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A B S T R A C T

In this paper, the thermo-elastic nonlinear analysis of various Functionally Graded (FG) shells under different
loading conditions is studied. A second-order isoparametric triangular shell element is presented for this pur-
pose. The element is six-noded, and each node has all six independent degrees of freedom in space. It should be
added, the first-order shear deformation theory is induced. Furthermore, Voigt’s model is adopted to define the
FG material properties, which are considered to change gradually from one surface to another. The critical
temperature is predicted. Both the pre-buckling and post-buckling equilibrium paths are traced. Since the linear
eigenvalue analysis leads to wrong responses in the problems with strong nonlinearity, the suggested procedure
is performed based on the FEM and more exact estimations are achieved using equilibrium path.

1. Introduction

Application of composite materials in engineering constructions has
a long historical background. From the early usage of straw in mud
bricks in masonry structures to the new fiber-matrix laminates applied
in aerospace vehicles, all are categorized in the family of composites.
Today, nobody has doubts about the advantages of advanced composite
materials. Along their widespread usage in industries, the demands for
new theories and mathematical modeling capable of predicting their
behaviors are increasing rapidly. It is obvious that applying these ma-
terials brings some fresh problems that should be considered, as well.
For example, laminates show severe stress concentration at the layer
interfaces which leads to delamination. Repeated cyclic stresses or
impact may cause layers to separate and forming a mica-like config-
uration of separate layers. As a result, structure can lose significant
mechanical toughness. To alleviate this phenomenon, Japanese scien-
tists manufactured a new kind of material, which exhibits a smooth and
continues change of material properties through the thickness. This
kind of composite was named Functionally Graded (FG) Material.

Until now, many efforts have been made to study the behavior of FG
materials [1–3]. Reddy and Chin developed a finite element procedure
for FG cylinders and plates, including the thermo-mechanical coupling.
They demonstrated the effects of coupling on the temperature dis-
tribution, displacements and stresses [4]. Woo and Meguid presented a
closed-form solution for large deflection analysis of FG plates and
shells. They applied a power law model for material properties’ dis-
tribution through the thickness. Their solutions were given in Fourier
series format [5]. Patel et al. studied geometrically nonlinear responses

and thermo-elastic stability characteristics of the cross-ply laminated
cylindrical/conical shells with non-circularity/ovality under uniform
temperature rise. It should be mentioned, load-displacement curves
were obtained with the aid of FEM. They found that the shells with
circular cross-section have a distinct bifurcation point, while non-
circular ones show a smooth equilibrium path. Furthermore, the effect
of initial perturbation/disturbance/imperfection was discussed [6].

Kordkheili and Naghdabadi studied the thermo-elastic behavior of
FG plates and shells. They employed the updated Lagrangian frame-
work to carry out nonlinear analysis [7]. By using higher-order shear
deformation scheme, Shen performed a thermal post-buckling analysis
of FG cylindrical shells. The material properties were considered to be
dependent on temperature [8]. Huang and Han extended the large
deformation theory of cylindrical shells for buckling and post-buckling
analysis of these structures [9]. Alijani et al. took advantages of a multi-
modal energy technique and investigated the geometrically nonlinear
forced vibration of FG shells. Their research was performed by the
analytical approach [10]. Torabi et al. studied the thermal buckling of
FG conical shells under thermo-electric loading. In their work, the
material properties followed a power law model in thickness direction
[11].

Shen and Wang conducted a study on nonlinear bending analysis of
FG cylindrical shells resting on elastic foundation. The material prop-
erties were assumed to change gradually through the thickness based
on Mori-Tanaka scheme [12]. Ghiasian et al. investigated the buckling
behavior of FG annular plates in thermal environment. Moreover,
Temperature dependency of the material properties was applied in their
work. The first-order shear deformation theory was taken into account
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to make their formulation capable of modeling thick plates, as well. It
should be mentioned that they employed analytical approach [13].
Beheshti and Ramezani studied large deformation analysis of FG shells.
They adopted the Enhanced Assumed Strain (EAS) method to mitigate
locking problems [14]. Kar and Panda developed a nonlinear model for
FG panels to evaluate nonlinear responses of shells subjected to thermo-
mechanical loading [15]. In another work, Kar et al. adopted the FEM
to investigate the buckling and post-buckling analysis of FG panels
under linear and nonlinear thermal gradient loads [16].

Frikha and Dammak presented a shell model for thin and thick
panels taking into account finite rotations. They analyzed the effects of
material properties on the geometrically nonlinear responses [17]. A
closed-form solution for critical load of FG conical shells was proposed
by Sofiyev and Kuruoğlu. They used shear deformation theory in con-
junction with Galerkin method to reach the governing equations [18].
Moosaie and Panahi-Kalus performed a nonlinear thermo-elastic ana-
lysis of FG spherical shells. The material properties were supposed to be
dependent on temperature [19]. Rezaiee-Pajand et al. used a six-noded
mixed and degenerated triangular shell element for geometrically
nonlinear analysis of shells. In their formulation, strain interpolation
was applied at the so-called tying points to avoid locking phenomena.
Moreover, they solved and compared several popular benchmark ex-
amples [20,21]. The parametric thermo-elastic instability of FG cy-
lindrical shell was presented by Li et al. They utilized Hamilton’s
principle to derive the dynamic governing equations [22].

Prakash et al. investigated the post-buckling behavior of FG skew
plates exposed to thermal loading. They employed an eight-noded shear
deformable plate bending element. A power-law distribution was used
in their work to model the gradually change of material properties in
thickness direction [23]. Utilizing finite element method, Abolghasemi
et al. studied the buckling of FG plates with elliptical cutout. They
applied both mechanical and thermal loading simultaneously and

investigated the effect of boundary conditions and cutout radius on FG
plates responses [24]. The numerical results of thermo-mechanical
buckling of FG plates using isogeometric analysis were presented by Yu
et al. These investigators demonstrated the effects of geometric aspects
on buckling behavior [25]. Lin et al. developed a refined plate theory
for the analysis of FGM circulate panel under thermal and mechanical
loads. In this work, they verified their theoretical solutions by com-
parison with experimental results [26]. Masoodi and Arabi proposed a
locking-free shell element for nonlinear analysis of shells exposed to
thermo-mechanical loads. Total Lagrangian formulation to taking into
account large displacements and rotations was used [27].

The presented review states that all aspects of nonlinear analysis of
arbitrary FG shells subjected to thermo-mechanical loading are not
covered yet. Based on this fact, the aim of this paper is to present a
formulation for predicting the nonlinear responses of various FG shells
under thermo-mechanical loads. This study is performed within the
framework of FEM. A second-order and six-noded isoparanetric trian-
gular shell element is proposed. All six independent degrees of freedom
in space for each node are considered. In this research, the Euler-
Rodrigues scheme and the first-order shear deformation theory are in-
volved. It should be mentioned, the material properties are expressed
via Voigt’s model.

2. Material properties distribution

Functionally graded material made of ceramic-metal combination is
adopted throughout this study. The properties of this two-phase mate-
rial are assumed to change gradually from one surface to the other one.
Employing the Voigt’s model to induce the rule of mixture, material
properties are written as a function of the thickness by:

= +ρ ζ ρ f ζ ρ f ζ( ) ( ) ( )m m c c (1)

Nomenclature

a director vector
b̄ body force vector per unit reference volume
Cαβ tangent tensors of elastic moduli
Dαβ stress-strain tensors
d global deformation vector of element
E module of elasticity
ei orthogonal unit vectors
F deformation gradient tensor
f volume fraction
Gα geometric tensors
h thickness
I identity tensor
Ii strain invariants
J jacobian
kα curvature vectors
kG element global tangent stiffness matrix
kL element local tangent stiffness matrix
mα moment cross-sectional per unit length vectors
m̄ external moments per unit reference area
N interpolation/shape functions matrix
n power index
nα force cross-sectional per unit length vectors
n̄ external forces per unit reference area
O zero tensor
P first Piola-Kirchhoff stress tensor
PG element global secant residual force vector
pG global deformation vector of nodes
Q rotation tensor
q̄ generalized external forces vector

R transformation matrix
r global effective angles magnitude
T cauchy stress tensor
t̄ surface traction vector per unit reference area
u global effective displacements vector
x position vector
z mapping vector
α thermal expansion coefficient
γα strain vectors

TΔ temperature change
δαβ Kronecker delta
δWext external virtual work
δWint internal virtual work
εα strain vectors corresponding to stress-resultant vectors
εαβ permutation symbol
ζ thickness coordinate
ηα membrane strain vectors
Θ global effective angles tensor
θ global effective angles vector
λ second Lamé constant
μ first Lamé constant
ν Poisson’s ratio
ξα surface coordinates
Π strain energy density function
ρ arbitrary material property
σα stress-resultant vectors
thσα thermal stress-resultant vectors
τα stress vectors
Ψα strain-displacement tensors
Ω spin tensor
ω spin vector
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Here, ρ demonstrates any material property and f is the volume frac-
tion. The subscripts c and m denote the ceramic and metal. The volume
fraction has the following form:

= −

= +( )
f ζ f

f ζ

( ) 1

( )

m c

c
ζ
h

n1
2 (2)

With substituting Eq. (2) in Eq. (1), one can write:

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⎛
⎝

−⎛
⎝

+ ⎞
⎠

⎞
⎠

+ ⎛
⎝

+ ⎞
⎠

= + − ⎛
⎝

+ ⎞
⎠

ρ ζ ρ
ζ
h

ρ
ζ
h

ρ ρ ρ
ζ
h

( ) 1 1
2

1
2

( ) 1
2m

n

c

n

m c m

n

(3)

The power index n can take any values between zero and infinity
(1000 or higher value), which represents pure-ceramic and pure-metal
properties, respectively. Fig. 1 depicts the variation of material prop-
erties through the thickness for different values of n. In this paper, E ζ( ),
ν ζ( ) and α ζ( )are module of elasticity, Poisson’s ratio and thermal ex-
pansion coefficient, respectively. These parameters are function of
thickness coordinate and obey the rule of mixture.

3. Kinematical description

In the formulations, tensor notations are utilized. From Greek and
Latin indices are also taken benefit, ranging from 1 to 2 and 1 to 3,
respectively. Keep in mind, summation convention is adopted over re-
peated indices. Fig. 2 shows the geometric and kinematic variables
besides unit vectors in three configurations used in development of the
formulations.

The shell geometry in the reference configuration is given by:

= +
= ∈ ∈ −

= ∈ −

x z a
z ξ e ξ ξ ξ

a ζe ζ h h
, [0 , 1] , [0, 1 ]

, [ /2, /2]

r r r

r
α α

r

r r
1 2 1

3 (4)

In which, h depicts the thickness and ξ ξ ζ{ , , }1 2 are the orthogonal
unit vectors of reference coordinate. The orthogonal unit vectors in
initial configuration are reached, by the subsequent formulas:

=

= ×

=

∥ ∥

×

∥ × ∥

e

e e e

e

o z

z
o o o

o z z

z z

1

2 3 1

3

o

o

o o

o o

,1

,1

,1 ,2

,1 ,2 (5)

Here, zoexpress the initial mapping. Note that = ∂ ∂ξ(·) (·)/α α, . The in-
itial rotation tensor is written based on the reference and initial unit
vectors.

= ⊗Q e eo
i
o

i
r (6)

The shell director vector in initial configuration is given by:

=a Q ao o r (7)

Then, the geometry of shell in initial space is:

= +x z ao o o (8)

The initial deformation gradient tensor and its back-rotated are in
hand by differentiation of xo with respect to xr :

=
= + ⊗
F Q F

F I γ e

o o or

or
α
or

α
r

(9)

In which, I is the identity tensor and initial strain vectors γα
or have

the following definitions:

= + ×
=

= −
=

= + +

γ η k a
η Q η
η z e
k Q k
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α
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α
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α
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and:
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= × − ×

= − ⊗ × − ××
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The effective rotation tensor, based on the Euler–Rodrigues formula,
has the following expression [28,29]:

= + +

= =

=
= ∥ ∥ ∈

( )
Q I h h

h h

skew θ
r θ π

Θ Θ

,

Θ ( )
(0, )

e

r
r

r
r

1 2
2

1
sin( )

2
1
2

sin( / 2)
/ 2

2

(12)

where Θ, θ and r are the tensor, vector and magnitude of global ef-
fective angles. By means of above relations, the total rotation tensor
will be:

=Q Q Qe o (13)

The director spin tensor and vector are found as:

=
=

= + +

= −

skew ω
ω δθ

I h h

h

Ω ( )
Γ

Γ Θ Θ
h

r

2 3
2

3
1 1

2 (14)

Here, the symbol δ is used for the incremental values. The shell geo-
metry in the current configuration is as follows:

= +
= +

=

x z a
z z u

a Qa
o

r (15)

In above relations, uis the global effective displacements vector. The
total gradient of deformation tensor and its back-rotated are calculated
by:

=
= + ⊗

F QF
F I γ e

r

r
α
r

α
r

(16)

where total strain vectors γα
r have the below relations:

n=0.1 n=0.2 n=0.5

5=n1=n n=2

Fig. 1. Variation of material properties through the thickness for different va-
lues of n.
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= + ×
=

= −
=

= +
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α
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α
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and:

=k θΓα
e

α, (18)

Now, the effective deformation gradient tensor is obtained using the
initial and total ones:

= −F FFe o 1 (19)

By defining of:

= +
= ×
= ×
= +

f e γ
g f e
g e f
f e γ

α
or

α
r

α
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or or r

or r or

α
r

α
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α
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(20)

and:

= =−f J e g f J F( · ) , detα
er o

α
r

β
or

β
r o o1

(21)

The back-rotated effective strain vectors are given by:

= −γ f eα
er

α
er

α
r (22)

Incremental form of the total deformation gradient tensor has the
next relation:

= + ⊗
= + ×

= +
= +

δF F Q δγ e
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δη Q δu Z δθ
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α
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in which:

= + + + +
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−

−

h h h θ θ h θ θ

h

h

Z skew z
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α α α α α α
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r
h h

r

α α
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4
2
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1 2
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2

(24)

4. Internal and external virtual work

In current configuration, stresses are presented in terms of effective
Peand total Pform of the first Piola-Kirchhoff and Cauchy T stress
tensor, as follows:

=
=
=

= =
=

−

−

−

P J TF
J F
P JTF

J F J J
P J P F

det

det

e e e T

e e

T

e o

o e o T (25)

Pe and P are expressed with respect to their basic vectors:

= ⊗ = ⊗
= ⊗ = ⊗

P τ e Qτ e
P τ e Qτ e

e e
i
o

i
er

i
o

i
r

i
r

i
r (26)

The back-rotated effective and total stress vectors are related to
each other by:

=τ e g τ( · )α
r

β
r

α
or

β
er

(27)

The internal virtual work per unit volume in the reference co-
ordinate is written as:

= = = + ×P δF J P δF τ δγ τ δη a τ δk: : · · ( )·o e e
α
r

α
r

α
r

α
r r

α
r

α
r (28)

Integrating Eq. (28) through the thickness gives:

∫ = +P δF dζ n δη m δk( : ) · ·α
r

α
r

α
r

α
r

(29)

where nα
r and mα

r represent forces and moments cross-sectional per unit
length of the reference configuration:

∫
∫
=

= ×
n τ dζ

m a τ dζ( )
α
r

α
r

α
r r

α
r

(30)

By collecting these quantities, the vectors of stress-resultants and
corresponding strains are defined:

= ⎧
⎨⎩

⎫
⎬⎭

= ⎧
⎨⎩

⎫
⎬⎭

σ
n
m

ε
η
k

,α
r α

r

α
r α

r α
r

α
r

(31)

Then, one can revise Eq. (29) in next form:

∫ =P δF dζ σ δε( : ) ·α
r

α
r

(32)

The relation between incremental strains and deformations, with

Fig. 2. Geometric and kinematic descriptions.
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the aid of strain-deformation tensors, is as follows:
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δε δd
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α
r

α

α

T

T
α

α
α

α

ξ

ξ

,

,

α

α

(33)

Here, O is the zero tensor. The shell internal virtual work is:

∭ ∬= =δW P δF dζdξ dξ σ δε dξ dξ( : ) ( · )int α
r

α
r

1 2 1 2 (34)

If t̄ tand t̄ bpresent the traction force vectors of the top and bottom
surfaces per unit reference area, respectively, and b̄ depicts the body
force vector per unit reference volume; the external virtual work of the
shell will be:

∬ ∫= + +δW t δx t δx b δx dζ dξ dξ[¯ · ¯ · ( ¯· ) ]ext
t t b b

1 2 (35)

x ̇ by time differentiation of x is available:

= + ×δx δu ω a (36)

External forces and moments per unit reference area, can be shown
in subsequent vectors:

∫
∫

= + +
= × + × + ×

n t t b dζ
m a t a t a b dζ

¯ ¯ ¯ ¯

¯ ¯ ¯ ( ¯)

t b

t t b b (37)

For compaction, the vector of generalized external forces is in-
troduced:

= { }q n
m

¯ ¯
Γ ¯T (38)

The external virtual work per unit reference volume in Eq. (35) is
rewritten as:

∬=δW q δd dξ dξ( ¯· )ext 1 2 (39)

By employing the principle of virtual work, along with the usage of
Eqs. (34) and (39), the next relation is held:

∬ ∬= − = ⇒ − =δW δW δW σ δε dξ dξ q δd dξ dξ0 ( · ) ( ¯· ) 0int ext α
r r

1 2 1 2

(40)

Expressions of σα
r , δεr , q̄ andδd, which are given in Eqs. (31), (33)

and (38), are substituted into Eq. (40). Subsequently, the integration by
parts is performed. After collecting the coefficients of δu and δθ(Γ ) se-
parately and setting them to zero, the following local equilibrium
equations are reached:

+ =
+ × + =
n n

m z n m
¯ 0

¯ 0
α α

α α α α

,

, , (41)

where

= =n Qn m Qm,α α
r

α α
r (42)

On the other hand, by some substitutions and calculations and also
assuming the locally conservation of external load, Eq. (40) lead to the
next tangent bilinear expression:

∬= +δW δd D d δd G d dξ dξ[(Ψ )·( Ψ ) (Δ )·( Δ )]α αβ β α α α 1 2 (43)
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β
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α
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β
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(44)

The sub-matrices of geometric tensors Gα are reported in [30,31].

5. Plane-stress state

It should be noted, the plane-stress condition is applied.

= = +f f γ e(1 )r er r
3 3 33 3 (45)

where γ33 is the strain in thickness direction. Keeping in mind that al-
though γ33 is nonzero, but based on the plane-stress assumption, the
corresponding stress will be zero. In other words:

= =τ τ 0r er
33 33 (46)

Therefore, the energy due to this strain is vanished.

6. Isotropic elastic material

Defining I I IΠ( , , )e e e
1 2 3 as the strain energy function per unit initial

volume for isotropic elastic material while I e
1 , I e

2 , and I e
3 are strain in-

variants, the following descriptions are available:
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Using the hyperelastic neo-Hookean-type material model, strain
energy density function and its strain invariants have the form of [32]:
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The back-rotated effective stress vectors are stated as:

= ∂
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In above equations, μ and λ are Lamé constants, and the next re-
lations are established:

=

=
+

+ −

μ

λ

E
ν

Eν
ν ν

2(1 )

(1 )(1 2 ) (50)

also:

= ×g ε f eα
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by defining the below quantities:
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Eq. (51) leads to:

= + − × +τ μ φ J e ε φ J e γ μγ[ ( ¯ )] ( ¯ )( )α
er e

α
r

αβ
e r

β
er

α
er

3 (53)

The back-rotated total and effective tangent tensors of elastic
moduli are introduced as:
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= =

= = ′ + −

∂
∂

−

∂
∂

C J e g e g C

C φ J g δ μI ε φ J E

( · )( · )

( ¯ ) ( ¯ )

αβ
r τ

γ
o

γ
r

α
or

δ
r

β
or

γδ
er

αβ
er τ

γ
e

β
er

αβ αβ
e r

1

3

α
r

β
r

α
er

β
er (54)

in which:

=E skew e( )r r
3 3 (55)

It should be noticed that δαβ is the Kronecker delta and εαβ shows the
permutation symbol. It means:

= = = =
= = = − =

δ δ δ δ
ε ε ε ε

1, 0, 0, 1
0, 1, 1, 0

11 12 21 22

11 12 21 22 (56)

Finally, the sub-matrices of stress-strain tensors Dαβ are in hand:

∫ ∫

∫ ∫

= = −

= = −

∂
∂

∂
∂

∂
∂

∂
∂

C dζ C A dζ

A C dζ A C A dζ

,

,

n
η αβ

r n
k αβ

r r

m
η

r
αβ
r m

k
r

αβ
r r

α
r

β
r

α
r

β
r

α
r

β
r

α
r

β
r (57)

where

=A skew a( )r r (58)

7. Finite element discretization

In this study, a second-order isoparametric triangular shell element
is introduced. The element is six-noded, and as depicted in Fig. 3, all six
independent degrees of freedom are assigned per node. The element
shape functions for each node are given by:

= − = − = −
= = =

N ξ ξ N ξ ξ N ξ ξ
N ξ ξ N ξ ξ N ξ ξ
(2 1), (2 1), (2 1)

4 , 4 , 4
1 3 3 2 1 1 3 2 2

4 3 1 5 1 2 6 2 3 (59)

If N is the matrix of interpolation functions due to element, the
relation between nodal pG and elemental d global deformations will be:

=d NpG (60)

Based on Eq. (40), the global vector of the element secant residual
force is computed as:

∬= − −P N q N σ N σ dξ dξ[ ¯ (Ψ ) (Ψ ) ]G
T

α
T

α
r

α
T th

α
r

1 2 (61)

Superscript th indicates to thermal components. By taking ad-
vantage of Eq. (43), the global tangent stiffness matrix of the element is
also obtained:

∬= +k N D N N G N dξ dξ[(Ψ ) (Ψ ) (Δ ) (Δ )]G α
T

αβ β α
T

α α 1 2 (62)

Note, the corresponding components to the drilling degrees of
freedom in the element local stiffness matrix is added with an artificial
stiffness of Eh3[33,34]. The transformation matrix needed for this ac-
tion, has the form of:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

R

Q
Q

Q O
Q

Q
Q

Q
Q

Q
O Q

Q
Q (63)

According to the common rule, the relation between local and
global element stiffness matrices is written by:

=
=

k R k R
k Rk R

L
T

G

G L
T (64)

8. Numerical studies

Based on the aforementioned formulations, a code is written in
FORTRAN language. It is worth mentioning, three in-plane within nine
through-the-thickness Gauss integration points are used for the element
stiffness matrix and residual force vector computations. In this study,
the governing nonlinear equations are solved by using the Generalized
Displacement Control Method (GDCM) [20]. The numerical studies are
briefly stated in the following lines. Solving the first two problems is
aimed to validate and versatile the present formulation via comparison
with the others published literature. The last two shells are designed
and reported to show the capability of authors’method in analysis of FG
shells. Moreover, they can be utilized as benchmark problems for the
future studies. Keeping in mind that in the following first two problems,
the lower and upper surfaces, and in the next two problems, the inner
and outer surfaces, are metal-rich and ceramic-rich, respectively.

8.1. Shallow cylindrical panel

Fig. 4 shows a shallow cylindrical shell subjected to a point load. As
it is seen, only one-fourth of the shell is discretized due to symmetry.
The material data are:

= × =
= × =

Zirconium Oxide ZrO E N mm υ
Aluminium Al E N mm υ

( ): 151 10 / , 0.3
( ) : 70 10 / , 0.3

c c

m m

2
3 2

3 2

At first, a convergence study is performed with different mesh of
× ×2 2 2, × ×2 4 4, × ×2 8 8 and × ×2 16 16 elements. The power

index is assumed to be =n 1. The shell thickness is 12.7mm. The re-
sults for deflection at the point load are inserted in Table 1.

Based on the aforementioned convergence study, the mesh pattern
of × ×2 8 8 is employed for further investigation. The cases considered
are thickness of 6.35 mm and 12.7 mm with the maximum point load of

= ×P N2 105 and = ×P N4 105 , respectively. It should be noted that
the panel is hinged at the straight edges and free at curved ones.

The load-deflection curves of this structure for the point under the
load are depicted in Fig. 5. Moreover, the results reported by Arciniega
and Reddy [35] are also given for the comparison purpose. According to
the obtained outcomes, excellent agreement is observed between the
results.

8.2. Thermal buckling of annular plate

Buckling of annular plate is analyzed under uniform heat
=TΔ 1400 K. The material properties used in this study are:

xu

yu
zu

x

y

z

Fig. 3. Six-noded triangular shell element and nodal degrees of freedom.
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= × = ×

=
= ×

= × =

− −

− −

Silicon Nitride Si N E N cm α K

ν
Stainless Steel SS E N cm

α K ν

( ): 322 10 / , 7.5 10 ,

0.3
( 304): 208 10 / ,

15.3 10 , 0.3

c c

c

m

m m

3 4
5 2 6 1

5 2

6 1

Two parameters are introduced in the following line:

= =δ thickness h outer radius R β inner radius R

outer radius R

( )/ ( ), ( )

/ ( )
o i

o

It should be noted that the mesh pattern used for the half of the
plate is × ×2 4 20 and × ×2 14 20 for =β 0.6 and =β 0.1, respectively.
Fig. 6 shows this model discretization.

In the case (I), the analysis is performed for different values of β.
Other geometric data are:

= =R δ100 cm, 0.03o

For the case (II), the critical thermal buckling load is evaluated with
different amounts of δ. The geometry characteristics are as follows:

= =R β100 cm, 0.5o

Verification of the formulation is demonstrated via comparison with
the analytical results reported by Ghiasian et al. [13] in Table 2. Note,
the solutions are corresponded to =n 1 and the tabulated data are
picked from the graphs.

As it is seen, the results are very close. In Fig. 7, the load-deflection
curves for point A of cases (I) and (II), are given for different values of β
and δ , respectively. It is worth mentioning that two out of plane dis-
turbance point loads 100 N are used.

Responses show that the thermal buckling load increases as the
values of β and δ become higher. This is because raising the values of δ
andβ results in stiffer structure since both inner and outer edges are
clamped.

8.3. Cylindrical shell

Fig. 8 exhibits a cylindrical shell with fixed ends subjected to the
thermal, mechanical and thermo-mechanical loading. The geometric
data are =R 100 cm, =L 100 cm and =h 1 cm, denoting radius, length
and thickness of the shell, respectively. Next values are the shell ma-
terial properties:

= ×

= × =
= ×

= × =

− −

− −

Aluminium Oxide Al O E

α ν
Nickel Ni E

α ν

( ): 380 10 N/cm ,

7.4 10 K , 0.3
( ) : 205 10 N/cm ,

12.5 10 K , 0.3

c

c c

m

m m

2 3
5 2

6 1

5 2

6 1

Three cases are considered for this problem. At first, thermal
buckling and post-buckling behavior of the shell is investigated in the
thermal environment of =TΔ 2000 K. In order to trace the post-buck-
ling equilibrium path, two opposite outward diametrical point loads
with the value of N4000 are applied as perturbation loads. The re-
sponses are obtained at point A and reported in Fig. 9(a). Secondly, this
structure is studied under outward pressure load of =p 50000 N/cm2.
The load-displacement curves of point A are depicted in Fig. 9(b). Last
but not least, the nonlinear analysis of cylindrical shell is carried out
under thermo-mechanical loading. Thermal change is =T KΔ 2000 and
the applied pressure load of =p 50000 N/cm2 is assumed. The obtained
results are given for point A in Fig. 9(c). It is worth mentioning, a mesh
of × ×2 16 48 triangular shell element is used to model one octant of
the structure. As it is predicted, the thermal loading effects on responses
rise when n grows. In other words, as the volume fraction index n in-
creases, the thermal buckling occurs at the lower temperature levels,
which arises from the fact that by increasing n, the material properties
and thermal coefficient close to fully metal behavior.

8.4. Conical shell

In this example, the behavior of a truncated conical shell is in-
vestigated. As it is shown in Fig. 10, the shell is clamped at both edges.

The geometric characteristics are inserted in Table 3.

L=508 mm
R=2540 mm 0.1 rad

P
Hinged

Hinged

Fig. 4. Shallow cylindrical shell under point load.

Table 1
Convergence study for shallow panel.

Mesh pattern × ×2 2 2 × ×2 4 4 × ×2 8 8 × ×2 16 16

Deflection (mm) 39.81 40.57 40.84 40.88
Error (%) 2.62 0.76 0.10 0.00
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Fig. 5. Load-deflection curves of shallow panel, (a) Thickness of 12.7 mm, (b) Thickness of 6.35mm.
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The material properties are as follows:

= ×

= × =
= ×

= × =

− −

− −

Aluminium Oxide Al O E

α ν
Aluminium Al E

α ν

( ): 380 10 N/cm ,

7.4 10 K , 0.3
( ) : 70 10 N/cm ,

23 10 K , 0.3

c

c c

m

m m

2 3
5 2

6 1

5 2

6 1

Firstly, a temperature change of =T KΔ 1000 is assumed to be ap-
plied. To trace the secondary equilibrium path, it is necessary to perturb
the structure. It is done by applying two opposite outward diametrical
point loads of 4000 N. The responses of the thermal buckling are plotted
in Fig. 11(a). In second study, the conical shell is considered to be
subjected to pressure load of =p 10000 N/cm2. Obtained solutions are
presented in terms of load-displacement curves in Fig. 11(b). Finally,
the nonlinear behavior of current structure is investigated under the
thermo-mechanical loading. The temperature field employed here is

=TΔ 1000 K accompanying by a pressure load of =p 10000 N/cm2.

Fig. 11(c) denotes the results due to the thermo-mechanical loading.
Note that all the responses are obtained for the point A. It is worth
mentioning that only one-fourth of the structure is modeled by

× ×2 16 32 triangular element, due to the shell symmetry. It is seen
that the buckling temperature increases with decrease of n. In the
thermal loading case, the structure displays a limit point, which is
followed by a snap-through behavior. This unstable part gradually
vanishes as the value of n raises.

Clamped

Clamped

Clamped

ClampedR i

R o

R i

R o
A A

(b)(a)
Fig. 6. Annular plate, (a) =β 0.6, (b) =β 0.1

Table 2
Comparison of the critical thermal load T(Δ )cr with various geometric char-
acterizations.

case (I) β

0.1 0.2 0.3 0.4 0.5 0.6

Present study Fig. 7 (K) 223 298 377 501 725 1107
Ghiasian et al. [13] (K) 227 283 376 510 724 1109

case (II) δ

0.01 0.015 0.02 0.025 0.03 0.035

Present study Fig. 7 (K) 80 179 319 503 717 967
Ghiasian et al. [13] (K) 84 190 332 514 729 981

Fig. 7. Load-deflection curves of annular plate with various geometric data, (a) case(I), (b) case(II)

Clamped
Clamped

R

L

A

Fig. 8. Clamped cylindrical shell
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9. Conclusions

Studies on nonlinear analysis of various and arbitrary FG shells
under thermo-mechanical loading are limited in the available litera-
ture. In the cases with strong nonlinearity, the linear eigenvalue
buckling analysis estimated much more or less the true buckling tem-
perature values. To reach more exact predictions and fill the gap, the

nonlinear FE based analysis of arbitrary FG shells subjected to thermo-
mechanical loading was performed in this article. A second-order and
six-noded isoparametric triangular shell element was developed for the
general purposes. Each element’s node had all six independent degrees
of freedom in space. It should be mentioned that the material properties
were expressed by Voigt’s model. After performing extensive numerical
studies, some new outcomes were found.

1. Pre-buckling (primary) path was almost linear, while the post-
buckling (secondary) path had a nonlinear nature.

2. Additional disturbance load, like a geometric imperfection, led to
reduction of the buckling temperature and vice versa.

3. In FG shallow cylindrical panel, reduction of shell thickness results
in a more complex equilibrium path, including snap-through and
snap-back responses.

4. The thermal buckling load of annular plate increases as the values of
β and δgrows. This is owing to the fact that raising the values of
δandβresults in stiffer structure.

5. In all numerical studies, it is observed that structure behaves stiffer
as the volume fraction index n decreases.
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Fig. 9. Load-displacement curves of cylindrical shell at point A, (a) Thermal load, (b) Mechanical load, (c) Thermo-mechanical load

°

Fig. 10. Truncated conical shell

Table 3
Geometric characteristics of truncated conical shell.

Radius of large span R Radius of small span R Length L Thickness h

150 cm 100 cm 100 cm 1 cm
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Appendix A. Supplementary material

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.engstruct.2018.09.084.
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Fig. 11. Load-displacement curves of conical shell at point A, (a) Thermal load, (b) Mechanical load, (c) Thermo-mechanical load
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