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Abstract—The Internet of Things’ (IoT’s) rapid growth is
constrained by resource use and fears about privacy and security.
A solution jointly addressing security, efficiency, privacy, and
scalability is needed to support continued expansion. We propose
a solution modeled on human use of context and cognition, lever-
aging cloud resources to facilitate IoT on constrained devices. We
present an architecture applying process knowledge to provide
security through abstraction and privacy through remote data
fusion. We outline five architectural elements and consider the
key concepts of the “Data Proxy” and the “Cognitive Layer.”
The Data Proxy uses system models to digitally mirror objects
with minimal input data, while the Cognitive Layer applies
these models to monitor the system’s evolution and to simulate
the impact of commands prior to execution. The Data Proxy
allows a system’s sensors to be sampled to meet a specified
“Quality of Data” (QoD) target with minimal resource use. The
efficiency improvement of this architecture is shown with an
example vehicle tracking application. Finally, we consider future
opportunities for this architecture to reduce technical, economic,
and sentiment barriers to the adoption of the IoT.

Index Terms—Internet of Things, Networking Architecture,
Emerging Technologies.

I. INTRODUCTION & CONTENTS

THE Internet of Things (IoT) is a term describing a system
of connected people, devices, and services [1]. The IoT

allows computer-interfaced sensors and actuators to facilitate
novel products and services by reducing costs, improving
efficiency, and enhancing the usability of existing systems.

The benefits of connectivity are understood across in-
dustries, with Connected Cars and Homes, Smart Factories,
Wearable Devices, and Intelligent Infrastructure signaling the
widespread adoption of the Internet of Things. Few technical,
economic, and social barriers, like support costs [2] and
concerns about data privacy and system security, [3] limit this
technology’s opportunity space.

Today, power and bandwidth consumption challenge IoT’s
growth. The desire for rich data and information sharing
dominates resource use, particularly challenging battery life
and network loading for distributed wireless devices [4],
[5]. A simultaneous proliferation of high-value connected
devices makes the IoT a desirable attack surface [2], [6] and
drives security-related resource requirements, demanding high-
powered computation – lest a platform become unfavorable for
mission-critical applications.
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This paper builds upon the author’s dissertation [7] to
demonstrate an approach leveraging scalable cloud resources
to address efficiency, privacy and security for next-generation
IoT.

In Section II, we identify a need for IoT architecture im-
proving system-wide efficiency and security, and discuss con-
temporary research. Then, we consider how people process,
share, and protect information in Section III. In Section IV,
we present a human-inspired model for data collection, syn-
thesis, distribution, and protection. We develop a parallel IoT
architecture utilizing process and measurement knowledge to
reduce the cost of sampling sensors and transmitting data.
This approach leverages system knowledge to provide security
through abstraction and data privacy through remote sensor
fusion.

We outline five enabling components of this architecture,
and present the key innovations of “Data Proxies” and “Cogni-
tive Layers” in detail. The Data Proxy is a model-based means
of digitally mirroring objects using minimal input data, while
the Cognitive Layer utilizes these same models to monitor
system evolution and to simulate the impact of commands.
Supporting the Data Proxy, we introduce the concept of the
“Quality of Data,” a formalized quantitative metric used for
intelligent resource management capable of assuring a high
level of connected application performance. In Section V, this
architecture’s improvement on security and resource efficiency
are demonstrated through an example application calculating
vehicle distance traveled with sparse input data. Finally, Sec-
tion VI concludes with a brief discussion and future work
identification.

II. PRIOR ART

If one considers IoT as a design vocabulary, it necessar-
ily must possess an alphabet of development considerations
and enabling technologies. IoT’s “ABC’s” consider privacy,
security, and resource efficiency, with a connected system’s
‘A’s’ (safeguarded Actuators and protected Attributable data)
ensuring a solid foundation for data storage, sharing, and use,
and the ‘B’s’ and ‘C’s’ referring to the resource constraints
of Battery, Bandwidth, Bytes, and Computation. Understand-
ing these constituent letters allows developers to cultivate a
vocabulary helpful for building safe, effective, and useful IoT
solutions.

Creating a protected and efficient IoT architecture address-
ing these “ABC’s” is not a new goal. In the following sections
we explore this alphabet and provide background informa-
tion on security and efficiency improvements for connected
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systems. Additionally, contemporary connectivity architectures
are explored.

A. Privacy & Security

Ensuring the safety and security of data and connected
systems fulfills a critical need in a connected platform’s
implementation. IoT connects many personal or high-value
things, which brings great opportunity and significant risks to
privacy and security. These areas pose significant challenges
to the deployment of Cloud and other connected systems,
with the privacy of sensitive user data a particular concern
[8], [9]. In designing IoT platforms and services, addressing
system security and data privacy must come first - the ‘A’s’ in
our IoT alphabet including actuators must be protected, while
sensitive attributable data must be also maintained adequately.
Without these assurances, a connected platform will have
difficulty gaining traction and sustaining long-term growth due
to perception issues and the risk of data leakage.

Frequently, these privacy challenges revolve around data
ownership and sharing policies [2]. While some platforms
default to opt-out sharing, others have proposed relying upon
opt-in sharing [10] and data visualization tools [11] to ame-
liorate user fears of data abuse. Such policies and tools are
critical to improving user acceptance of IoT platforms and
will be integral to an improved architecture addressing today’s
common concerns.

Though leaks resulting from permissive sharing policies
are simple to solve, security vulnerabilities present more
challenging threats. These vulnerabilities are especially critical
to address in light of the proliferation of interconnected de-
vices in sensitive locations with access to potentially harmful
actuation capabilities. There is a need for attack resilience, data
authentication, and access control to ameliorate these problems
and security approaches applied to conventional networks must
be improved before being applied to IoT [9].

This problem of undersecured, overly sensitive connected
devices is due in part to IoT’s rapid growth. The rapid
rollout of connected technologies led many systems to rely
on “security through obscurity” due to short development
cycles [12], [13]. Strict cost targets led developers to eschew
authentication, encryption, and even message integrity checks
[14], as the computational overhead for cryptography require
processors with higher memory and speed requirements [12].
For these reasons, many products on the market have little
to no built-in protection, and the hardware may not have
sufficient computational overhead or update capabilities to
support future improvements while meeting real-time perfor-
mance requirements [15].

Consider three household IoT devices highlighting IoT’s
fragmented security: Philips Hue lightbulbs rely on a whitelist
of approved controllers and transmit data in plaintext; Belkin
WeMo outlets use plaintext SOAP communication without
authentication; NEST smoke alarms use encrypted traffic to
communicate with a remote server, with changing OAuth2
tokens to ensure the integrity of the connection. [14]

These devices demonstrate a range of system complexity
and security. Improving the less-protected devices is not a

simple matter; the device designs themselves must be changed.
Intensive encryption may not be compatible with already-
deployed WeMo hardware, for example – leading Belkin to
stop developing for Apple’s HomeKit standard [16].

Recently, groups have made an effort to standardize commu-
nication protocols and data exchange to improve security [14].
Without legislation, unifying manufacturers and developers
will prove challenging. Further, standardization only addresses
future devices – a solution compatible with past and present
devices is preferable.

Considering the constraints of embedded devices, re-
searchers have proposed intermediate, network-level solutions
for “Security as a Service” allowing dynamic communication
rules in intermediate layers [14], [17]. Others suggest creating
crowd-sourced repositories for users to share their device
information to aid in identifying attack signatures and creating
abstracted device models for fault detection [18]. Multi-layer
Cloud security frameworks have also been suggested as a
means of implementing firewalling, access control, identify
management, and intrusion prevention [8].

These solutions improve upon business as usual, but have
their own challenges in service management, rule creation,
scalability, and incentivizing data sharing.

B. Resource Efficiency

Connected systems must optimize for a number of resource
inputs. In our IoT alphabet, the ‘B’s’ and ‘C’s’ refer to
resource efficiency in terms of Battery, Bandwidth, Bytes,
and Computation. Battery refers to device or system power
consumption; improved energy efficiency allows systems to
run longer without service interruptions [9]. Bandwidth refers
to data transmitted or routed; reduced data needs limit network
congestion and reduce system operating costs. Bytes refers
to the amount of data required to be stored; limiting the
amount of data stored lowers costs and simplifies analysis
and information sharing by avoiding the trap of Big Data.
Computation describes the processing needed in constrained
nodes; processing can take time and consume power, assuming
a device’s processor is even capable of executing particular
code. In these ways, common design considerations from
wireless sensor networks [5] apply in contemporary IoT imple-
mentations, as these use similarly constrained nodes for data
collection and actuation [4].

In implementing a system, these problems are often cou-
pled – for example, transmitting data frequently has a more
substantial impact on the battery life than sampling a sensor
[2].

Addressing these needs, researchers have demonstrated rout-
ing optimization, power minimization, and efficient computa-
tion for wireless sensor networks and other connected systems.

To optimize routing, self-organizing data dissemination al-
gorithms using data-centric storage to minimize search energy
and bandwidth expenditure [19].

Other approaches minimize the sampling rate on networks
with a finite bandwidth. Adlakha, et al. design a sensing
system making use of a Kalman filter to account for missing
observations and identify the rate at which an event of interest
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must be sampled to maintain a target estimate error covariance
[20].

Hu et al. use linear programming to predict intermediate
sensor data, minimizing energy requirements by reducing the
number of sensors and sampling rate required to instrument a
system [21].

Jain et al. treat sensor management as a filtering problem,
using a device-run Kalman filter to meet error targets. This
minimizes bandwidth at the expense of computation a con-
strained node [22].

Compressed Sensing exploits a priori sparsity information to
reconstruct signals from sparse samples. Data are compressed
at an end node, transmitted, and reconstructed at a “fusion
centre,” trading bandwidth for computation [23]

Another approach to minimizing resource spend identifies
the most critical sensors to minimize worst-case errors [24].
By deploying only critical sensors, the energy or bandwidth
requirement for a network may be reduced.

These approaches tend to optimize single elements of a
larger system, and often compromise one challenge for another
(e.g. bandwidth for computation).

There have been some efforts to optimize for multiple
components in aggregate, e.g. energy cost and security. Li et al.
developed a resource optimization architecture for minimizing
the energy cost in data centers while assuring system security
and meeting delay targets. This approach considers the use of
frameworks for adaptively timing computation to capitalize on
utilizing resources that are the lowest cost or alternately most
available [25].

Similarly, an architecture may be created to optimize for
resource use in aggregate while targeting improved security
and privacy relative to business as usual, while meeting
broader data quality and delay targets.

An approach not relying on costly computation and jointly
addressing security, efficiency, and scalability is needed.

C. Foundational Architectures

Connected systems employ one of several connectivity
architectures. Each has advantages and disadvantages ranging
from complexity to resilience to scalability. We discuss three
common approaches to connectivity: direct, hub, and Cloud.

a) Direct Connectivity: In direct connectivity, an appli-
cation queries and controls a system’s sensors and actuators
directly. An example pairs a mobile phone to Bluetooth
environmental sensors and lightbulbs.

This topology, shown in Figure 1a, is efficient for a single
application used in conjunction with few devices. Temperature
information is sent only when it is needed and the lamps pro-
cess all incoming commands. However, this architecture scales
poorly. Each additional application adds data queries or sends
new command requests. If an application samples a device at n
Hz, and m copies of that application are running, the devices
are queried m × n times per second, consuming additional
bandwidth and power despite these samples conveying similar
information. In the worst-case, the network becomes saturated.

The use of low-cost, constrained nodes causes insecurity
due to their inability to run credentialing services and timely

encryption. Should a malicious agent join the network, these
nodes are incapable of limiting access.

Though quick to develop and test, this approach is un-
suitable for scalable deployment [26] or use in safety-critical
systems.

b) Hub Connectivity: With hub connectivity, shown in
Figure 1b, data requests and control commands pass through
a master node capable of translating and moderating the flow
of information. An example of this is a ZigBee-enabled home
lighting system, which uses a hub to bridge several ZigBee
lights to WiFi.

Gateway systems may have limited sampling intelligence
to perform local data aggregation and pre-processing, [27]
reducing redundant data collection and transmission. A simple
example of scaling considers an application requesting at n Hz
and one requesting at m Hz, with the gateway polling at the
ceiling of these two request rates.

Hubs may run basic firewalls, encrypt communications, and
validate credentials, simplifying the blocking of malicious
agents.

While hub-based systems improve scalability over direct
architectures, there are still limitations. Resource constraints
mean hub architectures work best for small to medium net-
works with known application payloads.

c) Cloud Connectivity: The cloud approach shown in
Figure 1c effectively extends the hub model with infinitely
scalable resources between end nodes and applications. A
Cloud system mirrors one or several devices or systems,
storing information centrally for multiple use. These mirrors
may combine data from different sources, applying additional
processing to filter data and aggregate results [10].

As with a hub, data and control requests are abstracted from
physical devices.

Cloud connectivity is known for its scalability and extensi-
bility [28], multiple-use, and ability to abstract devices from
applications.

III. HUMAN INSPIRATION

Reviewing prior art shows several unaddressed needs. For
example, efficiency must be optimized at the most con-
strained nodes, while security must allow real-time data access
and control. Today’s solutions are also application-specific,
whereas an architecture should support dynamic scalability
and extensibility.

In evaluating these needs, we present the view that humans
themselves present a good analogy for secure and efficient con-
nected architectures. We use context and cognition to gather,
share, and act upon data. We synthesize data from multiple
sources to provide enhanced information and we minimize
effort in acquiring and fusing data with estimation. We even
protect ourselves and our resources through abstraction.

Consider a scenario consisting of two people talking as
they wait at a train station. The person making requests for
information is the client “application,” and the individual col-
lecting, synthesizing, and moderating the flow of information
the “proxy.” Our proxy has access to a wristwatch and a train
schedule.
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(a) In direct connectivity, an application
engages directly with a device or de-
vices.

(b) With hub or gateway connectivity,
devices and applications connect to a
hub. This hub moderates the flow of
information. (c) Cloud connectivity relies on remote

computation. Devices and applications
connect to a network, and Cloud re-
sources manage data storage and flows
of information and commands.

Fig. 1: A comparison of commonly-used architectures for connected systems.

When an application asks the current time, the proxy
considers a number of factors prior to collecting information
and formulating a reply. The proxy notes who is asking, the
history of previous interactions, and the application’s apparent
need for timely and accurate data. A typical request “what
time is it?” is met with a reply addressing average needs for
timeliness and precision, “it’s about 10:30.”

In the following sections, we illustrate how humans apply
cognition to formulate context-appropriate replies.

A. Varied Request Priorities

Applications have varied request priorities. One application
may have little interest in information, so timeliness and
precision are non-critical. Estimates are acceptable and replies
may wait until the proxy has free time to process the request,
as is the case with a child nagging a parent.

Another application may be high priority and require a
precise and timely reply. The proxy must expend additional
effort to immediately and directly acquire precise data. An
example application is a train conductor who wants to avoid
delaying passengers. The proxy knows the conductor has a
critical need to know the time, and therefore chooses to get
a direct measurement from his or her watch. The additional
accuracy is conveyed directly, e.g. by saying “it is 10:30
exactly... now.”

B. Data Synthesis

Beyond acting as a valve for the flow of information,
proxies may synthesize data from multiple sources. In our
train station example, an application may make a request for
processed information such as “how long until the train to
Alewife arrives?” The proxy may reply using information from
multiple sources to formulate the appropriate response: “the
train schedule says the train arrives at 10:47 and it’s 10:30.
You have 17 minutes.”

C. Multiple-Use of Replies

Multiple applications may need the same information, and
proxies allow reply sharing. In our example, a nearby pas-
senger, another potential application, overhears the proxy’s
reply to the first application and no longer needs to make a
dedicated request. This saves resources and allows low-priority
applications to benefit from high-priority applications’ replies.

D. Malicious Request Blocking

Requests can become annoying. In the case of a nagging
child asking the time, the proxy may initially give coarse esti-
mates to save the effort of directly acquiring a measurement.
Eventually, the proxy may stop responding entirely. This limits
data access for malicious and annoying applications.

E. Resource Safeguarding

Proxies have access to valuable information. If an unsavory
application asks to access a data source (in this case, a watch),
the proxy applies judgment to moderate access to resources
(hiding the watch) and related data.

F. Command Simulation

Proxies simulate the future. In our example, consider an
application requesting that a proxy look after his bag for the
remainder of the day. The proxy considers first the source of
the request, then mentally simulates the result of executing
the command. If the command seems strange (a day is a long
time to watch a bag), it may be verified and the application
given a chance for correction. If the command is validated but
would conflict with another objective (watching the bag means
missing the train), the request may be denied.



2327-4662 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2017.2755620, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL, VOL. ??, NO. ?, MARCH 2017

G. System Supervision

The proxy may supervise his own system measurement in-
struments and the behavior of their environment. Consider the
case of a proxy checking his watch an hour apart, and seeing
the time has not changed. The proxy knows the measurement
has failed (a dead watch battery) or the environment is not
behaving as expected (traveling at the speed of light). In either
case, the source of the fault may be learned from, and if
possible, remedied.

IV. SYSTEM EMBODIMENT

One sees that the human model can improve the security
and efficiency of data collection and distribution. We seek to
build this contextual cognition using scalable and extensible
Cloud infrastructure.

Considering how humans handle data, we propose the
creation of “Data Proxies” based on statistical and physical
system models, allowing connected systems to meet prescribed
applications’ “Quality of Data” requirements (QoDs). Data
Proxies then digitally duplicate physical systems from intelli-
gently sampled inputs. The Proxy’s model and sampling rate
selection are run by an “Application Agent” in the Cloud,
allowing constrained nodes to conserve power and bandwidth
resources.

Additionally, we present the concept of a “Cognitive Layer”
using the Proxy’s model to respond to system behavior
changes and to evaluate the impact of commands. Because
mirroring abstracts digital from the physical systems, the use
of an intermediate “Security Layer” combines with the Cog-
nitive Layer to moderate connections, protecting the Proxy’s
reference system from direct access.

The five new elements shown in Figure 2 extending the
cloud architecture are:

• The Quality of Data (QoD) accompanies application data
requests, specifying accuracy and timeliness targets. The
QoD has an associated element in replies, providing
confidence intervals.

• The Security Layer moderates incoming data requests and
actuation attempts, allowing only approved connections
through to the private cloud.

• The Cognitive Layer observes and anticipates system
behavior, applying context information to determine when
system behavior is anomalous or when a command may
lead to a fault.

• The Data Proxy applies process and measurement knowl-
edge to estimate the system state from limited input data.

• The Application Agent uses prior simulation and learned
models to optimize input sampling rates based on acqui-
sition costs and aggregate Quality of Data needs.

These elements mirror human cognition. This “New IoT”
optimizes sampling to meet QoD objectives while minimizing
resource use and related cost subject to constraints. These
constraints include physical constraints, like minimum and
maximum sensor sampling rates, as well as application con-
straints, like minimum and maximum freshness and/or error.

In an example scenario with m applications requesting sam-
ples at n Hz, this architecture’s intelligence would eliminate

Fig. 2: This architecture builds upon the cloud connectivity
approach, adding elements to improve efficiency, privacy, and
security.

unnecessary requests and sampling at n Hz. Using the Proxy’s
system model in conjunction with the Application Agent,
intelligent sampling will save bandwidth and power while
providing security through abstraction.

A. Quality of Data

Quality of Data (QoD) is a quantitative metric used to
provide an objective for the scheduler and is included in data
requests as well as replies. A system’s QoD metrics may vary
based upon the type of information uploaded to the Cloud
and typical application types, so we focus this section on an
example embodiment.

To formulate this sample QoD, we examined elements
of Quality of Service, Experience, and Information (QoS,
QoE, QoI) and focused on those parameters both improving
application functionality and useful in informing scheduling.

Traditionally, QoS may consider service time, delay, accu-
racy, load, priority, reliability, efficiency, and sensing precision.
[29], [30] QoE evaluates user experience based on perception
[9], while QoI looks at the value of the data itself. From
these metrics, we derive a canonical QoD that distills into
timeliness and accuracy requirements, with applications across
a spectrum as shown in Figure 3.

Applications target a particular QoD, and the Proxy replies
with data meeting or exceeding those targets as well as con-
fidence intervals. The inclusion of confidence data along with
the requested parameters aids applications in working with
imperfect estimates and measurements and may be considered
the computational equivalent of the human model’s use of the
words “approximately,” “precisely,” and similar. In the case
where it is not possible to reach QoD targets, the reply will
return the closest possible data and denote that the returned
information does not meet the requested objective. An example
where this might occur is when requesting information from
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Fig. 3: The Quality of Data is distilled into two axes: timeliness
and accuracy.

a sensor with a limited resolution or insufficient maximum
sampling rate.

Common QoD objectives and example rationales appear
below:

1) Instantaneous Accuracy: The allowable error between
the model and real system at a particular time. Maximum
error is useful in the case where a factory manager
must know the power used by a machine at a particular
moment that another might come online, while minimum
error is useful for tracking websites where locations
must be kept imprecise by design

2) Periodic Accuracy: The allowable error between the
model and real system at regularly spaced intervals.
This is useful when generating “snapshot” reports to
determine energy trends throughout the day

3) Average Accuracy: The allowable sum of errors be-
tween the model and real system between two target
times, which is useful in supervising equipment over
the long term

4) Maximum Latency / Freshness: The acceptable tem-
poral recency of direct sensor measurement. Maximum
latency aids in maintenance operations, e.g. for de-
termining when a machine is cool enough to touch.
Minimum latency is useful where obfuscated data are
preferable, as is the case with public-facing websites
where ‘fresh’ data presents a security risk

5) Threshold Detection: The acceptable delay between a
state being reached and notification being sent to the
server. Useful for temperature monitoring

These metrics are not exhaustive and vary by an applica-
tion’s needs. For example, these may be extended by the QoD
parameters from Wu [31], wherein data has measurements
contain information about accuracy, truthfulness, complete-
ness, and up-to-dateness, or might be an a composite metric
consisting of several of these objectives.

QoD is coupled closely to resource costs. In calculating
costs for IoT systems, we consider expenses and resource
use. Example costs include computation and the three “b’s”:
battery, bandwidth, and bytes (power consumption, data trans-
mission, and storage), with each element having fixed and
variable costs and possible geotemporal modifiers (location
or time dependent resource use). Some costs may be coupled,
like computation and power, or computation and bandwidth,
while others are independent.

In our architecture, we typically optimize costs while at-

tempting to meet a QoD target, or optimize QoD while staying
within a resource budget. We consider IoT as a simple system
with applications connected to a middleware querying data
from sensors. We assume that sensors collect data directly
measuring a process or event, and that optimizing the sampling
rate, accuracy, and latency of a single sensor has a direct
correspondence to optimizing the monitoring of a process or
event. Joint optimization of these sensors’ sampling rates in the
context of maximizing the QoD allows for significant resource
cost reductions while maintaining state estimate accuracy.

B. Security Layer

Contemporary approaches to security frequently offer so-
lutions to single problems, whereas layered approaches offer
enhanced threat resilience [8]. Therefore, we choose to imple-
ment privacy- and security-protecting elements in our architec-
ture at multiple points, using a combination of credentialing,
firewalling, and supervisory models. The first element in our
tiered approach is the Security Layer.

The Security Layer validates incoming connections’ creden-
tials and protects an encapsulated Private Cloud nested inside
a Public Cloud from invalid data and actuation requests. This
layer moderates access to the Data Proxy and Cognitive Layer
described in the following subsections, preventing an unautho-
rized application from directly accessing these elements. This
layer is the IoT equivalent of a security guard at a private event
– just as a guard checks IDs and moderates access to an event,
the Security Layer uses an encrypted connection and Cloud
computational resources to check credentials before allowing
appropriate incoming connections and blocking malicious con-
nections. Similar to how a guard may call a supervisor to
check an out-of-state ID, the Security Layer seeks human-in-
the-loop validation before allowing or blocking a connection
of unknown provenance.

The Security Layer uses Cloud resources to allow for rapid
authentication, enhancing timeliness. It may rely on predefined
rules or machine learned rules, and may support conventional
security approaches such as certificate authentication, creden-
tial revocation, or command and request validation.

C. Cognitive Layer

Providing a second layer of threat resistance beneath the
security layer, the Cognitive Layer provides firewalling and
supervisory elements to assess system performance and eval-
uate the impact of commands for undesirable effects.

This Cognitive Layer makes use of Data Proxy’s system
models to observe the system’s evolution and to test incoming
commands. This Layer embodies Isaac Asimov’s third law, for
the system to protect itself, and consists of both a Cognitive
Firewall, for simulating the impact of a command to ensure
it is safe prior to execution, and the Cognitive Supervisor, to
monitor the system’s evolution over time in the absence of
commands. These are visualized in Figure 4a. Both cognitive
elements are checked against known, machine-learned, and
human-in-the-loop limits to raise alarms or prevent actuation
when anomalous behavior is detected.
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(a) The Cognitive Layer consists of a Firewall and a Supervisor. The Supervisor monitors the system; the Firewall checks
commands for validity and safety prior to execution.

(b) This simplified example shows how the Cognitive Fire-
wall uses a system model to evaluate the impact of a request
against control limits, rejecting invalid commands.

(c) The Cognitive Supervisor monitors the system against
known and learned limits, and raises an alarm when the
system approaches an undesirable state.

Fig. 4: The Cognitive Layer ensures a system is behaving as expected and that commands do not bring about harm.
The Data Proxy’s model is used to apply context information for monitoring faults and validating incoming commands
prior to execution.

The Cognitive Firewall acts on incoming commands, evalu-
ating the impact of a command prior to execution by forward-
simulating the system’s future state and raising alarms when
the potential evolution endangers the system. Two possible
system evolutions are shown in Figure 4b.

This Firewall uses the system model to filter out inputs with
potential for negative consequence based on rules, machine
learning, or human-in-the-loop validation. For example, a
Cognitive Firewall may be used to simulate the impact of a
command received over the Internet by a robotic arm’s Data
Proxy to check for collisions and other undesirable effects
prior to acting upon the command.

This is similar to how people think ahead before taking
actions; if a passenger in a taxi asks the driver to accelerate
through a red light, the driver resists because of the risk of an
accident or ticket. Similarly, the Firewall applies context and
cognition to detect and avoid probably undesirable scenarios.

While the Firewall tests commands in the Cloud before
relaying these to a physical system, the Cognitive Supervisor
examines the system in the absence of commands and monitors
the system’s true versus anticipated evolution, raising alarms
when the behavior is not as expected or exceeds control limits.
This may be used to identify potential faults in the physical
system, the system model, or the measurement equipment at
an early stage, and is similar to statistical process control. An
example “process out of control” is shown in Figure 4c.

The Supervisor may be used to identify faults in a machine
or process. For example, a mill which expects to require
a particular amount of power during a machining operation
might identify that the power to cut a material is out-of-
line with learned or modeled expectations. Such a fault could

indicate a failure in the Proxy’s model, a failure in the
system’s sensors, or a fault in the system itself, such as using
material that does not meet specifications. With a Cognitive
Supervisor, faults may be detected and responded to early, e.g.
by contacting the material supplier to replace the machine’s
feedstock before any widgets leave the factory or fail in the
field.

This is similar to how people learn to understand cause and
effect. If a person’s house is 20◦C and they set the thermostat
to 22◦C, they expect the house to be 22◦C within two hours.
If the temperature is below 22◦C, the person knows that either
the heater is broken, the sensor is wrong, their model is
wrong (the temperature outside is far colder than expected),
or perhaps a window was left open.

D. Data Proxies

Data Proxies are the “brain” of our approach to Cognitive
IoT. Proxies are Cloud-run digital duplicates, using observers,
estimators or probabilistic modeling tools to digitally mirror
a physical system or process. These models take sparse data
inputs (as determined by the Application Agent in response
to targeting a particular QoD) and create a rich digital repre-
sentation of an object or system in the Cloud. These replicas
provide an estimate of system states and their evolution based
on intermittently measured inputs and outputs synthesized by
a context-aware system model.

The canonical Proxy uses the digital duplicate to take
an imperfect, periodically-sampled view of a system’s state,
filling in gaps based on trusted models for anticipated system
behavior. Applications communicate with the Data Proxy
and it’s related elements rather than the physical device or
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system it mirrors – the use of an intermediate Proxy allows
the isolation of devices from requestors, while data in-fill
(interpolation, estimation, or another means of gap filling)
reduces the requisite sampling rate and resource requirements
to maintain high-quality data.

In IoT, applications often involve monitoring a process (ma-
chining in a factory) or an event (overheat detection). Control
theory’s observers and estimators, Kalman filters, probabilistic
graph models, and neutral networks may be applied to model
key system characteristics. Often, such modeling require his-
torical data and machine learning techniques to train and
calibrate an appropriate system model.

While the Proxy is central within this architecture, the
Proxy’s implementation may change based on its integration
with data sources and other resources, as well as based on the
Proxy’s coupling with applications. For example, if an IoT
system supports a particular always-on application the Proxy
may be designed with biases to ensure that this application is
always addressed as efficiently as possible. Alternatively, the
Proxy may be designed for generalized application payloads.
Altering the Proxy’s construction allows for it to remain
central within the architecture while still closely moderating
its performance for different input resources, end users, or
applications.

E. Application Agent

The Application Agent is a Cloud-run query manager re-
sponsible for aggregating QoD requirements and optimizing
resource use for specific Data Proxy models. The Agent
forward-simulates a sample data set to minimize the cost of
sampling while ensuring timeliness and accuracy targets are
met.

All application requests share a QoD with the Application
Agent. The Application Agent aggregates each QoD and sim-
ulates the system using downsampled historic data, comparing
the downsampled QoD to a fully sampled baseline. This allows
the Agent to determine optimal sampling schemes meeting the
combined QoD. The Agent then sets the sensors’ sampling
rates to value identified by simulation to minimize resource
expenditure. As applications join and leave the system, the
sampling rate is dynamically recalculated to ensure scalability
and efficiency. This process is automatic, and may occur based
on a schedule (e.g. at regular intervals), using machine learning
to identify and anticipate changing QoD requirements, event-
based reconfiguration, or other automated and semi-automated
techniques.

V. EXAMPLE APPLICATION OF DATA PROXY

Usage Based Insurance (UBI) is considered by many to
be an equitable solution to insuring infrequent drivers [32].
In this model, drivers pay for insurance based on a number
of factors including distance traveled. A similar application is
Vehicle Miles Traveled (VMT) taxation, which charges drivers
for their use of public roadways [33]. For these applications,
it is necessary to precisely know the distance traveled by a
vehicle.

A mobile phone is an excellent candidate for distance mea-
surement. Many drivers already own a mobile phone, and these
devices possess sensors like GPS and accelerometers, as well
as the ability to wirelessly interface with vehicle On-Board
Diagnostics (OBD). These sensors provide the information
necessary to enable UBI and VMT, but this use case presents
a challenge: sensors consume power, and mobile devices are
battery-constrained. Additionally, distance estimates are often
derived from location, and users may not wish to share this
sensitive information.

Data Proxies allow us to apply a vehicle dynamics model
to efficiently estimate trajectory and distance traveled, while
the use of data abstraction and sensor fusion allows drivers to
maintain the privacy of their location data.

We formulate the problem by considering costs and objec-
tives: we aim to minimize the power cost of acquiring GPS,
OBD, and accelerometer data while meeting a target accuracy
provided by insurance companies or the government.

A. Proxy Model

The first step in developing a proxy is to select a system
model. The accuracy and inputs to this model determine the
performance of the Data Proxy.

For illustration purposes, we apply the vehicle motion model
from Kumar et al. (2013) [32]. The car is modeled as a
unicycle with the constraint that it moves along a trajectory
with no slip. A Kalman filter is applied to estimate the
location and the distance traveled by the vehicle (called system
states here). These estimates are performed at a baseline
frequency while the the model allows GPS and OBD speed
measurements to be incorporated at varying frequencies in the
estimation model. Additionally, a scaling and bias correction
are applied to accelerometer measurements for improved esti-
mation accuracy.

To collect data, a vehicle was driven in a loop while
recording information at the reference 10Hz from a GPS
device, an accelerometer, and an OBD interface.

We identified an optimal reference trajectory using fully-
sampled data run through our tuned Kalman filter. We then
iterated filtering using differing downsampling rates for OBD
and GPS and calculated the costs and QoDs for each run, as
described in the following sections.

B. Costs

In our case, we consider only the per-sample energy cost of
acquiring sensor data from GPS and OBD. GPS is the most
costly sensor, while OBD is less expensive but still significant
(we assume use of a WiFi OBD interface). Accelerometer
acquisition is near-negligible, so we always sample this sensor
at the maximum rate. This simplifies the model, as the
accelerometer will be an input rather than a variable.

Our cost function with a per-sample cost becomes the linear
combination

ctotal = λGPS ∗ nGPS + λOBD ∗ nOBD, (1)

where nGPS and nOBD are the numbers of GPS and OBD
samples, while their respective λ’s are per-sample costs. In the
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base case we assume, λGPS = 10µW/sample and λOBD =
3.3µW/sample.

C. Objectives & Constraints

Our objective is to minimize power use while accurately
measuring the trajectory and the distance a vehicle travels.
Further, we wish to maintain tamper-resistance (security) and
driver privacy through the use of aggregate statistics.

We define our quantitative QoD metric as a measure of error
in process monitoring and event detection. In this example,
we combine two measures of position estimation error with a
distance threshold crossing delay metric:

QoD = m1(100−RMSEposition)+

m2(100−MAEposition)+

m3(100− tDelay). (2)

RMSEposition and MAEposition are the Root Mean
Squared Error and the Mean Average Error of the trajectory es-
timates with respect to the reference trajectory calculated using
all sensor data at 10Hz. tDelay is the average, absolute value
of the delay in detecting a series of threshold crossing events
(in this case, when the distance traveled crosses d = n∗500m
and n ∈ {1, 2, 3, 4, 5}). Sampling configurations resulting in
undefined threshold cross delays are discarded.
m1, m2 and m3 are tuning parameters chosen to normalize

each error type by its maximum value from a sample set while
providing equal weighting.

This QoD behaves intuitively; tuning constraints m1+m2+
m3 = 1 make the zero-error case result in QoD = 100
with lower numbers representing increased error relative to the
reference trajectory. Note that a QoD may be negative when
errors are significant.

We are constrained by the maximum 10Hz sampling rates of
the sensors. Minimum sampling period of GPS is constrained
to 100s, and OBD is constrained to 50s.

D. QoD Optimization Results

We demonstrated the Data Proxy’s utility in maximizing
data richness and reducing resource use in the context of our
IoT architecture by optimizing the QoD for a target cost and
optimizing the cost for a target QoD. Further, we showed that
the optimal sampling arrangement varies with sensor costs and
QoD type.

The QoD varies based on weighting factors and constituent
inputs. The normalized error elements RMSE, MAE, and
tdelay are plotted against cost in Figure 5a.

These errors follow a 1/x profile, with the minimal clus-
tering indicating low error variability for a given cost. Stria-
tion would suggest stronger dependence on certain samples.
Changing the weight of each error in the QoD will change the
shape and therefore the optimal sampling arrangement.

Next, we studied the impact of cost on QoD. A base
case with high cost GPS and inexpensive OBD is plotted in
Figure 5b.

Visually, one sees that some sampling schemes are not
feasible due to high cost or poor QoD. Noteworthy is the
steep increase in costs for QoD >= 95, illustrating that slight
compromises in QoD can lead to significant cost savings.

The knee in this curve indicates that our reference trajectory
is significantly oversampled – once the estimate is reasonably
accurate, additional data offers diminishing returns. Therefore,
the horizontal portion of the plot offers improved return on
sampling. The use of simulation-based optimization ensures
that the optimal cost/benefit relationship is identified, even
without a-priori knowledge.

In UBI and VMT, using simulated data to determine the
optimal return on sampling could dramatically increase battery
life with minimal loss in state estimate accuracy. For example,
in the high-cost GPS case, accepting a QoD of 95.5 instead
of 100 allows the resource expenditure to be reduced by
92.9% relative to full sampling. A comparison of the reference
trajectory and this less-expensive scheme appears in Figure 6.

We then simulated a different model with low cost GPS and
high cost OBD. Cost is plotted against aggregate QoD for this
solution in Figure 5c.

Note that as the costs of each sensors change, so does
the clustering of the cost/QoD plots. These differences can
be significant; for example, the highest possible QoD for
ctotal < 500µW is QoD ≈ 45 in the low-cost OBD case,
whereas in the high-cost OBD scenario the QoD ≈ 86. In the
latter case, the optimal sampling shifts to include more GPS
results as acquiring these data are relatively less expensive.

To further illustrate this point, consider Figure 7, which
shows the 10 best QoD’s meeting the constraint ctotal <=
500µW for both cost models.

From this, we see that increasing the cost of OBD relative
to GPS shifts the possibility space to include additional GPS
samples, raising QoD. We also see that for a cost target, a
range of QoDs are possible and that the highest-cost solution
is not necessarily the most accurate because we are querying
a process estimate rather than an individual sensor.

The best-possible QoD for a given cost depends heavily on
the sampling rate of each sensor. To highlight this, we create a
contour plot indicating the QoD for differing values of λGPS

and λOBD with a maximum allowable cost ctotal = 1000µW.
Figure 8 shows constant-OBD-cost curves relating QoD

and GPS sampling cost. As expected, decreasing GPS cost
increases QoD by making direct GPS sampling more feasible.
We see a similar trend when examining OBD costs, where
low-cost sampling leads to increased QoD. The decision to
sample a particular sensor occur at inflection points, leading
the contours to appear like step functions. Note that the curves
for low-cost sampling totally envelop the high-cost sampling
curves, which shows that the optimization works as intended.

This section demonstrates that the QoD and cost opti-
mization models work as anticipated, and proves the value
in using forward-simulation to choose the sampling schema
maximizing QoD for a fixed target cost, or vise-versa.

Other Data Proxies generate similar cost versus error plots
[7]. Transforming these error to a QoD of the form presented
here therefore results in a similar shape function for QoD,
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Fig. 5: Cost as a percentage of full sampling plotted against error and QoD for the UBI example system.
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indicating that an optimality should exist for most model-based
abstractions underlying a physical process.
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GPS sampling cost demonstrate how varied costs and cost
ratios can impact a proxy’s QoD.

E. Multi-Application Optimization

The previous example considered how a quantitative Quality
of Data metric and an estimator-backed Data Proxy min-
imize the need for direct sensor sampling while meeting
the performance requirements of a single application. Often,
several applications with different performance requirements
may require access to the same piece of information. One
application may require low-latency reporting; another may
perform best with tight state estimate error bounds. A third
may work well with coarse, occasional data.

A key benefit of cloud connectivity is that a device or
service can upload data once and multiple applications may
benefit. The Data Proxy architecture scales similarly, and
though the three connected applications above have different
QoD targets, information still need only be uploaded once.

When multiple applications with different QoDs request
direct or estimated data, the Application Agent switches to
an active scheduling role. Rather than optimizing for the
QoD from Section V-C, the Agent determines the optimal
aggregate set of constraints designed to meet the most stringent
applications’ QoD requirement. Through the use of historic
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data and simulation, the Application Agent evaluates the
impact of different downsampling approaches and determines
the most efficient querying schema capable of meeting the
applications’ performance requirements. The Agent is able
to use scalable Cloud resources to dynamically simulate and
adjust sensor sampling rates as applications join or leave
the platform, ensuring optimal resource use no matter the
application payload.

This dynamic optimization allows a range of applications
across industries to benefit. For example, such a system
could leverage connectivity to democratize healthcare between
constrained hospitals and hospitals where resources are freer
[34], by utilizing cognitive models at network extremes to
allow for low-latency, high-reliability control. Similarly, the
reduction in resource requirements would allow sensing and
connectivity to migrate into very low-power wearable devices,
reducing the cost and complexity of contemporary health-
aware clothing [35].

F. System Supervision

Connected systems possess several possible failure modes.
In passive (data-only) systems, sensors can fail, connections
can drop, or a Proxy’s model might be proven inaccurate
or incomplete. In active systems, the possibility exists for
malicious incoming commands.

In the Data Proxy architecture, the Cognitive Layer protects
the system against threats that manage to breach the Security
Layer. The Cognitive Layer applies knowledge of the Data
Proxy’s model to identify and respond to a fault condition or
to send notification to a secondary system or reviewer.

In our UBI example, sensors such as GPS could fail,
the Proxy model could break down when used outside the
designed parameters (e.g. to monitor a helicopter’s travel
instead of a wheeled vehicle), or a user could generate false
information to “spoof” the distance traveled. In each case, a
Cognitive Supervisor applies system and process knowledge to
determine that the real system’s behavior is divergent from the
simulated system or that the relationship between inputs and
states (e.g. the accelerometer’s reading and the next position)
are incongruous. Further, rule-based or learned limits may be
implemented to identify specific faults – for example, if a
vehicle accelerates unreasonably fast, that sensor’s readings
might be flagged as spurious and discarded. A similar ap-
proach could utilize a cognitive model tailored for a different
set of applications, e.g. a supervisor optimized for healthcare
supervision, similar to that suggested by Chen [34].

In an application with sensitive actuators or with the po-
tential for causing damage or injury, such as is the case with
remote vehicle control, this same model-based or rule-based
failure identification could be used to limit the impact of
malicious commands. For example, an autonomous vehicle
may allow remote cellular throttle modulation. In this vehicle,
all incoming commands would be simulated using the Proxy’s
model and tested against known and learned limits as part of
a Cognitive Firewall. If a malicious command requests 100%
throttle for 10 seconds, this firewall would use the Proxy’s
model to simulate the impact of the request and block it from

reaching the vehicle upon identifying a nonzero likelihood of
injury, damage, or discomfort.

VI. CONCLUSIONS

We identified opportunities to improve the Internet of
Things, proposing the creation of a new architecture with
Quality of Data Targets, Security and Cognitive Layers,
mathematical-model based Data Proxies, and an Application
Agent to optimizing sampling costs or minimizing error sub-
ject to constraints.

Building upon the human model of applying context and
cognition to data management, our architecture abstracts phys-
ical from digital systems to improve security and efficiency. It
applies context information to supervise systems and to protect
them against malicious commands, fuses data to provide diffi-
cult to obtain measurements, and uses estimation to minimize
sampling cost. Together with clear ownership policies and
data sharing visualizations [10], [11], this architecture’s use
of abstraction and creation of “black boxed” aggregate data
addresses privacy concerns.

Using the practical application of Usage Based Insurance,
we demonstrated that Proxy models which are well cali-
brated to an underlying physical process may allow us to
reduce the energy necessary to represent that process in
the cloud. We demonstrated that querying information does
not require one-to-one sampling of the sensors instrumenting
that process, and showed that it is possible to substantially
minimize costs without significantly increasing measurement
error. This level of abstraction and sensor fusion improves
security by eliminating applications’ direct access to physical
systems and preventing the long-term storage of sensitive data.
Further, this same technique may be used to minimize data
transmitted, conserving costly bandwidth. This approach to
cloud mirroring ultimately reduces technical, economic, and
consumer sentiment barriers to the deployment of connective
technologies. Ultimately, with the reduced bandwidth costs,
computational requirements, and improved security facilitated
by a context-aware, cognitive architecture for the Internet of
Things, networking will become tenable on more devices in
more places, helping to achieve the idealized vision of a fully
connected world.

Some challenges remain to be addressed. Model selection,
for example, will remain an active domain of research, with
a focus on characterizing and controlling for noise and model
evolution. Other challenges relate more to system implementa-
tion - actuation latency and data accuracy may suffer due to the
reduced sampling rate of Data Proxies, so research is needed
to quantify the impact of these delays and accuracy losses.
Relatedly, current data representations must be extended so
that applications may account for the varied accuracy of
information received in response to a request. A probabilistic
extension to the Data Proxy may facilitate this accuracy
reporting and ensure that returned data are sufficient to ensure
a high degree of application performance.

By developing an architecture allowing more devices in
more places to join the Internet of Things, we will ultimately
support the next generation of products and services improving
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industry, transportation, healthcare, and quality of life. The
Data Proxy’s efficiency improvements will allow even the
smallest, most resource-constrained device to join the ranks of
“Big Data” systems, while this architecture’s security improve-
ments will enable new modalities for actuation never before
possible.

VII. FUTURE WORK

Future work will examine how best to define QoDs for
various application types, how best to build and adapt Data
Proxy models for a system in realtime, and how to quantify a
Proxy’s performance statistically. Additional work will focus
on implementing a functional Cognitive Firewall to protect
Smart Homes and Connected Cars, while the Cognitive Super-
visor will be used to enable “Cognitive Prognostics” capable of
identifying system faults early, reporting these automatically
and providing rich information to aid in their repair. The
use of this low-cost architecture will lead to the deployment
of connected devices in more places, creating richer data
mirrors and supporting enhanced pervasive sensing prognostic
opportunities by reducing the amount of data needed to
identify a fault. This architecture will also be adapted to
work at the local network level, for example to apply an in-
car Cognitive Firewall and to reduce loading on constrained
networks such the vehicle’s Controller Area Network linking
a vehicle’s electronic control units.

We further aim to extend this work from mirroring physical
processes using sparse input data to include algorithmic pro-
cesses dedicated to software monitoring, fault detection, and
automated error correction in high-criticality systems that are
not instrumented today. These systems include smart factories,
infrastructure, and collaborative vehicle navigation systems.
The cognitive elements of this architecture have the potential
to transform how and what we connect to the Internet, afford-
ing greater opportunities and lower risks than conventional
systems. This highly efficient and secure connectivity has the
potential to transform all products with connected data in the
design, manufacturing, and use phases.
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