256 units
in each hidden layer and dropout interspersed in-between and
a softmax output layer. This architecture was selected based on
the best UAR on the validation set, which was excluded from the
cross-validation scheme. Figs. 3 and 4 depict the accuracy and UAR
respectively of the LSTM-RNNs trained and evaluated on various
sequence lengths.

Results in Figs. 3 and 4 demonstrate a similar trend in that
models trained on short sequences did not perform as well on
long sequences and vice versa. In addition, noticeable gains in
performance could be achieved by increasing the number of
context frames (test sequence length). The best performance at
each test sequence length was obtained by the model trained on
the same sequence length and theperformance degraded gradually
as the test sequence length deviated from the training sequence
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Table 1
Test accuracy and UAR of various ConvNet architectures. FC(no) denotes a fully-connected layer of no units followed by BatchNorm, ReLUs
and dropout. Conv(m× j× k) and Conv1D(m× j× k) denote a spatial convolutional layer and a temporal convolutional layer respectively
ofm filters each of size j × kwith a stride of 2 followed by BatchNorm and ReLUs. Softmax(no) denotes a softmax output layer of no units
followed by a softmax operation.

Architecture Test Accuracy (%) Test UAR (%)

Conv(32 × 4 × 4) — FC(1024) — Softmax(1024) 62.27 58.30
Conv(32 × 4 × 4) — FC(1024)× 2 — Softmax(1024) 62.78 58.87
Conv(32 × 4 × 4) — Conv(64 × 3 × 3) — FC(1024) — Softmax(1024) 62.58 58.71
Conv(32 × 4 × 4) — Conv(64 × 3 × 3) — FC(1024)× 2 — Softmax(1024) 63.16 58.56
Conv(16 × 4 × 4) — Conv(32 × 3 × 3) — FC(716)× 2 — Softmax(716) 63.34 59.30
Conv(32 × 4 × 4) — Conv(64 × 3 × 3) — FC(1024)× 3 — Softmax(1024) 63.82 58.92
Conv(16 × 4 × 4) — Conv(32 × 3 × 3) — FC(716)× 3 — Softmax(716) 62.90 58.17

Conv(16 × 6 × 6) — Conv(32 × 6 × 6) — FC(716)× 2 — Softmax(716) 63.51 59.50
Conv(16 × 10 × 10) — Conv(32 × 10 × 10) — FC(716)× 2 — Softmax(716) 64.78 60.89
Conv(16 × 14 × 14) — Conv(32 × 14 × 14) — FC(716)× 2 — Softmax(716) 62.84 58.30
Conv(16 × 10 × 18) — Conv(32 × 10 × 18) — FC(716)× 2 — Softmax(716) 63.07 58.79

Conv1D(64 × 40 × 4) — FC(1024)× 2 — Softmax(1024) 62.41 58.38
Conv1D(64 × 40 × 8) — FC(1024)× 2 — Softmax(1024) 62.98 59.07
Conv1D(64 × 40 × 16) — FC(1024)× 2 — Softmax(1024) 62.91 58.49

Fig. 3. Test accuracy of an LSTM-RNN with various number of context frames.
LSTM-RNN-c denotes the sequence length which the model was trained on. The
no. of frames denotes the sequence length which the model was evaluated on.

Fig. 4. Test UAR of an LSTM-RNN with various number of context frames. LSTM-
RNN-c denotes the sequence length which the model was trained on. The no. of
frames denotes the sequence length which the model was evaluated on.

length. Moreover, by varying the sequence length when training
LSTM-RNN-R, the model did learn to perform well on various test
sequence lengths. On average, LSTM-RNN-100 yielded the best

UAR averaged over all test sequence lengths, followed by LSTM-
RNN-R.

7. Discussion

The number of context frames was a major contributing factor
in the performance of the system. All architectures benefited from
using a large number of context frames. Key to harnessing the in-
formation in these frameswithout overfittingwas using recent ad-
vances in regularization methods such as dropout and BatchNorm,
otherwise the accompanied increase in dimensionality of the input
data would have been problematic.

Table 2 lists the best model from each architecture and their
respective accuracy and UAR trained and evaluated under the
same data subsets and experiment conditions. As stated earlier,
SER can be regarded as a static or dynamic classification problem,
which makes it an excellent test bed for conducting a comparison
between these architectures. In this case, the ConvNet and theDNN
can be regarded in this formulation as static classifiers that process
a number of concatenated frames jointly to predict a class label,
whereas the LSTM-RNN can be regarded in this formulation as a
dynamic classifier that processes a sequence of frames, frame-by-
frame, to predict a class label. The results in Table 2 suggest that the
static component in speech ismore discriminative for SER than the
dynamic component. This is likely due to the dominant presence
of the linguistic aspect in the dynamic component of speech,
which hinders the recognition of paralinguistic components such
as emotions. We speculate that for this reason and due to the
ConvNet’s ability to learn discriminative features invariant to
small variations, the ConvNet yielded the best accuracy and UAR
followed by the DNN then the LSTM-RNN.

Trends in Table 1 and the best ConvNet architecture reported in
thiswork are similar to those reported in other speech applications
and particularly in ASR (Abdel-Hamid et al., 2014). This may pave
the way for a single architecture to be used in a multi-task setting
for speech processing (Fayek et al., 2016b).

Fig. 5 illustrates the output of the proposed SER system using
a ConvNet for a number of selected utterances, all of which
were from the test subset of the data. Qualitative assessment of
the system’s output indicates that the network has learned to
model the intra-utterance emotion dynamicswith high confidence
and is able to transition smoothly from one class to another,
capturing brief pauses and mixed emotions as shown in Fig. 5. It
is particularly interesting to note the system’s output in Fig. 5(e),
which has classified the first half of the utterance as neutral
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Table 2
Test accuracy and UAR for various network architectures.

Model Test Accuracy (%) Test UAR (%)

FC(1024)× 5 — Softmax(1024) 62.55 58.78
Conv(16× 10× 10) — Conv(32× 10× 10) — FC(716)× 2 — Softmax(716) 64.78 60.89
LSTM-RNN(256)× 2 - Softmax(256) 61.71 58.05

Fig. 5. Input speech utterances (top) and corresponding aligned output (below) of the proposed SER system for a number of utterances from the test subset. The output is
the posterior class probabilities p(yt ) denoting the confidence of the model. Transcripts: (a): Oh, laugh at me all you like but why does this happen every night she comes
back? She goes to sleep in his room and his memorial breaks in pieces. Look at it, Joe look.: Angry. (b): I will never forgive you. All I’d done was sit around wondering if I was
crazy waiting so long, wondering if you were thinking about me.: Happy. (c): OKay. So I am putting out the pets, getting the car our the garage.: Neutral. (d): They didn’t die.
They killed themselves for each other. I mean that, exactly. Just a little more selfish and they would all be here today.: Sad. (e): Oh yeah, that would be. Well, depends on
what type of car you had, though too. I guess it would be worth it. helicopter. Yeah, helicopter. There is a helipad there, right? Yeah, exactly.: Happy.

and the second half of the utterance as happy conforming to
our manual inspection, whereas the database annotators assigned
the happy label to the entire utterance. In some cases, as in
Fig. 5(d,e), the system did not predict the correct output class with
high confidence across the entire utterance, which may suggest
that a smoothing function over the network may offer additional
improvements in some cases; however, this is beyond the scope of
this work.

To compare the results reported in this paper with prior
work in the literature, which mostly relies on utterance-based
classification, the posterior class probabilities computed for each
frame in an utterance were averaged across all frames in that
utterance and an utterance-based label was selected based on the
maximum average class probabilities, ignoring the silence label, as
per Eq. (18):

ℓu = argmax
k=1,...,K

T
t=1

p(yt |x)

T
(18)

where K = 4 is the number of output classes, i.e. ignoring the
silence class, and ℓu is the utterance-level predicted label.

Table 3 shows the SER results reported in prior work on the
IEMOCAP database. Note that differences in data subsets used and
other experiment conditions should be taken into consideration
when comparing these results against each other, c.f. Han et al.
(2014), Lee, Mower, Busso, Lee, and Narayanan (2011), Mariooryad
and Busso (2013) and Shah et al. (2014) for more details. As can
be seen from Table 3, the proposed SER system outperforms all
other speaker-independent methods. In addition, the proposed
SER system offers other advantages such as real-time output since
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Table 3
SER results reported in prior work on the IEMOCAP database. Note that differences in data subsets used and other experiment conditions should be taken into consideration
when comparing the following results against each other, c.f. references for more details.

Method Test Accuracy (%) Test UAR (%) Notes

DNN + ELM (Han et al., 2014) 54.3 48.2 –
SVM (Mariooryad & Busso, 2013) 53.99 50.64 Better performance was reported by incorporating other modalities.
Replicated Softmax Models + SVM (Shah et al.,
2014)

– 57.39 Better performance was reported by incorporating other modalities.

Hierarchical Binary Decision Tree (Lee et al.,
2011)

– 58.46 Speaker-Dependent Normalization

Proposed SER system (Utterance-Based) 57.74 58.28
Proposed SER system (Frame-Based) 64.78 60.89

it does not depend on future context. Moreover, the system is able
to deal with utterances of arbitrary length with no degradation in
performance. Furthermore, the system can handle utterances that
contain more than an emotion class, as demonstrated in Fig. 5(e),
which would not be possible in an utterance-based formulation.

8. Conclusion

Various deep learning architectures were explored on a Speech
Emotion Recognition (SER) task. Experiments conducted illumi-
nate how feed-forward and recurrent neural network architectures
and their variants could be employed for paralinguistic speech
recognition, particularly emotion recognition. Convolutional Neu-
ral Networks (ConvNets) demonstrated better discriminative
performance compared to other architectures. As a result of our
exploration, the proposed SER system which relies on minimal
speech processing and end-to-end deep learning, in a frame-
based formulation, yields state-of-the-art results on the IEMOCAP
database for speaker-independent SER.

Future work can be pursued in several directions. The proposed
SER system can be integrated with automatic speech recognition,
employing joint knowledge of the linguistic and paralinguistic
components of speech to achieve a unified model for speech
processing. More generally, observations made in this work as a
result of exploring various architectures could be beneficial for
devising further architectural innovations in deep learning that can
exploit advantages of currentmodels and address their limitations.
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