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A B S T R A C T

A new dynamic model based on the shell theory is presented to investigate the vibration behavior of a rotating
composite laminated blade with a pre-twisted angle. The effects of the Coriolis and centrifugal forces due to the
rotation motion of the blade are considered in the formulation. Based on the Rayleigh-Ritz method and con-
tinuous algebraic polynomial functions satisfying the boundary conditions of a cantilever, the natural fre-
quencies and mode shapes of a rotating pre-twisted blade are obtained. The convergence analysis is performed
and the accuracy of the proposed model is verified by comparing the non-dimensional frequencies obtained by
the present method with those in literature. The frequency loci veering and crossing phenomena along with the
corresponding mode shape variations are presented and discussed in detail. A comprehensive parameter in-
vestigation of the effects of aspect ratio, pre-twisted angle, stagger angle, rotation velocity and hub radius on
variations of the modal characteristics of the blade is conducted. It is demonstrated through the results of this
paper that the developed model is effective to evaluate the dynamic behavior of rotating pre-twisted blades,
which would be useful for improvement in design and optimization of the material and geometry dimension of
the blades.

1. Introduction

Rotating structures are widely used as key components in various
engineering applications, such as blades of turbines, helicopters and
aircraft engines. The vibration or modal characteristics of blades
change significantly when the structures undergo overall motions. For
example, centrifugal inertia forces lead to the stretching of the struc-
tures and increase their bending stiffness, while Coriolis effects produce
vibration couplings between different vibration modes and generate
complex vibration mode shapes [1]. Analytical or semi-analytical
methods are desirable to understand and identify the dynamic prop-
erties of blades with good accuracy at low computational costs.

Beam models have extensively been adopted to analyze the dynamic
response of a rotating blade in many literatures. Such idealization could
provide accurate dynamic characteristics for most rotating structures.
For example, Yao et al. [2,3] treated a rotating blade as a pre-twisted,
presetting and thin-walled rotating cantilever beam under varying ro-
tating speed. The nonlinear dynamic responses of the rotating blade
under high-temperature supersonic gas flow was investigated. Lee et al.
[4,5] studied the free vibration of a beam rotating at a constant angular
velocity. They revealed the effects of the setting angle on the natural

frequencies of pre-twisted beams. Liu and Ren [6] analyzed the dy-
namic characteristics of a wind turbine rotor blade by regarding it as a
composite anisotropic thin-walled closed-section beam. Yoo et al. [7]
used the Rayleigh-Ritz method to study the vibration characteristics of
a rotating pre-twisted blade with a concentrated mass. Librescu et al.
[8–10] investigated the modeling and free vibration of pre-twisted ro-
tating blades made of functionally graded materials (FGMs) and oper-
ating in a high-temperature field. The blade is modeled as a thin-walled
beam that incorporates the pre-twisted effects. Lin and Chen [11] in-
vestigated the stability problem of spinning pre-twisted sandwich
beams subjected to periodic axial load. Other previous studies [12,13]
primarily dealt with the free vibration characteristics of twisted ro-
tating beams, which also included the effect of transverse shear and
rotary inertia. Hajianmaleki and Qatu [14,15] presented a review of
composite beam modeling approach for analyzing anisotropic blades.

However, the beam models are not suitable for blades with low
aspect ratios and high frequencies which are widely encountered in real
engineering practices. Besides, the beam models are unable to predict
the blade vibrational mode associated with the chordwise bending and
the coupled spanwise and chordwise bending [16]. Hence, attempts
have been made to formulate the dynamic behavior of rotating blades
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with the plate theory. By applying the Rayleigh-Ritz method, Yoo et al.
[17,18] derived a set of linear equations of motion for the modal ana-
lysis of rotating cantilevered plates. The frequency loci veering and
crossing phenomena along with the corresponding mode shape varia-
tions were observed and discussed. Fang et al. [19] investigated the free
vibration of rotating rectangular Mindlin plates with variable thickness
by using the Chebyshev–Ritz method. Mindlin plates theory has also
been applied for the analysis of rotating thick plates in [20,21], which
can improve the accuracy of the modal analysis by considering the ef-
fects of shear deformation and rotary inertia. Hashemi et al. [22] de-
veloped a finite element formulation for the vibration analysis of ro-
tating thick plates by considering Coriolis effects and couplings
between in-plane and out-plane deformations. Modal analysis of a ro-
tating thin plate was conducted by Zhao et al. [23] through the use of
the thin plate elements described by the absolute nodal coordinate
formulation. Sun et al. [24] developed a dynamic model based on the
plate theory to investigate the vibration behavior of a rotating blade.
Two types of excitation forces were considered to study the peak re-
ductions at resonances with damping effect. Li and Zhang [25] devel-
oped a dynamic model of a functionally graded rectangular plate un-
dergoing large overall motions. The effects of dimensionless parameters
such as hub radius ratio, aspect ratio, and volume fraction exponent on
the variations of the natural frequencies were investigated

When the influences of curvature and pre-twisted angle are con-
sidered, the shell models are more appropriate and accurate for rotating
blades. Jang and Kim [26] experimentally showed the curvature effect
on the dynamic response of composite airfoils. Sun et al. [27,28] es-
tablished a dynamic model for a pre-twisted rotating blade mounted at
an arbitrary stagger angle by applying the general shell theory. The
rotational velocity was considered in their model to study the eigen-
frequencies and damping properties of the pre-twisted rotating blade.
Sinha [29] modeled a twisted airfoil as a thin shell with suitable camber
radius of the curved surface. The numerical results were directly ap-
plicable to determine the static and running frequencies of typical
composite blades used in the fan module of an aeroengine. Kee and Kim
[30] derived a general formulation for an initially twisted rotating shell
structures including the effect of centrifugal force and Coriolis accel-
eration. The effects of the curving and twisting on the vibrations of a
rotating blade during complex rotation were studied by Gulyaev and
Khudolii [31]. It was found that these geometrical factors may cause
additional resonant vibrations. Zhang [32] used a wave propagation
approach to study the frequency of rotating composite cylindrical
shells. The effects of different shell parameters and boundary conditions
on the frequencies were investigated.

To the author’s knowledge, there is a lack of research works devoted
to vibration analysis of a rotating blade made up of composite lami-
nated materials based on the shell theory. In this paper, a novel
structural model is developed to study the free vibration characteristics
of a pre-twisted composite laminated blade mounted at an arbitrary
stagger angle. The shell theory is applied to derive the equations for the
modal analysis by considering the effects of centrifugal and Coriolis.
The accuracy of the proposed model is verified against the results in
literature and from ANSYS. A comprehensive parameter investigation
of the effects of the aspect ratio, pre-twisted angle, stagger angle, hub
radius on the variations of the modal characteristics is performed.
Frequency loci veering and crossing phenomena are observed and dis-
cussed in detail.

It is demonstrated through the results of this paper that the devel-
oped model is effective to evaluate the dynamic behavior of rotating
pre-twisted blades, which would be useful for the design and optimi-
zation of the blades.

2. Mathematical formulation

2.1. Basic equations

A composite laminated blade with a uniform mass distribution is
modeled as a pre-twisted curved panel which is clamped to a rigid disk
with a radius R and mounted with setting angle φ, as shown in Fig. 1.
The geometric parameters of the blade are represented by the span
length L, the chord length b, the thickness h and the angular rotating
velocity about the rigid disk axis Ω.

In this paper, two coordinate systems are established. One is the
Cartesian coordinate system XYZ with the unit vectors i i i( , , )X Y Z ,
which is attached to the central line of the disk. The other is the xyz
coordinate system with the unit vectors i i i( , , )x y z , where the origin lies
at the root of the mid-surface of the blade. The x-axis is parallel to the
X-axis, the y-axes can be obtained by rotating around the x-axis with the
setting angle φ starting from the Y-axis direction. θ is the twist angle at
the free end of the blade.

=θ x qx( ) (1)

where q is the uniform varying rate of the twist angle.
To describe the twisted surface of the blade, an orthogonal co-

ordinate system oxηζ can be defined [33,34]. The η-axis is tangent to the
blade surface, rotating at a constant twist rate ′ =θ θ L/ , and is always
orthogonal to the x-axis. The ζ-axis is the normal vector to blade sur-
face, which is the cross product of the x and ζ axis. Hence, the position

Fig. 1. Configuration of a composite laminated pre-twisted blade model.
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vector x ηr ( , )0 of an arbitrary point in the mid-surface of the pre-twisted
blade in xη-coordinate can be determined by
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The corresponding unit vectors e e e( , , )x η ζ0 0 0 along each ortho-
gonal coordinate can be expressed as
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where A is the Lame parameters of the middle surface in the x direction
[35], given by

= = +A r q η| | 1x0,
2 2 (4)

Eq. (2) can be used to describe the deformation field on the blade
under the condition of small blade thickness [33]. However, this sim-
plification will influence the accuracy to some extent, especially at large
twist angles or large thickness [27]. An arbitrary material point in the
volume of the pre-twisted blade can be expressed by a position vector r1
with including the normal axis ζ
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The displacement vector r2 can be written as
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An arbitrary point of the blade after deformation can be expressed
by the position vector r
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2.2. Strain energy

The displacement field of the pre-twisted blade can be expressed as
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∂

∂
u x η ζ t u x η t ζ

w x η t
x

( , , , ) ( , , )
( , , )

0 (8)

= −
∂

∂
v x η ζ t v x η t ζ

w x η t
η

( , , , ) ( , , )
( , , )

0
(9)

=w x η ζ t w x η t( , , , ) ( , , )0 (10)

where u, v and w are the displacements of points on the middle surface
of the curved panel in x , η and ζ direction.

The strain components εxx , εηη and γxη at an arbitrary point of the
curved panel are corresponding to the middle surface strains εx0, εη0 and

γxη0, and to the changes in the curvature and torsion of the middle
surface kx, kη and kxη by the following relations

= +ε ε ζkx x x0 (11)

= +ε ε ζkη η η0 (12)

= +γ γ ζkxη xη xη0 (13)

where the strain-displacement relationships at the middle surface on a
curved panel are expressed as [36]
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where Rx and Rη are the radii of curvature in x and η direction, re-
spectively, and Rxη is the radius of torsion. These coefficients can be
derived based on the differential geometry theory [37]
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The changes in the curvature and torsion of the reference surface are
given as
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The stress-strain relationship of the symmetric cross-ply laminated
composite panel can be obtained [38]
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where k donates the layer number.
The coefficients of material tensor Qij are given by

Table 1
Comparison of the first five non-dimensional frequencies.

Mode Present method Ref [30]

1 5.25 5.26
2 8.62 8.61
3 25.08 25.07
4 28.44 28.46
5 43.87 43.84

Table 2
Comparison of the first five non-dimensional frequencies.

Mode × ×3 5 5 × ×3 6 6 × ×3 7 7

1 3.3507 3.3638 3.3627
2 19.735 19.933 19.896
3 50.027 50.132 50.164
4 50.516 51.021 51.115
5 58.162 58.256 58.249
6 75.533 75.6843 75.6531

Table 3
Comparison of the first five non-dimensional frequencies.

Mode Present method ANSYS

1 9.8810 9.8811
2 25.103 25.105
3 60.589 60.583
4 69.597 69.592
5 90.339 90.334
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where E1 and E2 represent the Young’s Modulus in the two in-plane
directions, υ12 and υ21 are the associated with the two in-plane Poisson
ratios, and G12 is the in-plane shear modulus.

The extensional stiffness Aij, bending stiffness Dij, and bending-ex-
tensional coupling stiffnesses are defined in terms of Qij as
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By assuming null contributions of transverse shear and through-
thickness normal deformation to the strain energy, the strain energy is

defined as
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Fig. 2. Mode shapes of the pre-twisted blade, (a) first order and (b) second order and (c) third order mode shape by the present method (Matlab); (d) first order and
(e) second order and (f) third order mode shape by ANSYS.

Fig. 3. Mode shapes of the pre-twisted blade, (a) fourth order and (b) fifth order and (c) sixth order mode shape by the present method (Matlab); (d) fourth order and
(e) fifth order and (f) sixth order mode shape by ANSYS.
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2.3. Potential energy of centrifugal force

It is known that under high speed rotation the pre-twisted blade will
be affected by centrifugal force and cause the centrifugal stiffening
effect. This factor should be included when the vibration characteristics
of the blade are analyzed. The coordinate system transformation re-
lationship between the xyz-coordinate and XYZ-coordinate is given by
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Then, the angular velocity Ω in the xyz-coordinate of the curved
panel is expressed as
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In the above equation, the width component of the angular velocity
φΩcos produces centrifugal forces in the longitudinal direction, and the

thickness component − φΩsin generates a torque about the longitudinal
axis, which has a tendency to reduce the twist angle θ [16,29]. The
corresponding centrifugal force components Fc of per unit volume in the
blade is given by
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in which = +ψ φ θ is the sum of setting angle and the twist angle,
respectively.

The rotation of the blade about the axial direction results in mem-
brane stresses, which are essentially acting in the radial direction (the
width direction and the length direction of the blade). Projecting those
force components into the e e e( )x η ζ0 0 0 coordinates, the new cen-
trifugal force components in the orthogonal coordinate system are
given [27]

Fig. 4. First six non-dimensional frequencies of the blade versus rotation ve-
locity. ( =δ 1, =σ 0, =λ 0.01, = ∘θ  0 and = ∘φ  0 ).

Fig. 5. Mode shapes of the pre-twisted blade, (a) third order and (b) fourth mode with =γ 4; (c) third mode and (d) fourth order mode shapes with =γ 8.
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Fig. 6. First six nodal line patterns of the pre-twisted
blade with =γ 4.

Fig. 7. First six nodal line patterns of the pre-twisted
blade with =γ 8.

Fig. 8. Variation of the nodal lines of the third and fourth mode shapes versus non-dimensional rotation velocity.
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Similar to derivation in Eq. (24), we assume null transverse shear
and normal strains. Consequently, the centrifugal potential energy can
be written as
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where the longitudinal component N1 of the centrifugal forces results in
stiffening of the blade, and the width component N2 leads to softness of
the blade by untwisting the cross-section of the blade. εcs and εcc are the
corresponding displacement components caused by the centrifugal
force components N1 and N2, which are expressed as [24]
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The total potential energy can be written as

= +U U US CF (32)

2.4. Kinetic energy

The velocity Vr of a point due to the rotation can be derived as [27]

Fig. 9. First six non-dimensional frequencies of the pre-twisted blade versus
non-dimensional rotation velocity with = ∘θ  45 .

Fig. 10. Mode shapes of the pre-twisted blade, (a) second order and (b) third mode and (c) fourth order mode shapes with =γ 12; (d) second order and (e) third mode
and (f) fourth order mode shapes with =γ 14; (g) second order and (h) third mode and (i) fourth order mode shapes with =γ 19.
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The kinetic energy of the blade is obtained as follows
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The virtual work done by the external transverse force is written as

∫=δW F δw dV
V w (37)

where Fw is the external harmonic force normal to the blade surface.
Applying the Hamilton’s principle, the variational form of the total

energy can be derived as

∫ − − + =δ T U U W dt( ) 0
t

t
S CF

1

2

(38)

2.5. Frequency solving

In this paper, numerical simulations are employed to study the free
vibration of a pre-twisted blade. In order to ensure the safety and ser-
viceability during the service life of the blade, it is required to know the
natural frequencies of the blade to avoid resonance with external

Fig. 11. Variation of the nodal line of the third mode shape with an increase of rotation velocity.

Fig. 12. First six non-dimensional frequencies versus twist angle for the pre-twisted blade, (a) =γ 0; (b) =γ 8.
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excitation frequencies. The Rayleigh-Ritz method is employed to de-
termine the natural frequencies and mode shapes of the pre-twisted
composite laminated blade. The expressions of the displacements are
assumed by the following forms

=u x η t U x η e( , , ) ( , ) iωt (39)

=v x η t V x η e( , , ) ( , ) iωt (40)

=w x η t W x η e( , , ) ( , ) iωt (41)

where ω is the natural frequency of the pre-twisted blade. The al-
gebraic polynomial functionsU x η( , ), V x η( , ) and W x η( , ) represent the
mode shapes and can guarantee convergence to the exact solution as
the number of terms increases [39]. Besides the mode shapes should be
satisfied the geometric boundary conditions of a cantilever, i.e., one
edge is clamped and the other three edges are free. Hence, the mode
shapes are expended as

∑ ∑=
= =

U ξ χ A ξ χ( , )
i

I

j

J

ij
i j

1 0 (42)

∑ ∑=
= =

V ξ χ B ξ χ( , )
k

K

l

L

kl
k l

1 0 (43)

∑ ∑=
= =

W ξ χ C ξ χ( , )
m

M

n

N

mn
m n

2 0 (44)

where =ξ x
L and =χ η

b
2 are the dimensionless coefficients. Aij, Bkl and

Cmn are undetermined coefficients. I J( , ), K L( , ) and M N( , ) are the
number of the polynomial expansion, which must be selected with care
to achieve the required accuracy. It should be stated that the Rayleigh-
Ritz method requires satisfaction of geometric boundary conditions.
The indices in Eqs. (42)–(44) begin with =i 1, =k 1 and =m 2 can
ensure satisfaction of the clamped boundary conditions

= = = =∂
∂( )u v w 0w

x at =ξ 0 for all terms of the polynomials [38,39].
Substituting Eqs. (21)–(23) into Eq. (24) and respectively, one can

obtain the maximum kinetic energy and the maximum potential energy
by setting =t 0. Then the Rayleigh-Ritz method is applied to achieve
the following derivations.

∂ −
∂

= = … = …T U
A

i I j J( ) 0, ( 1, ; 1, )
ij

max max

(45)

∂ −
∂

= = … = …T U
B

k K l L( ) 0, ( 1, ; 1, )
kl

max max

(46)

∂ −
∂

= = … = …T U
C

m M n N( ) 0, ( 1, ; 1, )
mn

max max

(47)

The solution of the above equations can be described by

− =ωK M X F( )[ ]2 (48)

where vector = U V WX[ ] [ ]ij kl mn
T , K and M are the stiffness and

mass matrices, respectively. In the case of free vibration, the external
force is assumed to be zero, =F 0. But the Coriolis effects are still in-
cluded, leading to a complex eigenvalue problem. The generalized ei-
genvalues (natural frequencies) can be obtained by setting the coeffi-
cient matrix of Equation to be zero, and the corresponding mode shapes
can be obtained by substituting the eigenvector X[ ] back into Eqs.
(42)–(44).

All the numerical results are presented in dimensionless forms as

⎜ ⎟ ⎜ ⎟= = = = ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

δ L
b

σ R
L

λ h
L

γ
ρL h
D

μ ω
ρL h
D

, , , Ω ,
4

11

1/2 4

11

1/2

(49)

where = −D E h υ υ/12(1 )11 1
3

12 21 . δ , λ and ϑ donate the aspect ratio,
thickness ratio and hub radius ratio of the composite laminated blade,
respectively. μ and γ represent the dimensionless natural frequency and
rotation speed.

3. Numerical results

3.1. Convergence and comparison study

The validity of the present modeling method is verified by com-
paring the first six non-dimensional frequencies obtained by the de-
veloped model with those in literature [30]. The same material prop-
erties as those in reference [30] are adopted. The corresponding
comparison results are shown in Table 1. It can be found that the lowest
six non-dimensional frequencies obtained in this study are in good
agreement with those in literature.

The results of convergence study are given in Table 2. The number
of terms chosen for components of the displacements in ξ-direction and
χ-direction is the same [39]. It is found that when the number of terms
considered in the numerical calculation is more than ×6 6 for each
component of the displacements U , V and W , a consistent convergence
can be observed. Increasing the number of the mode functions will
multiply the computational time with little improvement in accuracy.

Fig. 13. First six non-dimensional frequencies versus stagger angle for the blade
with =γ 10.

Fig. 14. First six non-dimensional frequencies versus aspect ratio for the blade
with =γ 10.
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Hence, × ×3 6 6 mode functions are employed in the following ana-
lysis.

The first six non-dimensional frequencies and corresponding mode
shapes are compared with the numerical results of the finite element
method based on ANSYS. The dimensional parameters and material
properties of the symmetric cross-ply composite laminated blade are
selected as =δ 1, =ϑ 0, =λ 0.01, = ∘θ  0 , = ∘φ  0 , =ρ kg m1700 / 3,

= ×E N m1.4 10 /1
11 2, = ×E N m9.1 10 /2

9 2, = ×G N m7.2 10 /12
9 2,

=υ 0.212 and =υ 0.321 . The cross-ply composites are made of six layers
(0/90/0/0/90/0)s and all layers have the same thickness [38]. The
comparison of the first six non-dimensional frequencies are shown in
Table 3. Figs. 2 and 3 show the first six mode shapes of the pre-twisted
composite laminated blade. It can be observed that the first and third
modes are the first two bending modes, the second and fourth modes

Fig. 15. Nodal lines of the first six mode shapes for
the blade with aspect ratio =δ 0.5.

Fig. 16. Nodal lines of the first six mode shapes for
the blade with aspect ratio =δ 1.
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are the first two torsional modes. The other two modes are coupled
bending and torsional modes. A good agreement of the first six mode
shapes can also be found. The aforementioned comparison and con-
vergence studies demonstrate the validity of the present modeling
method.

3.2. Free vibration of the composite laminated blade

In this section, the effects of different parameters on the free vi-
brations of the composite laminated pre-twisted blade are studied. The
parameters and other information of the blade are the same as those in
the last comparison case in Section 3.1. Fig. 4 shows the corresponding
first six non-dimensional frequencies of the rotating blade versus the
non-dimensional rotation velocity. It is observed from Fig. 4 that all the
non-dimensional frequencies increase as the rotation velocity increases.

This is attributed to the effect of centrifugal force, which increases the
bending stiffness as the rotation velocity increases.

It is worth noting that the frequency loci veering phenomenon
which was discussed by Leissa [40] for rotating structures can be ob-
served from Fig. 4. The third and fourth frequencies approach each
other and then veer away with increasing of the rotation velocity. Fig. 5
indicates the corresponding third and fourth mode shapes of the com-
posite laminated blade with different rotation velocities. Fig. 5(a) and
(b) respectively show the third mode shape for the non-dimensional
rotation velocity =γ 4 and =γ 8, respectively. Fig. 5(c) and (d) re-
present the fourth mode shape for the non-dimensional rotation velo-
city =γ 4 and =γ 8, respectively. It can be observed from Fig. 5 that
the third mode of the blade is dominated by bending vibration and the
fourth mode is dominated by torsional vibration. However, when =γ 8
the third mode changes from the bending dominated mode into the
torsional dominated mode, while the fourth mode becomes the bending
dominated mode. This is attributed to that the centrifugal forces have a
greater influence on the bending dominated mode than the torsional
dominated mode. Therefore, the frequencies corresponding to the
bending dominated mode increase faster than those corresponding to
the torsional dominated mode [23]. The switching shapes of the third
and fourth modes shown in Fig. 5 verify the associated frequency loci
veering phenomenon shown in Fig. 4.

The frequency loci veering phenomenon can be further explained
according to the nodal line patterns of the frequencies loci. Figs. 6 and 7
demonstrate the corresponding first six nodal line patterns of the
composite laminated blade for =γ 4 and =γ 8, respectively. It can be
observed that the nodal line patterns of the third and fourth modes
exchange each other. Herein the critical non-dimensional rotation ve-
locity is =γ 6.2 as shown in Fig. 8. The variation of the nodal lines with
the non-dimensional rotation velocity for the third and fourth modes
are displayed in Fig. 8. It is obvious that the mode switching occurs
continuously and all the modal lines of the two mode shapes pass
through two fix points with an increase of rotation velocity. A similar
phenomenon was reported by Yoo et al. [1].

The effect of pre-twisted angle on the frequency of the pre-twisted
composite laminated blade is considered herein. Fig. 9 indicates the
first six non-dimensional frequencies of the rotating blade versus the

Fig. 17. Nodal lines of the first six mode shapes for the blade with aspect ratio =δ 3.

Fig. 18. First six non-dimensional frequencies versus thickness ratio for the
blade with =γ 6.
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non-dimensional rotation velocity for pre-twisted angle = ∘θ  45 . It is
found that the frequency veering phenomenon comes up between the
second, third and fourth modes. The third mode firstly exchanges with
the second mode when =γ 14, then exchanges its mode with the fourth
mode when =γ 18. Fig. 10 shows the corresponding mode shapes in
detail. Fig. 10(a–c) show the second, third and fourth mode shapes
when =γ 12. Fig. 10(d–f) and (g–i) show the corresponding mode
shapes for =γ 14 and =γ 19, respectively. The variation of the modal
lines for the third mode versus the non-dimensional rotation velocity is
displayed in Fig. 11. It can be observed that the mode exchanges be-
tween the first torsional mode and the first bending mode occurs in
abrupt. However, the changes of the first bending mode and second
torsional mode are continuous. Fig. 12(a) and (b) show the first six non-
dimensional frequencies versus the twisted angle for =γ 0 and =γ 8,
respectively. It can be observed that the twist angle of the blade does
not have any obvious effects on the first frequency. However, with an
increase of twist angle, the other frequencies increase.

The effect of the stagger angle φ on the first six frequencies of the
blade when =γ 10 is shown in Fig. 13. It indicates that the effect of the
stagger angle on the frequencies is not as significant as the twist angle.
The first six frequencies of the blade increase slightly as the stagger
angle augments.

The effect of the aspect ratio δ on the variations of the frequencies is
shown in Fig. 14. It can be found from the figure that the aspect ratio
has little effect on the first two frequencies. However, the next four
frequencies increase as the aspect ratio increases. Figs. 15–17 respec-
tively show the six mode shapes for =δ 0.5, =δ 1 and =δ 3. It can be
observed that the first two mode shapes for these aspect ratios are the
same, which corresponding to the little change of the first two fre-
quencies versus the aspect ratio shown in Fig. 14. However, the third to
the sixth mode shapes are totally different under these aspect ratios.

The effect of the thickness ratio λ on the variations of the first six
frequencies when =γ 6 is shown in Fig. 18. As expected, the non-di-
mensional frequencies decrease as the thickness ratio increases. Be-
sides, the decreasing rate of frequencies become larger as the order of
the frequency increases. That means the effect of the thickness ratio on
the higher order frequencies is more significant than that on the lower
order ones.

Fig. 19 demonstrates the variations of the first six non-dimensional
frequencies of the blade for hub radius ratio =ϑ 0.2 and =ϑ 1. The
frequencies increase as the rotation velocity increases for these two
cases. However, the rate of increase becomes higher as the hub radius
ratio σ increases. That is because the centrifugal inertia force increases

if the hub radius increases as well as the rotation velocity.

4. Conclusion

In this paper, a dynamic model based on the shell theory was de-
veloped to investigate the vibration characteristics of a rotating com-
posite laminated blade. The natural frequencies of a rotating pre-
twisted composite laminated blade were obtained by the Rayleigh-Ritz
method. The convergence and comparison studies demonstrated the
accuracy and validity of the present modeling method.

The effects of the rotation velocity on the natural frequencies and
the corresponding mode shapes of the blade were discussed. Due to the
effects of the Coriolis and centrifugal forces, variation of different
natural frequencies with rotation velocity was diverse, resulting in the
phenomena of frequency loci veering and crossing. Two ways of fre-
quency loci veer can be observed. For the first one, the nodal line
patterns of the mode shapes switch their shapes to each other con-
tinuously. For the other one, the nodal line patterns vary in abrupt and
discontinuously.

A comprehensive parameter investigation of the effects of the aspect
ratio, pre-twisted angle, stagger angle and hub radius on the variations
of modal characteristics was conducted. Numerical results demon-
strated that the natural frequencies of the rotating blade increase as the
pre-twisted angle, stagger angle and the hub radius increase, while
decrease as the thickness ratio increases.

It was demonstrated through the results of this paper that the pro-
posed model is an efficient tool for predicting the dynamic behavior of
blades with arbitrary geometry dimension, stagger angle and pre-
twisted angle, which will provide useful information for the design and
optimization of the blades. Based on the results of this paper, further
investigations will extend to the internal resonances and nonlinear
dynamics of the composite laminated blades rotating at high rotation
velocity.
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