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Highlights

• We present an exact algorithm based on Benders decomposition for the
problem.

• We employ several algorithmic features to speed-up its convergence.

• Savings of up to three orders of magnitude compared to state-of-the-art
algorithms.
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Abstract

This paper presents an algorithm based on Benders decomposition to solve
the optimum communication spanning tree problem. The algorithm integrates
within a branch-and-cut framework a stronger reformulation of the problem,
combinatorial lower bounds, in-tree heuristics, fast separation algorithms, and a
tailored branching rule. Computational experiments show solution time savings
of up to three orders of magnitude compared to state-of-the-art exact algorithms.
In addition, our algorithm is able to prove optimality for five unsolved instances
in the literature and four from a new set of larger instances.

Keywords: Networks, Network optimization, Benders decomposition,
Spanning trees

1. Introduction

Network optimization models are able to capture the system-wide inter-
actions of decisions inherent to transportation and communication systems.
They have thus become an important tool for designing and managing networks
(Ahuja et al., 1993). While the most generic network design problem seeks the
ideal trade-off between initial investment and operational costs, there are often
other efficiency criteria such as capacity and robustness that need to be consid-
ered. Some examples are the design of minimum spanning trees (Kruskal, 1956;
Prim, 1957), Hamiltonian cycles (Tutte, 1946), survivable networks (Kerivin
and Mahjoub, 2005), and networks with connectivity requirements (Magnanti
and Raghavan, 2005).
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The optimum communication spanning tree problem (OCT) is another such
example. Introduced by Hu (1974), the OCT seeks to find a tree spanning all N
nodes of an underlying network with minimal operational cost for communicat-
ing a set R of node-to-node requests. The use of optimum communication span-
ning trees arises when communication requests between node pairs are known
in advance and the objective is to minimize the communication costs after the
network is built. When this is the sole efficiency criterion, the optimal solution
is the union of shortest paths between node pairs which, except for particular
distance structures, will contain more than |N | − 1 links. Optimum communi-
cation spanning trees offer a balance between low operational costs on networks
using a minimum number of links.

The OCT and the minimum spanning tree problem (MST) are closely related.
Seen as general multicommodity network design problems, they have the same
set of feasible solutions with different objective functions. The MST considers
only fixed investment costs, while the OCT has only operational transportation
costs. This discrepancy marks the difference between a polynomial-time solvable
problem, MST, and one that is NP-hard, OCT (Hu, 1974).

The OCT appears as a subproblem in complex hub network design problems
in which a tree-star topology is sought (Contreras et al., 2009, 2010b). Thus,
efficient solution procedures for the OCT may serve as subroutines for solution
procedures for more general network design problems. Outside network opti-
mization, a special case of the OCT where all communication requirements are
equal is used in computational biology to find optimal alignments of genetic
sequences (Wu et al., 2000c; Fischetti et al., 2002).

There are two cases presented by Hu (1974) for which an optimal solution
of the OCT can be obtained in polynomial running time. The first case is when
the distances between all node pairs are equal to one. Known as the optimum
requirement spanning tree problem, its optimal solution is the Gomory-Hu cut
tree over the network with edge capacities defined by the communication re-
quirements. This can be obtained in polynomial running time by using the
algorithm presented in Gomory and Hu (1961) over the network defined by re-
quests R. The second case occurs when the communication requests between all
node pairs are one and the distances satisfy a stronger variant of the triangle in-
equality (Hu, 1974, see Theorem 3). Under these assumptions, Hu (1974) shows
that an optimal tree is a star and presents a simple algorithm for obtaining it.

With the exception of these two cases, solving the OCT to optimality in rea-
sonable time is still an open problem. In fact, Papadimitriou and Yannakakis
(1991) showed that unless P = NP, no polynomial time approximation scheme
exists. Approximation algorithms for special cases of the OCT have been pro-
posed in Peleg and Reshef (1998), Wu et al. (2000a,b,c), Wu (2002), Sharma
(2006), and references therein. On the other hand, efficient heuristics have been
proposed to obtain high quality solutions within reasonable computational times
as in Ahuja and Murty (1987), Palmer (1994); Palmer and Kershenbaum (1995),
Soak (2006), Rothlauf and Goldberg (2002); Rothlauf (2007, 2009), and Fischer
and Merz (2007).

The first exact algorithm to solve the OCT is presented by Ahuja and Murty
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(1987). They propose a branch-and-bound procedure where linear lower ap-
proximations (or lower planes) of the objective function are used to obtain dual
bounds at the nodes of the tree. These bounds are obtained by solving a MST
in which the lower planes are used to define the objective function coefficients.
This algorithm is able to optimally solve instances with up to 40 nodes but
only for sparse graphs containing no more than 10% of the total number of
potential arcs. Rothlauf (2007) present an MILP formulation for the general
case of the OCT that is able to solve instances with up to 12 nodes. Contr-
eras et al. (2009) present and analytically compare flow-based, arc-based, and
path-based formulations for the OCT. The arc-based formulation turns out to
be the most promising one when used with a general purpose solver, producing
optimal solutions for instances with up to 25 nodes on complete graphs and
requirement densities between 35% to 100% within reasonable computational
times. Contreras et al. (2010a) propose a Lagrangian relaxation that exploits
the structure of the problem to obtain lower bounds via the solution of MSTs.
The associated Lagrangian dual problem does not have the integrality prop-
erty and thus, can provide better bounds than the linear programming (LP)
relaxation of the arc-based formulation given in Contreras et al. (2009). This
Lagrangean relaxation produces good lower and upper bounds for instances with
up to 50 vertices. Fernández et al. (2013) study an improved flow-based formu-
lation in which solutions are represented as the intersection of several spanning
trees, each rooted at a different vertex of the graph. They also consider the
addition of several classes of valid inequalities to improve the associated LP
bounds. Luna-Mota (2015) develop a rooted tree formulation containing only
O(n2) variables, a considerable reduction on the number of variables as com-
pared to the flow-based (O(n3)) or arc-based (O(n4)) formulations. This rooted
tree formulation provides on average slightly better LP bounds as compared to
the improved flow-based formulation of Fernández et al. (2013), but not as tight
as the ones associated with the arc-based formulation.

The most recent formulations and exact algorithm for solving the OCT are
given in Tilk and Irnich (2018). The authors introduce two Dantzig-Wolfe (DW)
reformulations, one equivalent to a path-based formulation of Contreras et al.
(2010a) and another obtained from the flow-based formulation of Fernández
et al. (2013). They prove that the latter DW reformulation dominates the for-
mer and, in turn, all previously studied formulations. They develop two sophis-
ticated branch-and-cut-and-price algorithms based on both DW reformulations
to consistently obtain optimal solutions for instances with up to 40 nodes and
arc densities between 35% to 100%. Although the latter formulation provides
better LP bounds, the amount of time required to solve the associated pricing
problems, which correspond to a series of fixed-cost network flow problems, does
not compensate its improvement. Therefore, the best results are obtained with
the former DW reformulation, in which the pricing problems correspond to the
solution of a series of shortest path problems. To the best of our knowledge,
this algorithm is currently the state-of-the-art for solving the OCT. We use it
for comparison purposes in our computational experiments.

The main goal of this paper is to contribute to the exact solution of the

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

OCT. In particular, we introduce a Benders reformulation for the OCT based
on an arc-based formulation. This reformulation is strengthened with subtour
elimination constraints that avoid the separation of (weaker) Benders feasibility
cuts. We embed our Benders reformulation into a branch-and-cut algorithm and
employ several algorithmic features to accelerate its convergence. These include:
(i) efficient separation algorithms that use a simple but very effective dynamic
core-point selection mechanism to separate non-dominated optimality cuts, (ii)
the incorporation of combinatorial lower bounds that are tight for some partic-
ular cases and are used as a possible termination criterion in the enumeration
of the search tree, (iii) a tailored branching rule for faster exploration of the
enumeration tree, and (iv) in-tree rounding and local search heuristics to effi-
ciently explore partitions of the solution space. Our algorithm’s computational
performance improves significantly that of the state-of-the-art exact algorithm
of Tilk and Irnich (2018) as well as the built-in Benders implementations of
CPLEX for the OCT. It provides solution time savings of up to three orders
of magnitude which allow us to prove optimality for five unsolved instances in
the literature as well as new larger instances. Our algorithm expands the limits
of solvability for the OCT from 40 to 60 node instances. We note that the
arc-based formulation contains about 1.28 million variables and constraints for
a 40-node instance whereas for a 60-node instance the number substantially in-
creases to 6.48 million, That is, our algorithm is capable of consistently solving
instances of MIPs for the OCT which are at least five times larger than any
instance previously solved to proven optimality.

The remainder of the paper is organized as follows. Section 2 presents the
formal definition of the OCT and the formulation from which we obtain our
Benders reformulation. Section 3 describes the Benders decomposition we apply
to the reformulation. Section 4 contains the algorithmic enhancements to our
Benders decomposition method and is followed by Section 5 which presents the
results of our computational experiments and its comparison to the state-of-the-
art solution methods. We present our conclusions in Section 6.

2. Problem Definition

The OCT is defined on a connected, undirected graph G = (N,E) where N
is the set of nodes and E is the set of edges. In addition, functions d : E 7→ R+

and r : N ×N 7→ R+ associate each edge with a distance and every node pair
with a request quantity, respectively. The OCT seeks to find a spanning tree T
with least total communication cost.

We define CT (i, j) as the length of the unique path in T between a pair of
nodes i, j ∈ N . The communication cost of a request from node pair i, j ∈ N is
calculated as rijCT (i, j). The total communication cost is the sum over all node
pairs. In our study, we assume the distance function is symmetric, i.e. dij = dji
and that the underlying network is complete.

Given these assumptions, we can define Wij = Wji = rij + rji as the to-
tal request quantity between node pair i, j ∈ N with i < j and R = {(i, j) ∈
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N ×N |i < j and Wij > 0} as the set of node pairs with strictly positive com-
munication requirements. This reduces the cardinality of the set of requests by
a half and leads to the following definition of the OCT

min
T∈Ω(G)

∑

(i,j)∈R
WijCT (i, j),

where Ω(G) is the set of all spanning trees of G.
In this work we consider an arc-based formulation that uses decision variables

indicating the arcs used in the paths connecting pairs of nodes. For the OCT,
such a formulation provides strong LP relaxation bounds at the expense of using
a large number of variables and constraints, which limits the size of the instances
that can be solved using a general purpose solver. The flow-based formulation
is obtained by aggregating by origins some subsets of variables of the arc-based
formulation. As a consequence, its LP relaxation is weaker than that of the arc-
based formulation. Even with the addition of valid inequalities to the flow-based
formulation as in Fernández et al. (2013), there is no noticeable improvement
in its performance. We refer to Luna-Mota (2015) for details on alternative
formulations for the OCT.

We define A as the set of directed arcs corresponding to edge set E, i.e. for
each (i, j) ∈ E there are corresponding arcs (i, j), (j, i) ∈ A. The arc-based
formulation is comprised of binary variables yij , for each edge (i, j) ∈ E, that
represent whether the edge is part of the spanning tree solution or not, and
continuous variables xrij , for each arc (i, j) ∈ A and request r = (or, dr) ∈ R.
These continuous variables indicate the portion of communication request r ∈ R
routed on arc (i, j) ∈ A. Using these variables, the arc-based formulation, POCT ,
is:

minimize
∑

r∈R

∑

(i,j)∈E
W rdij(x

r
ij + xrji) (1)

subject to
∑

j∈N :
(j,i)∈A

xrji −
∑

j∈N :
(i,j)∈A

xrij =




−1 if i = or
1 if i = dr
0 otherwise

∀i ∈ N, r ∈ R (2)

xrij + xrji ≤ yij ∀(i, j) ∈ E, r ∈ R (3)
∑

ij∈E
yij = |N | − 1 (4)

xrij ≥ 0 ∀(i, j) ∈ A, r ∈ R (5)

yij ∈ {0, 1} ∀(i, j) ∈ E. (6)

The objective function (1) calculates the total communication cost while
flow conservation constraints (2) ensure that all requests are routed. Constraint
set (3) ensures that flow is only sent on edges that form part of the spanning
tree while (4) enforces that exactly |N | − 1 edges form part of the resulting
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network. Finally (5) and (6) are the non-negativity and binary definitions of x
and y, respectively. POCT contains O(n4) variables and O(n4) constraints. As
we will see in Section 5, solving this formulation with CPLEX is impractical for
instances of over 30 nodes.

3. Benders Decomposition for the OCT

Benders decomposition (Benders, 1962) reformulates a mixed integer linear
program to one with significantly fewer variables and an exponential number
of constraints, which can be separated efficiently via the solution to an LP
subproblem, known as the dual subproblem (DSP). This can be accomplished by
projecting the original formulation into the discrete variable space, resulting in
the reformulation known as the Benders master problem (MP). As a result, the
contribution of the continuous variables in the original formulation is estimated
by two sets of constraints known as feasibility and optimality cuts indexed by
the sets of the extreme rays and the extreme points of DSP, respectively.

To apply Benders decomposition to the OCT, we begin by fixing the variables
yij = ȳij of POCT leading to the following primal subproblem (PSP):

minimize
∑

r∈R

∑

(i,j)∈E
W rdij(x

r
ij + xrji)

subject to
∑

j∈N :
(j,i)∈A

xrji −
∑

j∈N :
(i,j)∈A

xrij =




−1 if i = or
1 if i = dr
0 otherwise

∀i ∈ N, ∀r ∈ R (7)

xrij + xrji ≤ ȳij ∀(i, j) ∈ E, r ∈ R (8)

xrij ≥ 0 ∀(i, j) ∈ A, r ∈ R. (9)

Note that PSP can be split into |R| independent shortest path problems
PSPr, one for each request. Let λ and µ denote the dual variables of constraints
(7) and (8), respectively. From strong duality, each PSPr can be substituted
by its LP dual, denoted as DSPr, of the form:

maximize (λrdr − λror )−
∑

(i,j)∈A
µrij ȳij

subject to λrj − λri − µrij ≤W rdij ∀(i, j) ∈ E
λri − λrj − µrij ≤W rdij ∀(i, j) ∈ E
µrij ≥ 0 ∀(i, j) ∈ E
λri ∈ R ∀i ∈ N.

As previously mentioned, the set of extreme rays of DSPr, obtained when it
is unbounded, indexes the feasibility cuts of MP while the set of extreme points,
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obtained from the optimal solution of DSPr, indexes the optimality cuts. The
MP is of the form:

minimize
∑

r∈R
zr

subject to zr ≥ λrdr − λror −
∑

(i,j)∈E
µrijyij ∀r ∈ R, (λ, µ)r ∈ Θr (10)

0 ≥ λ̄rdr − λ̄ror −
∑

(i,j)∈E
µ̄rijyij ∀r ∈ R, (λ̄, µ̄)r ∈ Φr (11)

∑

(i,j)∈E
yij = |N | − 1

y ∈ {0, 1}|E|,

where Θr and Φr represent the set of extreme points and extreme rays of DSPr,
respectively. Constraints (10) are Benders optimality cuts that estimate the
communication cost of each request. Constraints (11) on the other hand, ensure
that the MP solution contains a path from each origin/destination request.

Note that MP exploits the decomposability of the subproblems by adding one
artificial variable for each commodity unlike the classical Benders reformulation
which only uses one variable to aggregate this information. This leads to a better
approximation of the transportation costs at each iteration which has been
empirically shown to improve solution times (Magnanti et al., 1986; Contreras
et al., 2011; Zetina et al., 2017).

4. An Exact Algorithm for the OCT

Benders decomposition has been successfully used to solve a variety of prob-
lems in network design (Geoffrion and Graves, 1974; Magnanti et al., 1986; Ran-
dazzo and Luna, 2001; Costa, 2005; Botton et al., 2013), scheduling (Muckstadt
and Wilson, 1968), facility location (Magnanti and Wong, 1981; de Camargo
et al., 2009; Contreras et al., 2011), and transportation (Cordeau et al., 2000,
2001a,b; Papadakos, 2009). Each of these use algorithmic enhancements and
exploit the problem specific structure to successfully apply this method. The
OCT is no exception and requires several additional enhancements, which are
described in this section.

Since not all feasibility and optimality cuts are needed to solve MP, the
standard Benders decomposition algorithm (Benders, 1962) proposes relaxing
these constraints and solving the relaxed integer MP to optimality providing
a dual bound. The obtained solution is then substituted into DSP to obtain
violated Benders feasibility or optimality cuts and a primal bound. The cuts
are then added to MP and solved again. This iterative process is repeated until
the gap between the dual and primal bound is within a desired threshold.

One of the major drawbacks of this standard algorithm is that an integer MP
needs to be solved at each iteration and there is no simple way to reoptimize
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when adding new constraints from one iteration to the next. To overcome
this difficulty, recent implementations of Benders decomposition consider the
solution of the Benders reformulation with a branch-and-cut algorithm, in which
Benders cuts are separated not only at integer points but also at fractional points
at the nodes of a single enumeration tree (see, for instance Fischetti et al., 2017;
Zetina et al., 2017; Ortiz-Astorquiza et al., 2018). We use this approach to
develop an exact algorithm for the OCT.

In addition, we use the following strategies to speedup the convergence of
our branch-and-cut algorithm: i) we use subtour elimination constraints and
combinatorial bounds to strengthen the formulation, ii) we employ a heuristic
at the nodes of the enumeration tree to efficiently explore the solution space,
iii) we exploit the structure of the OCT to efficiently generate non-dominated
Benders cuts in the primal space, iv) we use a tailored branching rule for faster
exploration, and v) we fine-tune the branch-and-cut parameters. The following
sections provide details on each of the applied enhancements.

4.1. Feasibility cuts, cutset inequalities, and subtour elimination constraints

Although the extreme rays of DSP needed to define feasibility cuts for the
master problem are readily obtained from any general purpose MIP solver, it
may be preferable that these be substituted by a better tailored set of constraints
that are obtained via efficient combinatorial algorithms. In this light, we analyze
two families of constraints that suit this purpose: cutset inequalities and subtour
elimination constraints.

Cutset inequalities are ubiquitous in the network design literature as a tool
for enforcing connectivity in a network. Their conceptual simplicity and ef-
fectiveness has contributed to their widespread use for many network design
problems. These inequalities are of the form

∑

(i,j)∈δ(S)

yij ≥ 1, (12)

where S ⊂ N and δ(S) = {(i, j) ∈ E|i ∈ S, j ∈ N\S}. Violated cutsets can
be easily found by solving maximum flow/minimum cut problems with efficient
combinatorial algorithms such as that of Edmonds and Karp (1972).

In the context of Benders decomposition, it is well-known that cutset in-
equalities are sufficient to guarantee the feasibility of Benders primal subprob-
lems for both capacitated and uncapacitated multicommodity network design
problems (Magnanti et al., 1986; Costa et al., 2009; Ortiz-Astorquiza et al.,
2018; Zetina et al., 2017). Given that the OCT is a special case of the uncapac-
itated multicommodity network design, cutset inequalities can also be used in
lieu of Benders feasibility cuts for our problem.

On the other hand, exploiting the fact that solutions to the OCT must be
spanning trees, subtour elimination constraints (SECs) are also viable candi-
dates as a substitute for Benders feasibility cuts. SECs used in formulations for
spanning trees are known to provide stronger LP relaxations than those that use
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cutset inequalities (Magnanti and Wolsey, 1995). Interestingly, for integer so-
lutions, SECs are equivalent to cutset inequalities and are thus separated using
the same algorithms, however, instead of having the form (12), they are written
as

∑

(i,j)∈E(S)

yij ≤ |S| − 1, (13)

where E(S) represents all edges whose end points both lie within S ⊂ N . This
equivalence does not hold for fractional solutions where SECs have been shown
to be stronger than cutset inequalities.

Given these characteristics and the fact that they can be used to substitute
Benders feasibility cuts, we use SECs in our Benders master problem to ensure
feasibility of the primal subproblems. Our computational experiments show that
using SECs leads to a tighter LP relaxation for MP than that obtained from
POCT . In fact, the LP bounds of this strengthened Benders reformulation coin-
cide with those obtained from the Lagrangian dual problem of Contreras et al.
(2010a). However, as the computational experiments of Section 5 show, they
are still weaker than the LP bounds obtained with the strong DW reformulation
of Tilk and Irnich (2018).

4.2. Combinatorial lower bounds

In the case of mixed integer programs with a minimization objective, the
LP of any formulation provides a valid lower bound on the optimal solution
value. In an enumerative framework such as branch-and-bound, the smallest
solution value of all explored nodes provides a global lower bound. Global lower
bounds are used to estimate the optimality gap during the execution and at the
end of any exact algorithm, but may also be useful in a preprocessing step to
evaluate a priori the difficulty of a given instance. We next present two global
combinatorial lower bounds for the OCT, which were first proposed in Fernández
et al. (2013) (see also, Luna-Mota, 2015). To the best of our knowledge, these
bounds have never been exploited in an algorithmic context for the OCT. They
not only give an assessment of the difficulty of the problem, but at times obtain
the optimal solution value of the mixed integer program.

The first combinatorial lower bound is valid for complete graphs with Eu-
clidean distances that satisfy the triangle inequality. We observe that for this
case, at most |N | − 1 requests will be served on their shortest path DG(i, j),
i.e. by a direct link from origin to destination. Therefore, at least |R| − |N | − 1
requests will have to use a path that is at least as long as the second shortest
path D2

G(i, j). Let z represent the total communication cost of all requests on
the spanning tree, therefore we have

z ≥ min
T∈Ω(G)

{
∑

(i,j)∈T
W ijDG(i, j) +

∑

(i,j)/∈T
W ijD2

G(i, j)} (14)

⇐⇒ z ≥
∑

(i,j)∈E
W ijD2

G(i, j) +MST (d∗), (15)
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where d∗ij = W ij(DG(i, j)−D2
G(i, j)) and MST(d∗) represents the optimal solu-

tion value of the minimum spanning tree over the network with distance function
d∗. Note that MST(d∗) accounts for the |N |−1 edges with the largest difference
between DG(i, j) and D2

G(i, j) provided they form a spanning tree.
This combinatorial bound is easily obtained in two steps. The first is to

calculate the shortest distance for each request (i, j) ∈ R on the original graph
minus the edge joining these directly. The second is to obtain the minimum
spanning tree on a topologically equivalent graph with modified distance func-
tion d∗ using Kruskal’s or Prim’s algorithm.

The second combinatorial lower bound does not require any assumptions on
the distance function. It is calculated using the minimum spanning tree of the
distance function d, MST(d), and the minimum communication tree with respect
to the request R, MCT, to construct the lexicographically minimal sequences
of edge lengths and edge flows which when combined appropriately provide a
lower bound on the solution of the OCT.

Let f1 ≤ f2 ≤ ... ≤ f|N |−1 be the flows that traverse the edges of MCT and
d1 ≤ d2 ≤ ... ≤ d|N |−1 be the lengths of the edges of MST(d), both sorted in
increasing order. In addition, let f∗1 ≤ f∗2 ≤ ... ≤ f∗|N |−1 and d∗1 ≤ d∗2 ≤ ... ≤
d∗|N |−1 be the equivalent edge flows and edge lengths sequences, respectively,
of the optimum communication spanning tree. The edge length sequence of
MST(d) is the lexicographically minimal length sequence among all spanning
trees of G, while the edge flow sequence of MCT is also lexicographically minimal
among all equivalent flow sequences of spanning trees of G.

Since, these sequences are lexicographically minimal among all equivalent
spanning trees, they are also lexicographically minimal with respect to the op-
timal OCT, i.e. fi ≤ f∗i ∀i ∈ 1..|N | − 1 and di ≤ d∗i ∀i ∈ 1..|N | − 1. Thus, if
S|N |−1 denotes the set of all permutations of the indices {1, 2, ..., |N | − 1} then

z ≥ min
σ∈S|N|−1

{
|N |−1∑

i=1

difσ(i)} (16)

⇐⇒ z ≥
|N |−1∑

i=1

dif|N |−i, (17)

where the equivalence between (16) and (17) comes from the rearrangement
inequality (Bulajich Manfrino et al., 2009).

Both combinatorial bounds (15) and (17) can be obtained at low computa-
tional cost and provide insights on the difficulty of the underlying instance. For
some instances, these combinatorial bounds are tight and play a significant role
in the proof of optimality. These instances will be highlighted in Section 5.

4.3. In-tree Heuristics

Obtaining high quality solutions early in the branch-and-bound search of-
ten leads to smaller enumeration trees by providing an improved criterion for
pruning and a guide for potential variables to branch on. If obtained before
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beginning the enumeration tree, these solutions can be used for variable elim-
ination tests that reduce the problem size. For the OCT, we exploit the fact
that our search is limited to spanning trees to construct heuristic solutions at
all nodes in the enumeration tree. If the LP solution at a node is fractional, our
heuristic constructs first an initial feasible solution by solving a MST in which
the negative of the yij values are used to define the setup costs of the edges.
Otherwise, the integer solution obtained at the node is a spanning tree since
the heuristic procedure is called after the separation routines are executed. We
then use a fast local search heuristic that uses a 1-edge-exchange neighbour-
hood (Ahuja and Murty, 1987) to improve this initial solution. An important
feature of our heuristic is that both constructive and local improvement phases
consider the variables that have been fixed so far by the branching process of
the enumeration tree. This decreases the problem size and leads to an effective
exploration of the solution space by exploiting the partitions generated by the
enumeration tree. To the best of our knowledge, none of the existing heuristics
for the OCT exploit such feature.

Formally stated, let Y 1(ρ) and Y 0(ρ) denote the set of variables y that have
been set to 1 and 0, respectively, at node ρ of the enumeration tree. In addition,
let ȳ(ρ) denote the solution of the LP relaxation at node ρ. We construct an
initial solution by finding a minimum spanning tree with weights−ȳ(ρ) such that
all edges in Y 1(ρ) form part of the tree and edges in Y 0(ρ) are not considered.
This spanning tree is obtained by using Prim’s algorithm for minimum spanning
trees. Upon obtaining this initial candidate, we try to improve it by exploring
a 1-edge-exchange neighbourhood. While a näıve algorithm may require O(n5)
operations to evaluate the elements of the 1-edge-exchange neighborhood of
an arbitrary tree, Ahuja and Murty (1987) present an algorithm that exploits
the natural structure of the problem to explore this neighbourhood in O(n3)
operations. For the sake of completeness, we next present a brief overview of
the procedure and refer the reader to Ahuja and Murty (1987) for a detailed
description.

The local search starts by pre-computing the distance matrix of T , DT =
[dTij ], and the communication cost of T (z) in O(n2) total time. After this global
pre-processing step, the algorithm iterates over the |N | − 1 edges of T applying
the following process for each e ∈ E. Let δT (S) denote the cut associated with
T\{e}. For every i ∈ N , the amount of communication that vertex i needs to
send from S to N\S or vice-versa is calculated as

W eT
i =





∑
j∈N\S

W ij if i ∈ S
∑
j∈S

W ij if i ∈ N\S,

and the total communication cost is

ξeTi =





∑
j∈N\S

W ijdTij if i ∈ S
∑
j∈S

W ijdTij if i ∈ N\S.

12
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Finally, the total communication requirement that must traverse δT (S) is
W eT =

∑
i∈V W

eT
i . Having done all these calculations as a preprocessing step,

for a given edge e = (e1, e2) ∈ E, ∀i ∈ S, ∀j ∈ N\S, and current routing cost
z, we can evaluate the communication cost of replacing e for (i, j) in constant
time as z − (ξeTe1 + W eT dTe + ξeTe2 ) + (ξeTi + W eT dTij + ξeTj ). Therefore, we are
able to explore all solutions in the 1-exchange neighbourhood of a given tree T
in O(n3) time and keep that with the lowest communication cost.

4.4. Pareto-optimal cuts

Recent implementations of Benders decomposition use strengthened variants
of Benders optimality cuts. These are obtained either by using combinatorial ar-
guments for lifting coefficients as in Magnanti et al. (1986), in-and-out strategies
as in Ben-Ameur and Neto (2007) and Fischetti et al. (2017), or Pareto-optimal
cuts as proposed by Magnanti and Wong (1981) and Papadakos (2008). These
modified Benders cuts play a crucial rule in the convergence speed of the stan-
dard iterative Benders algorithm and the strength of the LP estimation in the
case of our branch-and-cut algorithm.

Magnanti and Wong (1981) define cut dominance as follows. Given two
cuts defined by dual solutions u and u′ of the form z ≥ f(u) + yg(u) and
z ≥ f(u′) + yg(u′), respectively, the cut defined by u dominates that defined
by u′ if and only if f(u) + yg(u) ≥ f(u′) + yg(u′) with strict inequality holding
for some feasible y of MP . If a cut defined by u is not dominated by any other
optimality cut, then this cut is said to be a Pareto-optimal Benders cut.

For the OCT, we first note that our subproblem is equivalent to that ob-
tained when applying Benders decomposition to the multicommodity uncapac-
itated fixed-charge network design problem (MUFND) where requests are con-
sidered as commodities. Zetina et al. (2017) apply Benders decomposition to
MUFND using Pareto-optimal cuts obtained by solving minimum cost flow prob-
lems as in Magnanti et al. (1986). We adopt this strategy for our subproblem
to obtain Pareto-optimal cuts. In particular, we solve the following parametric
minimum cost flow problem (MCFr) to obtain Pareto-optimal cuts:

minimize
∑

(i,j)∈A
crijx

r
ij −DSPr(ȳ)x0 (18)

subject to
∑

j∈N :
(j,i)∈A

xrji −
∑

j∈N :
(i,j)∈A

xrij =




−(1 + x0) if i = or

1 + x0 if i = dr
0 otherwise

∀i ∈ N (19)

xrij + xrji ≤ y0
ij + x0ȳij ∀(i, j) ∈ E (20)

xrij , x
r
ji ≥ 0 ∀(i, j) ∈ E,

where y0 is a core point as defined by Magnanti and Wong (1981) and x0 ∈ R.
The problem can be interpreted as that in which a rebate of DSPr(ȳ) is

given for each additional unit of the request routed on the network with demand
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and capacities defined by (19) and (20), respectively (Magnanti et al., 1986).
Magnanti et al. (1986) show that any fixed value x0 ≥

∑
(i,j)∈A y

0
ij is optimal

for MCFr, therefore leaving only a minimum cost flow problem to be solved for
each request r ∈ R. As a result of fixing x0, it is no longer necessary to solve
DSPr(ȳ) since it is now multiplied by a constant in MCFr. This observation
allows us to save computational time by solving MCFr directly as the separation
problem rather than solving it as a complementary problem for Pareto-optimal
Benders cuts. The corresponding dual variables of (19) and (20) are used to
define the Pareto-optimal Benders cuts of the form (10).

After testing several static and dynamic alternative strategies for the selec-
tion of core points, we observed that the one performing best was that where the
selection of core points was done dynamically based on the incumbent solution.
Our corepoint y0 is defined as follows:

y0
ij =

{
1 if (i, j) ∈ Tbest

0.3 otherwise,

where Tbest is the current incumbent solution. It is evident that this core point
is always feasible for the primal subproblem since there will exist a path for each
origin/destination pair given that it contains Tbest which is a spanning tree.

4.5. Branching rule

Branching plays an important role in branch-and-bound algorithms. Poor
branching choices lead to larger enumeration trees and longer solution times
(Mitra, 1973). Three prevailing branching strategies are maximum infeasibility,
pseudocost, and strong branching. The latter has been shown to produce sig-
nificantly smaller enumeration trees at the expense of solving inexactly several
LP problems before branching. Pseudocost branching on the other hand uses
statistics accumulated while exploring the enumeration tree. Since there is not
much information at the beginning, this strategy is vulnerable to making poor
choices at the beginning. Maximum infeasibility simply branches on the vari-
able with the most fractional value and is known to be no better than randomly
selecting a variable to branch on. Finally, Achterberg et al. (2005) propose a
hybrid of strong branching and pseudocost branching that addresses the draw-
backs of both approaches. Computational experiments show this is a promising
branching strategy for general mixed integer programs.

An important difference between a Benders reformulation and the generic
mixed integer programs on which these strategies were tested is that at any point
in time during Benders decomposition, there is not a complete description of the
underlying problem, i.e. only a partial formulation is available. This poses an
issue in particular regarding the use of strong branching where LP relaxations of
the nodes are used to estimate the impact of candidate variables for branching.
On the other hand, the reduced size of the LP problems in our branch-and-cut
requires less computational time to evaluate the potential impact of branching
candidates.

We propose a hybridized strategy that exploits the problem specific structure
and uses strong branching as its alternative when the former does not render a
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clear candidate. Our primary branching rule considers the fact that our solution
is a tree and seeks to construct one using the variables currently fixed at value
one.

Let ȳ(ρ) and Y 1(ρ) be the current fractional master problem solution and the
components whose value is one at node ρ, respectively. Note that

∑
ij∈Y 1(ρ) ȳij <

N−1, otherwise ȳ would be an integer solution. Let S(Y 1(ρ))i denote the nodes
in connected components i ∈ I(Y 1(ρ)) of Y 1(ρ). Our branching rule selects edge
(i, j) ∈ δ(S(Y 1(ρ))i, S(Y 1(ρ))j), i 6= j ∈ I(Y 1(ρ)) that leads to the component
with the highest number of nodes. If more than one candidate satisfying this
condition exists, we select the one preferred according to strong branching.

4.6. Fine-tuning the branch-and-cut algorithm

Implementing Benders decomposition within one enumeration tree requires a
careful fine-tuning of the branch-and-cut parameters. For our study, we consider
the following.

• Warm-start: We first calculate the combinatorial bounds (15) and (17)
to assess the difficulty of the instance. If the desired optimality gap of
0.01% is not yet achieved, we begin solving the LP relaxation of the Ben-
ders reformulation. We use the distances dij and communication require-
ments W r as setup costs for the selected edges to obtain the minimum
spanning tree and the optimum requirement spanning tree solutions, re-
spectively, and add the corresponding Pareto-optimal cuts to warm start
the LP solution process.

• LP relaxation stopping criteria: As mentioned in Section 4.1, the
LP relaxation of our Benders reformulation is tighter than that of the
arc-based formulation due to the addition of constraints (13). We thus
aim to stop the cutting plane algorithm used to solve the LP relaxation
when a lower bound close to the optimal LP solution of this strengthened
Benders reformulation is obtained. To achieve this, at every iteration
we add Benders cuts for fractional solutions until the lower bound has
improved at least once and at least three consecutive iterations have passed
without improvement. Preliminary experiments showed that this strategy
has a significant impact on the size of the enumeration tree, as the LP
solution provides an initial global lower bound for the enumeration tree
that will increase as the tree grows and new child nodes are created and
explored.

• Filtering cuts: To avoid keeping unnecessary information and to reduce
the size of the LPs solved at the nodes of the enumeration tree, we filter
optimality cuts generated when solving the LP relaxation at the root node
and keep only 30% of them, namely those with the least slack at the last
LP solution. These cuts are used to declare the initial integer Benders
master problem in our branch-and-cut algorithm. They are particularly
useful to infer improved lower bounds, general valid inequalities and bound
strengthening.
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• Cut separation and heuristic frequency: Despite initializing the so-
lution of the integer Benders reformulation with a good description of the
underlying polytope, there still exists a risk of not properly estimating
the LP bound of child nodes in the enumeration tree. On the other hand,
adding too many cuts, leads to excessively large LPs that must be solved
at other nodes. To circumvent this, we control the cutting frequency by
only separating constraints (13) and optimality cuts at fractional nodes
whose depth in the enumeration tree is divisible by five and by only adding
violated inequalities as local cuts (instead of global cuts) using a minimum
violation threshold of 1E−3. In addition, at each candidate node, the sep-
aration procedure is applied at most three times. In the case of integer
nodes, the separation of both classes of cuts is performed as many times as
needed using a minimum violation threshold of 1E−6. Finally, the in-tree
heuristic is executed at each node of the enumeration tree.

5. Computational Experiments

We have performed extensive computational experiments to evaluate the
efficiency of our proposed algorithmic framework and the effect of the imple-
mented enhancements. Our analyses focus on the performance of the combina-
torial lower bounds, the strength of our Benders MP and the efficiency of our
proposed branch-and-cut algorithm, which is compared to the state-of-the-art
algorithm of Tilk and Irnich (2018) and to a general-purpose solver that solves
both the arc-based formulation directly and also applies a built-in Benders de-
composition to this formulation.

We use the benchmark Berry, Palmer and Raidl instances (Palmer, 1994;
Palmer and Kershenbaum, 1995; Rothlauf, 2009). These instances consist of
complete graphs with requests between each origin/destination pair. We also
use the instances of Contreras et al. (2010b) consisting of complete graphs that
range from 10 to 50 nodes with solicited requests of approximately fifty percent
of origin/destination pairs. Finally, we have generated 20 new instances on com-
plete graphs ranging from 60 to 100 nodes also with requests of approximately
fifty percent of origin/destination pairs.

All algorithms were coded in C using the callable library for CPLEX 12.7.1.
The separation and addition of SECs and Benders optimality cuts has been
implemented via lazycallbacks and usercutcallbacks. For a fair comparison, all
use of CPLEX was limited to one thread and the traditional MIP search strategy.
Experiments were executed on an Intel Xeon E5 2687W V3 processor at 3.10
GHz under Linux environment.

5.1. Combinatorial bounds

The combinatorial bounds proposed in Section 4.2 are all calculated in less
than a second of CPU time and give an indication of the difficulty of the in-
stances. Given that the Raidl instances do not satisfy the triangle inequality,
we focus on the Berry and Palmer instances. Table 1 shows the objective value
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of the optimum integer solution (Optimum), the LP bound of the arc-based
formulation, the MCT-MST bound, the second shortest path bound (D2), and
the % deviation of the best combinatorial bound from the integer optimum (%
best dev).

Table 1: Combinatorial bound performance

Name |N | Optimum LP MCT-MST D2 % best dev

Berry 6 534.00 528.00 374.00 488.00 8.61
35 16,915.00 16,915.00 16,167.00 16,915.00 0.00
35u 16,167.00 14,010.67 16,167.00 13,106.00 0.00

Palmer 6 693,180.00 693,180.00 656,877.00 633,874.00 5.24
12 3,428,509.00 3,305,964.48 2,824,224.00 2,827,752.00 17.52
24 1,086,656.00 1,086,656.00 901,510.00 1,086,656.00 0.00

We note that the bounds are tight for three of the five instances. The second
shortest path is the best performing for all except for Berry 35u where MCT-
MST not only outperforms the second shortest path, but is also better than the
LP relaxation. For the Raidl instances, the MCT-MST has an average deviation
from the optimum value of 57.24%, giving testimony to the difficulty of these
instances.

5.2. Linear programming relaxations

As mentioned in Section 4.1, the substitution of Benders feasibility cuts for
subtour elimination constraints (SECs) has the additional advantage of pro-
viding a tighter LP relaxation than the arc-based formulation. Moreover, due
to the structure of the Benders master problem and efficient separation al-
gorithms for SECs, this substitution comes at no added computational cost.
Table 2 shows the LP bound of the arc-based formulation (LP arc-based), the
LP bound at our root node (LP MP), and the LP gap calculated as LP Gap =
(Opt−max{LP arc-based,LP MP})/Opt where Opt denotes the optimal solu-
tion value.

We first note that while the Palmer and Berry instances have a tight LP
bound, the same no longer holds for the Raidl and Contreras sets. In fact, we
note that as the size of the instances increases, the average LP gap increases
with the highest being 9.48% for Contreras 40d. As will be seen later, this large
LP gap causes this particular instance to remain as the only unsolvable 40-node
instance for the other exact algorithms. This supports the indication posed in
the previous section about the difficulty of these instances.

Second, we note that the six bold-faced instances in Table 2 have a stronger
LP bound with our Benders MP using subtour elimination constraints than
with the arc-based formulation. However, as previously mentioned, this formu-
lation is still weaker than the DW reformulation of the flow-based formulation
presented in Tilk and Irnich (2018) which remains the strongest formulation
known to date.
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Table 2: Linear programming relaxations

Name |N | LP arc-based LP MP % LP Gap

Berry 6 528.00 528.00 1.12
35 16,915.00 16,915.00 0.00
35u 14,010.67 14,187.16 0.00

Palmer 6 693,180.00 693,180.00 0.00
12 3,305,964.48 3,301,299.23 3.57
24 1,086,656.00 1,086,656.00 0.00

Raidl 10 53,643.00 53,643.00 0.06
20 155,006.30 155,006.30 1.63
50 747,476.27 747,338.44 7.36
75 1,500,604.65 1,507,453.31 n.a.
100 2,166,764.50 1,839,134.00 n.a.

Contreras 10a 70,954.00 70,954.00 0.28
10b 38,059.00 38,059.00 0.00
10c 29,113.00 29,113.00 0.00
10d 38,892.00 38,892.00 0.78
20a 85,810.50 85,810.50 4.09
20b 94,935.67 94,932.95 1.45
20c 98,785.17 98,900.50 3.52
20d 87,154.33 87,154.33 0.34
30a 222,590.50 222,590.50 2.48
30b 244,704.00 244,704.00 1.96
30c 203,723.06 203,722.32 2.55
30d 213,357.20 213,357.20 2.65
40a 346,642.67 346,635.06 1.11
40b 278,745.50 279,536.91 4.28
40c 273,956.38 273,929.71 4.61
40d 314,754.83 314,754.83 9.48
50a 438,462.13 439,016.62 4.33
50b 468,673.84 468,900.11 7.54
50c 363,830.01 363,788.29 8.35
50d 461,613.32 461,554.18 7.53

5.3. Solution times

This section summarizes the results of the experiments done to assess the
computational efficiency of our proposed algorithm. We compare our algo-
rithm’s performance with that of the state-of-the-art MIP solver CPLEX 12.7.1
solving the arc-based formulation as a generic MIP (CPX MIP) and by applying
its built-in Benders decomposition procedure (CPX Benders). We also compare
our results with those reported in Tilk and Irnich (2018).

Results are presented in three parts. The first refers to the results on the
Berry, Palmer, and Raidl instance classes while the second part summarizes
the performance on the instances presented in Contreras et al. (2010a). The
final part of our experiment was performed on a new set of larger size instances
generated with the code used in Contreras et al. (2010a). The interested reader
is referred to that paper for further details on how the instances have been
generated. With the exception of Tilk and Irnich (2018) whose results are taken
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directly form their paper, all experiments are given a time limit of twenty-four
hours.

Table 3 shows the optimal solution values, the number of nodes explored, and
the times in seconds/final optimality gap in case of time out for our Benders algo-
rithm, CPLEX’s branch-and-cut, and CPLEX’s built-in Benders decomposition.
In addition, we report the number of optimality cuts and subtour elimination
constraints added in our Benders implementation. The 75 and 100-node Raidl
instances timed out for both algorithms having an optimality gap of 10.58% and
45.1% with our algorithm and CPLEX’s branch-and-cut, respectively.

Table 3: Solution times- Classic Instances

B&C Benders CPX MIP CPX Benders

Name |N | Opt Nodes Opt Cuts SECs time (s) Nodes time (s)/ gap Nodes time (s)/ gap
Berry 6 534 0 63 1 0.01 0 0.01 0 0.03

35 16,915 0 159 0 0.02 0 0.60 0 4.47
35u 16,167 0 159 0 0.02 72,100 1d /11.75% 320,602 1d/ 28.74%

Palmer 6 693,180 0 69 0 - 0 0.01 0 0.02
12 3,428,509 33 866 3 0.45 29 3.64 40 1.35
24 1,086,656 0 69 0 - 0 0.08 0 0.61

Raidl 10 53,674 0 165 0 0.01 0 0.08 0 0.26
20 157,570 5 1026 6 0.23 3 7.36 28 7.67
50 806,864 15451 26234 16 3,171.95 178 1d/ 21.46% 37,010 1d/ 7.61%

As shown in Table 3, the Raidl 50-node instance was solved to proven opti-
mality in less than one hour of computing time. To the best of our knowledge,
it is the first time that an exact algorithm solves this instance to proven opti-
mality. On the other hand, after twenty-four hours of computing time, CPLEX
reports a 21.46% and 7.61% optimality gap for its branch-and-cut and built-in
Benders decomposition, respectively.

We also highlight that we are also able to solve the Berry 35u instance to
proven optimality. This comes as a result of the global lower bound calculated
by our MCT-MST procedure which proved the optimality of our optimum re-
quirement spanning tree solution. Like the Raidl 50 instance, we are not aware
of any other exact algorithm able to solve to proven optimality the Berry 35u
instance. CPLEX’s algorithms also report significant optimality gaps after a
day of computing time: 11.75% and 28.74% for its branch-and-cut and built-in
Benders decomposition, respectively.

Table 4 details the results of the experiments for the instances in Contreras
et al. (2010a). We present the same information as in Table 3 along with the
computing times reported in Tilk and Irnich (2018) for their best performing
column-and-row generation algorithm. We realize that a different version of the
CPLEX software is used. However, we report them as a benchmark for instances
that are currently solvable by ad hoc exact algorithms.

Our branch-and-cut algorithm outperforms all other approaches by a signif-
icant margin. It is up to three orders of magnitude faster at proving optimality
than the others. Moreover, for the first time it proves optimality for the four
remaining 40 and 50-node instances of Contreras et al. (2010a).
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Table 4: Solution times- Contreras instances

B&C Benders CPX MIP CPX Benders Tilk & Irnich

|N | Opt Nodes Opt Cuts SECs time (s) Nodes time (s)/ gap Nodes time (s)/ gap time (s)/ gap
10a 71,156 3 129 2 0.02 0 0.07 0 0.09 0.06
10b 38,059 0 115 6 0.01 0 0.01 0 0.11 0.03
10c 29,113 0 77 0 0.01 0 0.01 0 0.09 0.03
10d 39,197 5 98 0 0.01 1 0.05 0 0.11 0.08
20a 89,474 29 628 10 0.24 30 3.66 253 2.13 3.30
20b 96,333 27 618 0 0.15 9 2.48 10 1.87 2.44
20c 102,505 23 763 8 0.23 18 6.14 125 4.11 2.30
20d 87,452 5 519 4 0.11 0 1.15 0 2.39 0.29
30a 228,247 29 2,248 9 1.89 34 87.37 665 28.67 24.75
30b 249,607 21 2,069 12 1.67 36 129.72 576 33.42 30.57
30c 209,062 41 2,057 13 2.00 73 246.43 483 21.52 22.94
30d 219,170 65 1,692 6 1.32 115 193.61 1,244 28.96 31.52
40a 350,542 13 2,983 11 3.33 43 521.28 1,347 115.03 43.43
40b 292,047 39 4,602 17 7.18 733 7,884.46 106,320 3,427.14 2,511.97
40c 287,198 47 4,138 8 6.75 1,853 12,086.39 152,827 5,461.60 3,339.61
40d 347,715 1,183 7,995 2 194.32 5,509 1d/ 4.12% 946,191 1d/ 3.27% 2h/ 3.54%
50a 458,881 741 9,243 23 129.24 642 1d/ 2.31% 470,509 84,341.88 6,311.23
50b 507,142 2,291 13,756 18 605.81 1,396 1d/ 6.10% 298,157 1d/ 4.32% 2h/ 3.16%
50c 396,966 115 8,948 13 42.04 900 1d/ 8.11% 247,503 1d/ 5.24% 2h/ 4.67%
50d 499,184 22,685 17,637 14 3,221.28 882 1d/ 6.98% 390,775 1d/ 4.25% 2h/ 4.81%

Apart from the substantial time savings, we point out that for most in-
stances solved by all algorithms, our Benders implementation explores a re-
duced number of nodes when compared to both CPLEX’s branch-and-cut and
built-in Benders decomposition. A clear example is that of instance Contreras
40c, where our Benders algorithm explores only 47 nodes in the enumeration
tree while CPLEX’s branch-and-cut and built-in Benders decomposition explore
over 1,800 and 152,000 nodes, respectively. We attribute this mainly to two fac-
tors. First is the strength of our Benders optimality cuts (the majority of the
cuts added) which in turn provide an accurate estimate of the underlying LPs.
The second is our customized branching rule which provides a good criterion
for creating child nodes.

In addition, we point out that CPLEX’s built-in Benders decomposition
provides a significant speed-up compared to its standard MIP branch-and-cut
algorithm. Time savings of up to an order of magnitude can be seen for 30 and
40 node instances, making it competitive with the state-of-the-art algorithm
presented by Tilk and Irnich (2018). This speed-up can be attributed mostly to
its ability to quickly explore nodes in the enumeration tree due to the smaller
dimension of the underlying LPs. A clear example is the Contreras 40b instance
in which CPX MIP explores less than one thousand nodes in over two hours
while CPX Benders explores over one hundred thousand nodes in less than half
the time. However, this alone is not enough to match our Benders algorithm
since we’re able to explore nodes just as fast while requiring significantly less to
prove optimality.

To test the limits of our algorithm, we have generated 20 instances of be-

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Solution times- new instances

B&C Benders CPX Benders

|N | Opt/Best % gap Nodes Opt Cuts SECs Time (s) % gap Nodes
60a 558,837 - 14,853 15,455 39 1,415.69 4.80 104,300
60b 646,174 - 19,579 14,034 20 422.99 4.60 88,023
60c 665,518 - 17,031 34,571 44 15,938.51 7.00 94,975
60d 503,685 - 11,779 9,759 12 20,388.01 9.00 86,696
70a 692,837 6.49 17,792 10,460 24 86,400 17.88 48,729
70b 849,031 4.74 13,107 13,498 27 86,400 14.72 31,967
70c 829,570 6.97 15,364 13,478 93 86,400 18.21 32,128
70d 631,192 2.28 10,978 13,142 17 86,400 14.62 55,513
80a 825,605 7.24 5,199 27,850 64 86,400 90.15 29,212
80b 951,069 7.06 12,157 15,137 31 86,400 11.69 21,200
80c 883,122 1.27 6,671 19,929 25 86,400 89.30 26,485
80d 855,935 7.04 6,842 17,973 13 86,400 46.40 21,850
90a 1,065,823 11.02 5,576 27,024 45 86,400 90.82 14,824
90b 1,107,918 8.36 6,414 22,070 24 86,400 91.42 10,620
90c 1,107,435 10.15 7,838 22,786 31 86,400 90.59 13,246
90d 1,080,571 13.04 4,628 26,260 132 86,400 89.64 13,090
100a 1,222,478 7.20 4,548 29,767 31 86,400 91.10 8,000
100b 1,564,725 9.54 0 18,338 143 86,400 91.95 4,969
100c 1,255,077 9.92 6,821 26,801 66 86,400 91.07 8,273
100d 1,233,536 10.72 6,501 25,559 47 86,400 89.98 10,013

tween 60 and 100 nodes. Table 5 reports the optimal or best-known solution
value along with data as in Table 4 for our and CPLEX’s implementation of
Benders decomposition. We note that our algorithm is able to solve all 60-node
instances and obtains reasonable percentage gaps for the remaining instances
while CPLEX’s Benders decomposition is unable to solve any instance within
twenty-four hours of CPU time and presents final optimality gaps of up to 90%.

The fact that CPLEX’s built-in Benders decomposition is unable to solve
any of these larger instances gives testament that our implementation goes far
beyond simply applying Benders decomposition to the OCT. The efficiency of
our algorithm comes from the adequate combination of the several algorithmic
enhancements implemented. Key ingredients such as: core point selection, ef-
ficient separation algorithms, in-tree heuristics, a customized branching rule,
and fine-tuning the branch-and-cut parameters make the difference between the
performance of our algorithm and that of CPLEX’s built-in Benders decompo-
sition.

6. Conclusion

We have provided an exact algorithm for the OCT that is 100 times faster
and is able to solve larger instances than the state-of-the-art. The proposed
algorithm uses a strong Benders reformulation for the OCT and exploits problem
specific structure to obtain Pareto-optimal Benders cuts efficiently, guarantee
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feasibility, select branching variables and obtain high quality solutions during
the enumeration process. Finally, a new testbed of larger instances has been
presented to be used for benchmarking in future research. Our results support
the use of a Benders-based branch-and-cut for network design emphasizing on
the importance of combining the right algorithmic enhancements. An interesting
path for future research would be to strengthen the quality of the lower bounds
obtained at the nodes of the enumeration tree by: (i) exploring the use of the
combinatorial bounds, evaluating them at some nodes of the enumeration tree
while considering the fixed edges to further improve the quality of the bounds,
and (ii) using lifting procedures for Benders optimality cuts that use similar
logical arguments as the ones used in the combinatorial cuts.
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