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Long short-term memory (LSTM) networks are a state-of-the-art technique for sequence learning. They

are less commonly applied to financial time series predictions, yet inherently suitable for this domain.

We deploy LSTM networks for predicting out-of-sample directional movements for the constituent stocks

of the S&P 500 from 1992 until 2015. With daily returns of 0.46 percent and a Sharpe ratio of 5.8 prior to

transaction costs, we find LSTM networks to outperform memory-free classification methods, i.e., a ran- 

dom forest (RAF), a deep neural net (DNN), and a logistic regression classifier (LOG). The outperformance

relative to the general market is very clear from 1992 to 2009, but as of 2010, excess returns seem to

have been arbitraged away with LSTM profitability fluctuating around zero after transaction costs. We

further unveil sources of profitability, thereby shedding light into the black box of artificial neural net- 

works. Specifically, we find one common pattern among the stocks selected for trading – they exhibit

high volatility and a short-term reversal return profile. Leveraging these findings, we are able to formal- 

ize a rules-based short-term reversal strategy that yields 0.23 percent prior to transaction costs. Further

regression analysis unveils low exposure of the LSTM returns to common sources of systematic risk –

also compared to the three benchmark models.

© 2017 Elsevier B.V. All rights reserved.
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. Introduction

Prediction tasks on financial time series are notoriously diffi-

ult, primarily driven by the high degree of noise and the gener-

lly accepted, semi-strong form of market efficiency ( Fama, 1970 ).

et, there is a plethora of well-known capital market anomalies

hat are in stark contrast with the notion of market efficiency. For

xample, Jacobs (2015) or Green, Hand, and Zhang (2013) provide

urveys comprising more than 100 of such capital market anoma-

ies, which effectively rely on return predictive signals to outper-

orm the market. However, the financial models used to establish a

elationship between these return predictive signals, (the features)

nd future returns (the targets), are usually transparent in nature

nd not able to capture complex non-linear dependencies. 

In the last years, initial evidence has been established that

achine learning techniques are capable of identifying (non-

inear) structures in financial market data, see Huck (2009, 2010) ,
∗ Corresponding author.
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C. Krauss).
1 The authors have benefited from many helpful discussions with Ingo Klein and

hree anonymous referees.

o  

t  

s

 

t  

p  

a

ttps://doi.org/10.1016/j.ejor.2017.11.054

377-2217/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: T. Fischer, C. Krauss, Deep learning with lon

European Journal of Operational Research (2018), https://doi.org/10.101
akeuchi and Lee (2013) , Moritz and Zimmermann (2014) , Dixon,

labjan, and Bang (2015) , and further references in Atsalakis and

alavanis (2009) as well as Sermpinis, Theofilatos, Karathana-

opoulos, Georgopoulos, and Dunis (2013) . Specifically, we expand

n the recent work of Krauss, Do, and Huck (2017) on the same

ata sample for the sake of comparability. The authors use deep

earning, random forests, gradient-boosted trees, and different en-

embles as forecasting methods on all S&P 500 constituents from

992 to 2015. One key finding is that deep neural networks with

eturns of 0.33 percent per day prior to transaction costs underper-

orm gradient-boosted trees with 0.37 percent and random forests

ith 0.43 percent. The latter fact is surprising, given that deep

earning has “dramatically improved the state-of-the-art in speech

ecognition, visual object recognition, object detection and many

ther domains” ( LeCun, Bengio, and Hinton, 2015 , p. 436). At first

ight, we would expect similar improvements in the domain of

ime series predictions. However, Krauss et al. (2017 , p. 695) point

ut that “neural networks are notoriously difficult to train” and

hat it “may well be that there are configurations in parameter

pace to further improve the performance” of deep learning. 

In this paper, we primarily focus on deep learning, and on fur-

her exploring its potential in a large-scale time series prediction

roblem. In this respect, we make three contributions to the liter-

ture. 
g short-term memory networks for financial market predictions, 
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• First, we focus on long short-term memory (LSTM) networks,

one of the most advanced deep learning architectures for se-

quence learning tasks, such as handwriting recognition, speech

recognition, or time series prediction ( Graves et al., 2009;

Graves, Mohamed, & Hinton, 2013; Hochreiter & Schmidhuber,

1997; Schmidhuber, 2015 ). Surprisingly, to our knowledge, there

has been no previous attempt to deploy LSTM networks on

a large, liquid, and survivor bias free stock universe to assess

its performance in large-scale financial market prediction tasks.

Selected applications, as in Xiong, Nichols, and Shen (2015) , fo-

cus on predicting the volatility of the S&P 500, on forecasting

a small sample of foreign exchange rates ( Giles, Lawrence, &

Tsoi, 2001 ), or on assessing the impact of incorporating news

for specific companies ( Siah and Myers (2016) ). We fill this

void and apply LSTM networks to all S&P 500 constituents

from 1992 until 2015. Hereby, we provide an in-depth guide on

data preprocessing, as well as development, training, and de-

ployment of LSTM networks for financial time series prediction

tasks. Last but not least, we contrast our findings to selected

benchmarks from the literature – a random forest (the best

performing benchmark), a standard deep neural net (to show

the value-add of the LSTM architecture), and a standard logis-

tic regression (to establish a baseline). The LSTM network out-

performs the memory-free methods with statistically and eco-

nomically significant returns of 0.46 percent per day – com-

pared to 0.43 percent for the RAF, 0.32 percent for the stan-

dard DNN, and 0.26 percent for the logistic regression. This rel-

ative advantage also holds true with regard to predictional ac-

curacy where a Diebold–Mariano test confirms superior fore-

casts of the LSTM networks compared to the applied bench-

marks. Our findings are largely robust to microstructural effects.

Specifically, when we implement the LSTM strategy on volume-

weighted-average-prices (VWAPs) instead of closing prices, we

see a decline in profitability, but the results are still statistically

and economically significant. The same holds true for a weekly

implementation with lower turnover – even after introducing

a one-day-waiting rule after the signal. Only as of 2010, the

edge of the LSTM seems to have been arbitraged away, with

LSTM profitability fluctuating around zero after transaction

costs, and RAF profitability dipping strictly into the negative

domain.
• Second, we aim at shedding light into the black box of artifi-

cial neural networks – thereby unveiling sources of profitability.

Generally, we find that stocks selected for trading exhibit high

volatility, below-mean momentum, extremal directional move-

ments in the last days prior to trading, and a tendency for re-

versing these extremal movements in the near-term future.
• Third, we synthesize the findings of the latter part into a sim-

plified, rules-based trading strategy that aims at capturing the
Table 1

Average monthly summary statistics for S&P 500 constit

by industry. They are based on equal-weighted portfolio

Classification Standards Code, formed on a monthly basi

500. Monthly returns and standard deviations are denot

Industry No. of stocks Mean return

Industrials 80.6 0.99

Consumer services 72.6 1.07

Basic materials 35.2 0.90

Telecommunications 10.7 0.92

Health care 41.3 1.33

Technology 50.3 1.41

Financials 78.0 1.13

Consumer goods 65.2 1.04

Oil and gas 31.2 1.00

Utilities 34.6 0.85

All 499.7 1.04
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quintessence of the patterns the LSTM acts upon for selecting

winning and losing stocks. A strategy that buys short-term ex-

tremal losers and sells short-term extremal winners leads to

daily returns of 0.23 percent prior to transaction costs – so only

about 50 percent of the LSTM returns. Regression analyses on

systematic risk factors unveil a remaining alpha of 0.42 percent

of the LSTM prior to transaction costs and generally lower ex-

posure to common sources of systematic risk, compared to the

benchmark models. 

The remainder of this paper is organized as follows.

ection 2 briefly covers the data sample, software packages,

nd hardware. Section 3 provides an in-depth discussion of our

ethodology, i.e., the generation of training and trading sets, the

onstruction of input sequences, the model architecture and train-

ng as well as the forecasting and trading steps. Section 4 presents

he results and discusses our most relevant findings in light of the

xisting literature. Finally, Section 5 concludes. 

. Data, software, hardware

.1. Data 

For the empirical application, we use the S&P 500 index con-

tituents from Thomson Reuters. For eliminating survivor bias, we

rst obtain all month end constituent lists for the S&P 500 from

homson Reuters from December 1989 to September 2015. We

onsolidate these lists into one binary matrix, indicating whether

he stock is an index constituent in the subsequent month. As such,

e are able to approximately reproduce the S&P 500 at any given

oint in time between December 1989 and September 2015. In a

econd step, for all stocks having ever been a constituent of the

ndex during that time frame, we download daily total return in-

ices from January 1990 until October 2015. Return indices are

um-dividend prices and account for all relevant corporate actions

nd stock splits, making them the most adequate metric for return

omputations. Following Clegg and Krauss (2018) , we report aver-

ge summary statistics in Table 1 , split by industry sector. They are

ased on equal-weighted portfolios per sector, generated monthly,

nd constrained to index constituency of the S&P 500. 

.2. Software and hardware 

Data preparation and handling is entirely conducted in Python

.5 ( Python Software Foundation, 2016 ), relying on the packages

umpy ( Van Der Walt, Colbert, & Varoquaux, 2011 ) and pandas

 McKinney, 2010 ). Our deep learning LSTM networks are devel-

ped with keras ( Chollet, 2016 ) on top of Google TensorFlow, a
uents from January 1990 until October 2015, split

s per industry as defined by the Global Industry

s, and restricted to index constituency of the S&P

ed in percent.

Standard deviation Skewness Kurtosis

5.36 −0.19 1.71

5.27 −0.20 2.59

6.31 −0.02 2.24

6.50 0.34 4.76

4.40 −0.40 1.18

8.50 −0.06 1.11

6.17 −0.39 2.44

4.53 −0.44 3.02

6.89 −0.03 1.06

4.54 −0.43 1.72

4.78 −0.49 2.01

g short-term memory networks for financial market predictions, 
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owerful library for large-scale machine learning on heterogenous

ystems ( Abadi et al., 2015 ). Moreover, we make use of sci-kit learn

 Pedregosa et al., 2011 ) for the random forest and logistic regres-

ion models and of H2O ( H2O, 2016 ) for the standard deep net. For

erformance evaluation, we revert to R, a programming language

or statistical computing ( R Core Team, 2016 ) and the package Per-

ormanceAnalytics by Peterson and Carl (2014) . The LSTM network

s trained on NVIDIA GPUs, all other models are trained on a CPU

luster. 

. Methodology

Our methodology consists of five steps. First, we split our raw

ata in study periods, composed of training sets (for in-sample

raining) and trading sets (for out-of-sample predictions). Second,

e discuss the feature space and targets necessary for training

nd making predictions. Third, we provide an in-depth discussion

f LSTM networks. Fourth, we briefly describe random forests, the

eep net, and the logistic regression model we apply. Fifth, we de-

elop the trading approach. The rest of this section follows the five

tep logic outlined above. 

.1. Generation of training and trading sets 

Following Krauss et al. (2017) , we define a “study period” as a

raining-trading set, consisting of a training period of 750 days (ap-

roximately three years) and a trading period of 250 days (approxi-

ately one year). We split our entire data set from 1990 until 2015

n 23 of these study periods with non-overlapping trading periods.

n other words, the study periods are rolling blocks of 10 0 0 days.

raining is done with rolling windows on the first 750 days, i.e., by

olling a look back input of 240 days (corresponding to the max-

mum feature length, see Section 3.2 ) across the block, and then

redicting one day ahead. Trading is performed with the trained

arameters on the last 250 days fully out-of-sample. Then, the en-

ire system is rolled forward by 250 days – resulting in a total of

3 non-overlapping trading periods. 

Let n i denote the number of stocks that are a S&P 500 con-

tituent at the very last day of the training period in study period

 , so n i is very close to 500. 2 

For the training set, we consider all n i stocks with the history

hey have available. Some stocks exhibit a full 750 day training his-

ory, some only a subset of this time frame, for example, when

hey are listed at a later stage. The trading set is also composed of

ll n i stocks. If a constituent exhibits no price data after a certain

ay within the trading period, it is considered for trading up until

hat day. 3 

.2. Feature and target generation 

.2.1. Features – return sequences for LSTM networks 

Let P s = 

(
P s t 

)
t∈ T be defined as the price process of stock s at

ime t , with s ∈ { 1 , . . . , n i } and R m,s 
t the simple return for a stock s

ver m periods, i.e., 

 

m,s 
t = 

P s t 

P s t−m 

− 1 . (1) 

or the LSTM networks, we first calculate one-day ( m = 1 ) returns

 

1 ,s 
t for each day t and each stock s , and stack them in one large
2 The S&P 500 constituency count slightly fluctuates around 500 over time.
3 The reason for exhibiting no more price data is generally due to delisting.

elisting may be caused by various reasons, such as bankruptcy, mergers and ac- 

uisitions, etc. Note that we do not eliminate stocks during the trading period in

ase they drop out of the S&P 500. The only criterion for being traded is that they

ave price information available for feature generation.

c  

o

s

5
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eature vector V of dimension n i × T study , where T study denotes the

umber of days in the study period. Then, we standardize the re-

urns by subtracting the mean ( μm 

train 
) and dividing them by the

tandard deviation ( σ m 

train 
) obtained from the training set: 4 

˜ 
 

m,s 
t = 

R 

m,s 
t − μm 

train 

σ m 

train

. (2) 

LSTM networks require sequences of input features for training,

.e., the values of the features at consecutive points in time. Our

ingle feature is the standardized one-day return 

˜ R 1 ,s t . We opt for

 sequence length of 240, thus comprising the information of ap-

roximately one trading year. Hence, we generate overlapping se-

uences of 240 consecutive, standardized one-day returns ˜ R 1 ,s t in

he following way: first, we sort the feature vector V by stock s

nd date t in ascending order. Then, we construct sequences of the

orm { ̃  R 1 ,s 
t−239 

, ˜ R 1 ,s 
t−238 

, . . . , ˜ R 1 ,s t } for each stock s and each t ≥ 240 of

he study period. For the first stock s 1 the sequence hence consists

f the standardized one-day returns { ̃  R 
1 ,s 1 
1 

, ˜ R 
1 ,s 1 
2 

, . . . , ˜ R 
1 ,s 1 
240 

} . The sec-

nd sequence consists of { ̃  R 
1 ,s 1 
2 

, ˜ R 
1 ,s 1 
3 

, . . . , ˜ R 
1 ,s 1 
241 

} and so forth. An il-

ustration is provided in Fig. 1 . In total, each study period consists

f approximately 380,0 0 0 of those sequences of which approxi-

ately 255,0 0 0 are used for in-sample training and approximately

25,0 0 0 are used for out-of-sample predictions. 5 

.2.2. Targets 

For the sake of comparability, we follow Takeuchi and Lee

2013) and define a binary classification problem, i.e., the response

ariable Y s 
t+1 

for each stock s and date t can take on two different

alues. To define the two classes, we order all one-period returns

 

1 ,s 
t+1 

of all stocks s in period t + 1 in ascending order and cut them

nto two equally sized classes. Class 0 is realized if the one-period

eturn R 1 ,s 
t+1 

of stock s is smaller than the cross-sectional median re-

urn of all stocks in period t + 1 . Similarly, class 1 is realized if the

ne-period return of s is larger than or equal to the cross-sectional

edian. 

.3. LSTM networks 

The description of LSTM networks follows Graves (2013) , Olah

2015) , and Chollet (2016) . Valuable additional introductions can be

ound in Karpathy (2015) and Britz (2015) , providing step-by-step

raphical walkthroughs and code snippets. 

LSTM networks belong to the class of recurrent neural networks

RNNs), i.e., neural networks whose “underlying topology of inter-

euronal connections contains at least one cycle” ( Medsker, 20 0 0 ,

. 82). They have been introduced by Hochreiter and Schmidhu-

er (1997) and were further refined in the following years, e.g., by

ers, Schmidhuber, and Cummins (20 0 0) and Graves and Schmid-

uber (2005) , to name a few. LSTM networks are specifically de-

igned to learn long-term dependencies and are capable of over-

oming the previously inherent problems of RNNs, i.e., vanishing

nd exploding gradients ( Sak, Senior, & Beaufays, 2014 ). 

LSTM networks are composed of an input layer, one or more

idden layers, and an output layer. The number of neurons in the

nput layer is equal to the number of explanatory variables (feature

pace). The number of neurons in the output layer reflects the out-

ut space, i.e., two neurons in our case indicating whether or not

 stock outperforms the cross-sectional median in t + 1 . The main

haracteristic of LSTM networks is contained in the hidden layer(s)
4 It is key to obtain mean and standard deviation from the training set only, in

rder to avoid look-ahead biases.
5 We have 10 0 0 days in the study period and a sequence length of 240 days. As

uch, 760 sequences can be created per stock. Given that there are approximately

00 stocks in the S&P 500, we have a total of approximately 380,0 0 0 sequences.

g short-term memory networks for financial market predictions, 
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Fig. 1. Construction of input sequences for LSTM networks (both, feature vector and sequences, are shown transposed).

Fig. 2. Structure of LSTM memory cell following Graves (2013) and Olah (2015) .
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consisting of so called memory cells. Each of the memory cells has

three gates maintaining and adjusting its cell state s t : a forget gate

( f t ), an input gate ( i t ), and an output gate ( o t ). The structure of a

memory cell is illustrated in Fig. 2 . 

At every timestep t , each of the three gates is presented with

the input x t (one element of the input sequence) as well as the

output h t−1 of the memory cells at the previous timestep t − 1 .

Hereby, the gates act as filters, each fulfilling a different purpose: 

• The forget gate defines which information is removed from the

cell state.
• The input gate specifies which information is added to the cell

state.
• The output gate specifies which information from the cell state

is used as output.

The equations below are vectorized and describe the update of the

memory cells in the LSTM layer at every timestep t . Hereby, the

following notation is used: 

• x t is the input vector at timestep t .
• W f , x , W f , h , W ˜ s ,x , W ˜ s ,h , W i , x , W i , h , W o , x , and W o , h are weight ma-

trices.
• b f , b ˜ s , b i , and b o are bias vectors.
• f t , i t , and o t are vectors for the activation values of the respec-

tive gates.
• s t and ˜ s t are vectors for the cell states and candidate values.
• h t is a vector for the output of the LSTM layer.

During a forward pass, the cell states s t and outputs h t of the LSTM

layer at timestep t are calculated as follows: 

In the first step, the LSTM layer determines which information

should be removed from its previous cell states s t−1 . Therefore, the

activation values f t of the forget gates at timestep t are computed

based on the current input x t , the outputs h t−1 of the memory cells

at the previous timestep ( t − 1 ), and the bias terms b f of the for-

get gates. The sigmoid function finally scales all activation values
Please cite this article as: T. Fischer, C. Krauss, Deep learning with lon
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nto the range between 0 (completely forget) and 1 (completely

emember): 

f t = sigmoid(W f,x x t + W f,h h t−1 + b f ) . (3)

n the second step, the LSTM layer determines which information

hould be added to the network’s cell states ( s t ). This procedure

omprises two operations: first, candidate values ˜ s t , that could po-

entially be added to the cell states, are computed. Second, the ac-

ivation values i t of the input gates are calculated: 

˜ 
 t = tanh (W ˜ s ,x x t + W ˜ s ,h h t−1 + b ˜ s ) , (4)

 t = sigmoid(W i,x x t + W i,h h t−1 + b i ) . (5)

n the third step, the new cell states s t are calculated based on the

esults of the previous two steps with ◦ denoting the Hadamard

elementwise) product: 

 t = f t ◦ s t−1 + i t ◦ ˜ s t . (6)

n the last step, the output h t of the memory cells is derived as

enoted in the following two equations: 

 t = sigmoid(W o,x x t + W o,h h t−1 + b o ) , (7)

 t = o t ◦ tanh (s t ) . (8)

hen processing an input sequence, its features are presented

imestep by timestep to the LSTM network. Hereby, the input at

ach timestep t (in our case, one single standardized return) is pro-

essed by the network as denoted in the equations above. Once the

ast element of the sequence has been processed, the final output

or the whole sequence is returned. 

During training, and similar to traditional feed-forward net-

orks, the weights and bias terms are adjusted in such a way that

hey minimize the loss of the specified objective function across
g short-term memory networks for financial market predictions, 
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s  

m  

s  
he training samples. Since we are dealing with a classification

roblem, we use cross-entropy as objective function. 

The number of weights and bias terms being trained is calcu-

ated as follows: let h denote the number of hidden units of the

STM layer, and i the number of input features, then the number

f parameters of the LSTM layer that needs to be trained is: 

 hi + 4 h + 4 h 

2 = 4(hi + h + h 

2 ) = 4(h (i + 1) + h 

2 ) . (9) 

ereby 4 hi refers to the dimensions of the four weight matrices

pplied to the inputs at each gate, i.e., W f,x , W ˜ s ,x , W i,x , and W o , x .

he 4 h refers to the dimensions of the four bias vectors ( b f , b ˜ s , b i ,

nd b o ). Finally, the 4 h 2 corresponds to the dimensions of the

eight matrices applied to the outputs at the previous timestep,

.e., W f,h , W ˜ s ,h , W i,h , and W o , h .

For the training of the LSTM network, we apply three advanced

ethods via keras. First, we make use of RMSprop, a mini-batch

ersion of rprop ( Tieleman & Hinton, 2012 ), as optimizer. The se-

ection of RMSprop is motivated from the literature as it is “usually

 good choice for recurrent neural networks” ( Chollet, 2016 ). Sec-

nd, following Gal and Ghahramani (2016) , we apply dropout reg-

larization within the recurrent layer. Hereby, a fraction of the in-

ut units is randomly dropped at each update during training time,

oth at the input gates and the recurrent connections, resulting in

educed risk of overfitting and better generalization. Based on ini-

ial experiments on the year 1991 (which is not used as part of

he out-of-sample trading periods), we have observed that higher

ropout values go along with a decline in performance and there-

ore settled on a relatively low dropout value of 0.1. Third, we

ake use of early stopping to dynamically derive the number of

pochs for training for each study period individually and to fur-

her reduce the risk of overfitting. Hereby, the training samples are

plit into two sets: one training and one validation set. The first

et is used to train the network and to iteratively adjust its pa-

ameters so that the loss function is minimized. After each epoch

one pass across the samples of the first set), the network predicts

he unseen samples from the validation set and a validation loss is

omputed. Once the validation loss does not decrease for patience

eriods, the training is stopped and the weights of the model with

he lowest validation loss is restored (see ModelCheckpoint call-

ack in Chollet, 2016 ). Following Granger (1993) , who suggests to

old back about 20 percent of the sample as “post-sample” data,

e use 80 percent of the training samples as training set and 20

ercent as validation set (samples are assigned randomly to either

raining or validation set), a maximum training duration of 10 0 0

pochs, and an early stopping patience of 10. The specified topol-

gy of our trained LSTM network is hence as follows: 

• Input layer with 1 feature and 240 timesteps.
• LSTM layer with h = 25 hidden neurons and a dropout value

of 0.1. This configuration yields 2752 parameters for the LSTM,

leading to a sensible number of approximately 93 training ex-

amples per parameter. This value has been chosen in analogy to

the configuration of the deep net in Krauss et al. (2017) . A high

number of observations per parameter allows for more robust

estimates in case of such noisy training data, and reduces the

risk of overfitting.
• Output layer (dense layer) with two neurons and softmax acti-

vation function 

6 – a standard configuration.

.4. Benchmark models – random forest, deep net, and logistic 

egression 

For benchmarking the LSTM, we choose random forests, i.e.,

 robust yet high-performing machine learning method, a stan-
6 Alternatively, one output neuron with a sigmoid activation function would also

e a valid setup.

i

o
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ard deep net, i.e., for showing the advantage of the LSTM, and

 logistic regression, i.e., a standard classifier as baseline. Note

hat random forests, standard deep nets, and the feature genera-

ion for memory-free methods follow the specifications outlined

n Krauss et al. (2017) for benchmarking reasons. Specifically, we

se cumulative returns R m,s 
t as features with m ∈ {{ 1 , . . . , 20 } ∪

 40 , 60 , . . . , 240 }} , see Eq. (1) and the same targets as defined in

ection 3.2.2 . For the logistic regression model, we standardize the

eturns as denoted in Eq. (2) . 7 In the subsequent paragraphs, we

riefly outline how we calibrate the benchmarking methods. 

Random forest: The first algorithm for random decision forests

as been suggested by Ho (1995) , and was later expanded by

reiman (2001) . Simply speaking, random forests are composed of

any deep yet decorrelated decision trees built on different boot-

trap samples of the training data. Two key techniques are used in

he random forest algorithm – random feature selection to decor-

elate the trees and bagging, to build them on different bootstrap

amples. The algorithm is fairly simple: for each of the B trees in

he committee, a bootstrap sample is drawn from the training data.

 decision tree is developed on the bootstrap sample. At each split,

nly a subset m of the p features is available as potential split cri-

erion. The growing stops once the maximum depth J is reached.

he final output is a committee of B trees and classification is per-

ormed as majority vote. We set the number of trees B to 10 0 0 ,

nd maximum depth to J = 20 , allowing for substantial higher or-

er interactions. Random feature selection is left at a default value

f m = 

√ 

p for classification, see Pedregosa et al. (2011) . 

We use a random forest as benchmark for two compelling rea-

ons. First, it is a state-of-the-art machine learning model that re-

uires virtually no tuning and usually delivers good results. Second,

andom forests in this configuration are the best single technique

n Krauss et al. (2017) and the method of choice in Moritz and

immermann (2014) – a large-scale machine learning application

n monthly stock market data. As such, random forests serve as a

owerful benchmark for any innovative machine learning model. 

Deep neural network: We deploy a standard DNN to show the

elative advantage of LSTM networks. Specifically, we use a feed

orward neural network with 31 input neurons, 31 neurons in the

rst, 10 in the second, 5 in the third hidden layer, and 2 neurons

n the output layer. The activation function is maxout with two

hannels, following Goodfellow, Warde-Farley, Mirza, Courville, and

engio (2013) , and softmax in the output layer. Dropout is set to

.5, and L 1 regularization with shrinkage 0.0 0 0 01 is used – see

rauss et al. (2017) for further details. 

Logistic regression: As baseline model, we also deploy logistic

egression. Details about our implementation are available in the

ocumentation of sci-kit learn ( Pedregosa et al., 2011 ) and the

eferences therein. The optimal L 2 regularization is determined

mong 100 choices on a logarithmic scale between 0.0 0 01 and

0,0 0 0 via 5-fold cross-validation on the respective training set and

-BFGS is deployed to find an optimum, while restricting the max-

mum number of iterations to 100. Logistic regression serves as a

aseline, so that we can derive the incremental value-add of the

uch more complex and computationally intensive LSTM network

n comparison to a standard classifier. 

.5. Forecasting, ranking, and trading 

For all models, we forecast the probability ˆ P 

s 
t+1 | t for each stock

 to out-/underperform the cross-sectional median in period t + 1 ,

aking only use of information up until time t . Then, we rank all

tocks for each period t + 1 in descending order of this probability.
7 We perform no standardization of the returns for the other two models as this

s automatically carried out for the deep neural network in its H2O implementation,

r not required in case of the random forest.

g short-term memory networks for financial market predictions, 
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Table 2

Panel A: p -values of Diebold–Mariano (DM) test for the null hypothesis that the forecasts of

method i have inferior accuracy than the forecasts of method j . Panel B: p -values of the Pesaran–

Timmermann (PT) test for the null hypothesis that predictions and responses are independently

distributed. Both panels are based on the k = 10 portfolio from December 1992 to October 2015. 

A : DM test B : PT test

i j = LSTM RAF DNN LOG Method Result

LSTM – 0.0143 0.0037 0.0 0 0 0 LSTM 0.0 0 0 0

RAF 0.9857 – 0.3180 0.0 0 0 0 RAF 0.0 0 0 0

DNN 0.9963 0.6820 – 0.0 0 0 0 DNN 0.0 0 0 0

LOG 1.0 0 0 0 1.0 0 0 0 1.0 0 0 0 – LOG 0.0 0 0 0
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The top of the ranking corresponds to the most undervalued

stocks that are expected to outperform the cross-sectional median

in t + 1 . As such, we go long the top k and short the flop k stocks

of each ranking, for a long-short portfolio consisting of 2 k stocks –

see Huck (2009, 2010) . 

4. Results

Our results are presented in three stages. First, we analyze re-

turns prior to and after transaction costs of 5 bps per half-turn,

following Avellaneda and Lee (2010) , and contrast the performance

of the LSTM network against the random forest, the deep neural

net, and the logistic regression. Second, we derive common pat-

terns within the top and flop stocks, thus unveiling sources of prof-

itability. Third, we develop a simplified trading strategy based on

these findings, and show that we can achieve part of the LSTM per-

formance by capturing the most visible pattern with a transparent

trading rule. 

4.1. Performance review 

4.1.1. Overview 

First, we analyze the characteristics of portfolios consisting of

2 k stocks, i.e., the top k stocks we go long, and the flop k stocks we

go short. We choose k ∈ {10, 50, 100, 150, 200} and compare the

performance of the novel LSTM with the other approaches along

the dimensions mean return per day, annualized standard devia-

tion, annualized Sharpe ratio, and accuracy – prior to transaction

costs. 

We see the following trends. Irrespective of the portfolio size

k , the LSTM shows favorable characteristics vis-a-vis the other ap-

proaches. Specifically, daily returns prior to transaction costs are

at 0.46 percent, compared to 0.43 percent for the RAF, 0.32 per-

cent for the DNN, and 0.26 for the LOG for k = 10 . Also for larger

portfolio sizes, the LSTM achieves the highest mean returns per

day, with the exception of k = 200 , where it is tied with the RAF.

With respect to standard deviation – a risk metric – the LSTM is

on a similar level as the RAF, with slightly lower values for k = 10 ,

and slightly higher values for increasing portfolio sizes. Both LSTM

and RAF exhibit much lower standard deviation than the DNN and

the logistic regression – across all levels of k . Sharpe ratio, or re-

turn per unit of risk, is highest for the LSTM up until k = 100 ,

and slightly less than the RAF for even larger portfolios, when the

lower standard deviation of the RAF outweighs the higher return

of the LSTM. Accuracy, meaning the share of correct classifications,

is an important machine learning metric. We see a clear advantage

of the LSTM for the k = 10 portfolio, a slight edge until k = 100 ,

and a tie with the RAF for increasing sizes. 

We focus our subsequent analyses on the long-short portfolio

with k = 10 . 

4.1.2. Details on predictive accuracy 

The key task of the employed machine learning methods is to

accurately predict whether a stock outperforms its cross-sectional
Please cite this article as: T. Fischer, C. Krauss, Deep learning with lon

European Journal of Operational Research (2018), https://doi.org/10.101
edian or not. In this paragraph, we benchmark the predictive ac-

uracy of the LSTM forecasts against those of the other methods,

nd against random guessing. Furthermore, we compare the finan-

ial performance of the LSTM with 10 0,0 0 0 randomly generated

ong-short portfolios. 

First, we deploy the Diebold and Mariano (1995) (DM) test to

valuate the null that the forecasts of method i have inferior ac-

uracy than the forecasts of method j , with i , j ∈ { LSTM , RAF , DNN ,

OG } and i � = j . For each forecast of each method, we assign a 0 in

ase the individual stock of the k = 10 portfolio is correctly classi-

ed and a 1 otherwise, and use this vector of classification errors

s input for the DM test. In total, we hence consider 5750 × 2 × k =
15 , 0 0 0 individual forecasts for the stocks in the k = 10 portfolio

or 5750 trading days in total. Results are depicted in panel A of

able 2 . In line one, for the null that the LSTM forecast is infe-

ior to the forecasts of RAF, DNN, or LOG, we obtain p -values of

.0143, 0.0037, and 0.0000, respectively. If we test at a five per-

ent significance level, and apply a Bonferroni correction for three

omparisons, the adjusted significance level is 1.67 percent, and we

an still reject the individual null hypotheses that the LSTM fore-

asts are less accurate than the RAF, DNN, or LOG forecasts. Hence,

t makes sense to assume that the LSTM forecasts are superior to

hose of the other considered methods. Similarly, we can reject the

ull that the RAF forecasts are inferior to the LOG forecasts as well

s the null that the DNN forecasts are inferior to the LOG fore-

asts. In other words, the predictions of the sophisticated machine

earning approaches all outperform those of a standard logistic re-

ression classifier. Apparently, the former are able to capture com-

lex dependencies in our financial time series data that cannot be

xtracted by a standard logistic regression. However, from the DM

est matrix, we cannot infer that the RAF forecasts outperform the

NN forecasts or vice versa – both methods seem to exhibit sim-

lar predictive accuracy. Our key finding is though, that the LSTM

etwork – despite its significantly higher computational cost – is

he method of choice in terms of forecasting accuracy. 

Second, we use the Pesaran–Timmermann (PT) test to evalu-

te the null hypotheses that prediction and response are indepen-

ently distributed for each of the forecasting methods. We find p -

alues of zero up to the fourth digit, suggesting that the null can

e rejected at any sensible level of significance. In other words,

ach machine learning method we employ exhibits statistically sig-

ificant predictive accuracy. 

Third, we provide a statistical estimate for the probability

f the LSTM network having randomly achieved these results.

or k = 10 , we consider a total of 5750 × 10 × 2 = 115 , 0 0 0 top

nd flop stocks, of which 54.3 percent are correctly classified.

f the true accuracy of the LSTM network was indeed 50 per-

ent, we could model the number of “successes”, i.e., the num-

er of correctly classified stocks X in the top/flop with a binomial

istribution, so X ∼ B (n = 115 , 0 0 0 , p = 0 . 5 , q = 0 . 5) . For such a

arge n , X 
appr. ∼ N (μ = np, σ = 

√
npq ) . Now, we can easily compute

he probability of achieving more than 54.3 percent accuracy, if the

STM network had a true accuracy of 50 percent. We use the R

ackage Rmpfr of Maechler (2016) to evaluate multiple-precision
g short-term memory networks for financial market predictions, 
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Fig. 3. Daily performance characteristics for long-short portfolios of different sizes: mean return (excluding transaction costs), standard deviation, annualized Sharpe ratio

(excluding transaction costs), and accuracy from December 1992 to October 2015.

Fig. 4. Empirical distribution of mean daily returns of 10 0,0 0 0 sampled monkey trading long-short portfolios (excluding transaction costs).
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oating point numbers and compute a probability of 2.7742e −187

hat a random classifier performs as well as the LSTM by chance

lone. 

Finally, we assess the financial performance of 10 0,0 0 0 ran-

omly sampled portfolios in the sense of Malkiel’s monkey throw-

ng darts at the Wall Street Journal’s stock page ( Malkiel, 2007 ).

ereby, we randomly sample 10 stocks for the long and 10 stocks

or the short portfolio without replacement for each of the 5750

rading days. All these portfolios over the 5750 days can be inter-

reted as those being picked by one monkey. Then, we compute

he mean average daily return of the combined long-short portfo-

ios over these 5750 days to evaluate the monkey’s performance.

he results of 10 0,0 0 0 replications, i.e., of 10 0,0 0 0 different mon-

eys, are illustrated in Fig. 4 . As expected, we see an average daily

eturn of zero prior to transaction costs. More importantly, even

he best performing “monkey” with an average daily return of 0.05

ercent, does not even come close to the results of the applied

odels shown in Fig. 3 . 

.1.3. Details on financial performance 

Table 3 provides insights of the financial performance of the

STM, compared to the benchmarks, prior to and after transaction

osts. 
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Return characteristics: In panel A of Table 3 , we see that the

STM exhibits favorable return characteristics. Mean returns of 0.46

ercent before and 0.26 percent after transaction costs are statis-

ically significant, with a Newey–West t -statistic of 16.9336 before

nd 9.5792 after transaction costs, compared to a critical value of

.9600 (5 percent significance level). The median is only slightly

maller than the mean return, and quartiles as well as minimum

nd maximum values suggest that results are not caused by out-

iers. The share of positive returns is at 55.74 percent after trans-

ction costs, an astonishingly high value for a long-short portfolio.

he second best model is the RAF, with mean returns of 0.23 per-

ent after transaction costs, albeit at slightly higher standard de-

iation (0.0209 LSTM vs. 0.0215 RAF). The DNN places third with

ean returns of 0.12 percent per day after transaction costs – still

tatistically significant – compared to the logistic regression. The

implest model achieves mean returns of 0.06 percent per day af-

er transaction costs, which are no longer significantly different

rom zero (Newey–West t -statistic of 1.6 6 6 6 compared to critical

alue of 1.9600). Note that the LSTM shows strong performance

ompared to the literature. The ensemble in Krauss et al. (2017) ,

hich consists of a deep net, gradient-boosted trees, and a random

orest yields average returns of 0.25 percent per day on the same

ime frame, data set, and after transaction costs. In other words,
g short-term memory networks for financial market predictions, 
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Table 3

Panels A, B, and C illustrate performance characteristics of the k = 10 portfolio, before and after transaction costs for LSTM, compared to RAF, DNN, LOG, 

and to the general market (MKT) from December 1992 to October 2015. MKT represents the general market as in Kenneth R. French’s data library, see

here . Panel A depicts daily return characteristics. Panel B depicts daily risk characteristics. Panel C depicts annualized risk-return metrics. Newey–West

standard errors with a one-lag correction are used.

Before transaction costs After transaction costs

LSTM RAF DNN LOG LSTM RAF DNN LOG MKT

A Mean return (long) 0.0029 0.0030 0.0022 0.0021 0.0019 0.0020 0.0012 0.0011 –

Mean return (short) 0.0017 0.0012 0.0010 0.0 0 05 0.0 0 07 0.0 0 02 0.0 0 0 0 −0.0 0 05 –

Mean return 0.0046 0.0043 0.0032 0.0026 0.0026 0.0023 0.0012 0.0 0 06 0.0 0 04

Standard error 0.0 0 03 0.0 0 03 0.0 0 04 0.0 0 04 0.0 0 03 0.0 0 03 0.0 0 04 0.0 0 04 0.0 0 01

t -statistic 16.9336 14.1136 8.9486 7.0 0 06 9.5792 7.5217 3.3725 1.6666 2.8305

Minimum −0.2176 −0.2058 −0.1842 −0.1730 −0.2196 −0.2078 −0.1862 −0.1750 −0.0895 

Quartile 1 −0.0053 −0.0050 −0.0084 −0.0089 −0.0073 −0.0070 −0.0104 −0.0109 −0.0046 

Median 0.0040 0.0032 0.0025 0.0022 0.0020 0.0012 0.0 0 05 0.0 0 02 0.0 0 08

Quartile 3 0.0140 0.0124 0.0140 0.0133 0.0120 0.0104 0.0120 0.0113 0.0058

Maximum 0.1837 0.3822 0.4284 0.4803 0.1817 0.3802 0.4264 0.4783 0.1135

Share > 0 0.6148 0.6078 0.5616 0.5584 0.5574 0.5424 0.5146 0.5070 0.5426

Standard dev. 0.0209 0.0215 0.0262 0.0269 0.0209 0.0215 0.0262 0.0269 0.0117

Skewness −0.1249 2.3052 1.2724 1.8336 −0.1249 2.3052 1.2724 1.8336 −0.1263 

Kurtosis 11.6967 40.2716 20.6760 30.2379 11.6967 40.2716 20.6760 30.2379 7.9791

B 1-percent VaR −0.0525 −0.0475 −0.0676 −0.0746 −0.0545 −0.0495 −0.0696 −0.0766 −0.0320 

1-percent CVaR −0.0801 −0.0735 −0.0957 −0.0995 −0.0821 −0.0755 −0.0977 −0.1015 −0.0461 

5-percent VaR −0.0245 −0.0225 −0.0333 −0.0341 −0.0265 −0.0245 −0.0353 −0.0361 −0.0179 

5-percent CVaR −0.0430 −0.0401 −0.0550 −0.0568 −0.0450 −0.0421 −0.0570 −0.0588 −0.0277 

Max. drawdown 0.4660 0.3187 0.5594 0.5595 0.5233 0.7334 0.9162 0.9884 0.5467

C Return p.a. 2.0127 1.7749 1.0610 0.7721 0.8229 0.6787 0.2460 0.0711 0.0925

Excess return p.a. 1.9360 1.7042 1.0085 0.7269 0.7764 0.6359 0.2142 0.0437 0.0646

Standard dev. p.a. 0.3323 0.3408 0.4152 0.4266 0.3323 0.3408 0.4152 0.4266 0.1852

Downside dev. p.a. 0.2008 0.1857 0.2524 0.2607 0.2137 0.1988 0.2667 0.2751 0.1307

Sharpe ratio p.a. 5.8261 5.0 0 01 2.4288 1.7038 2.3365 1.8657 0.5159 0.1024 0.3486

Sortino ratio p.a. 10.0224 9.5594 4.2029 2.9614 3.8499 3.4135 0.9225 0.2583 0.7077
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the LSTM as single model achieves a slightly stronger performance

than a fully-fledged ensemble. 

Risk characteristics: In panel B of Table 3 , we observe a mixed

picture with respect to risk characteristics. In terms of daily value

at risk (VaR), the LSTM achieves second place after the RAF, with a

1-percent VaR of −5.45 percent compared to −4.95 percent for the

RAF. The riskiest strategy stems from the logistic regression model,

where a loss of −7.66 percent is exceeded in one percent of all

cases – more than twice as risky as a buy-and-hold investment in

the general market. However, the LSTM has the lowest maximum

drawdown of 52.33 percent – compared to all other models and

the general market. 

Annualized risk-return metrics: In panel C of Table 3 , we ana-

lyze risk-return metrics on an annualized basis. We see that the

LSTM achieves the highest annualized returns of 82.29 percent af-

ter transaction costs, compared to the RAF (67.87 percent), the

DNN (24.60 percent), the LOG (7.11 percent) and the general mar-

ket (9.25 percent). Annualized standard deviation is at the second

lowest level of 33.23 percent, compared to all benchmarks. The

Sharpe ratio scales excess return by standard deviation, and thus

can be interpreted as a signal-to-noise ratio in finance, or the re-

turn per unit of risk. We see that the LSTM achieves the highest

level of 2.34, with the RAF coming in second with 1.87, while all

other methods have a Sharpe ratio well below 1.0. 

From a financial perspective, we have two key findings. First,

the LSTM outperforms the RAF by a clear margin in terms of re-

turn characteristics and risk-return metrics. We are thus able to

show that choosing LSTM networks – which are inherently suitable

for time series prediction tasks – outperform shallow tree-based

models as well as standard deep learning. Second, we demonstrate

that a standard logistic regression is not able to capture the same

level of information from the feature space – even though we

perform in-sample cross-validation to find optimal regularization
values. e  
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.1.4. A critical review of LSTM profitability over time 

In Fig. 5 , we display strategy performance over time, i.e., from

anuary 1993 to October 2015. We focus on the most competitive

echniques, i.e., the LSTM and the random forest. 

1993/01–20 0 0/12: These early times are characterized by strong

erformance – with the LSTM being superior to the RAF with re-

pect to average returns per day, Sharpe ratio, and accuracy in al-

ost all years. Cumulative payouts on 1 USD average invest per

ay reach a level of over 11 USD for the LSTM and over 8 USD

or the RAF until 20 0 0. When considering this outperformance, it

s important to note that LSTM networks have been introduced in

997, and can only be feasibly deployed ever since the emergence

f GPU computing in the late 20 0 0s. As such, the exceptionally

igh returns in the 90s may well be driven by the fact that LSTMs

ere either unknown to or completely unfeasible for the majority

f market professionals at that time. A similar argument holds true

or random forests. 

2001/01–2009/12: The second period corresponds to a time of

oderation. The LSTM is still able to produce positive returns after

ransaction costs in all years, albeit at much lower levels compared

o the 90s. When considering cumulative payouts, we see that the

utperformance of the LSTM compared to the random forest per-

ists up to the financial crisis. A key advantage of these tree-based

ethods is their robustness to noise and outliers – which plays out

uring such volatile times. The RAF achieves exceptionally high re-

urns and consistent accuracy values at a Sharpe ratio of up to 6.

s such, total payouts on 1 USD investment amount to 4 USD for

he LSTM, and to 5.6 USD for the RAF – with the majority of the

AF payouts being achieved during the financial crisis. 

It seems reasonable to believe that this period of moderation

s caused by an increasing diffusion of such strategies among in-

ustry professionals, thus gradually eroding profitability. However,

or the RAF, the global financial crisis in 20 08/20 09 constitutes an

xception – with a strong resurgence in profitability. Following the
g short-term memory networks for financial market predictions, 
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Fig. 5. Contrast of LSTM and RAF performance from January 1993 to October 2015 for the k = 10 portfolio, i.e., development of cumulative profits on 1 USD average 

investment per day, average daily returns by year, annualized Sharpe ratio, and average accuracy per year, after transaction costs.

l  

r  

f  

t  

C  

t  

t  

s  

(  

s  

l  

l

 

t  

t  

p  

s  

c  
iterature, these profits may be driven by two factors. First, it is

easonable to believe that investors are “losing sight of the trees

or the forest” ( Jacobs and Weber, 2015 , p. 75) at times of financial

urmoil – thus creating realtive-value arbitrage opportunities, see

legg and Krauss (2018) . Second, at times of high volatility, limits

o arbitrage are exceptionally high as well, making it hard to cap-

ure such relative-value arbitrage opportunities. Specifically, short

elling costs may rise for hard to borrow stocks – see Gregoriou

2012) , Engelberg, Reed, and Ringgenberg (2017) , or, in even more
Please cite this article as: T. Fischer, C. Krauss, Deep learning with lon
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evere cases, short-selling may be banned altogether. But also the

ong side is affected, e.g., when widening spreads and decreasing

iquidity set a cap on returns. 

2010/01–2015/10: The third period corresponds to a time of de-

erioration. The random forest loses its edge, and destroys more

han 1 USD in value, based on an average investment of 1 USD

er day. By contrast, the LSTM continues realizing higher accuracy

cores in almost all years and is able to keep capital approximately

onstant, after transaction costs. When comparing to the literature,
g short-term memory networks for financial market predictions, 
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Fig. 6. Time-varying share of industries in the k = 10 portfolio minus share of these industries in the S&P 500, calculated over number of stocks. A positive value indicates 

that the industry is overweighted and vice versa.
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it is remarkable to see that the ensemble presented in Krauss

et al. (2017) also runs into a massive drawdown as of 2010 –

whereas the single-model LSTM returns fluctuate around zero. Re-

gardless, the edge of the presented machine learning methods

seems to have been arbitraged away. This effect can be observed in

many academic research papers targeting quantitative strategies –

see, for example, Bogomolov (2013) , Rad, Low, and Faff (2016) ,

Green, Hand, and Zhang (2017) , Clegg and Krauss (2018) , among

others. 

4.1.5. Industry breakdown 

Coming from the LSTM’s ability to identify structure, we next

analyze potential preferences for certain industries in the k =
10 portfolio. Specifically, we consider the difference between the

share of an industry in the k = 10 portfolio and the share of that

industry in the S&P 500 at that time. A positive value indicates that

the industry is overweighted by the LSTM network, and a negative

value indicates that it is underweighted. 

Fig. 6 depicts our findings for the most interesting industries –

oil and gas, technology, financials, and all others. First, we see that

there is a significant overweight of technology stocks building up

end of the 90s – corresponding to the growing dot-com bubble and

its bust. Second, we observe a rise in financial stocks around the

years 20 08/20 09 – corresponding to the global financial crisis. And

third, oil and gas stocks gain in weight as of 2014 – falling together

with the recent oil glut and the significant drop in crude oil prices.

Note: a more detailed breakdown depicting the relative overweight

for each of the GICS industries individually for the top k and the

flop k portfolio is provided in the Appendix. 8 It is interesting to

see that the overweight in each industry adequately captures major

market developments. We hypothesize that this behavior is driven

by increasing volatility levels, and further elaborate on that point

in the following section. 

4.2. Common patterns in the top and flop stocks 

Machine learning approaches – most notably artificial neural

networks – are commonly considered as black-box methods. In this

section, we aim for shining light into that black-box, thus unveiling

common patterns in the top and flop stocks. 

First, we conduct a very simple yet effective analysis. For every

day, we extract all 240-day return sequences for the top and flop

k stocks. 9 Then, we stack all 5750 × 10 top and the same number

of flop sequences on top of each other. For better representation,

we accumulate the 240 returns of each sequence to a return index,

starting at a level of 0 on day t − 240 and then average these re-

turn index sequences. We hence obtain two generalized sequences,
8 We thank an anonymous referee for this suggestion.
9 A return sequence is generated as described in Section 3.2 .
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ontaining the patterns of the top 10 and of the flop 10 stocks.

esults are depicted in Fig. 7 , contrasted to the behavior of the

ross-section across all stocks (mean). We see that the top and the

op stocks both exhibit below-mean momentum in the sense of

egadeesh and Titman (1993) , i.e., they perform poorly from day

 − 240 until day t − 10 , compared to the cross-section. From day

 − 9 until t (note: the prediction is made on day t ), the top stocks

tart crashing at accelerating pace, losing about 50 percent of what

hey have gained during the previous 230 days on average. By con-

rast, the flop stocks show an inverse pattern during the past 10

ays prior to trading, and exhibit increasingly higher returns. It is

ompelling to see that the LSTM extracted such a strong common-

lity among the flop stocks and the top stocks. 

Second, based on this visual insight, we construct further time-

eries characteristics for the top and flop stocks. Thereby, we fol-

ow the same methodology as above for generating the descriptive

tatistics, i.e., we compute the 240-day return sequence for each

tock, calculate the desired statistic, and average over all k stocks,

ith k ∈ {1, 5, 10, 10 0, 20 0}. Specifically, we consider the following

tatistics: 

• (Multi-)period returns, as defined in Section 3.2 , with m ∈ {1,

5, 20, 240}, denoted as Return_t_t-m in the graphic, where m

is counting backwards from day t , the last element of the se-

quence (i.e., the day on which the prediction for t + 1 is made).

Moreover, we consider the cumulative return from day t − 20

of the sequence until day t − 240 of the sequence, denoted as

Return_t-20_t-240.
• Sample standard deviations, computed over the same time

frames as above, and following the same naming conventions.
• Sample skewness and kurtosis over the full 240 days of each

sequence.
• The coefficients of a Carhart regression in the sense of Gatev,

Goetzmann, and Rouwenhorst (2006) , Carhart (1997) . Thus, we

extract the alpha of each stock (FF_Alpha – denoting the id-

iosyncratic return of the stock beyond market movements), the

beta (FF_Mkt-RF – denoting how much the stock moves when

the market moves by 1 percent), the small minus big fac-

tor (FF_SMB – denoting the loading on small versus large cap

stocks), the high minus low factor (FF_HML – denoting the

loading on value versus growth stocks), the momentum factor

(FF_Mom – denoting the loading on the momentum factor in

the sense of Jegadeesh and Titman (1993) , Carhart (1997) , the

short-term reversal factor (FF_ST_Rev – denoting the loading on

short-term reversal effects) and the R squared (FF_R_squared –

denoting the percentage of return variance explained by the

factor model). Please note that these coefficients refer to the in-

dividual stocks’ 240 days history prior to being selected by the

LSTM for trading and not to the exposure of the resulting LSTM
strategy to these factors (see Section 4.3 for this analysis).

g short-term memory networks for financial market predictions, 
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Fig. 7. Averaged, normalized return index of top and flop 10 stocks over sequence of the 240 one day returns prior to trading for LSTM strategy.

Fig. 8. Time-series characteristics of top and flop k stocks for LSTM strategy. Statistics are first computed over the 240-day return sequences for each stock in the top or flop

k , as described in the bullet list in Section 4.2 (including naming conventions) and then averaged over all top k or all flop k stocks. The mean is calculated similarly, however

across all stocks. Note that there is a color-coding along each row, separately for top and flop k stocks. Thereby, the darker the green, the higher the value, and the darker

the red, the lower the value. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Results are shown in Fig. 8 . The graphical patterns from the

ast paragraph now become apparent in a quantitative manner –

cross different values of k . First, the top stocks exhibit highly neg-

tive returns in the last days prior to the prediction, and the flop

tocks highly positive returns. This behavior corresponds to short-

erm reversal strategies, as outlined in Jegadeesh (1990) , Lehmann

1990) , Lo and MacKinlay (1990) – to name a few. The LSTM net-

ork seems to independently find the stock market anomaly, that

tocks that sharply fall in the last days then tend to rise in the

ext period and vice versa. The effect is stronger, the smaller k ,

.e., the lower the number of stocks considered in the portfo-

io. Second, both top and flop stocks exhibit weak momentum in

he sense of Jegadeesh and Titman (1993) . For example, the top

0 stocks show an average momentum of 9.1 percent from day

 − 240 until day t − 20 of the sequence, compared to 11.7 percent,

.e., the mean across all stocks. The flop stocks exhibit a similar

attern. The smaller k , the stronger the underperformance with

espect to the momentum effect. Third, when considering stan-

ard deviation, it becomes obvious that volatility plays an impor-

ant role (see also LeBaron, 1992 ). Clearly, high volatility stocks

re preferred compared to the market, and volatility is increas-

ng for the more extreme parts of the ranking. Volatility in the

ense of beta can be an important return predictive signal – see

aker, Bradley, and Wurgler (2011) , Frazzini and Pedersen (2014) ,
Please cite this article as: T. Fischer, C. Krauss, Deep learning with lon
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ong and Sraer (2016) , and a higher beta is a key characteris-

ic of the selected stocks. Also, skewness is similar to the gen-

ral market, and the returns of the top and flop stocks are more

eptokurtic than the general market – a potential return predic-

ive signal remotely relating to the works of Kumar (2009) , Boyer,

itton, and Vorkink (2010) , Bali, Cakici, and Whitelaw (2011) on

tocks with “lottery-type” features. Finally, we see that the above

entioned time-series characteristics are also confirmed in the re-

ression coefficients. Top and flop k stocks exhibit higher beta, a

egative loading on the momentum factor and a positive loading

n the short-term reversal factor – with the respective magnitude

ncreasing with lower values for k . We observe a slight loading

n the SMB factor, meaning that smaller stocks among the S&P

00 constituents are selected – which usually have higher vola-

ility. 

Given that the LSTM network independently extracted these

atterns from 240-day sequences of standardized returns, it is

stonishing to see how well some of them relate to commonly

nown capital market anomalies. This finding is compelling, given

hat none of the identified characteristics is explicitly coded as fea-

ure, but instead derived by the LSTM network all by itself – an-

ther key difference to the memory-free models, such as the ran-

om forest, who are provided with mutli-period returns as fea-

ures. 
g short-term memory networks for financial market predictions, 
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Table 4

Exposure to systematic sources of risk of the LSTM, RAF, DNN, and LOG strate- 

gies prior to transaction costs from December 1992 to October 2015. Standard

errors are depicted in parentheses.

LSTM RAF DNN LOG

(Intercept) 0 . 0042 ∗∗∗ 0 . 0034 ∗∗∗ 0 . 0021 ∗∗∗ 0 . 0014 ∗∗∗

(0.0 0 03) (0.0 0 03) (0.0 0 03) (0.0 0 03)

Market −0 . 0023 0 . 2107 ∗∗∗ 0 . 0926 ∗∗ 0 . 1845 ∗∗∗

(0.0255) (0.0248) (0.0293) (0.0303)

SMB −0 . 0576 0.0117 −0 . 1190 ∗ −0 . 1414 ∗

(0.0484) (0.0470) (0.0556) (0.0574)

HML −0 . 2192 ∗∗∗ 0 . 5377 ∗∗∗ −0 . 0269 0.1103

(0.0574) (0.0557) (0.0659) (0.0681)

Momentum 0 . 1241 ∗∗∗ 0 . 1098 ∗∗ 0 . 8903 ∗∗∗ 0 . 6865 ∗∗∗

(0.0345) (0.0334) (0.0396) (0.0409)

Short-term reversal 0 . 3792 ∗∗∗ 0 . 7475 ∗∗∗ 0 . 9620 ∗∗∗ 1.0885 ∗∗∗

(0.0336) (0.0327) (0.0386) (0.0399)

Long-term reversal 0.0549 −0 . 1827 ∗∗ −0 . 1675 ∗ −0 . 1771 ∗

(0.0683) (0.0663) (0.0785) (0.0811)

R 2 0.0330 0.1338 0.1825 0.1734

Adj. R 2 0.0320 0.1329 0.1816 0.1725

Num. obs. 5750 5750 5750 5750

RMSE 0.0206 0.0200 0.0237 0.0244

∗∗∗ p < . 001 , ∗∗ p < . 01 , ∗ p < . 05 . 

a  

c  

t  

t  

b  

e  

t  

s  

l  

c  

p  

I  

a  

m

4

 

s  

s  

a  

i  

(  

d  

l  

k  

c  

m  

t  

p  

a  

w  

c  

o  

j  

s  

s

 

4.3. Sources of profitability 

Simplified trading strategy: In this section, we build on the pre-

vious analysis and construct a simplified trading strategy. From

Figs. 7 and 8 , we see that the most dominant characteristic is the

slump or steep rise in returns in the last days prior to trading. On a

similar note, Krauss et al. (2017) find that the last returns are the

most important variables for their machine learning models, and

so do Moritz and Zimmermann (2014) . For the sake of simplicity,

we build on this most salient point, and loosely follow Jegadeesh

(1990) , Lehmann (1990) , two of the creators of the short-term re-

versal anomaly. Specifically, we go long the top k stocks with the

most negative 5-day cumulative return prior to the trading day,

and short the flop k stocks with the most positive 5-day cumu-

lative return prior to the trading day – all equal-weight. For this

very simple yet transparent strategy, we find average daily returns

of 0.23 percent, prior to transaction costs, or 0.03 percent after

transaction costs. We hence see that capitalizing only on the most

prominent feature, i.e., the past 5-day cumulative return, merely

yields about 50 percent of the returns of the LSTM strategy prior

to transaction costs. After transaction costs, the short-term reversal

strategy looses its edge, contrary to the LSTM. Hence, we may cau-

tiously conclude that additional explanatory power is contained in

the other features, forming more subtle patterns not directly dis-

cernible from the aggregated perspective in Fig. 8 . Building on this

finding, we next move on and evaluate the exposure of LSTM re-

turns to common sources of systematic risk. 

Exposure to systematic sources of risk: As commonly performed

in portfolio analysis and similar to Krauss et al. (2017) , we evaluate

the exposure of the long-short portfolio to common sources of sys-

tematic risk. We use the Fama–French three factor model (FF3) as

in Fama and French (1996) , enhanced by three additional factors.

It thus consists of a market factor, a factor measuring exposure to

small minus big capitalization stocks (SMB), and a factor measur-

ing exposure to high minus low book-to-market stocks (HML). In

addition, we include a momentum factor ( Carhart, 1997 ), a short-

term reversal factor ( Gatev et al., 2006 ), and a long-term reversal

factor. All data used for these factor models are obtained from Ken-

neth French’s website. 10 The underlying idea is to measure addi-

tional exposure to cross-sectional price dynamics. Our findings are

summarized in Table 4 . At first, we observe that the LSTM returns

exhibit by far the lowest coefficient of determination of 0.0330

among all models. In other words – only a fraction of daily LSTM

raw returns of 0.46 percent can be explained by such common

sources of systematic risk. Indeed, an alpha of 0.42 percent per day

remains (intercept). By contrast, the RAF has a higher coefficient of

determination of 0.1338, and only 0.34 percent of daily alpha re-

main (compared to raw returns of 0.43 percent). Even though R 2 

is low (which can often be the case in financial research – see

Gatev et al., 2006 ) – we can still compare factor loadings with our

expectations. The LSTM is basically market-neutral, meaning that

the long and the short portfolio (in which we invest equal dol-

lar amounts) exhibit similar beta. By contrast, the other strategies

seem to favor slightly higher beta stocks on the long leg than on

the short leg. The SMB factor is generally non-significant and close

to zero across all models. Exposure to HML varies across strategies.

Whereas the LSTM favors glamour stocks (negative and significant

loading), the RAF has a tendency to select value stocks (positive

and significant loading); DNN and the simple logistic regression do

not have any exposure. Most interesting are the factors capturing

cross-sectional price dynamics, given that they are largely in line

with the features we are feeding. We see that all models have pos-

itive and statistically significant exposure towards the momentum
10 We thank French for providing all relevant data for these models on his website .

c  
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nd the short-term reversal factor – meaning that shorter-term

ross-sectional price dynamics are captured. Interestingly enough,

hese price-based factor loadings are more dominant for the logis-

ic regression compared to the LSTM. This increase in loadings may

e due to the fact that the simpler model is structurally unable to

xtract higher-order patterns from the supplied features – given

hat we did not feed any interactions. Lastly, the long-term rever-

al factor is insignificant for the LSTM, and has slightly negative

oadings for the other strategies, albeit at lower levels of signifi-

ance. We believe that this factor has generally lower explanatory

ower, given that we are addressing a very short trading horizon.

n a nutshell, the LSTM returns can barely be explained by system-

tic sources of risk – and much less so than those of the other

achine learning models we have deployed. 

.4. Robustness to market microstructure 

A key result of the last subsection is that the LSTM-based stock

election exhibits similarities to a typical contrarian investment

trategy. Microstructural effects, particularly the bid-ask bounce,

re commonly known to introduce an upward bias to such contrar-

an investment strategies – see Conrad and Kaul (1989) , Jegadeesh

1990) , Jegadeesh and Titman (1995) , Gatev et al. (2006) . The un-

erlying reason is simple. The LSTM strategy tends to buy recent

osers and sell recent winners. Conditional on being among the top

 stocks, the winner’s quote is more likely to be an ask quote, and

onditional on being among the flop k stocks, the loser’s quote is

ore likely to be a bid quote – similar to the reasoning on the con-

rarian investment strategy presented in Gatev et al. (2006) . Im-

licitly, we would thus be buying at the bid in case of the losers,

nd selling at the ask in case of the winners. The inverse applies

hen covering positions – part of the surge in prices of the re-

ent loser may be driven by the jump from bid to ask, and part

f the slump in prices of the recent winner may be driven by the

ump from ask to bid. In light of these considerations, it is neces-

ary to analyze the robustness of our findings. 11 There are several

olutions to this issue. 

First, longer trading horizons are typically more robust to mi-

rostructural effects. Following e.g., Lehmann (1990) in his short-
11 We thank an anonymous referee for suggesting this robustness check.
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Table 5

Panel A names the LSTM model variants, with different trading frequencies and types of execution (M 1 through M 5 ). Panels B, C, and D illustrate performance characteristics

of the k = 10 portfolio, before and after transaction costs for all five model variants, compared to the general market (MKT) from January 1998 to October 2015. MKT 

represents the general market as in Kenneth R. French’s data library, see here . Panel B depicts daily return characteristics. Panel C depicts daily risk characteristics. Panel D

depicts annualized risk-return metrics. Newey–West standard errors are used.

Before transaction costs After transaction costs

A Model M 1 M 2 M 3 M 4 M 5 M 1 M 2 M 3 M
4

M 5 MKT

Frequency Daily Daily Weekly Weekly Weekly Daily Daily Weekly Weekly Weekly –

Execution Close t VWAP t Close t VWAP t Close t+1 Close t VWAP t Close t VWAP t Close t+1 –

B Mean return (long) 0.0025 0.0021 0.0014 0.0012 0.0013 0.0015 0.0011 0.0012 0.0010 0.0011 0.0 0 03

Mean return (short) 0.0014 0.0015 0.0 0 01 0.0 0 01 0.0 0 0 0 0.0 0 04 0.0 0 05 −0.0 0 01 −0.0 0 01 −0.0 0 02 –

Mean return 0.0040 0.0036 0.0015 0.0013 0.0013 0.0020 0.0016 0.0011 0.0 0 09 0.0 0 09 0.0 0 03

Standard error 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 03 0.0 0 02

t -statistic 11.9814 11.5662 5.7083 5.1998 4.9941 5.9313 5.1980 4.1749 3.6172 3.4622 1.8651

Minimum −0.2176 −0.1504 −0.1261 −0.1156 −0.1246 −0.2193 −0.1522 −0.1265 −0.1160 −0.1250 −0.0895 

Quartile 1 −0.0064 −0.0064 −0.0068 −0.0064 −0.0068 −0.0084 −0.0084 −0.0072 −0.0068 −0.0072 −0.0054 

Median 0.0030 0.0027 0.0 0 09 0.0 0 07 0.0010 0.0010 0.0 0 07 0.0 0 05 0.0 0 03 0.0 0 06 0.0 0 08

Quartile 3 0.0136 0.0124 0.0092 0.0082 0.0089 0.0116 0.0104 0.0088 0.0078 0.0085 0.0064

Maximum 0.1837 0.1700 0.2050 0.1814 0.1997 0.1815 0.1678 0.2045 0.1810 0.1993 0.1135

Share > 0 0.5847 0.5807 0.5337 0.5299 0.5379 0.5276 0.5212 0.5216 0.5120 0.5234 0.5384

Standard dev. 0.0224 0.0208 0.0185 0.0177 0.0181 0.0224 0.0208 0.0185 0.0177 0.0181 0.0127

Skewness −0.0682 0.4293 0.9199 0.6518 0.8163 −0.0682 0.4293 0.9195 0.6515 0.8160 −0.0737 

Kurtosis 10.9634 6.1028 12.3432 9.5637 12.7913 10.9634 6.1028 12.3409 9.5620 12.7897 6.7662

C 1-percent VaR −0.0571 −0.0524 −0.0516 −0.0470 −0.0493 −0.0591 −0.0544 −0.0520 −0.0474 −0.0496 −0.0341 

1-percent CVaR −0.0861 −0.0717 −0.0662 −0.0659 −0.0673 −0.0880 −0.0736 −0.0666 −0.0663 −0.0676 −0.0491 

5-percent VaR −0.0271 −0.0268 −0.0251 −0.0239 −0.0252 −0.0291 −0.0287 −0.0255 −0.0243 −0.0256 −0.0195 

5-percent CVaR −0.0468 −0.0432 −0.0412 −0.0395 −0.0403 −0.0487 −0.0452 −0.0416 −0.0399 −0.0407 −0.0297 

Max. drawdown 0.4660 0.3717 0.3634 0.4695 0.3622 0.5230 0.6822 0.4041 0.5808 0.3794 0.5467

D Return p.a. 1.5439 1.3639 0.3939 0.3384 0.3328 0.5376 0.4287 0.2604 0.2103 0.2052 0.0668

Excess return p.a. 1.4923 1.3159 0.3655 0.3112 0.3056 0.5063 0.3996 0.2348 0.1856 0.1806 0.0450

Standard dev. p.a. 0.3561 0.3308 0.2940 0.2818 0.2879 0.3557 0.3305 0.2939 0.2817 0.2879 0.2016

Downside dev. p.a. 0.2192 0.1962 0.1863 0.1802 0.1851 0.2323 0.2103 0.1891 0.1830 0.1879 0.1424

Sharpe ratio p.a. 4.1908 3.9777 1.2433 1.1043 1.0615 1.4233 1.2091 0.7988 0.6589 0.6274 0.2234

Sortino ratio p.a. 7.04 4 4 6.9507 2.1145 1.8784 1.7982 2.3139 2.0380 1.3770 1.1488 1.0916 0.4689
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erm reversal strategy or Huck (2009, 2010) in his machine learn-

ng strategies, we introduce a weekly variant of the LSTM strategy

effectively bridging the gap between lower turnover (weekly vs.

aily), and retaining a sufficient number of training examples for

he LSTM to successfully extract structure from the data. The lat-

er excludes a monthly variant, without significantly changing the

tudy design. Specifically, we design the LSTM in full analogy to

he cornerstones outlined in Section 3 , but on a 5-day instead of

 1-day horizon. 12 Moreover, we implement five overlapping port-

olios of LSTM strategies with a 5-day forecast horizon to avoid a

ias introduced by the starting date ( Jegadeesh & Titman, 1993 ).

hereby, each portfolio is offset to the other by one trading day,

nd returns are averaged across all portfolios. Note that we log the

nvested capital market-to-market on a daily basis for all five port-

olios, so we are able to exhibit daily returns for the sake of com-

arability. 

Second, execution on volume-weighted-average-prices (VWAPs) 

s more realistic and much less susceptible to bid-ask bounce (see

or example, Lee, Chan, Faff, & Kalev, 2003 ). Hence, we use minute-

inned transaction data from January 1998 to October 2015 for

ll S&P 500 stocks from QuantQuote to create VWAPs, which we

se for feature engineering, for target creation, and for backtest-

ng – see Section 3 . 13 Specifically, we divide the 391 minute-bins

f each trading day (starting at 09:30 and ending at 16:00, includ-
12 As such, the time step, the forecast horizon, and the raw returns comprise a du- 

ation of 5 days. In analogy, the sequence length is 52 to reflect one year, consisting

f 52 weeks.
13 To be able to evaluate the performance of the LSTM over the whole period from

anuary 1998 until October 2015, we use the Thomson Reuters dataset to train the

odel on the first 750 days prior to January 1998. Out-of-sample prediction (trad- 

ng) is then performed on the VWAPs calculated from the QuantQuote data. In all

ollowing study periods, we train and predict on the QuantQuote data.

o  

T

 

i  

f  

c  

p  

a  

c  
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ng the opening) in 23 bins of 17 minutes duration, so we obtain

3 VWAPs. We use the 22nd VWAP as anchor point for creating

eatures, and the 23rd VWAP for executing our trades, and create

eatures in full analogy to Section 3.2 . 

Third, a one-day-waiting rule as in Gatev et al. (2006) is a

roper remedy against bid-ask bounce. Specifically, we delay the

xecution by one entire trading day after signal generation. This

ule only makes sense for the weekly strategy. In case of the daily

trategy, the delay covers the entire forecast horizon, rendering the

redictions null and void. 

Fourth, for the sake of completeness, we use transaction costs

f 5 bps per half-turn throughout this paper – a fairly robust value

or U.S. large caps. For example, Jha (2016) assumes merely 2 bps

or the largest 500 stocks of the U.S. stock universe over a similar

ime horizon. 

In a nutshell, we run the following robustness checks on the

STM strategy. Model M 1 is the baseline, showing the results of

he standard LSTM strategy as discussed in the previous sections,

.e., with daily turnover and execution on the close, but constrained

o the time frame of the QuantQuote data set from 1998 to 2015.

odel M 2 shows the effects when executing this strategy on the

WAP instead of the closing price. Models M 3 –M 5 are weekly vari-

nts of the baseline strategy. Thereby, M 3 is executed on the clos-

ng price, M 4 on the VWAP, and M 5 with a one-day-waiting rule

n the closing price. The results of these variants are depicted in

able 5 – before and after transaction costs of 5 bps per half-turn. 

After transaction costs, the baseline LSTM strategy M 1 results

n average returns of 0.20 percent per day on the shorter time

rame from 1998 to 2015. Executing on VWAPs instead of at the

losing price in case of model M 2 leads to a deterioration to 0.16

ercent per day – still statistically significant with a t -statistic

bove 5 and economically meaningful with returns of 43 per-

ent p.a. The weekly strategies generate similar returns per day,
g short-term memory networks for financial market predictions, 
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Fig. 9. Contrast LSTM model variants’ performance from January 1998 to October 2015 for the k = 10 portfolio, i.e., development of cumulative profits on 1 USD average 

investment per day after transaction costs.
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i.e., 0.11 percent in case of M 3 (execution on close), 0.09 percent

in case of M 4 (execution on VWAP), and 0.09 percent in case of

M 5 (execution on close, one-day-waiting) – all of them statistically

and economically significant with t -statistics above 3 and annual-

ized returns above 20 percent. The rest of the table reads in full

analogy to Table 3 , and shows a relative outperformance of the

LSTM strategy compared to the general market, after robustness

checks. 

In recent years, however, as depicted in Fig. 9 , we see that re-

turns flatten out, so the LSTM edge seems to have been arbitraged

away. Despite of this fact, model performance is robust in light of

market frictions over an extended period of time, i.e., from 1998

up until 2009, with particular upward spikes in returns around the

financial crisis. 

5. Conclusion

In this paper, we apply long-short term memory networks to a

large-scale financial market prediction task on the S&P 500, from

December 1992 until October 2015. With our work, we make three

key contributions to the literature: the first contribution focuses on

the large-scale empirical application of LSTM networks to financial

time series prediction tasks. We provide an in-depth guide, closely

following the entire data science value chain. Specifically, we frame

a proper prediction task, derive sensible features in the form of

240-day return sequences, standardize the features during prepro-

cessing to facilitate model training, discuss a suitable LSTM archi-

tecture and training algorithm, and derive a trading strategy based

on the predictions, in line with the existing literature. We compare

the results of the LSTM against a random forest, a standard deep

net, as well as a simple logistic regression. We find the LSTM, a

methodology inherently suitable for this domain, to beat the stan-

dard deep net and the logistic regression by a very clear margin.

Most of the times – with the exception of the global financial crisis

– the random forest is also outperformed. Our findings of statisti-

cally and economically significant returns of 0.46 percent per day

prior to transaction costs posit a clear challenge to the semi-strong

form of market efficiency, and show that deep learning could have

been an effective predictive modeling technique in this domain up

until 2010. These findings are largely robust in light of market fric-

tions, given that profitability remains statistically and economically

significant when executing the daily LSTM strategy on VWAPs in-

stead of closing prices, and when running a weekly variant of the

LSTM strategy with a one-day waiting period after signal genera-
Please cite this article as: T. Fischer, C. Krauss, Deep learning with lon
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ion. As of 2010, the markets exhibit an increase in efficiency with

espect to the machine learning methods we deploy, with LSTM

rofitability fluctuating around zero and RAF profitability dipping

trictly into the negative domain. 

Also, the conceptual and empirical aspects on LSTM networks

utlined in this paper go beyond a pure financial market applica-

ion, but are intended as guideline for other researchers, wishing

o deploy this effective methodology to other time series predic-

ion tasks with large amounts of training data. 

Second, we disentangle the black-box “LSTM”, and unveil com-

on patterns of stocks that are selected for profitable trading. We

nd that the LSTM portfolio consist of stocks with below-mean

omentum, strong short-term reversal characteristics, high volatil-

ty and beta. All these findings relate to some extent to exist-

ng capital market anomalies. It is impressive to see that some

f them are independently extracted by the LSTM from a 240-day

equence of standardized raw returns. It is subject to future re-

earch to identify further, more subtle patterns LSTM neural net-

orks learn from financial market data, and to validate the profit

otential of these patterns in more refined, rules-based trading

trategies. 

Third, based on the common patterns of the LSTM portfolio,

e devise a simplified rules-based trading strategy. Specifically, we

hort short-term winners and buy short-term losers, and hold the

osition for one day – just like in the LSTM application. With this

ransparent, simplified strategy, we achieve returns of 0.23 percent

er day prior to transaction costs – about 50 percent of the LSTM

eturns. Further regression analysis on common sources of system-

tic risk unveil a remaining alpha of 0.42 percent of the LSTM prior

o transaction costs and generally a lower risk exposure compared

o the other models we deploy. 

Overall, we have successfully demonstrated that an LSTM net-

ork is able to effectively extract meaningful information from

oisy financial time series data. Compared to random forests, stan-

ard deep nets, and logistic regression, it is the method of choice

ith respect to predictional accuracy and with respect to daily re-

urns after transaction costs. As it turns out, deep learning – in the

orm of LSTM networks – hence seems to constitute an advance-

ent in this domain as well. 

ppendix. Detailed industry breakdown 

Fig. A1 . 
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Fig. A1. Time-varying share of industries in the “top-10” and “flop-10” portfolio minus share of these industries in the S&P 500, calculated over number of stocks. A positive

value indicates that the industry is overweighted and vice versa.
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