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Highlights

• Present a new MOEA for complex portfolio optimization.

• Six real-world trading constraints are considered.

• Computational experiments are performed by using real market data.

• Results show the effectiveness of the learning mechanism.

• Proposed method yield improved performance relative to existing meth-
ods.
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Abstract

Portfolio optimization involves the optimal assignment of limited capital to dif-
ferent available financial assets to achieve a reasonable trade-off between profit
and risk. We consider an alternative Markowitz’s mean-variance model, in which
the variance is replaced with an industry standard risk measure, Value-at-Risk
(VaR), in order to better assess market risk exposure associated with finan-
cial and commodity asset price fluctuations. Realistic portfolio optimization in
the mean-VaR framework is a challenging problem since optimizing VaR leads
to a non-convex NP-hard problem which is computationally intractable. In
this work, an efficient learning-guided hybrid multi-objective evolutionary algo-
rithm (MODE-GL) is proposed to solve mean-VaR portfolio optimization prob-
lems with real-world constraints such as cardinality, quantity, pre-assignment,
round-lot and class constraints. A learning-guided solution generation strategy
is incorporated into the multi-objective optimization process to promote efficient
convergence by guiding the evolutionary search towards promising regions of the
search space. The proposed algorithm is compared against the Non-dominated
Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary
Algorithm (SPEA2). Experimental results using historical daily financial mar-
ket data from S &P 100 and S & P 500 indices are presented. Experimental
results shows that MODE-GL outperforms two existing techniques for this im-
portant class of portfolio investment problems in terms of solution quality and
computational time. The results highlight that the proposed algorithm is able
to solve the complex portfolio optimization without simplifications while ob-
taining good solutions in reasonable time and has significant potential for use
in practice.
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1. Introduction

Portfolio optimization is concerned with the optimal allocation of limited
capital to available financial assets to achieve a trade-off between reward and
risk. The classical mean-variance (MV) model [53, 54] formulates the portfolio
selection problem as a bi-criteria optimization problem with a tradeoff between
minimum risk and maximum expected return. In the MV model, risk is defined
by a dispersion parameter and it is assumed that returns are normally or ellip-
tically distributed. However, the distributions of returns are asymmetric and
usually have excess kurtosis in practice [6, 20, 28, 45, 58]. Variance as a risk
measure has thus been widely criticized by practitioners due to its symmetrical
measure which equally weights desirable positive returns against undesirable
negative ones. In fact, Markowitz recognized the inefficiencies embedded in the
mean-variance approach and suggested the semi-variance risk measure [54] in
order to measure the variability of returns below the mean. In practice, many
rational investors are more concerned with under-performance rather than over-
performance in a portfolio.

These limitations have led to research directions where realistic risk mea-
sures are used to separate undesirable downside movements from desirable up-
side movements [14]. Among those various risk measures, Value-at-Risk (VaR)
[55] and expected shortfall or conditional value-at-risk (CVAR) [61] are the
widely accepted popular risk measures. Rockafellar and Uryasev [62] presented
thorough discussions on VAR and CVaR with regular distributions. The choice
between these two risk measures is based on many factors such as the differ-
ences in mathematical properties, stability of statistical estimation, simplicity
of optimization procedures, and importantly, acceptance by financial industry
and regulators [66]. Despite its acknowledged limitations [62], VaR has been
widely adopted in the financial industry [8, 9, 10, 32, 40, 57] but its non-linear
and non-tractable properties [56] make it very challenging computationally for
portfolio optimization problems with real world constraints. This paper presents
an alternative bi-criterion Markowitz portfolio optimization model, in which the
variance has been replaced with the VaR.

From a practical point of view, investors commonly face many real-world
trading restrictions, which requires that the constructed portfolios have to meet
trading constraints. As a result, several extensions and modifications of the basic
Markowitz model reflecting real-world constraints have been developed. Since
the additional trading constraints representing relevant practical issues lead to
sets of discrete variables and constraints, the resulting optimization problem
becomes very complex. In this work, we consider a single period multi-objective
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portfolio optimization problem with practical trading constraints, namely, car-
dinality, quantity, pre-assignment, round lot, class and class limit constraints.
Value-at-Risk (VaR) is used as a risk measure and a nonparametric historical
simulation approach is adopted to calculate VaR.

Minimizing a nonparametric VaR measure is a complex task due to the non-
smooth objective function landscape with many local minima. Figure-1 shows
the surface and contour plots of the Value-at-Risk (VaR) of feasible portfolios
in a three assets universe, displaying the existence of non-smooth and non-
convex surface with several local minima. In practice, portfolios are composed
of markets with potentially hundreds to thousands of available assets, and the
calculation of risk measures grows quickly in relation to the number of assets.
When more dimensions and trading constraints are added to the problem, the
complexity of the problem increases. Optimal exponential algorithms for rea-
sonable problem dimensions are still not available. Approximation approaches
such as smoothing [32] and meta-heuristics are the known alternatives to find
optimal or near-optimal portfolios in a reasonable amount of time.

In this work, we present a new learning-guided multi-objective evolution-
ary algorithm (MODE-GL) for the mean-VaR portfolio optimization problems
with practical investment constraints. A learning-guided solution generation
strategy is incorporated into the multi-objective optimization process to pro-
mote efficient convergence by guiding the evolutionary search towards promis-
ing regions of the search space. The performance of the proposed algorithm
is compared against two existing well-known multi-objective evolutionary algo-
rithms, the Non-dominated Sorting Genetic Algorithm (NSGA-II) [26] and the
Strength Pareto Evolutionary Algorithm (SPEA2) [81]. Moreover, the proposed
learning-guided solution generation mechanism is incorporated in NSGA-II and
SPEA2 to investigate its effectiveness. The performances of the algorithms are
tested on two real datasets retrieved from the S & P 100 and S & P 500 indices.
Experimental results show that the proposed algorithm is able to solve the com-
plex portfolio optimization without simplifications while obtaining acceptable
solutions in a reasonable time. Moreover, results show that the learning-guided
solution generation strategy contributes to enhancing the efficient convergence
of the search algorithm by concentrating on the promising areas of the search
space.

The rest of the paper is organized as follows. Section 2 presents a brief
introduction to the Value-at-Risk risk measure and a selective review of lit-
erature on mean-VaR portfolio optimization. Section 3 describes the generic
multi-objective portfolio optimization, followed by the mean-VaR model con-
sidering cardinality, quantity, pre-assignment, round lot, class and class limit
constraints. Section 4 introduces a new algorithm (MODE-GL) to address
highly constrained portfolio optimization problems, highlighting the main dif-
ferences from existing approaches and presenting the detailed structure of the
algorithm. Section 5 applies the new approach to datasets generated from real
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(a) Surface plot

(b) Contour plot

Figure 1: The historical VaR of feasible portfolios comprising of Coca-Cola Co., 3M Co. and
Halliburton Co. with 3 years of data. w1 is the proportion of investment in Coca-Cola, w2

is the proportion of investment in Halliburton. The amount of investment in 3M is equal to
1 − w1 − w2. Short selling is not allowed for any of the assets.

market data and discusses the performance of the proposed algorithm in com-
parison to existing evolutionary optimization approaches. Finally conclusions
and future work are presented in Section 6.
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2. Value-at-Risk: An Overview

In the literature, researchers and practitioners replace variance by introduc-
ing various downside risk measures [37, 46] in order to capture realistic market
risk exposure by focusing on return dispersions below a specified target. The
Safety-First principle introduced by Roy [64] is considered to be fundamental
in the development of downside risk measures in the finance literature. Roy’s
Safety-First criterion suggests selecting a portfolio which minimizes probability
of returns falling below some predefined disaster level. Consequently, a growing
number of downside risk measures based on lower partial moments have been
proposed by academics and practitioners [11, 12, 30].

The most popularly embraced technique for measuring downside risk among
financial institutions is Value-at-Risk (VaR) [27, 29, 40, 47]. VaR measures the
maximum likely loss of a portfolio from market risk with a given confidence level
(1 - α) over a fixed horizon. For instance, if a daily VaR is valued as 100,000
with 95% confidence level, this means that during the next trading day there
is only a 5% chance that the loss will be greater than 100,000. The higher the
confidence level, the better the chances that the actual loss will be within the
VaR measure. Therefore, the confidence level (1 - α) is usually high, typically
95% or 99%.

There are three main techniques commonly employed to measure VaR: the
parametric approach (variance-covariance), nonparametric approach (historical
simulation) and Monte Carlo simulation methods [40, 47]. The choice of the
VaR method is critical since the results yielded from each method can be dif-
ferent from each other [51, 59]. Each method has its own strengths and weak-
nesses. The parametric method assumes financial returns follow a normal or
known distribution function whereas the nonparametric (historical simulation)
method makes no assumption regarding the distribution. The third method
simulates several random scenarios, which can be computationally challenging.
The analysis conducted by Perignon and Smith [57] shows that the most com-
monly used approach for computing VaR among investment firms that disclose
their methodology is historical simulation.

VaR has been widely recognized by financial regulators and investment prac-
titioners. The Basel Committee for Banking Supervision of the Bank of Interna-
tional Settlements [8, 9, 10, 38] allows financial institutions to use VaR models
to set aside regulatory capital amounts that would cover potential operational
losses. In addition, the Securities and Exchange Commission (SEC) requires
financial service firms to provide quantitative information about market risk us-
ing the VaR measure [1]. It is clear that computationally effective and efficient
methods for portfolio optimization based on VaR remain an important area of
study with many remaining open research questions. Cont et al [21] shows that
nonparametric VaR has better robustness than CVaR, expected shortfall and
Sharpe ratio. Rossello [63] also shows that nonparametric VaR is less sensitive
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to outliners than Sharpe ratio and Gain-Loss ratio.

Despite its wide adoption, VaR has limitations. When VaR is used as the ob-
jective function it leads to a non-convex and non-differential risk-return portfolio
optimization problem where the number of local optima increases exponentially
with the number of assets [23, 32, 44, 75]. In fact, Benati and Rizzi [13] show
that optimization of the mean-VaR portfolio problem leads to a non-convex NP-
hard problem which is computationally intractable. Moreover, the non-convexity
of VaR discourages diversification. In other words, the VaR of a portfolio with
two securities may be greater than the combination of VaRs of each security in
the portfolio. Artzner et al [4] show that VaR fails to satisfy the subadditivity
property for some distributions of asset returns. Many studies have applied al-
ternative subadditive risk measures such as Conditional Value at Risk (CVaR)
[61] and Partitioned Value-at-Risk (PVaR) [36] with corresponding operational
consequences.

However, given that VaR is the predominantly used quantile-based, industry-
standard risk measure, there is a need for efficient algorithms that minimize
VaR while obtaining maximum return. In the literature, there are different ap-
proaches to measure VaR to investigate portfolio optimization [16, 33, 36, 56].
Although there has been considerable work related to portfolio optimization
with various risk measures [7, 44, 46, 52], it is noticeable that the number of
studies of non-parametric historical VaR in the context of mean-VaR remains
relatively small. Gilli and Kellezi [34] and Gilli et al [35] propose a threshold
accepting method to maximize a portfolio’s return under VaR and expected
shortfall constraints. Dallagnol et al [22] employ a genetic algorithm (GA) and
particle swarm optimization (PSO) for a mean-VaR portfolio selection problem
using historical simulation calculation. Alfaro-Cid et al [2] conduct a compar-
ison between mean-variance and mean-VaR approach using a multi-objective
genetic algorithm. However these models have often simplified the problem
where practical constraints are not taken into account.

Baixauli-Soler et al [5] present a multi-objective GA for the mean-VaR port-
folio optimization problem with minimum transaction units and transaction
costs. Jevne et al [39] also study the mean-VaR portfolio optimization problem
with minimum transaction units and transaction costs and investigate the effect
of the initialization scheme on the results with multi-objective differential evo-
lution and NSGA-II. Experimental results show that the refined initialization
scheme improves the convergence of both algorithms. Anagnostopoulos and
Mamanis replace the variance risk measure with VaR and expected shortfall
(ES). Three multi-objective evolutionary algorithms are compared against exact
methods to evaluate the portfolio selection problem with cardinality, quantity
and class constraints [3] .
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3. Multi-objective Portfolio Optimization Problems

Multi-objective optimization generally involves balancing all conflicting ob-
jectives and searches for a set of compromise solutions between the objectives
while satisfying various constraints. In such contexts, this set of solutions is
known as the set of Pareto-optimal solutions [25]. In the multi-criteria variant
of the portfolio optimization problem, the objective is to find a set of efficient
portfolios that minimize risk and maximize return simultaneously:

min f1 = ψ(w)

max f2 = µ(w)

s.t w ∈W.
(1)

In a two-dimensional space of risk and return, a solution a is said to be
efficient (i.e., Pareto-optimal or non-dominated) if no solution b exists such
that b dominates a [31]. Solution a is considered to dominate solution b if and
only if C1 or C2 hold:

C1 : f1(a) ≤ f1(b) ∧ f2(a) > f2(b)

C2 : f2(a) ≥ f2(b) ∧ f1(a) < f1(b)
(2)

The set of efficient portfolios forms the efficient frontier representing the best
tradeoffs between return and the risk.

3.1. Mean-VaR Portfolio Optimization Problem

The mean-VaR model is based on Markowitz’s MV model[53, 54]. It is ob-
tained by replacing variance with VaR as a risk measure and is formulated as a
multi-objective optimization problem where expected return is maximized and
VaR is minimized. In this work, we compute VaR using a historical simulation
(nonparametric) method. This method calculates VaR from the α quantile of
the empirical distribution of the historical data and therefore it does not assume
that returns follow any particular distribution.

Let rit be the observed return of asset i at time t using historical data over
the time horizon T . Let wi be the proportion of the budget invested in asset i.
Given a set of N assets, the portfolio’s return under scenario t is estimated by:

κt(w) =
N∑

i=1

ritwi, t = 1, . . . , T. (3)
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Let ρt be the probability of scenario occurrence and assume all scenarios are
considered to have equal probability: ρt = 1/T . The expected return of the
portfolio over time T is obtained by:

µ(w) =
T∑

t=1

κt(w)ρt (4)

The VaR at a given confidence level (1- α) is the maximum expected loss
that the portfolio will not exceed with a probability α.

ψ(w) = V aRα(w) = −inf
{
κt(w) |

T∑

t=1

ρt ≥ α
}

(5)

where returns κj(w) are placed in an ascending order such that κ(1)(w) ≤
κ(2)(w) ≤ ... ≤ κ(T )(w) [3]. The mean-VaR portfolio selection problem is sum-
marized as follows:

min ψ(w) (6)

max µ(w) (7)

s.t

N∑

i=1

wi = 1, 0 ≤ wi ≤ 1 (8)

where N is the number of available assets and wi (0 ≤ wi ≤ 1) is the decision
variable representing the proportion held of asset i. Eq(8) defines the budget
constraint (all the money available should be invested) for a feasible portfolio
and the non-negative property of wi denotes that no short sales are allowed.

3.2. Practical Constraints

The basic model assumes a perfect market where securities are traded in any
(non-negative) fractions, there is no limitation on the number of assets in the
portfolio, investors have no preference over assets and they do not care about
different asset types in their portfolios [48, 54]. In practice, however, these
assumptions are unrealistic. As a result, several extensions and modifications
have been proposed to address the real-world constraints [49, 71, 74]. The
basic model can be extended (not exhaustively) with a number of real-world
constraints to better reflect practical portfolio optimization:

Cardinality Constraint
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Cardinality constraints limit the number of assets (K) that compose the
portfolio. Very often in practice, investors prefer to have a limited num-
ber of assets in their portfolio since the management of many assets in a
portfolio is tedious and may be hard to monitor. They may also seek to re-
duce transaction costs and/or to assure a certain degree of diversification
by limiting the maximum number of assets in their portfolios.

Floor and Ceiling Constraints

The floor and ceiling constraints specify the minimum and maximum lim-
its on the proportion of each asset that can be held in a portfolio. In
practice, investors prefer to avoid excessive administrative costs for very
small holding of assets in the portfolio and/or some institutional poli-
cies may stipulate lower and upper bounds of some or each asset in the
portfolio. These are also referred to as bounding or quantity constraints.

Pre-assignment Constraint

The pre-assignment constraint is usually used to model the investor’s sub-
jective preferences. An investor may intuitively prefer a specific set of
securities (Z) to be included in the portfolio, with either its proportion
fixed or to be determined.

Round Lot Constraints

Round lot constraints require the amount of any assets in the portfolio
to be in exact multiples of defined normal trading lots. In practice, sev-
eral market securities are traded as multiples of minimum lots.

Class Constraints

In practice, investors may ideally want to partition the available assets
into mutually exclusive sets (classes). Each set may be grouped with
common features or types such as health care assets, energy assets, etc or
grouped by an investor’s own intuition or preference. Investors may prefer
to select at least one asset from each class to construct a diversified and
safe portfolio. Class constraints were first introduced by Chang et al [15]
and Anagnostopoulos and Mamanis [3] later considered class constraints
in their work.

Class Limit Constraints

In practice, investors may also want to restrict the total proportion in-
vested in each class to a defined class limit.
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3.3. Practical Mean-VaR Portfolio Optimization Problem

The constraints described in Section-3.2 are hard in the sense that they
have to be satisfied at any time. The extended mean-VaR model may then be
formulated as follows:

min ψ(w) (9)

max µ(w) (10)

subject to
N∑

i=1

wi = 1, 0 ≤ wi ≤ 1 (11)

N∑

i=1

si = K, (12)

wi = yi.υi, i = 1, ..., N, yi ∈ Z+ (13)

εisi ≤ wi ≤ δisi, 0 ≤ εi ≤ δi ≤ 1, i = 1, ..., N (14)

Lm ≤
∑

si ∈ Cm

wi ≤ Um, m = 1, ....M, (15)

si ≥ zi, i = 1, ..., N (16)

si, zi ∈ {0, 1} , {zi ∈ Z | zi == 1}, i = 1, ..., N (17)

The additional constraints are described through Eqs (12 - 17). Eq-(12) de-
fines the cardinality constraint where K is the number of invested assets in the
portfolio and the binary variable si denotes whether asset i is invested or not.
Eq-(14) defines the quantity constraint. If asset i is invested, the proportion of
capital wi lies in [εi, δi].

Eq-(16) defines the pre-assignment constraint to fulfil the investor’s sub-
jective requirements where the binary vector zi denotes if asset i is in the pre-
assigned set Z that has to be included in the portfolio or not. Eq-(13) defines
the round lot constraint where yi is a positive integer variable and υi is the
minimum lot that can be purchased for each asset. Eq-(15) defines class and
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class limit constraints where Cm,m = 1, . . . ,M , represents M mutually exclu-
sive sets of assets and Lm and Um are the lower and upper proportion limit
for class m. In this work, it is assumed that Lm > 0 for every class Cm and
K ≥ M+ | Z | − | Zcl | where Zcl is the set of classes represented by the
preassigned set Z (i.e., Zcl = {m : zi ∈ Cm}, zi ∈ Z).

4. A Learning-guided Multi-objective Evolutionary Algorithm

The portfolio optimization problem becomes too complex to solve by con-
ventional optimization approaches as it typically exhibits multiple local extrema
and discontinuities especially when variance is replaced by the VaR risk measure
(see Figure-1) and constraints reflecting investor’s preferences and/or institu-
tional trading rules are considered. Meta-hueristics and hybrid algorithms pro-
vide alternatives for finding optimal or near-optimal solutions in a reasonable
amount of time. Over the last two decades, multi-objective evolutionary algo-
rithms (MOEAs) have received a significant amount of attention and demon-
strated their effectiveness and efficiency in approximating the Pareto-optimal
front [17] for a wide range of problems [50, 78].

DEMO [60] is one of the recent algorithms which combines the advantages
of Differential Evolution (DE) [69] with the mechanisms of Pareto-based sort-
ing and crowding distance sorting [26]. It has been successfully tested on the
carefully designed test functions (ZDT) introduced in [80]. The procedure of
the DEMO is described in Algorithm 1. DEMO maintains a population of indi-
viduals, where each represents a potential solution to the optimization problem.
During the evolution, it allows its population capacity to expand in order to
add newly found non-dominated solutions (see Algorithm 1, line 3-11). Hence,
it enables the newly found non-dominated solutions to immediately take part
in the generation of the subsequent candidate solutions. This feature of DEMO
promotes fast convergence towards the true Pareto front.

In each generation, if the population exceeds the size limit, it is sorted based
on the non-domination and crowding distance metrics in order to identify those
individuals to be truncated. The crowding distance value of a solution is an es-
timate of the density of solutions surrounding that solution [26]. It is estimated
by calculating the average distance of two nearest neighbors on either side of a
particular solution along each of the objectives. If solutions are non-dominated
then the one with larger crowding distance is preferred. It thus aims to maintain
a good distribution of non-dominated portfolios.

In this work, we propose a learning-guided multi-objective evolutionary al-
gorithm (MODE-GL) for constrained portfolio optimization. The proposed al-
gorithm adopts a new approach to extend the generic DEMO scheme to solve
the constrained portfolio optimization problem. The main differences of our
approach with respect to the DEMO scheme are:
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Algorithm 1: Procedure of MODE [60]

1 evaluate the initial population P of random individuals ;
2 while stopping criterion not met do
3 for each individual pi(i = 1, . . . , Psize) do
4 create a candidate p′ from parent pi ;
5 evaluate p′ ;
6 if p′ dominates pi then
7 p′ replaces pi
8 else if pi dominates p′ then
9 discard p′

10 else
11 add p′ to P

12 if | P | ≥ Psize then
13 truncate P

14 randomly enumerate the individuals in P

1. A secondary population (i.e. an external archive) is introduced to store
the well spread non-dominated solutions found throughout the evolution
(see Section-4.1.8).

2. A learning mechanism is proposed to extract the important features from
the efficient solutions found throughout the evolution (see Section-4.1.3).

3. Two extended variants of differential evolution mutation schemes are pro-
posed (see Section-4.1.4).

4. An efficient solution generation scheme that utilizes the learning mecha-
nism, problem specific heuristics and effective differential evolution muta-
tion schemes is proposed to guide the search towards the promising regions
of the search space (see Section-4.1.4).

The proposed MODE-GL extracts the important features of non-dominated
solutions throughout the evolution. Incorporating a learning mechanism and
prior problem-specific knowledge exploitation in the evolution process allows
MODE-GL to generate promising offspring solutions. The approach thus aims
to promote convergence by concentrating on the promising regions of the search
space. On the other hand, adopting the two extended variants of differential
evolution mutation schemes promotes the exploration of the search towards the
least crowded region of the solution space.

The pseudocode of the proposed algorithm is described in Algorithm 2.
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Algorithm 2: Procedure of MODE-GL

Input:
Amax = the size of the archive A ;
Dmax = the size of the archive D ;
NP = the number of individuals in the population P ;

1 randomly create an initial population P ; // Initialization

2 while stopping criterion not met do
3 maintain the archive A with non-dominated solutions from P ;
4 if | A | ≥ Amax then
5 maintain archive A with Amax least crowded non-dominated

solutions ;

6 maintain archive D with Dmax least crowded solutions from P ;
7 learn from the archive A to identify the promising asset(s) ;
8 for each individual pi(i = 1, . . . , N) ∈ P do
9 create new candidate p′ ; // see Algorithm 3

10 if constraints are violated then
11 repair p′

12 evaluate p′ by f1 and f2 ; // see Eq 4, 5

13 if p′ dominates pi then
14 p′ replaces pi;
15 else if pi dominates p′ then
16 discard p′

17 else
18 add p′ to the current population P

19 if | P | ≥ NP then
20 maintain P with the best NP solutions, ranked by

non-domination and crowding distance metrics ;

21 randomly enumerate the individuals in P

Output: archive A

4.1. The proposed MODE-GL

4.1.1. Solution Representation and Encoding

Assume an array Γ consists of M real values each one representing the to-
tal proportion invested in each class; an array S contains K integer numbers,
each representing a selected asset in the portfolio; and an array W includes K
real values, representing the allocation of each selected asset in the portfolio.
We present the following representation scheme to handle several considered
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constraints:

Γ ={θ1, . . . , θM}, 0 ≤ θm ≤ 1, m = 1, . . . ,M

S ={s1, . . . , sM , . . . , sQ, sQ+1, . . . , sK},
Q = M+ | Z | − | Zcl |,
sb ∈ C + Z, sj ∈ {1, . . . , N} − {s1, . . . , sQ}
b = 1, . . . , Q, j = Q+ 1, . . . ,K

W ={wi, . . . , wK}, 0 ≤ wi ≤ 1, i = 1, . . . ,K.

With this solution representation, the cardinality constraint is satisfied by
the array S which has specified size K. The preassignment constraint is satisfied
by including all preassigned assets in S. The class represented by the preassigned
assets in Z are identified and denoted by Zcl. We then ensure that M− | Zcl |
assets are selected from each remaining class. As stated in Section-3.3, in this
work, it is assumed that K ≥ M+ | Z | − | Zcl. If K > Q, then the remaining
K − Q assets are randomly selected from the available unselected assets. In
the literature, Anagnostopoulos and Mamanis [3] use a similar encoding scheme
but their model does not consider either pre-assignment or round lot constraints.

To understand the way the problem is structured, consider an illustrative
portfolio problem where N = 94, M = 6, C1 ∈ {1, . . . , 15}, C2 ∈ {16, . . . , 30},
C3 ∈ {31, . . . , 45}, C4 ∈ {46, . . . , 60}, C5 ∈ {61, . . . , 75} and C6 ∈ {76, . . . , 94}.
An example portfolio with K = 10 would be represented as described below:

Z ={30}, Zcl = {C2}, | Zcl = 1,

Γ ={0.05, 0.05, 0.05, 0.05, 0.05, 0.05},
S ={8, 17, 30, 47, 62, 85, 31, 92, 37, 69},
W ={w8 = 0.112, w17 = 0.048, w30 = 0.024, w47 = 0.376, w62 = 0.024,

w85 = 0.136, w31 = 0.12, w92 = 0.064, w37 = 0.064, w69 = 0.032}.

4.1.2. Initial Population Generation

To generate an initial population, all assets in the pre-assignment set Z are
included first and the remaining K− | Z | are randomly selected by making sure
at least one asset from each class of M is included. The proportions (with exact
lots) are assigned to those K selected assets randomly. If the generated portfolio
violates the budget, quantity and/or class limit constraints, such a solution is
corrected by the constraint handling techniques detailed in Section-4.1.5. This
ensures that all generated solutions in the population are feasible.
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4.1.3. Learning Mechanism

At each generation, the distribution of assets from non-dominated solutions
in the external archive is observed to identify the promising assets. The con-
centration score of each asset ci is calculated by counting its occurrences in the
archive divided by the archive size.

ci =

|A|∑
j=1

si,j

| A | .

The new solutions to be generated are encouraged to compose with those
assets by exploiting the knowledge obtained throughout the evolution to direct
the search towards the most promising regions of the search space. The larger
the concentration scores the higher its chances are to be included in the new
generated solution (See Section-4.1.4). The proposed learning mechanism is
computationally cheap as it only uses a single update at each generation.

4.1.4. Candidate Generation

One of the factors to consider in designing the portfolio model in MODE-GL
is to find an effective way to generate offspring. In this section, an effective and
efficient candidate generation scheme with a good balance between exploitation
and exploration is proposed. A new solution is generated in two phases: the
selection of assets from a universe of N available assets and the allocation of
capital to those selected assets. In the first phase, learning mechanism (see
Section-4.1.3) together with problem specific heuristics (S1 - S4) described be-
low are exploited to identify promising assets while directing the search towards
the most promising regions of the search space.

In order to generate a new candidate solution, the | Z | pre-assigned assets
are first selected. By taking into account the above stated intuitive learning,
in this work, MODE-GL then randomly uses the following selection schemes
until the remaining assets (K− | Z |) have been selected, while making sure
at least one asset from each class of M is included. By adopting the selection
schemes stated below, it is ensured that the new candidate solution satisfies the
pre-assignment, class and cardinality constraints.

S1: Roulette wheel selection based on the concentration score ci.

S2: Select asset with the highest concentration score ci.

S3: Select asset with the highest mean return values.

S4: Select asset with the least standard deviation of return values.

In the second phase, the proportions of those selected assets for the new
candidate solution are assigned by using two extended variants of DE mutation
schemes as follows:
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W1: w′i := besti + r[0, 1]× (w1i − w2i)

W2: w′i := wi + F × (besti − wi) + F × (w1i − w2i)

where F is the scaling factor for differential evolution. The two portfolios with
w1i and w2i allocations are randomly selected from the least crowded portfolio
archive D and best is the best solution randomly selected from the best 10% of
archive A. These two DE mutation schemes are extended from similar variants
of DE/best/1 [24] and DE/current-to-pbest/1 [77]. In our extended version the
difference is that w1i and w2i are randomly selected portfolios from archive
D to direct the search towards promising unexplored directions. The detailed
procedure of the candidate generation is provided in Algorithm-3. The proposed
candidate generation mechanism intends to guide the search towards promising
directions by learning from the best found solutions from the archive A. In this
way, the proposed algorithm converges efficiently. The new candidate portfolio
is repaired if the quantity and round lot constraints are violated (see the repair
mechanism in Section-4.1.5).

Algorithm 3: Procedure to Generate a Candidate Solution.

Input: concentration scores of assets ci(i = 1, . . . , N) and p̄ ∈ P
1 select | Z | assets from preassigned set Z and randomly select K− | Z |

assets by S1, S2, S3 and/or S4 while ensuring class constraint;
2 randomly select three different portfolios: p1, p2, p3 ∈ {P \ p̄};
3 randomly select an index i from those K assets and assign i to j and γ ;
4 for each selected asset do
5 if r(0, 1) < CR or j == γ then
6 allocate weight w′ by W1 or W2;
7 else
8 assign weight w′ with corresponding w̄ of parent portfolio p̄;

9 randomly select an index i from those K selected and assign i to j;

Output: candidate solution p′

4.1.5. Constraint Handling

When using an evolutionary algorithm to solve constrained optimization
problems, various methods have been proposed in the literature for handling
constraints, such as penalty function methods, special representation and oper-
ator methods, repair methods, separation of objective and constraint methods,
and hybrid methods [19]. Among those methods, the repair method is one of
the commonly adopted approaches to locate feasible solutions for combinatorial
optimization problems [19, 65].

During the population sampling, each constructed individual portfolio is
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repaired if it does not satisfy all considered constraints. As described in Section-
4.1.4, the new solution generated by MODE-GL already satisfies the cardinality,
class and pre-assignment constraints. Hence, the following repair mechanism
stated in [68, 70] is applied:

1. All weights of the selected asset in the candidate solution are adjusted by
setting:

w′i = ψi +
w′

i−ψi∑
(w′

i−ψi)

where the smallest divisible lot ψi = inf {xi : xi%υi == 0 and xi ≥ εi}.

2. The weights are then adjusted to the nearest round lot level by setting
w′i = w′i− (w′i mod υi). The remaining amount of capital is redistributed
in such a way that the largest amount of (w′i mod υi) is added in multi-
ples of υi until all the capital is spent.

3. The weights are then adjusted (if the class limit constraints are violated).
If θm < Lm, insert y := Lm − θm to the underflow class and subtract υi
from those classes where Lm′ + υi ≤ θm′ ≤ Um′ until

∑
υi ≥ y. Similarly,

the same for the overflow class. This process is repeated until all limits
are satisfied.

4.1.6. Selection Scheme

MODE-GL applies an elitist selection scheme based on Pareto optimality
(see Algorithm 2, line 13-18). During the evolution, the population is extended
by adding the newly found non-dominated solutions. Hence, at each generation,
the number of portfolios in the current population will be between NP and 2NP.

4.1.7. Truncate Population

In each generation, if the number of portfolios in the current population
exceeds its limit NP, the individuals in the population are sorted based on the
non-dominance and crowding distance metrics [26]. The current population is
then truncated by keeping the best NP individuals for the next generation.

4.1.8. Maintaining Archives

The main objective of the external archive A is to maintain the well-spread
non-dominated solutions encountered during the search. In each generation,
archive A is updated with the non-dominated solutions from the trial popula-
tion. The computational time to maintain the archive increases with the archive
size [18, 43, 81]. The size of the archive is therefore restricted to a pre-specified
value. When the external archive has reached its maximum capacity Amax, the
most crowded non-dominated members are identified and discarded.
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In addition, in each generation, a small number of the least crowded so-
lutions are maintained in archive D and they are not required to be efficient.
As noted, mean-VaR objective function landscapes are inclined to have many
local minima (see Figure-1) and therefore the search needs to cover sufficient
solution space to maximize the probability of discovering the global optimium.
The least crowded solutions from archive D are exploited to promote the explo-
ration of the search towards the least explored region of the solution space in
order to achieve well-spread efficient solutions.

5. Performance Evaluation

In this section, we first introduce publicly available real datasets and per-
formance metrics used for evaluating multi-objective evolutionary algorithms.
We examine the performance of the new MODE-GL algorithm for constrained
portfolio optimization with the mean-VaR criterion in the following way. The
performance of MODE-GL is compared with four other multi-objective evolu-
tionary algorithms. Two well-known evolutionary algorithms from the literature
are selected for comparison (NSGA-II and SPEA2). Comparisons are also made
with each of these algorithms when they are also augmented with guided learning
(NSGA-II-GL and SPEA2-GL). Two different real historical financial datasets
are selected for computational experimentation. As the constrained mean-VaR
portfolio problem is a non-convex, NP-hard computationally intractable prob-
lem, the optimal efficient frontier is not known for the tested datasets. The
best estimated efficient frontier is obtained by collecting all the non-dominated
portfolios produced from all the tested algorithms. We use two performance
evaluation metrics in the study that are widely adopted for problems of this
type to evaluate the optimization performance of the five algorithms - the in-
verted generational distance (IGD) and hypervolume metric (HV). We discuss
each of these aspects further in the following sub-sections.

5.1. Datasets

For the empirical part of this work, two datasets based on historical daily
financial market data have been retrieved from the Yahoo! Finance [76]. It was
observed that historical time series downloaded from this site had some missing
data points and hence those assets with missing data points were discarded.
The first dataset (DS1) consists of 94 securities from the S & P 100 and covers
daily financial time series data over a period of three years from 01/03/2005 to
20/02/2008, totalling 750 trading days. The second dataset (DS2) is composed
of 475 securities from the S & P 500 and covers daily financial time series
data over a period of one year from 11/04/2013 to 04/04/2014, totalling 250
trading days. The datasets are available to access online at http://www.cs.

nott.ac.uk/~ktl These datasets have been used for portfolio optimization with
cardinality, quantity, pre-assignment, round lot, class and class limit constraints
in order to study the performance of the evolutionary algorithms considered in
this work. We also provide this set of new problems as benchmark problem in-
stances to the literature for further analysis and testing of optimization methods
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and techniques. All considered algorithms have been implemented in C# and
run on a personal computer Intel(R) Core(TM)2 Duo CPU E8400 3.16GHz. The
experimental results obtained for each algorithm are the average of 30 runs.

5.2. Quality Indicators

To evaluate the performance of the multi-objective evolutionary algorithms
from various aspects, several performance metrics have been proposed in the
literature [41, 72, 83], mainly defined by how close the obtained solutions are
to the Pareto front and how evenly the solutions are distributed along the fron-
tier [79, 80]. In this study we use two widely adopted performance evaluation
metrics, namely the inverted generational distance and hypervolume metric.

5.2.1. Inverted Generational Distance (IGD)

The inverted generational distance [67] uses the true Pareto front as a ref-
erence and measures the distance of each of its elements from the true Pareto
front to the non-dominated front obtained by an algorithm. It is defined as:

IGD =

√
Q∑
i=1

d2i

Q
(18)

where Q is the number of solutions in the true Pareto front and di is the Eu-
clidean distance between each of the solution and the nearest member from the
set of non-dominated solutions found by the algorithm. This metric measures
both the diversity and the convergence of an obtained non-dominated solution
set. The smaller the value of this metric, the closer the obtained front is to the
true Pareto front. A value of IGD equal to zero indicates that all obtained solu-
tions lie on the true Pareto front and have the best possible spread. Figure 2, for

example, shows thatQ∗ = 5, d1 =
√

(1.5− 2.5)2 + (10− 9)2, d2 =
√

(2− 2.5)2 + (8− 9)2,

d3 =
√

(3− 3)2 + (6− 6)2, d4 =
√

(4− 5)2 + (4− 4)2, d5 =
√

(6− 5)2 + (2− 4)2

and IGD = 0.6.
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Figure 2: Example illustration of the inverted generational distance (IGD) metric.

The true Pareto front for this new highly constrained multi-objective port-
folio optimization problem considered in this work is unknown. In this study,
we use the best known efficient frontier obtained from all considered algorithms
as the estimated Pareto front reference set.

5.2.2. The Hypervolume(HV) Metric

Hypervolume metric [82], also known as S-metric or Lebesgue measure, is
widely recognized as a unary value which is able to measure both closeness of the
solutions to the optimal set and diversity of the obtained solutions. The hyper-
volume metric calculates the volume of the objective space covered by members
of an obtained Pareto set Pknown bounded by a reference point r. The refer-
ence point r is found by constructing a vector of worst objective function values.

Let Q̂ be the set of non-dominated solutions obtained by an algorithm. For
each solution p ∈ Q̂, a hypercube vp from solution p and the reference point r
is measured. The hypervolume (HV) value is calculated by summing all hyper-
cubes vi. The hypervolume (HV) is mathematically described as follows:
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HV = volume(

|Q̂|⋃

p=1

vp)

When comparing two sets of non-dominated solutions, the set which conveys
a larger HV value is considered to be better in terms of both proximity and
diversity. The main advantage of the hypervolume metric is that it does not
depend on the prior knowledge of the true Pareto front.

Figure 3 shows the graphical representation of the hypervolume metric for
the minimization of two objectives: f1 and f2. In this example, the hypervol-
ume is represented by the grey area delimited by the non-dominated solutions

(Q̂ = {p1, p2, p3, p4, p5}) and the reference point r.

Figure 3: Graphical illustration of the hypervolume (HV) metric for a bi-objective minimiza-
tion problem.

An accurate calculation of the hypervolume (HV) metric requires a normal-
ized objective space and we use the linear normalization technique proposed by
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Knowles et al. [42] as follows:

fi =
fi − fmini

fmaxi − fmini

where fmini and fmaxi are the minimum and maximum value of the ith objec-
tive. The value of fmini and fmaxi are set as the minimum and maximum value
obtained from running all algorithms considered in this work.

5.3. Studied Approaches

In order to evaluate the overall performance of MODE-GL, we compare it
with two well-known multi-objective evolutionary algorithms in the literature,
namely NSGA-II and SPEA2. Moreover, learning-guided solution generation
mechanism (see Section-4.1.3) has been incorporated into NSGA-II and SPEA2
in order to investigate the impact of the mechanism.

• NSGA-II: the Non-dominated Sorting Genetic Algorithm II was proposed
by Deb et al [26]. The algorithm uses binary tournament selection based
on the crowding distance. It performs crossover and mutation by simulated
binary crossover and polynomial mutation operators.

• SPEA2: the Strength Pareto Evolutionary Algorithm was proposed by Zit-
zler et al [81]. The algorithm employs fine-grained fitness assignment, den-
sity estimation techniques and archive truncation methods. Like NSGA-
II, it uses binary tournament selection, simulated binary crossover and
polynomial mutation evolutionary operators.

• NSGA-II-GL: A learning mechanism is incorporated into the binary crossover
scheme of NSGA-II.

• SPEA2-GL: A learning mechanism is incorporated into the binary crossover
scheme of SPEA2.

Parameters MODE-GL NSGA-II SPEA2 NSGA-II-GL SPEA2-GL
Number of Population (NP ) 100 100 100 100 100
Number of Generation 5,000N 5,000N 5,000N 5,000N 5,000N
Scaling Factor (F ) 0.3 - - - -
Crossover Probability (CR) 0.9 0.9 0.9 0.9 0.9
Crossover Distribution Index - 20 20 20 20
Mutation Probability - 1/N 1/N 1/N 1/N
Mutation Distribution Index - 20 20 20 20
Tournament Round - - 1 - 1
Amax 100 - 100 - 100
Dmax 10 - - - -

Table 1: Parameter Setting of the Algorithms.
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To conduct a fair comparison, we use the same population size and archive
size (if applicable) for all the algorithms tested in this work. We have chosen
to run all the algorithms with the same stopping criteria (i.e. the same number
of evaluations) to generate the Pareto front. Each algorithm also uses the same
encodings (see Section-4.1.1) and repair mechanism (see Section-4.1.5) when
a newly constructed portfolio violates the considered constraints. Before the
experiments were performed, parameters were tuned for all algorithms using
DS1. Table-1 shows the best parameter settings used for each of the algorithms.

5.4. Comparisons of the algorithms

In this section, we perform a set of experiments to investigate the potential
of MODE-GL for multi-objective constrained portfolio optimization problems
and compare it with four other algorithms, NSGA-II, SPEA2, NSGA-II-GL and
SPEA2-GL.

The results for IGD, HV and running time of the five algorithms performed
on first dataset (DS1) are shown in Figure-4. These results are obtained for the
constrained portfolio optimization problem with cardinality K = 10, floor εi =
0.01 and ceiling δi = 1.0 , pre-assignment Z = {30}, round lot υi = 0.008, class
M = 6 with 15, 15, 15, 15, 15, 19 assets in each class (i.e., C1 ∈ {1, . . . , 15}, C2 ∈
{16, . . . , 30}, C3 = {31, . . . , 45}, C4 ∈ {46, . . . , 60}, C5 ∈ {61, . . . , 75}, C6 ∈
{76, . . . , 94} and Lm = 0.05 for each m = 1, . . . , 6. Given that the lower bound
of 5% as class limit specifies an upper bound of 75% of investment in each
class/category, no upper limits have been specified.
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Figure 4: Performance of algorithms in terms of IGD, HV and computational time for S & P
100.

The results show that the proposed MODE-GL obtains the smallest mean
values for inverted generational distance (IGD) and largest mean value for hy-
pervolume (HV), compared with the other four algorithms, demonstrating the
best performance among the five algorithms. NSGA-II and SPEA2 have similar
performance and both have slow convergence compared to MODE-GL. SPEA2
and SPEA2-GL are the most computationally expensive algorithms in terms of
CPU time. When the learning-guided solution generation mechanism is incor-
porated into NSGA-II and SPEA2, the performance of the algorithms improves
significantly. Therefore, we conclude that the learning-guided solution genera-
tion mechanism promotes the effective convergence of the search.
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Figure 5: S & P 100: Comparison of efficient frontiers of each algorithm together with the
best known optimal front obtained from all tested algorithms.
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Figure 6: S & P 100: Transaction map for portfolio risk.
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As noted, the optimal efficient frontier of the constrained portfolio optimiza-
tion is not known for the tested datasets. The best estimated efficient frontier is
thus obtained by collecting all the non-dominated portfolios produced from all
the tested algorithms. For illustrative purpose, the obtained efficient frontiers of
the tested algorithms for DS1 compared with the best known estimated efficient
frontier are provided in Figure-5. The horizontal axis describes the loss that
might be incurred with a probability α = 0.01. Figure-5 shows that MODE-
GL, NSGA-II-GL and SPEA2-GL provide a very good approximation of the
efficient frontier. The performance of both NSGA-II and SPEA2 improves sig-
nificantly when the learning-guided solution generation scheme is incorporated.

Figure-6 shows how the composition of the securities varies over the range of
portfolio risk for dataset DS1. The results are generated from efficient solutions
obtained from a single run of each algorithm and it shows that allocation to all
asset classes is present and the preassigned constraint is also satisfied. In each
case, the figure depicts how the obtained portfolio is allocated for an obtained
level of risk. Each colour represents one of the assets selected in the obtained
pareto set. A vertical strip through the bands (without white space) indicates
the obtained portfolio allocations at that risk level. A vertical strip through
the bands (with white space) indicates that no feasible solution can be found
for a specific risk level. This discontinuity can also be seen in the obtained
efficient frontier as depicted in Figure 5 of DS1 Dataset. When the learning
mechanism is adopted, the obtained results indicate that the composition of the
assets changes smoothly from one risk level to another.

The results for IGD, HV and running time of the five algorithms performed
on the second dataset (DS2) are shown in Figure-7. These results are obtained
for the constrained portfolio optimization problem with cardinality K = 20,
floor εi = 0.01 and ceiling δi = 1.0 , pre-assignment Z = {30}, round lot
υi = 0.008, class M = 19 with 25 assets in each class and Lm = 0.05 for each
m = 1, . . . , 19. Given that the lower bound of 5% as class limit specifies an
upper bound of 10% of investment in each class/category, no upper limits have
been specified.

Figure-8 provides the obtained efficient frontiers of the tested algorithms for
DS2 compared with the best known estimated efficient frontier extracted from
all considered algorithms. The horizontal axis describes the loss that might be
incurred with a probability α = 0.05. The results for DS2 are a little differ-
ent but show the effectiveness of the incorporation of the learning mechanism
in promoting solution quality. MODE-GL, NSGA-II-GL and SPEA2-GL all
have similar quality on average. In terms of computational time, SPEA2-GL is
the most computationally expensive algorithm in terms of CPU time whereas
MODE-GL is the fastest.
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Figure 7: Performance of algorithms in terms of IGD, HV and computational time for S & P
500.
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Figure 8: S & P 500: Comparison of efficient frontiers of each algorithm together with the
best known optimal front from all tested algorithms.
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We compare the IGD and HV values of the tested algorithms by using Stu-
dent’s t-test [73]. The statistical results obtained by a two-tailed t-test with
58 degrees of freedom at a 0.05 level of significance are given in Table-2 and
Table-3. The results for Algorithm-1↔ Algorithm-2 are shown as ”+” , ”−”,
or ”∼” when Algorithm-1 is significantly better than, significantly worse than,
or statistically equivalent to Algorithm-2, respectively. The statistical results
reconfirm the effectiveness of the proposed algorithm MODE-GL both in terms
of solution quality and computational time. Moreover, the results also show
that the performance of the NSGA-II and SPEA2 improves significantly when
the learning-guided solution generation scheme is incorporated. Figure-9 plots
the IGD metric over generation on S & P 100. The results confirm that all the
algorithms considered are able to converge.

Algorithm1 ↔ Algorithm2 IGD HV
MODE-GL ↔ NSGA-II + +
MODE-GL ↔ NSGA-II-GL + +
MODE-GL↔ SPEA2 + +
MODE-GL ↔ SPEA2-GL + +
NSGA-II↔ NSGA-II-GL − −
NSGA-II ↔ SPEA2 ∼ ∼
NSGA-II↔ SPEA2-GL − −
NSGA-II-GL ↔ SPEA2 + +
NSGA-II-GL↔ SPEA2-GL ∼ ∼
SPEA2 ↔ SPEA2-GL − −

Table 2: Student’s t-Test Results of Different Algorithms on S & P100 dataset.

Algorithm1 ↔ Algorithm2 IGD HV
MODE-GL↔ NSGA-II + +
MODE-GL ↔ NSGA-II-GL ∼ ∼
MODE-GL ↔ SPEA2 + +
MODE-GL↔ SPEA2-GL ∼ ∼
NSGA-II ↔ NSGA-II-GL − −
NSGA-II ↔ SPEA2 ∼ ∼
NSGA-II ↔ SPEA2-GL − −
NSGA-II-GL ↔ SPEA2 + +
NSGA-II-GL ↔ SPEA2-GL ∼ ∼
SPEA2 ↔ SPEA2-GL − −

Table 3: Student’s t-Test Results of Different Algorithms on S & P 500 dataset.
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Figure 9: Comparison of convergence of algorithms for S & P 100.

6. Conclusions

In this work, we have investigated the portfolio optimization problem with
six widely used practical constraints in real life trading scenarios. This work
focuses on downside risk as an alternative risk measure in financial markets and
adopts a realistic framework for portfolio optimization that moves away from
most widely considered mean-variance approach. Value-at-Risk (VaR) is used
as a risk measure and a historical simulation approach is adopted to calculate
VaR. This technique is nonparametric and does not require any distributional
assumptions.

The portfolio optimization in the VaR context involves additional complex-
ities since VaR is non-linear, non-convex and non-differentiable, and typically
exhibits multiple local extrema and discontinuities especially when real-world
trading constraints are incorporated [32]. A new efficient learning-guided hy-
brid multi-objective evolutionary algorithm (MODE-GL) has been developed
to solve mean-VaR portfolio optimization problems with practical trading con-
straints. The proposed MODE-GL approach extracts the important features
of non-dominated solutions throughout the evolution. Incorporating a learning
mechanism and prior problem-specific knowledge exploitation in the evolution
process allows the approach to generate promising offspring solutions. The new
MODE-GL approach introduced here thus aims to promote convergence by con-
centrating on the promising regions of the search space. Two extended variants
of differential evolution mutation schemes promote exploration of the search in
order to explore the solution space to maximize the probability of obtaining the
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global optimum.

We have demonstrated that maintaining a secondary population of solution
sets in combination with a learning-guided candidate solution generation scheme
contributes to better performance over existing state-of-the-art multi-objective
evolutionary algorithms, NSGAII and SPEA2. The experimental results using
real datasets show that the quality of the generated Pareto set approximations
significantly improved for MODE-GL while the efficiency is mainly because the
proposed algorithm is computationally cheap as it only uses a single update
at each generation. Moreover, the results also show that the performance of
the NSGA-II and SPEA2 improves significantly when the learning-guided so-
lution generation scheme is incorporated. In this work, we consider up to six
practical trading constraints. However, it does not reflect the factors that may
occur in some market trading scenarios. In financial markets, buying and selling
assets may entail brokerage fees and taxes imposed on investors. Transaction
cost is one of the additional factors that may be a concern for portfolio man-
agers. Therefore, it is important to extend the portfolio optimization model
with transaction cost constraint as a direction for future work. The MODE-
GL approach shows great promise in tackling an important class of portfolio
investment problems using realistic constraints in an efficient way and thus has
significant potential for adoption in practice.
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