
 978-1-61284-181-6/11/$26.00 ©2011 IEEE 2659

2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)

A MapReduce based Parallel SVM for Large Scale
Spam Filtering

Godwin Caruana1, Maozhen Li1,3 and Man Qi2

1School of Engineering and Design, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

2Department of Computing, Canterbury Christ Church University, Canterbury, Kent, CT1 1QU, UK
3The Key Laboratory of Embedded Systems and Service Computing, Ministry of Education, Tongji University, China

Abstract— Spam continues to inflict increased damage. Varying
approaches including Support Vector Machine (SVM) based
techniques have been proposed for spam classification. However,
SVM training is a computationally intensive process. This paper
presents a parallel SVM algorithm for scalable spam filtering. By
distributing, processing and optimizing the subsets of the training
data across multiple participating nodes, the distributed SVM
reduces the training time significantly. Ontology based concepts
are also employed to minimize the impact of accuracy
degradation when distributing the training data amongst the
SVM classifiers.

Index Terms—Machine Learning, Classification, Ontology
Semantics, Support Vector Machine, Parallel Computing

I. INTRODUCTION
Support Vector Machine (SVM) based approaches have

persistently gained popularity in terms of their application for
text classification and machine learning [1], [2]. Classification
in SVM based approaches is founded on the notion of
hyperplanes [3]. The hyperplanes act as class segregators in
common binary classification, such as spam or ham in the
context of spam filtering. SVM training is a computationally
intensive process. Numerous SVM formulations, solvers and
architectures for improving SVM performance have been
explored and proposed [4], [5] including distributed and
parallel computing techniques. SVM decomposition is another
widespread technique for improving the performance in SVM
training [6], [7]. Decomposition approaches work on the basis
of identifying a small number of optimization variables and
tackling a set of fixed size problems. Another widespread and
effective practice is to split the training data into smaller
fragments and use a number of SVM’s to process the
individual data chunks. This in turn reduces overall training
time. Various forms of summarizations and aggregations are
then performed to process the final set of global support
vectors [8]. Numerous forms of decomposition which are
based on a data splitting strategy approach can suffer from
issues including convergence and accuracy. Challenges related
to chunk aliasing as well as outlier accumulation tend to
intensify problems in a distributed SVM context. Adopting a
training data set splitting strategy commonly amplifies issues
related to data imbalance and data distribution instability.

In this paper, we present an ontology assisted, parallel
scheme for scalable SVM training. This work supplements

current approaches by focusing on a number of aspects. We
prototype a parallel SVM, building on the Sequential Minimal
Optimization (SMO) algorithm [6]. We utilize a distributed
computing framework, namely MapReduce [9] using
Hadoop’s implementation [10]. We also employ ontology
semantics for improving overall accuracy.

The rest of the paper is organized as follows. In Section II
we briefly describe the design of a parallel SVM algorithm.
This work is then employed as a baseline for extension and
accuracy improvement through the application of ontology
assisted techniques, as described in Section III. Section IV
describes basic experimental observations and results. Section
V concludes the paper and points out some future work.

II. DISTRUBUTING SVM WITH MAPREDUCE
MapReduce is a generic framework and programming

model intended to abstract large scale computation challenges.
Popular implementations include Mars [11], Phoenix [12],
Hadoop [10] and Google’s implementation [13]. MapReduce
was popularized by the latter and primarily motivated by the
need to be able to parallelize the processing of Internet scale
datasets. Programmatically inspired from functional
programming, at its core are two primary features, namely a
map and a reduce operation. From a logical perspective, all
data is treated as a Key (K), Value (V) pair. Multiple mappers
and reducers can be employed. At an atomic level however a
map operation takes a {K1, V1} pair and emits an intermediate
list of {K2, V2} pairs. A reduce operation takes all values
represented by the same key in the intermediate list and
processes them accordingly, emitting a final new list. Whilst
the execution of reduce operations cannot start before the
respective map counterparts are finished, all map and reduce
operations run independently in parallel. Each map function
executes in parallel emitting respective values from associated
input. Similarly, each reducer processes different keys
independently and concurrently.

A simple approach to parallelize and improve SVM
training performance is thus by splitting training data and
capitalizing on respective MapReduce functionality. From a
Hadoop MapReduce [10] perspective, the data splitting
strategy can be done according to the number of MapReduce
tasks that will be employed. Each Map task (MAP1…MAPn)
will process the associated data chunk
(DataChunk1…DataChunkn) and generate a respective set of

 2660

Support Vectors (SVset
1 … SVset

n). These can then forwarded
to a single (or multiple) Reducer (REDUCE1) which will
contribute the respectively aggregated Support Vector Set
(SV), weight (w) and bias (b) elements of the global SVM to a
final learned model. In our prototype, the aggregation of the
weight (w) and bias (b) elements are performed using a sum
and average strategy respectively. The final output is used as
the final classification model including the necessary
information for the objective function to be able to classify
unseen data. This process is described pictorially in Fig. 1.

Fig 1: SVM process aggregation

Algorithm 1 presents the proposed parallel SMO based on

the one described in [6]. The map segment of the algorithm is
basically the same as the original SMO algorithm except for
the fact that it is applied for each participating mapper. The
primary difference lies in the approach that the global b
threshold (bglobal) and weight vector (wglobal) are computed via
the reducer, using an average and sum strategy respectively as
described in the pseudo code. In Algorithm 1, for each
datachunk we associate a Map (Mapj) operation. In this context,
line 4 initializes the necessary structures, primarily the α
multipliers and the objective function. Lines 5 – 10 portray the
SMO optimization process. Iterations are based on the
selection and optimization of two Lagrange multipliers,
subsequently the objective function. Line 11 checks for the
respective exit conditions, whilst line 12 updates the bias
threshold accordingly. For actual implementations multiplier
selection is frequently based on approaches such as heuristics,
albeit strategies vary with specific implementations. Lines 13
and 14 store the Lagrange multipliers and update the local
weight vector for the specific map (Mapj). In contrast with the
sequential SMO algorithm presented in [6], we perform two
additional steps using the reduce phase of the MapReduce
prototype. Basically, the reducer performs an average
computation on all respective b outputs emitted by the
individual Map (Mapj) operations (bglobal - Line 18) as well as
a sum operation on the weight vectors emitted by the
respective Map (Mapj) operations (wglobal - Line 19).

Weka’s SMO [14] implementation is employed as a
baseline solver. For this work we focused on linear SVMs,
although the approach can be easily extended and applied to
non-linear variants as well. The base SMO algorithm is
decomposed and re-structured to benefit from MapReduce. As
discussed, each MapReduce map processes an associated data
chunk in its entirety. The output of each map process is the
localized (per data chunk) SVM weight vector (Algorithm 1:
wj) and the bias (Algorithm 1: bj) threshold. Again, the
primary role of the associated reduce phase is to compute the
global weight vector (Algorithm 1: wglobal) by summing the

individual maps weight vectors. The bias thresholds from each
map output are averaged by the respective reduce phase
(Algorithm 1: bglobal).

From a time complexity perspective the original sequential
representation, i.e. O(m2n) can now be contextualized in a
MapReduce environment and expressed as:

O ((m2n / S)+ n log(S)) (1)

where n is the dimension of the input, m are the training
samples and S the number of MapReduce nodes.

1. MAPj j ∈ {1…datachunk}
2. input: set of training data xi, corresponding labels yi, i ∈ {1…l }
3. output: weight vector wj, αj array, bj and SV
4. initialize: αi ← 0, fi ← -yi i ∈ {1…l }
5. compute bhigh, Ihigh, blow, Ilow
6. update αIhigh and αIlow
7. repeat
8. update fi, i ∈ {1…l }
9. compute bhigh, Ihigh, blow, Ilow
10. update αIhigh and αIlow
11. until blow ≤ bhigh, + 2Г
12. update bj bias term
13. store updated αj1 and aj2
14. update wj
15. REDUCE
16. input: set of Mapj weight vectors wj j ∈ {1… datachunk}, set of Mapj bias bj

j ∈ {1… datachunk}
17. output: global weight vector w, average b and SV

18.

 Mapj
compute bglobal = ∑b data

chunk / Mapj

 j=1

19.

 Mapj
compute wglobal = ∑b data

chunk
 j=1

Algorithm 1: MapReduce based parallel SMO

Where:

Mapj = MapReduce Map
Datachunk = training data associated with Mapj
x = training elements, y = class labels for x
wj = local (Mapj) weight vector
bj = local (Mapj) b threshold
I = training data index set
αj = Lagrange multiplier(s)
bglobal = global b threshold
wglobal = global weight vector

III. ONTOLOGY FOR ACCURACY AUGMENTATION
 Training an SVM by splitting the input data set and

working on the individual sub-sets separately may reduce the
overall accuracy [15]. In order to improve the overall
classification accuracy of the parallel SMO algorithm, we
extend it with an ontology based enhancement process. We
designed SPONTO, short for SPamONTOlogy, which acts as
a feedback loop base for the training and classification
processes. This is in contrast with the work presented in [16]
where the ontology itself is employed for classification. The
feedback loop is then employed to re-train the parallel SVM
with added intelligence to improve overall accuracy. This is
performed to mitigate the accuracy degradation challenge
introduced due to the training data file splitting strategy and
respective separate SVM computation strategy adopted.

 2661

SPONTO reflects all the basic elements presented in the
SpamBase [17] dataset as well as additional attribute
assertions. SPONTO is also employed to carry additional
intelligence such as mail class (Ham or Spam), whether the
machine learning based (parallel SVM) classifier outcome for
instance classification was correct as well as support for
instance weights. The intelligence conveyed through the
supplementary instance attributes via end user contribution is
employed for correcting and influencing training data. The end
user contributed, ontology based intelligence augmented
training sets are then employed for the regeneration of the
classifier by the parallel SVM.

A base RDF graph is generated from the SpamBase ARFF
and based on the SPONTO ontology structure. We transform
the Weka ARFF format to an equivalent RDF representation.
We then apply the learned model from the parallel SVM on
the instances which require classification. For each test
instance, we generate a new ontology instance based on
SPONTO. Ontology generation is performed via the extraction
of instance data and automated generation of a respective
SPARQL query, applied on the base RDF graph to identify
respective misclassified elements. Misclassified nodes are
identified as a set of final ontology instances that are used for
user contribution. End users contribute preference and
intelligence by increasing individual instance weights,
removing instances or modifying instance classification
outcomes for example. For the prototype, we employ Protégé,
the Ontology Editor and Knowledge Acquisition System [18]
for Ontology interaction and end user contribution.

The final process involves the re-generation of the Weka
ARFF input files from the final ontology for subsequent
processing by the parallel SVM. We increase correctly
classified instance weights, correspondingly decrease the
instance weights of incorrectly classified ones and merge these
instances with the original input. This closes the ontology
assisted feedback loop – described pictorially in Fig. 2.

Fig 2: Ontology assisted feedback loop

IV. EXPERIMENTAL RESULTS
A number of experiments were carried out to identify the

accuracy and performance of the parallel SMO, comparing it
with the Sequential counterpart. For all classification
experiments carried out, the SpamBase [17] dataset was
employed. There are 4601 instances in the original SpamBase
dataset. A baseline experiment intended to identify typical

sequential SMO performance using the SpamBase dataset on a
typical desktop computer was performed. Weka’s SMO
classification scheme was employed [19], using a number of
unlabeled instances and varying the number of training
instances. The time required to train the SMO sequentially
using 128,000 instances on a single computer node was ≈ 563
seconds. A sequential SMO test with 327,750 instances failed.
The same numbers of instances were processed in ≈ 134
seconds using a simple Hadoop MapReduce cluster with 4
computing nodes of similar processing capabilities as the
desktop machine employed for the sequential tests. Fig. 3
shows a comparison of the sequential and parallel SMO
efficiency in training, using a varying number of nodes. It is
also believed, as shown in Table I that the baseline parallel
SMO classifier accuracy compares favorably with the figures
identified when the model was trained using the sequential
approach. Given an appropriate number of processing nodes
and map tasks, training the SVM using the proposed
MapReduce approach reduces training time considerably. This
also provides increased scope for possible re-training.

Fig 3: Efficiency of the Parallel SMO

TABLE I. TRAINING TIME AND ACCURACY COMPARISON

 Sequential 4 Node MapReduce Avg.
Correctly Classified ≈ 94.03 % ≈ 92.04 %
Incorrectly Classified ≈ 5.97 % ≈ 7.96 %
Training time 128,000
instances

≈ 563.70 s ≈ 134.50 s

As indicated earlier, the baseline SMO is inherently

sequential making use of singular global data structures. On
the other hand the parallel version employs numerous separate
support vector machines based on the specific file splits and
training sets. This specific approach is the primary influencer
of the accuracy difference between the sequential and the
parallel versions. Evaluating the accuracy of the parallel SVM
computed classifier using a random set of 267 instances yields
226 correct and 41 incorrectly classified instances
respectively. To further improve the accuracy of the parallel
SMO, we augment the base training sets with additional
intelligence through ontology based end user contribution as
described in Section III. This is performed by influencing
individual misclassified elements as well as attributing
increased weighting to user identified and selected instances.

 2662

With this approach, we identified an average of ≈ 5 %
accuracy improvement. The rate of accuracy degradation over
the number of file splits is significantly slower as shown in
Fig. 4. The slower rate of accuracy degradation is attributed to
the ontology based intelligence augmentation. This is achieved
by merging end user optimized instances to the respective
training split files which are also weighted to influence overall
relevancy. The minimum accuracy increases by 1.7% which
reflects a scenario where the number of file splits is minimal, 4
chunks in this case, whilst the maximum of 7.5 % occurs when
there is the largest number of splits, namely 48 in this case.
Based on an average accuracy improvement of 4.6 % over the
baseline parallel SMO, Fig. 5 shows that using the ontology
intelligence augmented approach, the MapReduce based SMO
achieves an accuracy of 96% on average, which is better than
the original sequential SMO.

Fig 4: Accuracy degradation rate comparison.

Fig 5: The accuracy of the ontology augmented parallel SMO.

V. CONCLUSIONS AND FUTURE WORK
In this paper we presented a parallel SVM algorithm for

scalable spam filtering. By splitting the training set and
applying distributed computing techniques such as
MapReduce we can improve the training time considerably.
However, this has varying yet noticeable degrees of accuracy
degradation. In our work, we employ ontology based
semantics to improve the accuracy of the parallel SVM. For
future work, we intend to research appropriate schemes to
extract additional intelligence from annotated instances and
employ this within the machine learning, Parallel SVM
feedback loop process. We believe that accuracy can be also
further improved via automated annotation similar to [20].

REFERENCES
[1] E. Blanzieri and A. Bryl, “A survey of learning-based techniques of

email spam filtering,” Artif. Intell. Rev., vol. 29, no. 1, p. 63–92, 2008.
[2] A. Blanco, A. M. Ricket, and M. Martin-Merino, “Combining SVM

classifiers for email anti-spam filtering,” in Computational and
Ambient Intelligence. Proceedings 9th International Work-Conference
on Artificial Neural Networks, IWANN 2007, Berlin, Germany, 2007,
pp. 903 - 10.

[3] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge,
MA, USA: MIT Press, 2001.

[4] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vapnik,
“Parallel Support Vector Machines: The Cascade SVM,” in NIPS,
2004.

[5] T.-N. Do and F. Poulet, “Classifying one billion data with a new
distributed svm algorithm,” in RIVF, 2006, pp. 59-66.

[6] J. C. Platt, “Fast training of support vector machines using sequential
minimal optimization,” Cambridge, MA, USA: MIT Press, 1999, p.
185–208.

[7] F. R. Bach and M. I. Jordan, “Predictive low-rank decomposition for
kernel methods,” in ICML, 2005, pp. 33-40.

[8] G. Zanghirati and L. Zanni, “A parallel solver for large quadratic
programs in training support vector machines,” Parallel Comput., vol.
29, no. 4, p. 535–551, 2003.

[9] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM, vol. 51, no. 1, p. 107–113, 2008.

[10] “Welcome to Apache Hadoop!,” Welcome to Apache Hadoop!
[Online]. Available: http://hadoop.apache.org/. [Accessed: 09-May-
2011].

[11] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a
MapReduce framework on graphics processors,” in PACT ’08:
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, New York, NY, USA,
2008, p. 260–269.

[12] K. Taura, T. Endo, K. Kaneda, and A. Yonezawa, “Phoenix�: a
Parallel Programming Model for Accommodating Dynamically
Joining Resources,” in In Proc. of PPoPP, 2003, p. 216–229.

[13] T. Aarnio, “Parallel Data Processing with Mapreduce.” [Online].
Available:
http://www.cse.tkk.fi/en/publications/B/5/papers/Aarnio_final.pdf.
[Accessed: 29-Apr-2010].

[14] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. San Francisco: Morgan Kaufmann,
2005.

[15] N. A. Syed, S. Huan, L. Kah, and K. Sung, “Incremental Learning
with Support Vector Machines,” Incremental Learning with Support
Vector Machines, 1999. [Online]. Available:
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.6367.
[Accessed: 03-Aug-2010].

[16] S. Youn and D. McLeod, “Efficient spam email filtering using
adaptive ontology,” in International Conference on Information
Technology, Proceedings, 2007, pp. 249-254.

[17] A. Asuncion and D. J. Newman, UCI Machine Learning Repository.
University of California, Irvine, School of Information and Computer
Sciences, 2007.

[18] “About the Protégé Team,” Protege. [Online]. Available:
http://protege.stanford.edu/aboutus/aboutus.html. [Accessed: 15-Aug-
2010].

[19] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, p. 10–18, 2009.

[20] C. Posse, P. Paulson, B. Baddeley, R. Hohimer, and A. White,
“Automating Ontological Annotation with WordNet,” in Proceedings
of the 3 rd Global WordNet Conference, Jeju Island, South Korea,
2006.

