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 
Abstract—Reliable data delivery in the Internet of Things (IoT) 

is very important in order to provide IoT-based services with the 
required quality. However, IoT data delivery may not be 
successful for different reasons, such as connection errors, 
external attacks, or sensing errors. This results in data 
incompleteness, which decreases the performance of IoT 
applications. In particular, the recovery of missing data among 
the massive sensed data of the IoT is so important that it should be 
solved. In this paper, we propose a probabilistic method to 
recover missing (incomplete) data from IoT sensors by utilizing 
data from related sensors. The main idea of the proposed method 
is to perform probabilistic matrix factorization (PMF) within the 
preliminary assigned group of sensors. Unlike previous PMF 
approaches, the proposed model measures the similarity in data 
among neighboring sensors and splits them into different clusters 
with a K-means algorithm. Simulation results show that the 
proposed PMF model with clustering outperforms support vector 
machine (SVM) and deep neural network (DNN) algorithms in 
terms of accuracy and root mean square error. By using 
normalized datasets, PMF shows faster execution time than SVM, 
and almost the same execution time as the DNN method. This 
proposed incomplete data–recovery approach is a promising 
alternative to traditional DNN and SVM methods for IoT 
telemetry applications.  

 
Index Terms: Internet of Things (IoT), recovery of missing 

sensor data, probabilistic matrix factorization, massive sensed 
data 

I. INTRODUCTION 

UE to advancements in information technology, the 
Internet of Things (IoT) has been emerging as the next big 

thing in our daily lives. It is defined as a global network with an 
infrastructure that has self-configuring capabilities [1]. The IoT 
is an intelligent network that connects billions of things via the 
Internet by using a variety of communications technologies, 
such as conventional Long Term Evolution (LTE), Wi-Fi, 
ZigBee, wireless sensor networks (WSNs), Ethernet, as well as 
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specially developed Internet Protocol Version 6 (IPv6) over 
low-power wireless personal area networks (6LoWPAN), the 
low-power wide area network from the LoRa Alliance 
(LoRaWAN), LTE machine type communications 
(LTE-MTC), narrowband IoT (NB-IoT), and many other 
communications technologies. Therefore, the IoT is rapidly 
transforming into a highly heterogeneous ecosystem that 
provides interoperability among different types of devices and 
communications technologies.  

The IoT achieves the goal of intelligent identification, 
location, tracking, monitoring, and managing of things [2]. It 
also creates additional value for a better life by sharing the 
information collected among different things, and it integrates 
and consolidates services at the edge using different IoT 
gateways. IoT implementation requires new solutions to 
integrate different physical objects (things) into a global IoT 
ecosystem so that all of them can be identified and recognized 
automatically. To achieve this, we need a reliable transmission 
medium to communicate among things, and an intelligent 
processing tool, such as cloud or fog computing, to generate 
additional value from IoT applications.  

According to recent analytics, we expect more than 
100 billion IoT devices by 2025, whereas global financial 
revenue from the IoT will grow from US$3.9 trillion to 
US$11.1 trillion [3]. However, with its future implications, the 
IoT brings substantial challenges, such as security, privacy, and 
reliability, which need to be considered as well [4, 5]. 

IoT applications collect a huge amount of data from all 
connected sensors. When some of the sensors do not send their 
measured data to the cloud database, the performance of related 
applications decreases. Missing data values affect the decision 
making process for application servers that are used for a 
specific task. The resulting errors can be significant for the next 
steps in data processing. For example, in modern metropolitan 
transportation systems, missing values will cause big problems 
in determining the current locations of trains and buses. This 
may cause many dangerous situations, especially in subway 
systems, where any wrong decision could result in a collision 
[6]. Therefore, the missing values from sensors need to be 
recovered to resolve such issues, and provide better data output 
based on previous patterns or data from neighboring sensors.  

In this paper, we propose a new approach to recovering 
missing data in IoT outdoor and indoor telemetry systems. Our 
approach implements a K-means clustering algorithm to 
separate sensors into different groups. The main goal of 
clustering is to ensure that sensors within one group will have 
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similar patterns of measurement. After clustering, we apply a 
probabilistic matrix factorization (PMF) algorithm within each 
cluster. Since the sensors are grouped according to similarity in 
their measurements, it is possible to recover missing sensor 
data by analyzing patterns of neighboring sensors. To improve 
the performance of data recovery, we enhance the PMF 
algorithm by normalizing the data and limiting the probabilistic 
distribution of random feature matrices.  

The rest of this paper is organized as follows. Section 2 
discusses related work. Section 3 covers a detailed description 
of the proposed method. Section 4 presents simulation results 
and a performance analysis of the proposed method against 
existing solutions. Section 5 concludes the research. 

II. RELATED WORK 

In the modern IoT paradigm, data integrity becomes the most 
important aspect that influences the overall performance of any 
system. The IoT is used for many critical applications, such as 
telemetry in hazardous environments, control of industrial 
processes, e-Health, smart transportation systems, national 
security, etc. Recently, IoT was used also for the network 
monitoring to manage the performance of 5G heterogeneous 
networks under variable conditions [7].  

Each of these applications has strict requirements for data 
integrity, correctness, and on-time delivery. However, there are 

many issues that can cause problems with data in the IoT. For 
example, data can be incomplete due to intrusion attacks, 
connection errors, or problems with the measuring sensors.  

The problem of missing data from sensors has been widely 
known in wireless sensor networks (WSNs) for a long time. 
There are many solutions to recover missing data in WSNs, but 
all of them require a direct connection between sensor nodes 
[8]. Li and Parker [9] proposed a spatial-temporal replacement 
scheme to recover missing data by considering the nature of a 
WSN. Their approach uses neighboring sensor readings if a 
target node has no readings. Therefore, if the neighboring node 
detects a change, it is very likely that there are some changes in 
the environment. Gruenwald and Halatchev proposed a similar 
approach, where the authors also recover missing values by 
utilizing data from neighboring nodes [10]. However, their 
approach is more advanced, because they introduced a 
window-association rule-mining algorithm to determine the 
sensor node that is related to the sensor node with the missing 
value. However, this approach determines the relation between 
only two sensor nodes. In order to overcome this limitation, 
they proposed a data estimation technique by using closed 
itemset-based association rule mining that can determine the 
relations between two or more sensors to recover missing 
values [11]. 

 
Fig. 1. Sensor usage in the IoT infrastructure. 

 
In this paper, we focus mostly on a centralized IoT system 

where each sensor is connected to the network independently, 
and there are no direct connections between sensors. Fig. 1 
illustrates the system model of the centralized IoT system. As 
shown in Fig. 1, data from location 1 are missing due to a 
connection problem, while data from sensors in location 2 are 
sent without problem to the desired application servers. By 

clustering sensors that have a minimal distance, it is possible to 
recover missing sensor data from other sensors in the cluster. In 
order to use an imputation scheme that utilizes time and space 
information, several algorithms for estimating missing sensor 
data have been proposed so far.  

The simplest method is mean substitution, which imputes the 
average value of all non-missing values to replace the missing 
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value. However, mean substitution does not preserve the 
relation between variables, and thus, does not provide correct 
estimations in most cases [17]. Other promising approaches for 
prediction are the deep neural network (DNN) [19], and the 
support vector machine (SVM) [20]. Both of these approaches 
show excellent results in recommendation systems while 
solving classification tasks. However, their application to our 
task of missing-data recovery meets a number of problems. The 
main problem in both DNNs and SVMs is that they classify a 
set of data into different groups. Then, missing data are 
recovered by estimating the corresponding group where 
missing values may belong. Thus, the error between the 
predicted value and the actual value is quite large, because the 
estimated value is rounded to the nearest group.  

Much more feasible for the current problem is the 
probabilistic matrix factorization method. PMF is a Bayesian 
probabilistic approach to factoring a big matrix into two 
matrices. PMF has been proven to give good results in 
recommendation systems, with an error 7% lower than that of 
the Netflix movie recommendation system [21, 22]. However, 
there are still some remaining challenges when applying PMF 
to the missing data–recovery problem. First, the complexity 
increases exponentially with increases in the matrix size. 
Second, the overfitting problem may occur when the algorithm 
is trying to minimize an error that results in a loss of generality. 
In this paper, we overcome these drawbacks with PMF 
algorithms by using preliminary clustering data normalization 
and matrix regularization.  

III.  PROPOSED METHOD 

A. Clustering sensors with a K-means algorithm 

 Considering the huge amounts of data collected in IoT 
systems, it may be tricky to recover missing values in big data 
arrays. Due to the nature of an IoT monitoring system, there is 
always some degree of similarity among measured values of 
neighboring sensors. Therefore, we first divide the sensors into 
different groups to minimize the variation in measured values 
within these groups. In our model, we use a K-means clustering 
algorithm, which gives a good grouping for rectangular and 
rounded areas. K-means is an unsupervised clustering 

algorithm that divides a set of points into K clusters, so that the 
points in each cluster tend to be near each other [18]. In our 
experiment, all sensors are located in a room inside a building. 
Therefore, it is convenient to apply a K-means algorithm to 
cluster neighboring sensors. 
 Step 1. Define  1 2, ,..., NX x x x as a set of N sensor 

locations that need to be clustered, and  1 2, ,..., KC c c c  as a 

set of K target cluster centers. Then, place cluster centers M 
uniformly within the target field of sensors X. 
 Step 2. Associate each sensor in X to the nearest cluster 
center (centroid) from set C by using criteria of the shortest 
distance: 

  2

1

arg min , 1, ,k

i k
k K

C x c i NX
 

        (1) 

     1 2, ,..., ,  1, ,  kC
n kX x x x n N C C    

 Step 3. For each cluster  kCX obtained from (1), compute 
the cluster mean as follows: 

1 , 1, , .

n

i
i

k

x
m k K

n
 


       (2) 

 Step 4. Assign new locations of cluster centers C according 
to the new values calculated in (2): 

   1 1 2 2, ,..., K KC C c m c m c m       (3) 

 Step 5. Check the difference between new and previous 
locations of cluster centers: 

1

K

i i
i

C C C m c


           (4) 

 Step 6. Iterate steps 2, 3, 4, and 5 until the following 
condition is satisfied: 

0C            (5) 
 Condition (5) is a convergence criterion that indicates 
clustering is complete, because further iterations will not 

change current sensor groups  kCX .  
Figure 2 describes the procedure in one iteration of steps 1 

to 5. Different colors for the sensor points indicate membership 
in different clusters. 
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 Fig. 2. Iteration of K-means clustering algorithm: a – step 1, b – steps 2 and 3, c – steps 4 and 5. .
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B. Probabilistic matrix factorization to recover the missing 
data in each cluster 

 In general, PMF is used to decompose a single matrix into a 
product of two matrices. Application of PMF to the IoT has two 
main advantages. First, PMF allows us to decrease the total 
number of stored values for big-data arrays due to the lower 
dimensionality of the resulting matrices after factorization. 
This advantage is achieved only if the original matrix has large 
dimensions. For small matrices, PMF may result in an even 
higher number of values after factorization. The second 
advantage with PMF is introduced in this paper. Since PMF has 
a property to obtain the original matrix by computing a product 
of two matrices, we can also use this property to recover 
missing values in the original matrix. In this paper, we apply 
the probabilistic matrix factorization model to recover the 
missed data points for each cluster. The PMF process for 
missing-data recovery is described below.  
 Step 1. Represent the original dataset as matrix R with 
dimensions [NxM]: 

11 1

1

M

N NM

R R

R R

 
   
 
 

R



  



        (6) 

 Step 2. Generate random U [NxK] and V [KxM] matrices, so 
that: 

11 1
T

1

M

N NM

R R

R R

  
      
   

R U V



  



       (7) 

 It is important that matrices (6) and (7) have exactly the same 
dimensions in order to ensure correct output from missing data 
recovery. K represents the number of latent feature 
column-vectors in U and V, which determines the flexibility of 
the PMF process. Note that K can be any integer, because it 
does not have any impact on the resulting dimensions of matrix 
R. However, it does have an impact on PMF performance, 
which will be studied further in this paper. 
 Step 3.  Define the missing data points as identity matrix I, 
which has the same dimensions [NxM] as original matrix R: 

         
11 1

1

M

N NM

I I

I I

 
   
 
 

I



  



 

Values in I are defined according to the following rule: 
1,  if  is a known value

0,  if  is a missing value
ij

ij
ij

R
I

R

 


 

 Step 4. Calculate the root mean square error (RMSE) 
between original matrix R and recovered matrix R: 

 
2

1 1

N M
T

ij ij i j
i j

RMSE I R U V
 

        (8) 

 Step 5. Compare the RMSE value calculated in (8) with 
maximum acceptable error RMSEmax: 

 maxRMSE RMSE         (9) 

 If condition (9) is satisfied, the PMF algorithm is complete. 
Otherwise, proceed to Step 6.  
 Step 6. Update the values of U and V as follows: 

ij
i i

i

ij
j j

j

RMSE
U U

U

RMSE
V V

V





   



   



      (10) 

where the α – slope value defines how much the values in U and 
V need to be adjusted. Steps 4, 5, and 6 are iterated until 
condition (9) is satisfied. Note, that the correct value of α is 
very important in order to achieve a good tradeoff between 
precision and convergence time. Too large a value for α may 
result in low precision, because RMSE will jump around the 
target point RMSEmax. On the other hand, too small a value for α 
will result in a many unnecessary iterations before RMSE 
approaches the value that satisfies condition (9). Fig. 3 shows a 
comparison of PMF performance for different values of α. 

 
Fig. 3. Comparison of PMF convergence time for different values of α. 

 

 As shown in Fig. 3, for α=0.001 the PMF algorithm 
converges to zero RMSE in less than 200 iterations; for 
α=0.0001, convergence takes approximately 1400 iterations, 
while for α=0.00001, even after 2000 iterations, RMSE is still 
far from zero. These results clearly prove the importance of a 
correct α value for good performance from PMF. 
 In Fig. 4, similar simulation results show the impact of the 
number of latent feature vectors on PMF convergence time.  

 
Fig. 4. Comparison of PMF convergence time for different numbers of latent 

feature vectors K. 
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 As shown in Fig. 4, a higher number of latent feature vectors 
decreases convergence time due to the higher number of values 
in U and V, which can be adjusted to approach the target 
RMSE. However, this is true only until K matches the 
dimensions M and N. If the number of latent feature vectors is 

equal to the number of vectors in original matrix R, further 
increasing K does not provide any advantage in terms of 
convergence time. The entire data recovery process is 
described in Fig. 5.  
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 Fig. 5. Data recovery by PMF algorithms: a – random matrices generation, b – exclusion of missing values, c – RMSE calculation, and d – completed matrix. 

C. Extended PMF approach to improve the precision of data 
recovery 

 In this section, we extend the PMF approach described above 
by including additional parameters in order to improve 
precision and decrease the complexity of the proposed 
algorithm. We introduce feature scaling to normalize our 
experimental data. The most convenient way to normalize the 
data is to rescale them into a range from 0 to 1, where 0 is the 
lower bound of the expected measured value, and 1 is the 
highest bound. Data normalization allows us to simplify the 
PMF process by limiting the range of possible values measured 
by sensors. Feature scaling allows us to improve the 
convergence time with PMF, because all feature vectors will 
have the same weight regardless of the type of sensed data.  

After data normalization, we assume that data in matrix R 
follow a Gaussian distribution with mean value μ and standard 
deviation σ, which reflects the uncertainty of the estimations: 

 ,N    

Therefore, we place zero-mean Gaussian priors on U and V 
feature vectors, i.e. each row of U and V is a multivariate 
Gaussian with mean μ=0 and precision that is some multiple of 
identity matrix I. Those multiples are σU for U and σV for V. 

   2 2

1

| | 0,
N

U i U
i

P U N U I 


       (11) 

   2 2

1

| | 0,
N

V i V
i

P V N V I 


        (12) 

The priors in equations (11) and (12) ensure that latent 
variables of U and V will not grow too far from 0. This prevents 

overly strong values of U and V matrices. Without limitation of 
the values in U and V, the convergence time with PMF will 
increase from more iterations, and higher complexity is the 
result.  

Taking into account prior distributions in equations (11) and 
(12), the conditional distribution over the observed sensor data 
is represented as follows: 

   2 2

1 1

| , , | ,
ij

N M I
T

ij i j
i j

P R U V N R U V 
 

      
     (13) 

In order to minimize the RMSE, we need to maximize the log 
posterior in equation (13), i.e. to ensure that obtained 
distribution of values U∙VT matches the prior distribution of 
values in original matrix R. Note that missing elements do not 
affect the prior and posterior distribution in equation (13), 
because they are excluded by multiplication with identity 
matrix I.  

To improve the performance of PMF with sparse matrices, 
we use matrix regularization to avoid the overfitting problem. 
Overfitting means that the algorithms performs very well on the 
training dataset due to the high precision of feature vectors U 
and V. However, testing-dataset performance is much worse 
due to the loss of generality. In other words, a recovered matrix 
reflects known values very precisely, but missing data values 
approach zero, because the training dataset has been multiplied 
with identity matrix I. Therefore, by avoiding overfitting, we 
make the proposed PMF approach better suited to the problem 
of missing-data recovery due to a more generalized output. 

To avoid data overfitting, we fix the variance parameters σ, 
σU, and σV as constants, and reduce the optimization problem to 
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a least-squares matrix completion problem with quadratic 
regularization: 
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where ||U|| and ||V|| are Frobenius norms defined as the square 
roots of the sum of the absolute squares of matrix elements: 
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The objective function in equation (14) can be minimized using 
the method of steepest descent. In order to make learning 
easier, we fix the variance parameters and update matrices U 
and V as explained in equation (10). 

The parameters λU and λV in regularization terms of equation 
(14) are used to control the magnitudes of updated matrices U 
and V, which should give a good approximation of R without 
containing very large numbers. Minimizing the objective 
function in equation (14) gives a local minimum. The solution 
to (14) can also be found by maximum a posteriori (MAP) 
estimate, because the values of U and V, which give the 
minimum RMSE, will always give the solution to the MAP 
estimate: 

    arg max | , minP R U V RMSE
R

   (16) 

The proposed algorithm starts with determination of the 
relations between different sensors in order to reduce the 
dimensionality of data. For this, we apply the K-means 
clustering algorithm described in Section 3A. By using the 
criteria of sensor proximity, we make an assumption on the 
similarity of their measurements. When sensors are clustered to 
the corresponding groups, our enhanced PMF algorithm is 
applied independently for each group. 

PMF starts with data normalization to reduce the complexity 
in further calculations. Then, the number of latent features is 
selected depending on the convergence requirements, as shown 
in Fig. 4. When the number of latent features is determined, two 
corresponding matrices, U and V, are generated to satisfy 
equation (7). The values of U and V follow a Gaussian 
distribution, as explained by equations (11) and (12). Then, we 
define the locations of missing values by identity matrix I. 

In order to approach the target missing values, the main 
problem of finding the minimum RMSE value between the 
predicted and the original data points needs to be solved for 
each cluster.  

When the algorithm measures RMSE, the slope value α is 
determined in order to adjust the step for updating the U and V 
matrices, as explained by equation (10). The main loop 
continues until minimum RMSE in equation (14) is satisfied. 
Then, original matrix R is complemented with missing values 
obtained from recovered matrix R. The flowchart of the 
algorithm explained above is shown in Fig. 6. 

Start

Define the number and 
locations of sensors

K-means clustering

… …1 Ki

Normalization of data 
within the cluster

Define the number of 
latent features

Generate the matrices U and V
with Gaussian distribution

Define the missing data 
points in identity matrix I

Calculate the RMSE between 
original matrix R and 
recovered matrix R

Complete the matrix R with 
recovered missing values

Update U and V
matrices

min(RMSE)?
Define the 

slope value α

End

No

Yes

 
Fig. 6. A flowchart of the proposed missing data recovery algorithm. 

 

IV. EXPERIMENTAL RESULTS 

A. Explanation of the dataset used for simulation 

For our experimental simulation, we used data collected 
from different sensors deployed in the Intel Berkeley Research 
Laboratory from February 28 to April 5, 2004 [23]. Sensor 
measurements were taken every 30 seconds. The sensors were 
arranged in a laboratory that has different rooms, including a 
server room, a laboratory, a kitchen, storage rooms, and offices. 
The area of the Intel Berkley Research Laboratory is 30 meters 
by 40 meters, and a total of 54 Mica2Dot sensors were used to 
gather temperature, humidity, light intensity, and voltage 
values. At each location, the Mica2Dot sensors measured all 
four parameters. Data were collected using the TinyDB 
in-network query processing system implemented on the 
TinyOS platform. The data collected from all sensors were 
merged into one big dataset that contains 2,313,682 rows 
(~150 MB). A sample of the data is in Table I.  
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Fig. 7. Sensor locations and clustering in the Intel Berkeley Research Laboratory. 

Fig. 7 shows the locations of sensors and their clustering into 
14 groups in the Intel Berkeley Research Laboratory. Sensors 
within each cluster are enclosed by solid lines. PMF was 
applied for data values of sensors within each cluster group. 
The main reason for clustering the sensors is to find similarity 
between their measurements that can be further exploited to 
find missing sensor data. Fig. 8 shows temperature 
measurements from sensors in two clusters. Here, sensors 25 
and 26 are in the first cluster (dashed and dash-dotted lines) and 
sensors 9 and 10 are in a second cluster (solid and dotted lines). 
As observed in Fig. 8, the measurements of sensors within one 
cluster follow very similar patterns, whereas between clusters 
the difference is much higher.  

Thus, when there are missing values inside one cluster, we 
can estimate them from neighboring nodes within the same 
cluster group. In order to enhance the proposed approach, a 
series of clusters was generated, starting from three groups and 
increasing up to 20 groups. 

For the given area in Fig. 7, the K-means algorithm was used 
to generate a list of neighboring clustered sensors based on 
their locations, i.e., the x and y coordinates relative to the upper 
right corner of the lab. This approach allows the PMF algorithm 
to work inside one cluster among closely related sensors. Other 
sensors that are outside the cluster boundaries are not 
considered under PMF. The prediction output of the PMF 
model will improve as the number of cluster groups increases 
(closer relations among sensors clustered into a single group). 

The total number of sensors inside each cluster varied 
depending on the generated list of sensors by using the 
K-means clustering algorithm. The PMF algorithm was applied 
inside each group. For example, in cluster 14, there are 
different, yet closely related, sensors that are clustered together. 
These sensor readings are organized to create a matrix that will 
be used for the PMF model. Having k=20 clusters means that 
the area is partitioned into 20 ideal groups of sensors. 

TABLE I 
DATA SAMPLE OBTAINED IN THE INTEL BERKELEY RESEARCH LABORATORY. 

Date Time Sensor ID Temperature (C˚) Humidity (%) Light (Lux) Voltage (V) 

2/28/2004 1:20:17 AM 49 17.4796 39.9929 121.44 2.66332 

2/28/2004 1:22:46 AM 49 17.46 40.0268 121.44 2.67532 

2/28/2004 1:11:46 AM 50 16.676 42.6516 79.12 2.66332 

2/28/2004 1:12:17 AM 50 16.6956 42.5847 79.12 2.66332 

2/28/2004 1:11:47 AM 51 17.7246 39.7896 136.16 2.67532 

2/28/2004 1:12:17 AM 51 17.705 39.8235 136.16 2.67532 

… … … … … … … 

 



2327-4662 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2730360, IEEE
Internet of Things Journal

 8

 
Fig. 8 Comparison of the measurements within and among clusters.  

 
B. Simulation parameters and results 

First, we make 10% of the total data empty. The empty 
dataset will be used to test the accuracy of the sensed data 
values, compared to the original values. Using PMF, the latent 
vectors are generated inside each selected cluster using the 
remaining 90% of the sensed data values as a training set. After 
getting the latent vectors, it is possible to reconstruct the 
missing data and complete the original matrix. Comparing the 
generated values from the PMF with the original data gives 
insight into the accuracy of the algorithm. We computed the 
difference between the predicted values and the original values 
inside each cluster to get the maximum error between them. 
The cluster that gives the lowest RMSE, and also the lowest 
average difference between the generated and original data, 
will be the optimal solution. It is also clear that more dispersed 
sensor locations within a group results in less accurate 
prediction of missing values. 

We compared the output of the recovered sensor data with 
existing algorithms: a support vector machine with linear and 
radial basis function (RBF) kernels, and a deep neural network 
with two and three hidden layers. In order to adjust the recovery 
problem to the SVM and the DNN, we altered the data 
classification problem. Each data value was converted into a 
discrete class value in the range from 0 to 1 with increments of 
0.1. Thus, 11 classes were generated to fit normalized sensor 
measurements into a classification problem (see Table II). After 
discretizing the data, SVM and DNN algorithms used 90% of 
the data as a training set and the remaining 10% as a test set for 
algorithm accuracy. 

Fifty-four sensors were clustered into different numbers of 
groups starting between 3 and 20, and PMF output was 
compared for all cases. Fig. 9 shows the simulation results for 
the maximum prediction error in different numbers of clusters. 
According to the obtained results, the maximum error 
decreases by increasing the number of clusters. This result 
confirms the theoretical expectations that a higher number of 
clusters will increase accuracy owing to lower differences 
between the measurements within smaller groups of sensors. 

 
 

 
Fig. 9. Maximum prediction error of PMF for different numbers of 

clusters. 

Simulations were conducted by using Python 2.7.9 in the 
PyCharm4 Community Edition development environment. The 
“scikit-learn” package for Python has been used to solve the 
classification problem by SVM and DNN methods [24]. For all 
methods, we used 90% of the data as a training set, and 10% of 
the data as a test set. Two implementations of SVM, with linear 
and RBF kernels, were compared. DNN models with two and 
three hidden layers were compared, with 100 nodes per hidden 
layer. The learning rate of the DNN was set to 0.001. A 
rectified linear unit function was used for activation of the 
DNN model.  

Comparative-test results of the predicted sensor data values 
and the original data values show that the data recovery 
accuracy of the proposed method is very high, compared to the 
SVM (linear & RBF kernels) and neural network methods. The 
maximum error between actual and predicted values gradually 
decreases as the number of cluster groups increases, as shown 

TABLE II 
CLASS ASSIGNMENT FOR SVM AND DNN ALGORITHMS. 

Class ID Data range 
(normalized) 

Class 

1 [0.00, 0.05] 0.0 

2 (0.05, 0.15] 0.1 

3 (0.15, 0.25] 0.2 

4 (0.25, 0.35] 0.3 

5 (0.35, 0.45] 0.4 

6 (0.45, 0.55] 0.5 

7 (0.55, 0.65] 0.6 

8 (0.65, 0.75] 0.7 

9 (0.75, 0.85] 0.8 

10 (0.85, 0.95] 0.9 

11 (0.95, 1.00] 1.0 
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in Fig. 10. The PMF method enhances the complementarities 
between sensors by imputing the most appropriate data values, 
and it improves the reliability of the monitoring application. 

Fig. 10. Comparison of RMSE for different models. 

The accuracy of the PMF model compared to SVM and 
DNN models is shown in Fig. 11. According to the obtained 
simulation results, the PMF model outperforms both SVM and 
DNN models. The reason for this huge gap in RMSE for both 
SVM and DNN methods is that they are designed for 
classification purposes, unlike the PMF method. Both SVM 
and DNN methods predict the class numbers with a predefined 
step of 0.1 that results in high inaccuracy. The PMF method can 
operate with continuous data that give more accurate output. 
The overall advantage of the PMF method over SVM and DNN 
in terms of average RMSE is shown in Table III. A comparison 
of the execution times for PMF, SVM, and DNN for both 
training and testing datasets is shown in Table IV. The total size 
of the dataset for execution is 5000 values. Results show that 
PMF execution time is much faster than SVM and almost the 
same as the DNN model. 

 
Fig. 11. Comparison of accuracy for different models. 

 

 

 

V. CONCLUSION 

One of the problems in realizing the IoT is missing sensor 
data values that are crucial for decision-making processes in 
different applications. The missing sensor values are necessary 
for applications that require them as data input. By clustering 
related sensors and using probabilistic matrix factorization, this 
paper has shown how to recover massive amounts of missing 
sensor data values. Our results show that by minimizing RMSE 
using the PMF method inside a cluster of sensor nodes, missing 
sensor values can be recovered more efficiently than with other 
methods, such as SVM and DNN. The SVM and DNN methods 
have less accuracy and higher RMSE values, compared to the 
PMF method, due to loss of precision for continuous datasets. 

The PMF model applied inside closely related sensors 
shows better accuracy and lower RMSE results than other 
methods. As the cluster size gets smaller (for better correlation 
of measurements among sensors), accuracy also becomes better 
compared to larger clusters. The reason is that a larger cluster 
size contains more sensors, and the correlation between 
measurements is not good among all sensors.  

Results show that the PMF model gives more accurate and 
realistic data for the imputation of missing sensor values. In 
addition, the execution time of the PMF model is very close to 
that of DNN, which makes the proposed approach very 
promising for data recovery problems in the IoT. 

In our future research, we will provide more insight into the 
performance of the PMF algorithm in different scenarios. 
Additional studies will be done on the sensors clustering 
problem, since there are many parameters that need to be 
considered in addition to the proximity of sensors. A flexible 
clustering algorithm is needed to reflect the reasons for the 
missing data in different sensors, and to find relations between 
sensors that are more likely to fail in data measurements or 
communications with the database.   

TABLE IV 
COMPARISON OF EXECUTION TIMES FOR PMF, SVM, AND DNN. 

Model Name 
Training time, 

s 
Testing time, s 

SVM (Linear Kernel) 18.265 0.190 
SVM (RBF Kernel) 112.880 1.925 

Deep Neural Network 
(2 hidden layers) 

0.204 0.003 

Deep Neural Network 
(3 hidden layers) 

0.460 0.007 

PMF 0.520 0.011 

TABLE III 
RMSE IMPROVEMENT WITH PMF OVER SVM AND DNN  MODELS. 

Id Model Name 
Average RMSE 

Gap (%) 
1 SVM (Linear Kernel) 79.30 
2 SVM (RBF Kernel) 72.84 

3 
Deep Neural Network 

(2 hidden layers) 
67.50 

4 
Deep Neural Network 

(3 hidden layers) 
63.71 
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