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Highlights 

 Common cross-efficiency evaluation models fail to

consider the risk attitude. 

 This paper investigates the cross-efficiency evaluation

based on prospect theory. 

 We define a prospect value of decision-making unit to

describe the risk attitude. 

 A new prospect cross-efficiency model is developed based

on the prospect value. 

 The case study shows that the risk preference in?uences the

evaluation result. 
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Abstract: Cross-efficiency evaluation in data envelopment analysis (DEA) is a useful tool in 

evaluating the performance of decision-making units (DMUs). It is generally assumed that 

decision makers (DMs) are completely rational in common cross-efficiency evaluation models, 

which fail to consider the DM’s risk attitude that plays an important role in the evaluation 

process. To fill this gap, we investigate the cross-efficiency evaluation in DEA based on 

prospect theory. First, we introduce a prospect value of the DMU to capture the non-rational 

psychological aspects of a DM under risk. Second, based on the prospect value, we propose a 

new cross-efficiency model termed the prospect cross-efficiency (PCE) model. Particularly,

some existing cross-efficiency evaluation models can be deemed as the special cases of the PCE 

model with suitable adjustments of the parameters. Furthermore, this paper provides an 

empirical example to evaluate cross-efficiency with several selected universities directly 

managed by the Ministry of Education of China to illustrate the effectiveness of the PCE model 

in ranking DMUs.  
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1. Introduction

Cross-efficiency evaluation, developed by Sexton, Silkman, and Hogan (1986), has been widely 

accepted as a discriminative assessment tool for data envelopment analysis (DEA). It is 

generally used for distinguishing efficient decision-making units (DMUs) from one another 

(Despotis, 2002). Each DMU in cross-efficiency evaluation has a self-evaluated efficiency 

derived by its own set of optimal weights and 1n   peer-evaluated efficiencies obtained by the 

optimal weights of other DMUs. Consequently, a final efficiency for ranking DMUs is 

aggregated based on n  efficiencies. The major characteristics of cross-efficiency evaluation are 

the following: (1) ranking the DMUs in a unique order (Doyle & Green, 1995), (2) eliminating 

unrealistic weight schemes without predetermining any weight restrictions (Anderson, 

Hollingsworth, & Inman, 2002), and (3) effectively differentiating between good and poor 

performers among the DMUs (Boussofiane, Dyson, & Thanassoulis, 1991). Due to these 

advantages, cross-efficiency evaluation has been used in a variety of applications, including 

project ranking (Green, Doyle, & Cook, 1996), the measurement of the labour assignment in a 

cellular manufacturing system (Ertay & Ruan, 2005), sports rankings (Wu, Liang, & Chen,

2009), corporate philanthropic selection (Partovi, 2011), the supplier selection problem in public 

procurement (Falagario, Sciancalepore, Costantino, & Pietroforte, 2012), and portfolio selection 

(Lim, Oh, & Zhu, 2014; Mashayekhi & Omrani, 2016). 

Despite the many advantages and wide applications of cross-efficiency, its usefulness is possibly 

reduced by the non-uniqueness of the optimal weights (Doyle & Green, 1994). Specifically, the 

possible existence of multiple optimal weights in the evaluation leads to different sets of 

cross-efficiency scores for each DMU. This situation may reduce the discriminative capability of 

the cross-efficiency evaluation. To alleviate this problem, Sexton et al. (1986) and Doyle and 

Green (1994) presented well-known aggressive and benevolent formulations as secondary goals 

to select a unique solution from multiple optimal weights. The core idea of the aggressive 

formulation is to obtain a solution by minimizing the cross-efficiencies of the other DMUs while 

retaining the self-efficiency of the evaluated DMU at a predetermined optimal level. In contrast, 

the benevolent formulation maintains the self-efficiency while maximizing the cross-efficiencies 

of the other DMUs. Subsequently, numerous secondary goal models for cross-efficiency 

evaluations have been proposed on the basis of this idea. For example, Liang, Wu, Cook, and 

Zhu (2008) extended the aggressive and benevolent models of Doyle and Green (1994) by 

introducing various secondary objective models based on deviation from the target efficiency of 

each DMU, and each of these models could be applied in different practical circumstances. 

Wang and Chin (2010b) further proposed alternative secondary goal models by replacing the 

target efficiency from ideal point 1, which was used by Liang et al. (2008), to CCR efficiency. 
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Similar ideas also appeared in Lim (2012), in which a minimax or a maximin type secondary 

objective is incorporated into the aggressive and benevolent formulations of cross-efficiency.  

However, as noted in Wang and Chin (2010a), the aggressive and benevolent formulations do 

not guarantee that a consistent conclusion would be derived. To avoid the dilemma of choosing 

between two different formulations, Wang and Chin (2010a) and Ramón, Ruiz, and Sirvent 

(2010) proposed the secondary goal models that primarily focus on the individual viewpoint of 

each DMU without considering their effect on other DMUs. The cross-efficiencies become 

neutral and logical this way. In addition, Wang, Chin, and Luo (2011) provided four neutral 

models for cross-efficiency evaluation from the perspective of multiple criteria decision analysis. 

Refer to Oukil and Amin (2015), Ruiz and Sirvent (2012), Wu, Chu, Sun, Zhu, and Liang (2016),

Wu, Sun, and Liang (2012) regarding computing the cross-efficiencies using other secondary 

goal models without being neither aggressive nor benevolent.  

As a matter of fact, cross-efficiency evaluation is used as a decision-making technique to rank the 

DMUs. A consensus exists that the psychology of a decision maker (DM) plays an important role in 

the decision-making process (Berman, Sanajian, & Wang, 2017; Borgonovo, Cappelli, Maccheroni, 

& Marinacci, 2018; Lejarraga & Müller-Trede, 2017; Smith & Ulu, 2017). Nevertheless, the 

aforementioned cross-efficiency evaluation models assume that DMs are completely rational and 

generally fall into the expected utility theory framework. The expected utility theory, however, has 

several unexplained phenomena, such as the Allais paradox (Allais, 1953) and the Ellsberg paradox 

(Ellsberg, 1961). Noting the limitations of the expected utility theory, Kahneman and Tversky 

(1979) proposed prospect theory, which can capture the non-rational psychological aspects of DMs 

under risk. Prospect theory has three principal conclusions: (1) the DMs exhibit the risk-avoiding 

tendency for gains and the risk-seeking tendency for losses, (2) the DMs usually perceive gains 

or losses according to a reference point, and (3) the DMs are more sensitive to loss than gain. 

Since prospect theory is considerably consistent with the actual behaviours of humans, the 

decision-making method based on prospect theory has recently become a research hotspot 

(Bleichrodt, Schmidt, & Zank, 2009; Borgonovo et al., 2018; Krohling & de Souza, 2012; 

Lahdelma & Salminen, 2009; Wang, Wang, & Martínez, 2017; Qin, Liu, & Pedrycz, 2017;

Scholz, Dorner, Schryen, & Benlian, 2017; Vipin & Amit, 2017). For example, Wang et al. 

(2017) considered the psychological factors of experts and developed an emergency group 

decision-making method based on prospect theory. Borgonovo et al. (2018) provided a 

translation method that allowed the use of prospect-theory-like models into a decision-making 

analysis. Qin et al. (2017) proposed an extended TODIM (an acronym in Portuguese for 

Interactive and Multicriteria Decision Making) method based on prospect theory to solve 

multiple criteria group decision-making problems. Scholz et al. (2017) applied prospect theory 

to develop an attribute weight elicitation method, which incorporated the behaviour of DMs.
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Vipin and Amit (2017) studied decision bias in a newsvendor problem based on prospect theory 

by considering loss aversion and stochastic reference point. 

To the best of our knowledge, although prospect theory has been extensively applied in the 

decision-making method, little research has been done on the cross-efficiency evaluation method 

based on prospect theory. Therefore, we attempt to partially fill this gap by modelling the 

psychological factors of DMs in the cross-efficiency evaluation process. We introduce the 

prospect values of each DMU and develop a prospect cross-efficiency (PCE) model that 

characterizes the psychological factors in the cross-efficiency evaluation process. We analyse the

performance of the Science and Technology (S&T) activities of universities supervised by the 

Ministry of Education (MoE) in China and further compare the PCE model with classical 

cross-efficiency evaluation models, such as the models of Doyle and Green (1994) and Wang et 

al. (2011). 

The rest of this paper is organized as follows. Section 2 reviews the cross-efficiency evaluation 

process and its main formulations. Section 3 provides a brief introduction to prospect theory. 

Section 4 proposes a new cross-efficiency evaluation model based on prospect theory. Section 5 

presents an illustrative example to demonstrate the potential applications of the new model. 

Conclusions are provided in Section 6.  

2. Cross-efficiency evaluation

As an extension of the DEA model, the cross-efficiency evaluation method is implemented via 

two stages, including self-evaluation and peer-evaluation. It assesses the overall performance of 

each DMU by considering not only its own weights but also the weights of all DMUs. In this 

section, we briefly review cross-efficiency evaluation and its main formulations. 

2.1. Self-evaluation 

Assume  1 2, , , nDMU DMU DMUD  is the set of n  DMUs to be evaluated, and each

DMU produces s  outputs by consuming m  inputs. For convenience, let  1,2, ,N n  for

k N ,  1,2, ,M m  for i M , and  1,2, ,S s  for r S . Variables
rky  and 

ikx

are the output and input values, respectively, of 
kDMU  (see Table 1), whose relative efficiency 

kkE  is denoted by the ratio of outputs to inputs: 

1 1

/ ,
s m

kk rk rk ik ik

r i

E u y v x
 

   (1) 

where 
rku and 

ikv are the non-negative weights assigned to s  outputs and m  inputs, 

respectively. Especially under self-evaluation, the efficiency of 
kDMU  relative to the other 
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DMUs is measured by the Charnes, Cooper and Rhodes (CCR) model (Charnes, Cooper, & 

Rhodes, 1978):  

1 1

1 1

max /

. . / 1,

, 0, .,

,

s m

kk rk rk ik ik

r i

s m

rk rj ik ij

r i

rk ik

j N

r S

E u y v x

s t u y v x

u i Mv

 

 











 

   (2) 

Note that Model (2) is a fractional linear programming model. It can be equivalently transformed

into the following linear programming model by the Charnes-Cooper transformation (Charnes & 

Cooper, 1962):  

1

1 1

1

max

. . 0,

1,

, 0, .,

,

s

kk rk rk

r

s m

rk rj ik ij

r i

m

ik ik

i

rk ik

E u y

j N

r S i

s t

M

u y v x

v x

u v



 





 







 



 



(3) 

Let *

rku  and *

ikv  be the output and input optimal weights, respectively, of the above model.

Then,
* *

1

s

kk rk rk

r

E u y


 is referred to as the CCR-efficiency of 
kDMU , which represents the 

optimal relative efficiency of 
kDMU  by self-evaluation. If * 1kkE   and all the optimal weights 

*

rku  and *

ikv  are positive, then 
kDMU  is CCR-efficient. Otherwise, it is CCR-inefficient.

Table 1. The output and input values of the DMUs.

DMUs 
1DMU 2DMU nDMU

Output values 
11y 12y 1ny

21y 22y 2ny

1sy 2sy sny

Input values 
11x 12x 1nx

21x 22x 2nx

1mx 2mx mnx

2.2. Peer-evaluation 

Under the self-evaluation Model (3), each DMU is evaluated with its most favourable weights; 

this manner may lead to the status in which many DMUs are evaluated as CCR-efficient, and the 

CCR-efficient DMUs fail to be further distinguished. To tackle this issue, Sexton et al. (1986) 

suggested the cross-efficiency evaluation, which can appraise the overall performance of each 
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DMU by using the weights of all DMUs. More specifically, if *

rku  and *

ikv  are the respective 

optimal weights of outputs and inputs of Model (3) for a given ( )kDMU k N , then the 

cross-efficiency score of 
dDMU  is defined as follows:  

* *

1 1

/ , , ,
s m

dk rk rd ik id

r i

E u y v x d N d k
 

    (4) 

which reflects the peer-evaluation of 
kDMU  to 

dDMU .

Model (3) should be solved n  times each time for a target 
kDMU  for the acquisition of the 

cross-efficiency scores of all DMUs. Consequently, the n  sets of input and output weights 

become available for the n  DMUs, and each DMU obtains 1n   cross-efficiency scores and 

the optimal CCR-efficiency score. All of these scores can be shown as a n n  cross-efficiency 

matrix where the diagonal elements present the CCR-efficiency scores *

kkE (see Table 2).

Table 2. Cross-efficiency matrix of the DMUs.

DMU Target DMU Average cross-efficiency 

1DMU 2DMU nDMU

1DMU 11E 12E 1nE
1

1

n

k

k

E n




2DMU 21E 22E 2nE
2

1

n

k

k

E n




nDMU 1nE 2nE nnE
1

n

nk

k

E n


  

To obtain the overall performance of each DMU, the most extensively used approach is to 

average the cross-efficiency scores in each row of cross-efficiency matrix (see the last column in

Table 2). In this manner, the cross-efficiency score of 
dDMU  is defined as follows:  

1

, .
n

d dk

k

E E n d N


   (5) 

The cross-efficiency score 
dE  provides a peer-evaluation of 

dDMU , and correspondingly

these n  DMUs can be fully compared or ranked.

Note that multiple optimal solutions (input and output weights) may exist in Model (3), which 

may lead to the non-unique cross-efficiency scores for DMUs. Sexton et al. (1986) suggested 

introducing a secondary goal to derive unique optimal input and output weights. The most 

commonly used secondary goals developed by Doyle and Green (1994) are presented below:  
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1 1,

*

1 1

1 1,

1 1

max ( )

. . 0,

( ) 1,

0, , ,

, 0, , ,

s n

rk rj

r j j k

s m

rk rk kk ik ik

r i

m n

ik ij

i j j k

s m

rk rj ik ij

r i

rk ik

u y

s t u y E v x

v x

u y v x j N j k

u v r S i M

  

 

  

 

 



   

  

 

 

 

 

(6) 

and 

1 1,

*

1 1

1 1,

1 1

min ( )

. . 0,

( ) 1,

0, , ,

, 0, , .

s n

rk rj

r j j k

s m

rk rk kk ik ik

r i

m n

ik ij

i j j k

s m

rk rj ik ij

r i

rk ik

u y

s t u y E v x

v x

u y v x j N j k

u v r S i M

  

 

  

 

 



   

  

 

 

 

 

(7) 

Model (6) is known as the benevolent formulation of the cross-efficiency evaluation that 

maximizes the cross efficiencies of other DMUs to some extent, whereas Model (7) is known as 

the aggressive formulation of the cross-efficiency evaluation that minimizes the cross efficiencies of 

other DMUs.  

Models (6) and (7) optimize the input and output weights in two different ways. As a result, they 

are not guaranteed to lead to the same efficiency ranking or conclusion for DMUs (Wang & Chin, 

2011; Yang, Ang, Xia, & Yang, 2012). To solve this problem, Wang and Chin (2010a) proposed a 

neutral DEA model for the cross-efficiency evaluation that does not require the DM to select 

between the aggressive and benevolent formulations. The cross-efficiencies computed in this 

manner become neutral and logical. Subsequently, Wang et al. (2011) proposed several improved

neutral DEA models for cross-efficiency evaluation from the perspective of multiple criteria 

decision analysis.  

Nevertheless, the aforementioned models for cross-efficiency evaluation generally assume that 

DMs are completely rational and fail to consider the risk preference of DMs. Noting that 

prospect theory captures the risk attitude of DMs (which is considered consistent with the actual 

decision-making behaviours of humans) (Abdellaoui & Kemel, 2014; Borgonovo et al., 2018; 

Long & Nasiry, 2015), we attempt to solve this problem by developing a new cross-efficiency 

evaluation model based on prospect theory. For discussion purposes, we briefly introduce 

prospect theory in the next section. 
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3. Prospect theory

Prospect theory was initially proposed by Kahneman and Tversky (1979) as a descriptive theory 

for the decision behaviour of an individual under risk. Since its inception, prospect theory has 

been regarded as one of the most influential behavioural decision theories (Wang et al., 2017). 

Prospect theory involves the following important principles (Kahneman & Tversky, 1979).  

(i) Reference dependence. The DM generally perceives outcomes as gains or losses relative to 

a reference point. Thus, the prospect value curve of a DM is divided into two parts by the 

reference point, the gain and the loss domains.  

(ii) Loss aversion. The DM is more sensitive to losses than to absolute commensurate gains 

(Abdellaoui, Bleichrodt, & Paraschiv, 2007). In this way, the prospect value curve is steeper 

in the loss than in the gain domain.  

(iii) Diminishing sensitivity. The DM shows a risk-averse tendency for gains and a risk-seeking

tendency for losses. Correspondingly, the prospect value curve is concave in the gain 

domain and convex in the loss domain. That is, the marginal value of both gains and losses 

decreases with their size.  

The meaning of above three principles can be described by an asymmetric S-shaped value curve, 

as illustrated in Figure 1. The function of this value curve (the prospect value function) is 

described as follows: 

( ) , ( 0),
( )

( ) , ( 0),

z z
v z

z z





   
  

   

    (8) 

where
0z z z    is used to measure the value z  deviation from the reference point 

0z . If 

the outcome is larger than the reference point ( 0z  ), then the outcome is viewed as a gain.

Otherwise, the outcome is deemed as a loss ( 0z  ). The parameters   and   represent the 

bump degree of the value function in the gain and loss regions, respectively, where 0 1   and 

0 1  . Variable   is the loss-aversion coefficient, and 1   which shows that the region 

value function is considerably steeper for the losses than for the gains. 

Δz

V(Δz)

V(Δz0)

V(-Δz0)

Δz00-Δz0

Gain domain

Loss domain

Figure 1. Prospect value curve (here 0.55  , 0.45  , and 2.25  ). 
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As mentioned in Section 2, the existing cross-efficiency evaluation methods assume that DMs 

are completely rational and generally fall into the expected utility theory framework. Noting that 

prospect theory is considerably consistent with the actual decision-making behaviours of humans, 

the following section proposes a new cross-efficiency evaluation model based on prospect theory.  

4. Prospect cross-efficiency model for cross-efficiency evaluation

Prospect theory reveals that DMs usually reflect sensitivity depending on the states of the 

outcomes with respect to the status quo (i.e., reference point). That is, they reflect whether the 

outcomes are better or worse than the status quo. The reference point can be specified by the 

following methods: (1) the zero point, (2) the mean value, (3) the medium value, (4) the worst 

value, and (5) the best value. In this paper, we use the worst and best values together to derive 

the cross-efficiency evaluation matrix based on prospect theory, which is further explained in the 

next section. 

For the DMs, the worst DMU generally expends the most inputs to produce the least outputs, and 

the best DMU consumes the least inputs to yield the most outputs. According to prospect theory, 

relative gains can be regarded as the value of a DMU above the worst DMU, and the DMU in such 

case is deemed as a gain. A relative loss can be deemed as the value of a DMU below the best 

DMU, and the DMU in such case is viewed as a loss.  

For the sake of discussion, let  1,2, ,N n  for k N ,  1,2, ,M m  for i M , and

 1,2, ,S s  for r S . Assume that there are n  DMUs to be evaluated, and the output and

input values of 
kDMU ( k N ) are 

rky ( r S ) and 
ikx ( i M ), respectively. Based on the 

above analysis, the prospect values of 
kDMU  are defined as follows. 

Definition 1. If the reference point of the DM is the worst DMU, then the prospect gain values 

with respect to ith input and rth output of 
kDMU  are defined as: 

+ +( ) , ( ) ,I i ik O rk rik rk
V x x V y y        (9) 

where =max{ }i ik
k

x x and =min{ }r rk
k

y y are ith input and rth output of the worst DMU, 

respectively. 

Definition 2. If the reference point of the DM is the best DMU, then the prospect loss values with 

respect to ith input and rth output of 
kDMU  are defined as 

( ) , ( ) ,I ik i O r rkik rk
V x x V y y                              (10) 

where + =min{ }i ik
k

x x and =max{ }r rk
k

y y are ith input and rth output of the best DMU,

respectively. 
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From the perspective of the DM, he/she always selects a unique set of input and output weights 

to make the gains of 
kDMU  as much as possible, as follows: 

+ +

1 1

max .
s m

rk O ik I

r i
rk ik

u V v V
 

      (11) 

Therefore, the gain model for cross-efficiency evaluation can be constructed as follows: 

1 1

1

*

1

1 1

max

. . 1,

,

( ) ( )

0, ,

, 0, , .

s m

rk rk r ik i ik

r i

m

ik ik

i

s

rk rk kk

r

s m

rk rj ik ij

r i

rk ik

u y y v x x

s t v x

u y E

u y v x j N

u v r S i M

  

 





 

  





  

  

 





 

(12) 

In addition, the DM always chooses a unique set of input and output weights to make the losses 

of 
kDMU  as small as possible, as follows: 

1 1

min .
s m

rk O ik I

r i
rk ik

u V v V 

 

      (13) 

Correspondingly, the loss model for the cross-efficiency evaluation can be established as 

follows:  

1 1

1

*

1

1 1

min

. . 1,

,

0, ,

, 0,

( ) ( )

, .

s m

rk r rk ik ik i

r i

m

ik ik

i

s

rk rk kk

r

s m

rk rj ik ij

r i

rk ik

u y y v x x

s t v x

u y E

u y v x j N

u v r S i M

   

 





 

  





  

  

 





 

(14) 

Combining the gain model (12) and the loss model (14), a new model for cross-efficiency 

evaluation can be constructed as follows: 
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(15) 
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which is termed the prospect cross-efficiency (PCE) model, and   stands for the relative 

importance degree towards gains satisfying 0 1  .  

In this optimization model, different   values can be used as indicators of the varied attitudes 

of the DM. For example, if 0 0.5  , then the DM will focus more on the losses than the 

gains. If 0.5  , then the DM will argue that the factors of gains and losses are equally 

important. If 0.5 1  , then the DM will focus considerable attention to the gain preference. 

During the decision process, the DM can opt for a suitable   according to his/her preference.  

Particularly, if we consider the possible values of parameters , ,   , and   in the PCE 

model, we can obtain two special cases shown as follows.  

Case 1. If =0 , 1  , and 1   in Model (15), then we derive: 
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(16) 

which is simply Model I of Wang et al. (2011). 

Case 2. If =1  and 1   in Model (15), then we derive
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(17) 

which is exactly Model II of Wang et al. (2011).

In addition, the parameter   presents the concave degree of the value function within the gain 

region. A large value of   implies a large steepness of the utility curve; the DM in such a case 

tends to be risk-seeking. Therefore, with the value of   tending to 0, the risk attitude of the 

DM becomes considerably risk-averse in the evaluation process. Correspondingly, the 

evaluation result of the PCE model is inclined to a relatively conservative solution. Conversely, 
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the parameter   shows the convex degree of the value function within the loss region. A large 

value of   implies the large steepness of the utility curve for the relative losses. In such a case, 

the DM becomes sensitive towards losses and considerably conservative. Therefore, with the 

value of   tending to 0, the DM is prone to risk-seeking in the evaluation process. 

Correspondingly, the evaluation result of the PCE model is inclined to a relatively adventurous 

solution.  

Therefore, the PCE model is the extension of the models proposed by Wang et al. (2011). In 

addition, the PCE model can capture the risk attitudes of the DMs and maintain certain fairness 

by setting the secondary goal for cross-efficiency evaluation without using the information of the 

other DMUs. In this manner, the optimal input and output weights for calculating the 

cross-efficiency score comply with the facts, and the DMs do not have to face a difficult choice 

between the aggressive and benevolent models.  

5. An illustrative example

This section presents an illustrative example to analyse the validity of the PCE model developed 

in Section 4. First, we utilize the PCE model to evaluate cross-efficiency within several selected 

universities directly managed by the Ministry of Education of China (MoE) of China. Second, 

we perform a sensitivity analysis to illustrate the influence of the psychological factors of DMs 

on the evaluation results. Third, we further compare the proposed model with several classic 

models, including the aggressive and the benevolent models in Doyle and Green (1994), and 

Models I and II in Wang et al. (2011).  

5.1. A case of Chinese universities 

The MoE of China has operated the Educational Revitalization Action Plan for the 21st Century 

since 1998. It is committed to constructing world-class and high-level universities in China, 

which is termed as the 985 Project. The universities related to the 985 Project, which are the 

main institutions of scientific research activities, represent the highest level of university 

research in China. It is essential to evaluate these universities with respect to the efficiency of 

scientific research activities. We select 10 universities from the 985 Project as the DMUs to be 

evaluated, including Beijing University, Tsinghua University, China Agricultural University,

Tianjin University, Fudan University, Tongji University, Shanghai Jiaotong University, East 

China Normal University, Sun Yat-sen University, and South China University of Technology. 

All 10 are top-level universities in first-tier cities of China (i.e., Beijing, Shanghai, Guangdong, 

and Tianjin), where the level of GDP development is among the highest.  

To analyse the performance of the Science and Technology (S&T) activities of the 10 
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universities selected above, we use the indicators and corresponding data of these universities 

from the S&T statistics compilation in 2013, which was published by the MoE in China (see 

Table 3 and Table 4 for details).  

After the data gathering, we use the proposed cross-efficiency evaluation method to appraise the 

efficiency of scientific research activities among the 10 universities, which is shown as follows. 

Step I. Self-efficiency evaluation 

According to the data in Table 4, we calculate the self-efficiency of the 10 DMUs using the CCR 

model (see Model 3), and the result is shown in the last column of Table 4. From Table 4, we 

can find that the self-efficiency scores of many universities are equal to 1 (e.g., DMU2, DMU5,

DMU7, and DMU9), resulting in the need for further discrimination. Therefore, as the next step, 

we compute the cross-efficiency score of each DMU using the PCE model to obtain the ordering 

of the 10 DMUs.  

Step II. Cross-efficiency evaluation 

Without loss of generality, we assume that the DM will argue that the gain and loss factors are 

equally important (i.e., 0.5  ). The other parameters ,  , and   in the PCE model are 

0.89, 0.92, and 2.25, respectively (c.f., Kahneman and Tversky, 1979). Based on the 

self-efficiency scores derived from Step I and the PCE model (see Model 15), the weights for the 

inputs and outputs are obtained in Table 5. Using the weights in Table 5, we can then generate 

the prospect cross-efficiency matrix in Table 6. Consequently, we average the cross-efficiency 

scores in each row of the matrix and obtain the overall performance of the 10 universities (see 

the penultimate column of Table 6).  

Table 3. The evaluation indicators of 10 universities. 

Indicators Type Units Notations Explanations 

Technology 

transfer 

revenue 

Output 
RMB in 

thousand 
Tec. 

The income from the process of technology transfer 

in a university within the statistical year. 

Publication 

papers 
Output Number Pub. 

The number of international papers indexed by the 

Web of Science published by Thompson Reuters 

(that is, SCI/SSCI) within the statistical year. 

Research and 

development

fund 

Input 
RMB in 

thousand 
R&D Fun. 

The fund for the activities of fundamental research, 

experimental development research and application 

research within the statistical year. 

Research and 

development

staff 

Input 
Full-time 

equivalent 
R&D Sta. 

The person engaged in research, management and 

supporting activities of research and development, 

including persons in the project teams, persons 

engaged in the management of S&T activities of 

enterprises and supporting staff providing direct 

service to the research projects within the statistical 

year. This indicator reflects the size of personnel 

engaged in research and development activities with 

the independent intellectual property. 
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Table 4. Inputs and outputs of 10 universities in 2013. 

Universities 
Outputs Inputs 

Self-efficiency by CCR model 
Tec. Pub. R&D Fun. R&D Sta. 

DMU1 32441 2174 2159718 1868 0.350 

DMU2 741905 6570 4351036 2762 1.000 

DMU3 4316 1782 983639 642 0.635 

DMU4 35819 2540 2053945 1234 0.510 

DMU5 1960 5078 1754690 1141 1.000 

DMU6 2460 2992 2342515 836 0.807 

DMU7 159634 7189 2876203 1882 1.000 

DMU8 1855 1465 429710 594 0.885 

DMU9 790 4515 1016343 1829 1.000 

DMU10 75736 2267 1388514 975 0.690 

Table 5. The weights obtained by the PCE model. 

Universities 
The weights for the outputs The weights for the inputs 

Tec. Pub. R&D Fun. R&D Sta. 

DMU1 1.065E-06 1.451E-04 2.942E-07 1.952E-04 

DMU2 1.348E-06 4.239E-18 2.298E-07 9.710E-20 

DMU3 3.786E-06 3.625E-04 1.211E-06 4.905E-04 

DMU4 1.363E-06 1.816E-04 5.952E-22 8.104E-04 

DMU5 7.390E-20 1.969E-04 2.518E-19 8.764E-04 

DMU6 2.035E-06 2.681E-04 2.019E-20 1.197E-03 

DMU7 8.794E-07 1.196E-04 2.424E-07 1.608E-04 

DMU8 4.208E-06 5.988E-04 1.214E-06 8.054E-04 

DMU9 1.854E-15 2.215E-04 9.839E-07 3.255E-12 

DMU10 1.978E-06 2.383E-04 5.027E-07 3.097E-04 

Table 6. The prospect cross-efficiency of 10 universities in 2013. 

DMU 
Target DMU Average 

cross-efficiency 
Ranking 

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 

DMU1 0.350 0.088 0.258 0.290 0.262 0.290 0.350 0.349 0.227 0.350 0.281 10 

DMU2 0.958 1.000 0.783 0.985 0.534 0.989 0.959 0.940 0.340 0.997 0.849 1 

DMU3 0.635 0.026 0.635 0.633 0.624 0.633 0.635 0.634 0.408 0.625 0.549 7 

DMU4 0.481 0.102 0.341 0.510 0.462 0.510 0.481 0.479 0.278 0.478 0.412 9 

DMU5 1.000 0.007 0.688 1.000 1.000 1.000 1.000 1.000 0.651 0.983 0.833 3 

DMU6 0.512 0.006 0.337 0.807 0.804 0.807 0.512 0.512 0.288 0.500 0.509 8 

DMU7 1.000 0.325 0.728 0.999 0.858 1.000 1.000 0.994 0.563 1.000 0.847 2 

DMU8 0.885 0.025 0.663 0.558 0.554 0.558 0.885 0.885 0.767 0.882 0.666 5 

DMU9 1.000 0.005 0.770 0.554 0.555 0.554 1.000 1.000 1.000 1.000 0.744 4 

DMU10 0.684 0.320 0.513 0.652 0.522 0.653 0.684 0.678 0.368 0.690 0.576 6 

According to the average cross-efficiency in Table 6, we derive the ranking order of the 10 

universities (see the last column of Table 6), and the most efficient university is the university 

denoted as DMU2. Table 7 presents the efficiency scores of the CCR model and the PCE model. 

From Table 7, we can find that the PCE model can discriminate between the performances of 
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DMU2, DMU5, DMU7, and DMU9, whereas the efficiency scores of these DMUs in the CCR 

model are all equal to 1.  

Table 7. The efficiency scores of the CCR model and the PCE model. 

Models 
Efficiency scores 

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 

CCR model 0.350 1.000 0.635 0.510 1.000 0.807 1.000 0.885 1.000 0.690 

PCE model 0.281 0.849 0.549 0.412 0.833 0.509 0.847 0.666 0.744 0.576 

In addition, the cross-efficiency scores of the PCE model are less than the self-efficiency scores 

of the CCR model (see Figure 2). This finding can be explained through the definition of 

cross-efficiency evaluation, which allows the overall efficiencies of the DMU to be appraised 

through self-evaluation and peer-evaluation. Self-evaluation is assessed using the most 

favourable weights of the DMU to achieve its maximum efficiency, whereas peer-evaluation is 

appraised by the weights determined by other DMUs. As a result, the efficiency score of the 

peer-evaluation of the DMU cannot be higher than the efficiency score of its self-evaluation. 

Therefore, the cross-efficiency score of the DMU, which is the average of the self-efficiency 

score and peer-efficiency scores, cannot be higher than its self-efficiency score (see Doyle and 

Green, 1994). 

Figure 2. Comparison between the CCR model and the PCE model. 

5.2. Sensitivity analysis 

In this subsection, we perform a sensitivity analysis to analyse how the different risk attitudes of 

the DM (that is, parameters ,  , and  ) affect the evaluation results. In addition, we show 

the variations of evaluation results under different psychological preferences of the DM (i.e., 

parameter  ). 
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5.2.1. Different risk attitudes of the DM 

Considering the efficiency evaluation case in Section 5.1, we calculate the evaluation results 

among different values of parameters ,  , and  . Without loss of generality, we suppose 

that the original values of parameters ,  , and   are 0.5, 0.3, and 3, respectively. In this 

way, Figures 3 and 4 show how different values of parameters ,  , and   in the PCE model 

affect the efficiency evaluation result of the 10 universities, which involve changing the single 

parameter  (resp.   or  ) (see Figure 3), two parameters  and   (resp.   and  ,   

and  ) (see Figure 4), respectively.  
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Figure 3. Sensitivity analysis of the evaluation results about single parameter: (a) , (b)  , and (c) . 
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(a) (b)

(c)

Figure 4. Sensitivity analysis of the evaluation results about two parameters: (a) and  , (b) and , and 

(c)  and .

From Figure 3, we can find that changing the single parameter affects the efficiency evaluation 

result. In particular, the most efficient DMU changes as   increases or as   (or  )

decreases to a certain point. For instance, the most efficient DMU switches from DMU2 to 

DMU7 as the parameter   increases from 0.1 to approximately 0.32, and the most efficient 

DMU changes from DMU7 to DMU5 with  continuously increasing to approximately 0.43.

Similarly, we can find the corresponding phenomenon about the parameters   and  . The 

most efficient DMU shifts from DMU5 to DMU7 as the parameter   (resp.  ) increases from 

0 (resp. 1.1) to approximately 0.41 (resp. 9.1), and the most efficient DMU changes from DMU7 

to DMU2 with   (resp.  ) continuously increasing to approximately 0.49 (resp. 9.8). In

addition, we notice that changing the two parameters in Figure 4 also affects the evaluation 

results of DMUs. For example, Figure 4(a) shows that if 0 0.46   and 0.27  , the most 

efficient DMU is DMU5, whereas it becomes DMU2 if 0.67   and 0 0.19  .  
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The above changes in Figures 3 and 4 can be explained by the implication of the parameters ,

 , and  . The parameter   is the concave degree of the value function within the gain 

region. A large value of   implies a large steepness of the utility curve. Thus, the DM tends to 

be risk-seeking. In contrast, the parameter   presents the convex degree of the value function 

within the loss region, and the parameter   shows that the utility curve of the value function is 

steeper for the loss region than for the gain region. Large values of   and   imply the large 

steepness of the utility curve for the relative losses; hence, the DM becomes sensitive towards 

losses and is considerably inclined to be risk-averse. Indeed, the high risk-aversion of the DM 

means that he/she is considerably conservative (Guiso & Paiella, 2008). Therefore, with the 

value of   decreasing and   (or  ) increasing, the risk preference of the DM regarding the 

efficiency evaluation becomes considerably prudent.  

In fact, from Table 4, we can find that DMU2 is superior to DMU5 with respect to R&D Fun. and 

Tec. That is, R&D Fun. and Tec. of DMU2 are 4,351,036 and 741,905 thousand RMB,

respectively, whereas the corresponding items of DMU5 are 1,754,690 and 1,960 thousand RMB,

respectively. These imply that the inputs of DMU2 are approximately 2.5 times more than those 

of DMU5, and the outputs of DMU2 are approximately 378 times more than those of DMU5.

Therefore, DMU2 consumes the least inputs to yield the most outputs compared with DMU5.

Note that R&D Fun. and Tec. denote the research and development fund and the technology 

transfer revenue, respectively, which generally draw more attention from the DM than research 

and development staff (R&D Stu.) and publication papers (Pub.) when the DM becomes 

increasingly conservative. Therefore, the DM will prefer DMU2 over DMU5 with   decreasing 

and   (or  ) increasing. Particularly, from Figures 3(a) and 3(b), the most efficient 

university is DMU2 when 0   (i.e., the DM becomes prudent); whereas it becomes DMU5 

when 0   (i.e., the DM tends to be risk-seeking). On the basis of the aforementioned 

analysis about DMU2 and DMU5, this conclusion is consistent with the implication of the PCE 

model when 0   or 0   (see Section 4). 

5.2.2. Different psychological preferences of the DM 

We use the example in Section 5.1 to calculate the cross-efficiency scores among different 

values of the parameter  . The results are listed in Table 8, which shows that the evaluation 

results of the 10 universities change with the variations of the parameter  . For example, the 

most efficient DMU is DMU2 when the values of   are 0, 0.2, 0.4, and 0.6, whereas it becomes 

DMU5 when the values of   are 0.8 and 1. 
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Table 8. The evaluation results of the PCE model under different values of  . 

DMUs 
=0  =0.2 =0.4 =0.6 =0.8  =1  

Results Rankings Results Rankings Results Rankings Results Rankings Results Rankings Results Rankings 

DMU1 0.287 10 0.287 10 0.281 10 0.281 10 0.295 10 0.296 10 

DMU2 0.848 1 0.848 1 0.849 1 0.849 1 0.852 3 0.857 3 

DMU3 0.549 7 0.549 7 0.549 7 0.549 7 0.588 7 0.608 7 

DMU4 0.410 9 0.410 9 0.412 9 0.412 9 0.440 9 0.456 9 

DMU5 0.833 3 0.833 3 0.833 3 0.833 3 0.897 1 0.931 1 

DMU6 0.479 8 0.479 8 0.509 8 0.509 8 0.567 8 0.617 6 

DMU7 0.847 2 0.847 2 0.847 2 0.847 2 0.892 2 0.915 2 

DMU8 0.699 5 0.699 5 0.666 5 0.666 5 0.708 5 0.686 5 

DMU9 0.788 4 0.788 4 0.744 4 0.743 4 0.798 4 0.753 4 

DMU10 0.579 6 0.579 6 0.576 6 0.576 6 0.599 6 0.608 8 

The change tendency in Table 8 can be explained by the implication of the parameter  . As 

presented in Model (15), the PCE model is established based on the gain model (12) and the loss 

model (14). In the gain model, the DM perceives all outcomes as gains because the reference 

point of the DM is the worst DMU, and in such a case, the DM is completely optimistic towards 

the outcomes. In the loss model, the DM perceives all outcomes as losses because the reference 

point of the DM is the best DMU, and in such a case, the DM is totally pessimistic towards the

outcomes. Note that the relative importance degree of the gain model is characterised by the 

parameter   in the PCE model. Therefore, the DM becomes considerably pessimistic towards 

the outcomes with the decrease in value of  . In addition, Table 4 shows that DMU2 is superior 

to DMU5 with respect to R&D Fun. and Tec., which generally draw more attention from the DM 

than R&D Stu. and Pub. when the DM becomes increasingly prudent. As a result, the most 

efficient DMU changes from DMU5 to DMU2 with the decrease in value of  . 

Now we explain why we use the worst and best values together as the reference points in the 

PCE model as follows.  

(1) According to Table 8, the most efficient university is DMU5 in the case of using only the 

worst value (i.e., =1  in the PCE model), whereas it is DMU2 in the case of using only the best 

value (i.e., =0  in the PCE model). This finding indicates that the evaluation results of using 

only the worst value and using only the best value are significantly different. In such a case, the 

DM has to face a difficult choice between the results of using either the worst or best value. 

(2) As we mentioned above, the DM can be regarded as completely optimistic when he/she 

perceives all outcomes as gains (i.e., choosing the worst value as the reference point), whereas 

the DM can be perceived as totally pessimistic when he/she perceives all outcomes as losses (i.e., 

choosing the best value as the reference point). However, some psychological studies indicate 

that optimism and pessimism belong to two opposing extremes, and the DM might have 
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optimistic and pessimistic tendencies simultaneously (Houlding & Coolen, 2012; Verbunt & 

Rogge, 2018). Therefore, in comparison with using only the worst or best value, the use of the 

worst and best values together is more consistent with reality. 

On the basis of the above analysis, the use of the worst and best values together in the PCE

model can steer clear of making a difficult choice between the results of using only the worst or 

best value. In addition, this manner considers the preference of the DM towards the outcomes in 

optimistic and pessimistic views. Particularly, the optimism degree of the DM is characterised 

by the parameter   in the PCE model. This way, the DM can select different values of the 

parameter   according to his/her psychological preference and obtain the result that is closest 

to his/her actual preference.  

5.3. Comparison of different models 

To analyse the validity of the PCE model, this subsection further compares the PCE model with

several models, including the aggressive and benevolent models in Doyle and Green (1994), and 

Models I and II in Wang et al. (2011).  

Considering the efficiency evaluation case in Section 5.1, we use the aggressive and the 

benevolent models of Doyle and Green (1994) to evaluate the performance of the 10 universities 

(see Tables 9-12); furthermore, we present the results of Models I and II of Wang et al. (2011) 

that are exactly the cases I and II of the PCE model. Moreover, we present the results of the PCE 

model with different values of parameter for comparison. Here, we consider the parameter   

to illustrate the characteristics of the PCE model because similar conclusions can be derived

when considering other parameters. The evaluation results are shown in Table 13.  

Table 9. The weights obtained by the benevolent model. 

Universities 
Outputs Inputs 

Tec. Pub. R&D Fun. R&D Sta. 

DMU1 1.496E-07 1.955E-05 4.015E-08 2.603E-05 

DMU2 1.822E-07 2.173E-05 4.600E-08 2.816E-05 

DMU3 1.335E-07 1.821E-05 3.692E-08 2.451E-05 

DMU4 1.358E-07 1.790E-05 5.846E-10 7.901E-05 

DMU5 1.396E-07 1.899E-05 3.850E-08 2.554E-05 

DMU6 1.315E-07 1.733E-05 2.233E-21 7.736E-05 

DMU7 1.667E-07 1.989E-05 4.210E-08 2.577E-05 

DMU8 1.324E-07 1.780E-05 3.622E-08 2.388E-05 

DMU9 1.544E-07 1.842E-05 3.899E-08 2.387E-05 

DMU10 1.522E-07 1.834E-05 3.869E-08 2.384E-05 
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Table 10. The benevolent cross-efficiency of 10 universities in 2013. 

DMU 
Target DMU Average 

cross-efficiency DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 

DMU1 0.350 0.350 0.350 0.291 0.350 0.290 0.350 0.350 0.350 0.350 0.338 

DMU2 0.971 1.000 0.958 0.989 0.959 0.989 1.000 0.963 1.000 0.997 0.983 

DMU3 0.632 0.624 0.635 0.633 0.635 0.633 0.624 0.634 0.624 0.625 0.630 

DMU4 0.480 0.478 0.481 0.510 0.481 0.510 0.478 0.481 0.478 0.478 0.485 

DMU5 0.994 0.981 1.000 1.000 1.000 1.000 0.981 0.998 0.981 0.983 0.992 

DMU6 0.508 0.499 0.512 0.799 0.512 0.807 0.499 0.511 0.499 0.500 0.565 

DMU7 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DMU8 0.884 0.882 0.885 0.561 0.885 0.558 0.882 0.885 0.882 0.882 0.819 

DMU9 1.000 1.000 1.000 0.558 1.000 0.554 1.000 1.000 1.000 1.000 0.911 

DMU10 0.686 0.690 0.684 0.653 0.684 0.653 0.690 0.685 0.690 0.690 0.681 

Table 11. The weights obtained by the aggressive model. 

Universities 
Outputs Inputs 

Tec. Pub. R&D Fun. R&D Sta. 

DMU1 1.442E-07 1.966E-05 3.986E-08 2.644E-05 

DMU2 3.384E-07 3.991E-19 9.180E-20 9.090E-05 

DMU3 1.971E-07 1.887E-05 4.965E-08 2.497E-05 

DMU4 1.343E-07 1.788E-05 1.693E-16 7.981E-05 

DMU5 3.309E-17 1.780E-05 2.544E-16 7.923E-05 

DMU6 6.575E-11 8.672E-09 1.095E-24 3.869E-08 

DMU7 1.431E-07 1.886E-05 8.915E-23 8.417E-05 

DMU8 1.253E-07 1.783E-05 3.615E-08 2.399E-05 

DMU9 6.249E-19 1.227E-05 5.453E-08 6.864E-16 

DMU10 1.533E-07 1.830E-05 3.824E-08 2.447E-05 

Table 12. The aggressive cross-efficiency matrix of 10 universities in 2013. 

DMU 
Target DMU Average 

cross-efficiency DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 

DMU1 0.350 0.065 0.308 0.290 0.262 0.290 0.290 0.349 0.227 0.349 0.278 

DMU2 0.958 1.000 0.948 0.985 0.534 0.990 0.990 0.940 0.340 1.000 0.868 

DMU3 0.635 0.025 0.635 0.633 0.624 0.634 0.633 0.634 0.408 0.624 0.548 

DMU4 0.481 0.108 0.414 0.510 0.462 0.511 0.510 0.479 0.278 0.478 0.423 

DMU5 1.000 0.006 0.832 1.000 1.000 1.000 1.000 1.000 0.651 0.981 0.847 

DMU6 0.512 0.011 0.415 0.807 0.804 0.807 0.807 0.512 0.288 0.501 0.546 

DMU7 1.000 0.316 0.880 0.999 0.858 1.000 1.000 0.994 0.563 1.000 0.861 

DMU8 0.885 0.012 0.774 0.558 0.554 0.558 0.558 0.885 0.767 0.875 0.643 

DMU9 1.000 0.002 0.888 0.554 0.555 0.554 0.554 1.000 1.000 0.990 0.710 

DMU10 0.684 0.289 0.619 0.652 0.522 0.653 0.653 0.678 0.368 0.690 0.581 
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Table 13. The evaluation results of different models. 

Models DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8 DMU9 DMU10 

Benevolent model (Doyle 

& Green, 1994) 
0.338 0.983 0.630 0.485 0.992 0.565 1.000 0.819 0.911 0.681 

Aggressive model (Doyle 

& Green, 1994) 
0.278 0.868 0.548 0.423 0.847 0.546 0.861 0.643 0.710 0.581 

Model I (Wang et al. 

2011) 
0.273 0.852 0.548 0.416 0.833 0.538 0.846 0.632 0.699 0.570 

Model II (Wang et al. 

2011) 
0.285 0.857 0.547 0.410 0.830 0.477 0.847 0.697 0.788 0.578 

PCE model ( =0.7) 0.310 0.874 0.630 0.469 0.965 0.610 0.945 0.729 0.797 0.629 

PCE model ( =0.2) 0.287 0.854 0.547 0.409 0.830 0.477 0.847 0.699 0.789 0.580 

Figure 5 presents the ranking orders of the five models, and some of them are markedly different. 

For example, DMU7 and DMU5 rank first when the benevolent model (Doyle & Green, 1994) 

and the PCE model (when =0.7 ) are used, respectively. However, DMU2 is assessed as the 

most efficient university according to the aggressive model (Doyle & Green, 1994), Models I 

and II (Wang et al., 2011), and the PCE model (when =0.2 ). 

Figure 5. The ranking orders of the models. 

Based on the ranking results in Figure 5, the main characteristics of the PCE model can be 

concluded as follows. 

(1) The PCE model can successfully produce a full ranking of the DMUs, in which the DM does 

not have to face a difficult choice between the aggressive and benevolent models in Doyle and 

Green (1994). For example, the most efficient university is DMU2 using the aggressive model 

and DMU7 using the benevolent model. Determining which result is correct is difficult because 

the aggressive and benevolent models evaluate the DMUs from different perspectives and may
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thus inevitably produce different results for the same group of DMUs. In such a case, the DM 

has to judge which between DMU2 and DMU7 is better. This situation may reduce the 

effectiveness of cross-efficiency evaluation to some degree. However, the PCE model can 

provide a unique result, which considers all possible cases for the DM, instead of only under an 

extreme case (i.e., aggressive or benevolent). Therefore, the PCE model is more reasonable and 

closer to the actual preference of the DM. 

(2) The PCE model can degenerate to Models I and II in Wang et al. (2011) by considering the 

possible values of parameters , ,   , and  ; thus, the models of Wang et al. (2011) can be

viewed as the particular case of the PCE model (see Models (15), (16) and (17)). For example, 

according to Figure 5, the most efficient university is DMU2 when Models I or II in Wang et al. 

(2011) is used, and this result is similar to one case of the PCE model (i.e., when =0.2 ). 

However, DMU5 is assessed as the most efficient university in another case of the PCE model 

(i.e., when =0.7 ), and this result is different with the cases of Models I and II in Wang et al. 

(2011). This result is caused by the fact that the PCE model allows the DM to select different 

values of parameter according to his/her behaviour (see Model (15)). In such manner, the PCE 

model can consider a wide range of scenarios in the evaluation process. 

(3) The PCE model can capture the risk attitudes of the DM in the cross-efficiency evaluation 

process, whereas the aggressive and benevolent models (Doyle & Green, 1994) and Models I 

and II (Wang et al., 2011) neglect this point. For example, according to Figure 5, the most 

efficient university is DMU2 by using the PCE model when =0.2  (i.e., the DM tends to be 

risk-averse), whereas it becomes DMU5 by using the PCE model when =0.7  (i.e., the DM is 

inclined to risk-seeking; see Section 5.2.1 for further detail). Therefore, the evaluation results 

change with the variations of the parameter  ; this finding confirms the significance of 

capturing the risk factors of the DM in the evaluation process. However, the models of Doyle 

and Green (1994) and Wang et al. (2011) do not consider the risk attitudes of the DM, that is, 

they deem that the DM has the same risk attitude with respect to different DMUs. As a result, 

the evaluation results of these models overlook the risk factors of the DM, which may be

inconsistent with reality. 

6. Conclusions and discussions

Cross-efficiency in DEA has been widely accepted as a useful tool for evaluating the 

performance of DMUs and has been used in a variety of theoretical studies and practical 

applications. However, common cross-efficiency evaluation models assume that DMs are

completely rational and generally fail to consider the risk attitude of a DM that plays an 

important role in the evaluation process. Noting that prospect theory can capture the non-rational 
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psychological aspects of DMs under risk, this paper investigates the cross-efficiency evaluation

based on prospect theory and proposes a novel cross-efficiency model termed the PCE model in 

which the prospect values of each DMU are introduced. The PCE model can capture the risk 

attitude of the DMs and maintains a certain degree of fairness. That is, the secondary goal for 

cross-efficiency evaluation is set without the use of information from other DMUs. Furthermore, 

this paper provides a numerical example to illustrate the potential applications of the PCE model 

and its effectiveness in ranking DMUs compared with several classical cross-efficiency models. 

The case study shows that the risk preference of DMs characterized by the parameters ,  ,

and   in the PCE model influences the results of performance evaluation. 

To the best of our knowledge, this is the first time that prospect theory is used to evaluate 

efficiency in DEA. The proposed approach can be effectively applied to different evaluation 

problems, such as investment selection and financial management. Nevertheless, we do not 

consider the regret of DMs when using the PCE model for evaluation problems. Despite our 

interest on introducing the regret theory in the cross-efficiency model, we leave that point for 

future research since it may result in sophisticated calculations and our model cannot be applied 

to an extended framework.  
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