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This paper presents a reconfigurable fault tolerant routing for Networks-on-Chip organized

into hierarchical units. In case of link faults or failure of switches, the proposed approach

enables the online adaptation of routing locally within each unit while deadlock freedom

is globally ensured in the network. Experimental results of our approach for a 16 × 16 

network show a speedup by a factor of almost four for routing reconfiguration compared

to the state-of-the-art approach. Evaluation with transient faults shows that a dedicated

reconfiguration unit enables successful reconfiguration of routing tables even in case of

high error probabilities.
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1. Introduction

The ongoing technology scaling allows an increasing number of cores to be implemented on a single chip, e.g. Intel’s Xeon

Phi Coprocessor [1] or Tilera’s Tile-MX multicore processor [2] . As this scaling trend continues [3] , future multiprocessor

systems will feature hundreds of cores on a single chip. 

The increasing size of on-chip systems poses a new challenge to Networks-on-Chip (NoCs). Mechanisms implemented

in an NoC, such as table-based routing, work well for small systems but do not scale for bigger systems. A possibility to

cope with scalability problems is the introduction of a hierarchical structure to NoCs. A hierarchical NoC can be obtained

by constructing its topology using subnetworks or by segmenting a given topology into logical units. Both subnetworks

and logical units enable formerly global mechanisms to be applied locally thus reducing their complexity. Compared to

subnetworks, logical units have the advantage that they can be applied without changing an existing topology. Typically,

network nodes (switch + core) are grouped into a logical unit if they are part of the same task and share a spatial relation. 

The downside of technology scaling is the increased probability of occurrence of permanent faults in an NoC due to

manufacturing inaccuracies [4] or wear-out effects such as electromigration [5] that emerge during system operation. The

failure of links or switches due to permanent faults results in an altered network topology. In such a case, static routing can

no longer maintain connectivity between system components. For this reason, it is crucial that the routing is adapted to the

new network situation to enable packets to circumvent faulty components. 
� Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. M. Ebrahimi.
∗ Corresponding author. Tel.: +4 97116 8588270.

E-mail addresses: gert.schley@informatik.uni-stuttgart.de (G. Schley), ibrahimai.ahmed@mail.utoronto.ca (I. Ahmed), muhammad.afzal@outlook.de (M.

Afzal), martin.radetzki@informatik.uni-stuttgart.de (M. Radetzki).

http://dx.doi.org/10.1016/j.compeleceng.2016.02.013

0045-7906/© 2016 Elsevier Ltd. All rights reserved.

Please cite this article as: G. Schley et al., Reconfigurable fault tolerant routing for networks-on-chip with logical hierarchy, 

Computers and Electrical Engineering (2016), http://dx.doi.org/10.1016/j.compeleceng.2016.02.013 

http://dx.doi.org/10.1016/j.compeleceng.2016.02.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compeleceng
mailto:gert.schley@informatik.uni-stuttgart.de
mailto:ibrahimai.ahmed@mail.utoronto.ca
mailto:muhammad.afzal@outlook.de
mailto:martin.radetzki@informatik.uni-stuttgart.de
http://dx.doi.org/10.1016/j.compeleceng.2016.02.013
http://dx.doi.org/10.1016/j.compeleceng.2016.02.013


2 G. Schley et al. / Computers and Electrical Engineering 0 0 0 (2016) 1–12

ARTICLE IN PRESS
JID: CAEE [m3Gsc; March 5, 2016;21:23 ]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper we present a reconfigurable fault tolerant routing approach based on Up/Down routing [6] for large scale

NoCs with logical hierarchy. It enables the routing to be adapted locally within each hierarchical unit in case of permanent

faults while deadlock freedom is guaranteed globally. Our approach can be applied to any number of hierarchy levels. 

The remainder of the paper is organized as follows: In Section 2 related work is discussed. Section 3 contains a formal

introduction to NoC topologies as well as an introduction to Up/Down routing. In Section 4 we present our hierarchical

network concept. Our hierarchical routing is presented in Section 5 and the reconfiguration process in Section 6 . Evaluation

results are discussed in Section 7 . Section 8 concludes the paper. 

2. Related work

In this section, we focus on work related to routing reconfiguration. Related work dealing with hierarchical topologies

and hierarchical routing is presented in [7] . 

A reconfigurable scheme for source based routing is presented in [8] . If a source cannot reach a destination, it floods

a path request through the network. Each node stores the port via which the request was received in a table. When the

request reaches the destination, a packet is sent back to the source using the reverse path recording that path by means

of the table entries. At the source the recorded path is checked in software if it contains violations of routing restrictions

and if so virtual channels (VCs) are assigned to prevent deadlocks. Results in [8] show that about 2300 cycles are required

to adapt a path of length 10 hops. However, permanent faults usually have an impact on multiple source-destination pairs

and thus the path request has to be initiated for each of them. This results in a high time to adapt the routing completely.

Furthermore, source based routing induces great costs for implementation of routing tables. 

In [9] , a centralized routing management system for high-performance networks is proposed. After the occurrence of

a fault, the central manager first discovers the remaining topology and creates a topology graph with Up/Down directions.

This graph then is used to calculate the routing for every network node. However, determining the routing for all nodes by

a single manager results in a high calculation time. 

A distributed routing recalculation approach for Up/Down routing is presented in [10] . For routing adaptation, normal

operation in network is stopped and flags are broadcast by each node. Up/Down routing directions are assigned to each

node port during the initial broadcast. Starting with the node that has detected a permanent fault, each of the n network

nodes consecutively broadcasts a flag to all other nodes via dedicated signals. The reconfiguration period is divided into n

portions, each with a duration of n cycles. Upon receipt of a flag, a node records the port over which the flag was received

and updates its routing table accordingly. In both approaches, [10] and [9] , the routing of the entire network has to be

adapted. Neither [10,9] , nor [8] consider hierarchical network topologies. 

A fast online routing reconfiguration algorithm based on segment-based routing [11] to compute emergency routes in

case of a fault is presented in [12] . The approach allows the adaptation of routing in segments of the network while other

segments are not affected. To compute emergency routes the algorithm makes use of routing meta data calculated offline

during initial routing computation. Per segment one fault can be tolerated, however, in case of a second fault, the routing

and meta data for the whole network has to be recalculated offline in software. 

Furthermore, approaches exist that do not require a reconfiguration phase but achieve routing adaptation by means of

additional hardware logic, e.g. [13] and [14] . While [13] can tolerate the failure of three switches, [14] provides connectivity

for any irregular topology derived from a non-hierarchical 2D mesh. A disadvantage of these approaches is that the hard-

ware logic is prone to faults as well. A permanent fault in this logic leads to a routing failure. In our approach, routing is

adapted in software. In general, software-based calculating provides the possibility that in case of a network node failure

the calculation task can be migrated to another network node. As in case of [14] , our routing provides connectivity as long

as the topology is not disconnected by faults. 

3. Preliminaries

3.1. NoC topology 

The topology of an NoC can be represented by a directed graph T = (N, C) where N is the set of network nodes and C is

the set of unidirectional channels. In a typical fault free NoC topology, two connected nodes n i , n j ∈ N have one bidirectional

connection, i.e. c i, j , c j, i ∈ C . We refer to bidirectional connections as links and unidirectional connections are called channels .

To distinguish between different nodes, each node has a unique ID. 

3.2. Up/Down routing 

In literature, various approaches (e.g. [10,15,16] ) based on Up/Down routing can be found. Up/Down routing, as originally

described in [6] , ensures an inherently deadlock free routing for arbitrary network topologies. 

For Up/Down routing calculation for a given topology T , the spanning tree S of T is determined starting from a root node.

Based on spanning tree S, Up or Down direction is assigned to each channel of C. Up direction is assigned to channel c i, j if

n j has a shorter distance to the root node than n i . If two nodes have the same distance to the root node, then Up direction

is assigned to the channel leading to the node with the smaller ID. In all other cases, Down direction is assigned. To ensure
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Fig. 1. Hierarchical mesh topology with h max = 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deadlock freedom of Up/Down routing, a valid path p must consist of zero or more channels in Up direction followed by

zero or more channels in Down direction [6] . 

4. Hierarchical network concept 

Our approach is based on introducing hierarchical levels to a network topology and organizing network nodes into hi-

erarchical units on each level. For a topology T, h max hierarchy levels may be defined, where h max = 1 corresponds to the

flat hierarchy network. Each level 0 ≤ h ≤ h max , consists of hierarchical units, which are composed of a set of connected

network nodes. Each node must belong to exactly one unit on each level. On the lowest level h = 0 a unit corresponds to a

node. 

The hierarchical units of level h are identified with U h, i , where i denotes a unique ID within the level. For h > 0, a

hierarchical unit U h,i aggregates one or more hierarchical units of the next lower level h − 1 . We refer to a unit U h −1 , j as the

subunit of U h,i and to U h,i as the superunit of U h −1 , j , and we write U h −1 , j ∈ U h,i . A hierarchical unit U h −1 , j must be a subunit

of exactly one superunit. The topology of a unit corresponds to a subgraph of T . We call channels that are connecting two

hierarchical units interconnection channels . On highest level h max , a single hierarchical unit U h max , 0 exists aggregating all units

of the lower levels. The topology of this unit corresponds to T . An example for a hierarchically organized NoC with h max = 3

levels is shown in Fig. 1 . 

To address a network node, a hierarchical address scheme is used. An address (ID h max −1 , ..., ID 0 ) is composed of the IDs of

the hierarchical units of all hierarchy levels h < h max , to which a node belongs to. In the case of e.g. U 0,21 , the corresponding

address is (1, 4, 21). 

5. Hierarchical routing 

The aim of our hierarchical routing approach is the online adaptation of routing in case of permanent faults in the

communication structure. For our hierarchical routing, we consider permanent channel and link faults caused during manu-

facturing (e.g. bridging) or broken wires caused by aging. Further, we consider the complete failure of a switch. To minimize

the time required for adaptation as well as the required communication overhead, the adaptation process is not performed

globally in the entire network but only within the hierarchical unit that is affected by the fault, i.e. on the lowest possi-

ble hierarchy level. For example, if in Fig. 1 a channel or link connecting two subunits of U 1,1 is faulty, the routing is only

adapted within U 1,1 . If U 1,1 and U 1,2 cannot reach each other because both interconnection links are defective, the routing

has to be adapted within unit U 2,1 . 

For this purpose, each unit U h,i implements its own internal routing used for intra-communication between its subunits.

From the point of view of a subunit U h −1 , j , this is a routing on the next higher level used for inter-communication with

another subunit. For communication between two nodes situated in different superunits, always the routing on highest

possible level is used. Once the destination is reached on this level, routing is continued on the next lower level until, again,

the destination on the lower level is reached. This is repeated until the destination node is reached. 

Permanent faults cause regular topologies to become irregular, and thus, a formerly valid routing does no longer guar-

antee connectivity between network nodes. To guarantee a valid and deadlock-free routing for arbitrary topologies, our

approach applies Up/Down routing on all hierarchy levels. Per level h > 0 two VCs are used to provide deadlock freedom.

The proof for deadlock freedom of our routing can be found in [7] . The routing makes use of reconfigurable routing tables. 
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5.1. Routing calculation 

For online routing calculation, each hierarchical unit U h,i ( h ≥ 1) has one manager. A manager is a network node that is

responsible for creating the so-called Enhanced Topology Graph ( ETG ) and to adapt the ETG according to fault information

gathered within its unit. The creation and adaptation of ETG s are both software tasks performed by the manager’s processing

element. To handle the failure of a manager, further redundant managers may be defined that take over the task, e.g. by

means of the placement method proposed by [17] . 

5.1.1. Enhanced topology graph 

An ETG is an abstract topology representation used for routing calculation within a hierarchical unit. A vertex v of an

ETG represents a hierarchical unit U h,i . Two vertices are connected by an edge if the corresponding units are connected

by at least one interconnection link. Each vertex has a unique ordinal number used by routing calculation to determine

whether the corresponding unit can be reached via Up or Down direction. In accordance with Up/Down routing rules [6] (cf.

Section 3.2 ), if a vertex v k has the smaller ordinal number than v l it is reached in Up direction from v l . 

The creation of ETG s follows a top-down manner. Starting on level h max , the ETG of a hierarchical unit is provided to

the managers of all subunits. Each manager extends the ETG by the abstract topology of its own hierarchical unit. This is

repeated until the ETG s of level 1 units are all created. Details about the creation of ETG s can be found in [7] . The exemplary

ETG 1,4 used to calculate the routing for all nodes in unit U 1,4 is shown in Fig. 2 . The calculation of routing by means of ETGs

is described in the following. 

5.1.2. Routing table computation 

ETG 1, i on level 1 contains all necessary information to compute the table entries for all nodes within unit U 1, i . To reduce

the time complexity of routing calculation, routing tables are computed in parallel by distributing the workload among

the processing elements of all nodes within a unit. For this purpose, the manager sends the ETG to all nodes within its

hierarchical unit. Hereby it is ensured that all nodes decide routings on the same basis. After having received the ETG , each

node computes its own table entries. This results in a time complexity of routing calculation of O(| V | 2 ) . 
To compute the table entries for a node, paths from the corresponding vertex to all other vertices in ETG 1, i are determined

by a modified Dijkstra algorithm that in contrast to the original Dijkstra algorithm takes the Up/Down rule for valid paths

into account. The pseudo code of the modified Dijkstra algorithm is shown in Algorithm 1 . Input parameters of the algorithm

are the ETG and the start vertex ( star t _ v er tex ). A valid path consists of a sequence of vertices so that on each level at

maximum one Up to Down turn exists. Furthermore, two consecutive vertices n i and n i +1 of a valid path have either to

represent units of the same level or n i +1 is a unit of a higher level than n i . 

To decide whether a vertex is reached via Up or Down direction, the modified Dijkstra algorithm makes use of the ordinal

numbers o ( v ) found in the ETG for each vertex v . After the initialization (lines 2–6), the algorithm determines if the current

vertex u was reached via Down direction ( down prev ) from its predecessor prev [ u ] (line 9). Subsequently, the same is done for

every vertex v connected to u (line 11). A vertex v can be reached from u if (line 12) either 

• v and u are on the same level and this does not result in a Down to Up turn or 
• v represents a unit on a higher level ( lvl ) than u . 

If v represents a unit of lower level than u , it cannot be reached as this does not result in a valid path. In case v can

be reached, the costs ( new _ cost) to reach v are calculated. For this purpose, the costs to reach u ( cost [ u ]) are increased by

one plus the weighted level of v (line 13). The higher the level of a vertex, the more network nodes it represents. The path

length with the number of vertices of higher level. The weighting is done to constrain a path to consist of vertices of the

lowest possible levels. In most cases, this results in shorter paths. 

If the new calculated costs of v are less than the current ones, the entry of v in the queue ( sorted _ Q) is updated if

available or a new one is added. Vertex u becomes a predecessor of v (lines 14–16). The steps described above are repeated

until all vertices have been visited. Once all vertices have been visited, the table entries can be derived from the information

stored in prev . 
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Algorithm 1 Dijkstra Algorithm for Hierarchical Up / Down Routing. 

1: procedure Dijkstra_UD ( ET G , star t _ v er tex ) 

2: for all vertices n in ET G do 

3: cost[ n ] ← ∞; pre v [ n ] ← none ; l v l [ n ] ← level of n 

4: end for 

5: cost[ star t _ v er tex ] ← 0 

6: sor ted _ Q ← star t _ v er tex 

7: while not all vertices visited do 

8: u ← sorted _ Q .pop _ f ront() 

9: down pre v ← (o(pre v [ u ]) < o(u )) 

10: for all neighbors v of u do 

11: down next ← (o(u ) < o(v )) 
12: if l v l [ u ] = l v l [ v ] ∧ (¬ (d own pre v ∧ ¬ d own next )) ∨ (l v l [ u ] < l v l [ v ]) then 

13: new _ cost ← cost[ u ] + 1 + weight ∗ l v l [ v ] 
14: if new _ cost < cost[ v ] then 

15: cost[ v ] ← new _ cost; pre v [ v ] ← u 

16: add v to sorted_Q or update cost of existing entry 

17: end if 

18: end if 

19: end for 

20: end while 

21: return prev 

22: end procedure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Routing reconfiguration process 

This section describes the routing reconfiguration process. Please note that the test process to detect faults is out of

scope of this work. We assume that in the network a test mechanism such as [18,19] , or [20] exists to detect faults. We

further assume that each switch communicates the availability of a channel by means of availability signals to its neighbors.

If a channel is available its availability signal is set to one otherwise to zero. 

The reconfiguration process of the routing within a hierarchical unit consists of three different steps. In a first step, when

a permanent fault occurs, it is necessary that the manager of the unit is informed about the fault to adapt the ETG . In a

second step, the routing for the network nodes within the hierarchical unit is calculated. Finally, the routing table of each

node is updated. The different steps of the reconfiguration process are carried out on different network layers. Updating the

ETG and routing recalculation are done in software. The communication of fault information and updating routing tables

are performed by dedicated hardware units, i.e. the Fault Information Unit and Reconfiguration Unit . The switch architecture

showing the interaction of these two additionally required hardware units is shown in Fig. 3 . 

Each switch has a status. By default, a switch is in operative mode in which it can receive and forward data. When a

permanent fault is detected in a switch or when information about a fault in another switch of the same hierarchical unit

was received, a switch changes to maintenance mode . A switch in maintenance mode waits for the routing to be recalculated

and the routing tables to be updated. In this mode, a switch does not accept any data flits. When the routing table is

updated, the switch changes back to operative mode and resumes normal operation. 

6.1. Communicating fault information 

The Fault Information Unit (FIU) is responsible to inform all network nodes within a hierarchical unit about permanent

faults. For this purpose, each switch implements one FIU (cf. Fig. 3 ). To create information about faults, the FIU makes use

of the results of a fault detection mechanism and the availability signals of every input port. In our approach, the fault

information is communicated using flits. Fault information flits are created by the FIU either in case of a permanent fault or

if the availability signal of a channel changes to zero. The fault information fits exactly into one flit and contains the node’s

ID and a fault identifier. Fault information flits are sent via an additional prioritized control VC to prevent them from being

blocked by data flits in the network. 

Data may be corrupted by either transient or permanent faults. To observe the presence of a permanent fault, the FIU

implements a 2bit counter for each input port to count the number of reported faults. A counter is increased each time

a fault has been reported by the detection mechanism. It is decreased by one if for 100 cycles no further fault has been

reported for the corresponding input. If a counter reaches its maximum value, the FIU considers the corresponding input to

be faulty and hence it resets the availability signal of the input channel. This indicates to the neighbor node that it must no

longer use that channel. In turn, the neighbor sets the availability of the reverse channel to zero as well. In this way, the

complete link between the two nodes is shut down. Note that this is required because Up/Down routing can only distinguish
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between working or not working links. If a complete node fails, this corresponds to all availability signals of the channels

leading to this node are set to zero. 

A fault information flit is always created by both nodes incident to a shut down link to report the fault to the manager.

In this way, if both nodes are situated in different units, the manager of each unit receives the information. As a result of

the link shutdown, the actual routing within the hierarchical unit can no longer be considered valid. For this reason, fault

information flits are forwarded to the manager using a flooding mechanism. This ensures that every node receives the flit.

However, flooding introduces a high traffic overhead to the network. To prevent an unnecessary overhead caused by fault

information flits, they are only flooded within the hierarchical unit in which the fault has occurred. If a fault information

flit is received by a node of an adjacent hierarchical unit it discards that flit. 

If a node receives a fault information flit, its switch stops forwarding data flits and changes to maintenance mode in

which it only accepts flits via the control VC. In maintenance mode, a node discards all data flits and thus the hierarchical

unit is cleared of data flits eventually. This is required to ensure that no flits exist in the hierarchical unit that still use the

old routing once the routing tables are reconfigured. Discarded data flits have to be retransmitted by end-to-end flow control

protocol. As fault information flits are ignored by nodes in adjacent hierarchical units, they continue normal operation. 

6.2. Routing recalculation 

When a manager of a unit receives a fault information flit containing new fault information, the routing within its unit

has to be recalculated. First, the manager extracts the fault information from the received control flit and updates the ETG

by removing the corresponding edge in the case of a shut down link or the corresponding vertex in the case of a node

failure. The manager assigns new ordinal numbers to the corresponding vertices in the ETG . The updated ETG is sent to the

nodes, which calculate the new routing (cf. Section 5.1.2 ) and update their routing tables accordingly. 

If a node can no longer reach another hierarchical unit on level h because no valid path can be found, this implies that

the routing on level h + 1 has to be adapted and thus the corresponding manager on that level has to be informed about

the fault. 

For example in Fig. 1 , this is the case if both links connecting the two units U 1,4 and U 1,1 are shut down. The only

possible communication path from U 1,4 to U 1,1 leads over U 1,5 and U 1,2 . However, according to ETG 1,4 shown in Fig. 2 this

would require a Down to Up turn on level 1 which is not allowed. In such a case, a node informs its manager on level 1

which in turn creates a flit with a corresponding fault information. This fault information flit is sent to the manager of the

superunit. This is repeated until the manager on level h + 1 receives the fault information flit (in the above example the

manager of unit U 2,1 ). It then adapts its ETG and recalculates routing on level h + 1 . The updated ETG is then passed to the

managers of lower levels. 
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6.3. Routing table reconfiguration 

After calculating its new routing table entries, a processing element sends them to its Reconfiguration Unit (REU) using

reconfiguration flits . The task of the REU is to reconfigure the routing table. In our approach, each reconfiguration flit carries

information that updates a single entry in the routing table. Since the switch is in maintenance mode during reconfiguration,

reconfiguration flits are communicated using the control VC. When a processing element has sent all flits, it sends an end

reconfiguration flit . 

On receipt of a reconfiguration flit, the REU updates the corresponding table entry. To indicate that an entry has been

updated, an extra bit ( reconfigured bit ) is added for each entry of the routing table. On the basis of these reconfigured

bits, the REU determines whether the reconfiguration is complete and generates retransmission requests. If all reconfig-

ured bits are set, the routing table has been successfully updated and the REU changes the switch state back to operative

mode. 

The process of updating the routing table is susceptible to e.g. transient faults as their occurrence during reconfigura-

tion can compromise the integrity of reconfiguration flits leading to their corruption, loss, or duplication. This may cause

the switch being stuck in maintenance mode due to an uncomplete reconfiguration or may lead to invalid routing ta-

ble entries. A switch being stuck in maintenance mode discards all incoming data flits. Thus, all flits being forwarded to

this switch will be lost. A routing table with invalid information can result in longer routes increasing the end-to-end la-

tency, livelocks or even in deadlocks. To ensure proper reconfiguration in the presence of faults, the REU implements two

modes which we denote as local reconfiguration mode and remote reconfiguration mode. Both modes are explained in the

following. 

6.3.1. Local reconfiguration 

By default, the REU is in local reconfiguration mode in which the source of reconfiguration flits is the local processing

element connected to the switch. As discussed in Section 6.3 , faults may corrupt or duplicate reconfiguration flits, and thus,

the REU must check them. The steps taken by the REU for every incoming reconfiguration flit are shown in Fig. 4 . At first,

the REU checks each flit for faults. For this purpose, we assume that each reconfiguration flit is augmented with a parity

bit. If the flit is faulty, it is discarded. In the second step, the REU checks if the corresponding entry is already reconfigured

by a flit received earlier. If it is not reconfigured, the entry is updated by the information found in the flit. Otherwise, in a

third step, the REU compares the new routing information to the one found in the routing table. If both are identical, the

flit is ignored and the information in the table is kept. In case both are different, the REU cannot decide which information

is correct, and thus it invalidates the entry by resetting its reconfigured bit. 

We now present the fault tolerance mechanism of the REU. Fig. 5 shows the state diagram of the REU in local recon-

figuration mode. When the switch is in operative mode, the REU is in the Idle state. In this state, the REU does not expect

any flits, and thus, any incoming reconfiguration flit is ignored. Whenever the switch state changes to maintenance mode,

the REU invalidates all table entries and waits for the first reconfiguration flit to arrive ( Wait for start ). After receiving the

first flit, the REU expects all further reconfiguration flits to arrive consecutively without much delay ( Accepting ). If either

no flit is received for a certain time period (timeout) or if the REU receives the end reconfiguration flit before all entries

have been updated ( Fail a ), REU sends a retransmission request to the local processing element. The REU declares the failure

of local reconfiguration if during retransmission a second time-out occurs or in case of three unsuccessful reconfigurations

attempts ( Fail b ). If the reconfiguration is successful, the REU sets the switch back to operative mode and returns to the

Idle state. 

In case of a permanent fault in the processing element, the network interface, or the link between the network interface

and the switch, the reconfiguration process will not succeed and the REU declares the failure of local reconfiguration. How-

ever, the switch can still be functional and capable of routing flits. For this reason, the REU tries to reconfigure the routing

table by means of neighbor nodes to prevent the unnecessary shutdown of a working switch. Thus, it changes to remote

reconfiguration mode. 
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6.3.2. Remote reconfiguration 

The REU of a switch changes to remote reconfiguration mode whenever the local reconfiguration has failed. In this mode,

the REU requests routing reconfiguration from one of the direct neighbors of the switch. For this purpose, the REU sends a

remote reconfiguration request flit to all neighbors and waits for an offer ( Wait for offer ). The corresponding remote reconfig-

uration protocol is shown in Fig. 6 . Neighbors that are allowed to serve the request send an offer flit. A neighbor node may

serve the request if: 

• The node is in operative mode, as this implies that it was able to reconfigure its own routing table. 
• The node is in the same superunit on level 1. This ensures that both nodes share the same ETG and thus the helping

node can calculate the routing table entries for the requesting node. 
• The node is not busy helping any other node or has sent an offer. 
• The node has not already tried to help the requesting node in the current reconfiguration process. This gives other

neighbors the possibility to help. 

If the REU does not receive any offer, it sends a second request. If it still does not receive any offer, the REU assumes that

no neighbor can help and declares the failure of the overall reconfiguration process ( Fail ). When the REU receives offers, it

accepts one of them. The chosen neighbor acknowledges the accept and starts calculating the new routing table entries. All

other neighbors are released from their offer and may help another requester. When the calculation is finished, the helping

node sends the reconfiguration flits to the requesting node. After the routing table has been updated, the REU informs the

helping node to release it. 

If remote reconfiguration is not successful, the REU requests help from one of the remaining neighbors. When the re-

configuration process is not successfully completed after requesting help from all available neighbors, the REU declares the

failure of the overall reconfiguration and does not send further requests. In that case the REU informs the fault information

unit which in turn generates a fault information flit to report the shutdown of the switch to the manager. 
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Table 1 

Synthesis results. 

Unit Area [ mm 

2 ] 

Baseline switch 0.0420 

Routing table 0.0080/0.0410 

Fault information unit 0.0014 

Reconfiguration unit 0.0 015/0.0 021 

Table 2 

Number of routing table entries and throughput. 

( s 1 , s 2 ) Flat (8 × 8, (8 × 4, (8 × 4, (4 × 4, (4 × 4, (4 × 4, (4 × 2, 

2 × 1) 2 × 2) 1 × 2) 4 × 2) 2 × 2) 2 × 1) 4 × 4) 

Entries 256 66 36 36 24 22 24 24 

TP 0.027 0.032 0.041 0.029 0.040 0.032 0.034 0.069 

( s 1 , s 2 ) (4 × 2, (4 × 2, (4 × 2, (2 × 2, (2 × 2, (2 × 2, (2 × 2, (2 × 2, 

2 × 4) 2 × 2) 1 × 2) 8 × 4) 4 × 4) 4 × 2) 2 × 2) 2 × 1) 

Entries 18 18 24 36 22 18 22 36 

TP 0.029 0.029 0.026 0.057 0.029 0.035 0.033 0.042 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Evaluation 

We evaluate our reconfigurable routing regarding the required hardware implementation overhead ( Section 7.1 ), the im-

pact of different unit sizes on the network performance ( Section 7.2 ), and the reconfiguration process in presence of faults

( Section 7.3 ). 

To evaluate our hierarchical routing, we have taken mesh networks with flat hierarchy as well as h max = 3 hierarchy

levels into account. For level h = 1 we have considered unit sizes s from 2 × 2 to 16 × 8. The size of a level 2 unit refers

to the number of encapsulated level 1 units in x -dimension and y -dimension. For example, a level 2 unit size of 4 × 2

encapsulates in total eight units of level h = 1 . The unit size s h of level h = 1 and level h = 2 form a tuple ( s 1 , s 2 ) to which

we refer to as hierarchical network configuration. 

7.1. Implementation overhead 

We have synthesized both the Fault Information Unit (FIU) and the Reconfiguration Unit (REU) to investigate the area

overhead compared to a baseline 5-port switch with routing table. The baseline switch features five VCs and for each of

them a VC buffer with three buffer slots is available per input port. The flit width used is 36 bits. For synthesis, we have

used Synopsys Design Compiler with the 45 nm Nangate library [21] . To obtain the required area of routing tables for a

technology size of 45 nm, we have used CACTI 5.3 from HP Labs [22] . The area results are shown in Table 1 . Depending

on the number of entries the routing table size varies between 0.008 mm 

2 (36 entries) and 0.041 mm 

2 (256 entries). Note

that for less than 36 entries CACTI was not able to calculate the area as these sizes come below the minimum supported

memory size of CACTI. The number of table entries for different hierarchical configurations for a 16 × 16 network is shown

in Table 2 . 

The FIU does not depend on the number of table entries and has a fixed area requirement of 0.0014 mm 

2 . However, the

REU depends on the number of table entries. The reason for this is the increasing complexity of logic used to analyze the

reconfigured bits of the routing table and to generate retransmission requests. For 36 table entries the area requirement of

the REU is about 0.0015 mm 

2 . In case of the baseline switch with 36 table entries, the total area overhead of FIU and REU

is less than 6%. 

7.2. Routing performance 

To determine the impact of each unit size on the achievable throughput, we have implemented a cycle accurate NoC

model. The model implements a 16 × 16 mesh topology. Each channel in the network model has a width of 36 bits. Data

packets have a fixed size of 180 bits, thus they are separated into 5 flits at sender side. According to h max = 3 , the model

features four VCs for data communication and one additional VC for control flits. All network switches are input buffered.

We have simulated our network for 50 kcycles in saturation mode using uniform random traffic. The maximum throughput

(TP [ received flits 
nodes ·cycles 

]) for each hierarchical network configuration is shown in Table 2 . 

The throughput of the flat network is 0.027 flits per node per cycle. When introducing hierarchy to the network, the

throughput is increased for all configurations except for (4 × 2,1 × 2). For (4 × 2,1 × 2) the throughput is comparable to

the flat network. The higher throughput can be attributed to the Up to Down turn allowed in each hierarchical unit. Because

of the additional turns, the routing is less restrictive than Up/Down routing applied to the flat network. 
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Table size and throughput have an impact on the scalability property of our routing and its performance. The resulting

design space spanned by table size and throughput results is shown in Fig. 7 . The different configurations lead to differ-

ent implementation points in the design space. A configuration is considered to be better than others, if it requires fewer

routing table entries and provides higher throughput. The optimum is situated in the upper left corner of the design space.

According to the design space, configuration (4 × 2,4 × 4) and (2 × 2,4 × 2) are pareto optimal for a network size of 16 ×
16. Beside the two pareto optimal configurations, configuration (2 × 2,8 × 4) provides also a good tradeoff between number

of routing table entries (36 entries) and throughput (0.057 flits/node/cycle). 

7.3. Reconfiguration performance 

We now consider the required time for routing reconfiguration in case of permanent faults. For online routing reconfigu-

ration, the reconfiguration process should be completed as fast as possible so that the NoC can resume normal operation. In

a second simulation, we have measured the required reconfiguration time for the flat network as well as for h max = 3 levels

and have compared the results to the distributed reconfiguration approach Ariadne [10] . Simulations have shown that the

time required for reconfiguration is mainly composed of the time required for: 

1. Updating the ETG . 

2. Computation of valid paths, and 

3. generation of routing table entries. 

For the hierarchical network configurations, the reconfiguration time further depends on whether only the routing within

a level 1 unit has to be adapted or if routing on level 2 has to be changed. If the routing has to be changed on level 2, the

total reconfiguration time is composed of the time required for updating the ETG on level 2 and the time for reconfiguration

on level 1. The time for updating the ETG on level 2 is omitted if the routing only has to be adapted on level 1. The portion

of the total required reconfiguration time for the flat and hierarchical networks is shown in Fig. 8 . 

In the case of the flat network, the required time for reconfiguration is more than 160 kcycles. According to [10] , Ariadne

requires | N | 2 cycles for routing reconfiguration and thus approximately 65 kcycles are required for a 16 × 16 network (in-

dicated by the horizontal line in Fig. 8 ). This implies that for the flat network the reconfiguration time of our approach is

about 2.5 times higher compared to Ariadne . This is mainly caused by the time required for path computation. However, as it

can be seen in Fig. 8 , the required reconfiguration time for all hierarchical network configurations is smaller than 65 kcycles

required by Ariadne . This is even the case if the ETG has to be updated on level 2. The reason for this reduction in time is

the reduced number of vertices in the ETG (cf. Entries in Table 2 ). The minimum total reconfiguration time of approximately

20 kcycles is obtained for configuration (4 × 4,8 × 8). Only less than 11 kcycles are required for configuration (2 × 2,8 × 4)

if the routing has only to be adapted on level 1. 

Taking into account both the results in the design space and the reconfiguration time, the configuration (4 × 2,4 × 4) is

the most suitable for a 16 × 16 NoC topology. While for this configuration the throughput increases about 2.5 times com-
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Table 3 

Reconfiguration success rate with different bit error probabilities. 

Bit error ( 10 −3 ) 3 5 7 9 11 15 20 25 30 

Success rate 1 1 1 0.8 0.8 0.5 0.3 0.2 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pared to the flat network, at the same time the number of table entries decreases about a factor of seven and the required

reconfiguration time decreases about a factor of 6. Compared to Ariadne the reconfiguration time is four times smaller if

routing is adapted on level 1. If the ETG has to be updated on level 2, the required reconfiguration time is approximately

41% compared to Ariadne . 

Finally, we have analyzed the rate for successful routing table reconfiguration. Transient faults may corrupt reconfigura-

tion flits sent to the REU. To investigate their impact on the success rate we have used different error rates for transient

faults. For this purpose, we have written a Matlab script to model an error detection unit (CRC) and to inject random errors

with different bit error probabilities to reconfiguration flits and retransmission request flits. The experiment is repeated for

nine different bit error probabilities. Table 3 shows the success rate of local reconfiguration for each bit error probability.

Note that the usual bit error probabilities caused by transient faults are in the range of 10 −9 –10 −20 [23] . However, higher

values are used here for evaluation purposes. 

The results in Table 3 show that for a bit error probability up to 0.007, the REU was always able to reconfigure the

routing table successfully. Moreover, even for high bit error probabilities, up to 0.011, the table was reconfigured in at least

80% of the cases. For error probabilities higher than 0.011, the success rate shows a strong decrease due to the increasing

number of corrupted reconfiguration flits and retransmission request flits. As error probabilities are much smaller than the

one used for evaluation, the REU guarantees successful reconfiguration in case of realistic error probabilities for transient

faults. 

8. Conclusion 

Adding logical hierarchy to Networks-on-Chip (NoCs) offers significant benefits compared to NoCs with flat organization.

In particular, logical hierarchy makes routing tables a feasible design choice. This is achieved by having full table entries

only for nodes in the same logical network unit, and by merging routing information for other nodes through hierarchical

abstraction. Thereby, a routing table for a switch in a 256 node NoC requires only less than 20% of the switch’s chip area,

whereas a fully implemented table for a flat NoC would double the switch’s area. Furthermore, evaluation results for a

16 × 16 mesh topology with three hierarchy levels show that the data throughput is doubled compared to a non-hierarchical

network topology. 
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Hierarchically organized routing tables can then be used to implement highly flexible and controlled fault tolerance.

This is done by capturing the topology of the partly-faulty network in an enhanced topology graph, by computing new

routes with a modified Dijkstra algorithm that takes a deadlock-free baseline routing into account, and by updating the

routing tables in a fault-tolerant way, as described in this paper. Per switch, the additional components required for fault

tolerance occupy only 6% of the switch’s chip area. Thanks to the logical NoC hierarchy, and with proper choices for its

organization, reconfiguration time can be reduced to less than one third, compared to the state-of-the-art approach of the

Ariadne network. Moreover, our suggested routing table reconfiguration protocol is extremely robust against transmission

errors, offering correct reconfiguration even if the bit error probability is in the order of 10 −3 . 
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