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A B S T R A C T

This research stems from the idea of introducing a fibre-network structure into composites aiming to enhance the
stiffness and strength of the composites. A novel new type of composites reinforced by a tranversely isotropic
fibre-network in which the fibres are devided into continuous segments and randomly distributed has been
proposed and found to have improved elastic properties compared to other conventional fibre or particle
composites mainly due to the introduction of cross-linkers among the fibres. Combining with the effects of
Poisson’s ratio of the constituent materials, the fibre network composite can exhibit extraordinary stiffness. A
simplified analytical model has also been proposed for comparison with the numerical results, showing close
prediction of the stiffness of the fibre-network composites. Moreover, as a plate structure, the thickness of the
fibre network composite is adjustable and can be tailored according to the dimensions and mechanical properties
as demanded in industry.

1. Introduction

Fibre reinforced composites have been widely used in various fields
for their attractive mechanical and physical properties with the wide
choices of constituent materials and geometry structures. Numerous
different structures of fibre composites, such as uni-directional fibre
composites, cross-ply fibre composites, woven fabric composites and
fibre laminates etc., have been designed and applied primarily for their
advantages in directional mechanical properties. However, the superior
properties are achieved by sacrificing the properties in other axial or
planar directions. In addition, it is inevitable in engineering that loads
are applied to the inferior directions of the structure. This may increase
the risk of crack propagation and, even worse, fracture. For instance,
delamination [1] is a common problem for laminate composites due to
the weakly bonded interfaces between plies. The similar problem also
exists even for the randomly distributed fibre composites which are
mostly isotropic [2] or transversely isotropic [3]. Some three dimen-
sional numerical models [2–4] of short fibre reinforced composites have
been proposed by many researchers with the most frequently used
method of random sequential adsorption (RSA). However, overlap be-
tween fibres are usually avoided which makes it difficult to generate a
model with a high volume fraction. Besides, the constraints among fi-
bres in the conventional fibre composites are weak since they are only,

or at most, in contact but without bonding connection, thus rendering
large deformation and easy pull-out [5] of fibres when subjected to
load.

It has been found that interpenetrating composites reinforced by a
self-connected fibre-network have significantly enhanced mechanical
properties, such as stiffness and strength, compared to their counter-
parts with discontinuously reinforced phase structures [6–11]. Apart
from the improved mechanical properties, good thermal and electrical
conductivities [12,13] can also be an advantage for fibre network
composites owing to the connected network of fibres. Therefore, we
aim to construct a 3D fibre network reinforced composite. In terms of
the fibre network, Clyne et al. have conducted a series of thorough
investigations towards bonded metal fibre networks both experimen-
tally and analytically, involving work in the characterisation of the
network architecture and capture of independent elastic constants
[14–19]. Some other research has also been done regarding to the
mechanical properties of transversely isotropic fibre networks [20–23],
such as metal fibre sintered sheet [24,25]. However, when it comes to
fibre network composites, much less has been conducted. A few ex-
perimental work was focused on metal matrix composites [26–28].
Jayanty et al. [10] have fabricated an auxetic stainless steel mat and a
composite reinforced by the mat. Clyne et al. [14,15,19] have also in-
cluded analysis of fibre network composites by introducing a strain
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reduction factor. However, no close form can be obtained from this
analytical expression due to the complex architecture. Lake et al. [29]
and Zhang et al. [30,31] have proposed a 3D isotropic two-phase nu-
merical model of collagen-agarose tissue in which a non-periodic Vor-
onoi network is generated to represent collagen and a neo-Hookean
solid to represent the matrix. The drawback of their model lies in that
the fibres are assumed to be pin-jointed, the model is not periodic and
the boundary conditions used in their model are not realistic.

To the best of our knowledge, there is few simulation or analytic
research work to study the mechanical properties of interpenetrating
composites reinforced by a transversely isotropic fibre network due to
the combined complexity of fibre network architecture and coupling
between the fibre network and matrix. This type of structure is fre-
quently observed in bioscience such as cornea [32,33] and cytoskeleton
[34], and can be a promising structural material in engineering fields.
Therefore, the main objective of this paper is to investigate the elastic
properties of composites reinforced by a random transversely isotropic
fibre network. In this paper, we have developed a code to automatically
construct the periodic representative element (RVE) model for com-
posites reinforced by a random transversely isotropic fibre network,
then use the commercial finite element software ABAQUS to simulate
how the fibre volume fraction affects the in-plane and out-of-plane
elastic properties. In addition, we have obtained analytical results from
a simplified geometric model and compared the results of the trans-
versely insotropic interpenetrating composites to those of the conven-
tional composites.

2. Numerical implementation

2.1. Geometric model of transversely isotropic random fibre network

Before applying finite element analysis (FEA), a periodic re-
presentative volume element (RVE) with a size of × ×L L t is con-
structed for the interpenetrating composite. The periodic transversely
isotropic random fibre-network model with N complete fibres is gen-
erated within the same domain (i.e. × ×L L t) using a code similar to
that developed to generate the 3D fibre-network with cross-linking in
reference [21]. Fig. 1 shows a periodic representative volume element
(RVE) of the interpenetrating composite reinforced by a self-connected
and transversely isotropic random fibre-network containing 50 com-
plete fibres, in which the fibres on the front, left and botton surfaces
align with those on the back, right and top surfaces, respectively. Thus a
large-size interpenetrating composite can be made up by a number of
identical RVEs.

In the interpenetrating composite model shown in Fig. 1, the x − y
plane projections of all the fibres are straight lines, and their x − z and

y − z plane projections are polylines. For the projected straight lines of
the fibres on the x − y plane, the coordinate of the centre point
( ≤ ≤x L0 , ≤ ≤y L0 ), the orientation ( ≤ ≤θ π0 ), and the length
( ≤ ≤L L L0.8 1.2i ) are all specified by random numbers (from 0 to 1)
generated automatically by the computer. All the fibres are assumed to
have the same diameter d. The z coordinates of the polylines are de-
termined by the building-up process, see [27] for details. For two
connected fibres, the overlap coefficient is defined as = −c δ d1 / , where
δ is the distance between the centroidal lines of the two fibres. The
density of the cross-linkers is defined as the number of connections of a
fibre with those below it, and given as =N L l/C c, where lc is the mean
distance between any two neighbouring connections of a fibre with
those below it. The maximum inclination angle of the segments in a
polyline is limited to be smaller than 21.5 °Â . It is noted that in re-
ference [27], only two fixed values of the fibre overlap coefficients, i.e.

=c 0.05 and =c 0.6, are considered; while in this paper, the value of
fibre overlap coefficient is not a constant, but always increases with the
volume fraction of the fibre-network or the density of cross-linkers as
given by = +c N0.025( 1)c . For a RVE model containing N complete
fibres, its thickness t depends on the density of crosslinkers and can be
determined during the construction process of the fibre-network model.
By taking account the overlap parts between the connected fibres, the
volume fraction of the fibre-network can be obtained and given in Eqs.
(1) and (2). For RVEs with 200 complete fibres (i.e. N=200) and a size
of × ×L L t , Fig. 2 shows how the density of cross-linkers affects the
thickness t and the volume fraction of the fibres, where L=100mm,
d=1mm, and the mean length of complete fibres is L.
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where Li are the fibre lengths, N is the number of fibres and d is the
diameter of the circular cross section of a fibre. αij and Vij are, respec-
tively, the angle and the overlap volume between the two connected
fibres at the jth crosslinker of fibre i.

2.2. RVE model of fibre-network reinforced composite

We have performed a large number of numerical tests and found
that for each of periodic RVE models containing 50 complete fibres, as
shown in Fig. 1, its in-plane elastic properties are far from isotropic

Fig. 1. A periodic representative volume element (RVE) of the composite re-
inforced by a transversely isotropic random fibre-network containing 50 com-
plete fibres.

Fig. 2. Effects of cross-linker density, Nc, on RVE thickness t and fibre volume
fraction Vf of fibre-network with aspect ratio L/d=100.
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because the number of complete fibres is too small. To mesh both the
matrix and fibres into solid tetrahedral elements for such a model, the
total number of elements is between 1 and 2millions. Because of the
very complex interfaces between the fibres and matrix, it is very diffi-
cult to mesh the matrix and all the fibres into solid tetrahedral elements
for the RVE models. What’s worse, such a large number of elements
dramatically increases the pre-processing time and slows down the
computing speed in simulations. Due to the above reasons, we use
periodic RVE models containing 200 complete fibres, as shown in
Fig. 3, and mesh the matrix into a large number (varying from 20,000
to 230,000 depending on the thickness of RVE) of 8-node solid brick
C3D8R elements and the fibres into around 60,000 Timoshenko 2-node
beam B31 elements, and then use the commercial finite element soft-
ware ABAQUS [28] to perform the simulations. The cross-linkers are
represented by an inserted beam element and the diameter is assumed
to be the same as that of the fibres.

The periodic fibre-network RVE with 200 complete fibres (i.e.
N=200) and a size of × × t100mm 100mm (i.e.L =100mm and t
varies according to the cross-linker density Nc for models with different
volume fractions, see Fig. 2) is constructed in MATLAB and then im-
ported into ABAQUS. In ABAQUS, a solid RVE with exactly the same
size × × t100mm 100mm is created to represent the matrix. To as-
semble the fibre-network and the matrix together, constraints are ap-
plied to the corresponding nodes in the matrix and the fibre-network to
ensure that they have the same translation so as to transfer load be-
tween fibres and matrix. One common method is the Embedded Ele-
ment Method (EEM), in which each node in fibre network will be
coupled with the nodes of the coinciding element [35]. However, this
method cannot be applied to our model because over-constraint occurs
when both periodic boundary condition and embedded element method
are applied to the matrix nodes on the the boundary of the RVE si-
multaneously. Therefore, another method, the automatic searching &
coupling (ASC) technique proposed by Lu et al. [2], has been adopted in
this model to avoid the conflict. The ASC technique involves node

searching and coupling procedures, in which the closest matrix node is
found out for each node on the fibre network and the translational
freedom degrees of the corresponding fibre node and matrix node are
coupled. By this way, all the corresponding nodes will be coupled and
constrained for mechanical analysis. Another advantage of applying the
ASC technique is reflected when it comes to meshing, that is no complex
meshing is needed for the matrix thus saving the time in mesh gen-
eration and computing. As the RVE model of the fibre-network com-
posite shown in Fig. 3 is periodic, periodic boundary conditions are
applied to the RVE model in simulations. The mechanical properties of
the matrix are exactly the same as what they are, while the Young’s
modulus of fibres is modified as −E E( )f m because of the overlap be-
tween the fibre-network and the matrix, where Ef and Em are the
Young’s moduli of the fibres and matrix, respectively [2].

2.3. Mesh size sensitivity

Different matrix mesh sizes have been tested for models with fibre
volume fractions of 9% and 30% respectively, and the in-plane and out-
of-plane Young’s moduli and Poisson’s ratios have been listed in
Table 1. The convergence of both the in-plane and out-of-plane moduli
in Fig. 4 gives us a more transparent vision of mesh sensitivity of the
results. Taking the computing precision and efficiency into considera-
tion, matrix mesh size of 1.5 mm×1.5mm×0.6mm through the x, y
and z directions has been chosen for the following analysis. With this
element mesh size and RVE size of × × t100mm 100mm , the number of
solid C3D8R elements in matrix varies from 20,000 to 230,000 de-
pending on the thickness of RVE. Besides, the number of Timoshenko
beam elements (B31) in fibres is around 60,000 with the fibre mesh size
of 1mm.

2.4. Fibre element type effect

The results in Table 1 and Fig. 4 are based on the analysis of RVEs
with beam elements applied to the fibres and solid elements to the
matrix. As mentioned before, the ASC Technique has been adopted to
constrain every single node of the beam elements within the corre-
sponding solid element in matrix. This method tremendously reduces
the complexity of pairing the coincident nodes on fibres to those in the
matrix. However, it has to be aware that there are limitations to this
technique. The biggest concern lies in that additional stiffness/flex-
ibility might be added to the RVE. Therefore, it is necessary to in-
vestigate the difference introduced by the application of beam elements
to fibres compared to solid elements.

Ten RVEs which each contains 50 complete fibres were generated
with the density of cross-linkers =N 15c , overlap coefficient c=0.4 and
aspect ratio =L d/ 30. Beam and solid elements were respectively ap-
plied to fibres in the the same RVE models while keeping the other
conditions the same. The value of E E/f m is assumed as 100 and
Poisson’s ratios of fibres and matrix are kept the same as 0.3. A uniaxial
tensile/shearing strain of 0.001 was applied to the RVE models and the
corresponding reaction force was recorded. Table 2 lists the mean

Fig. 3. Periodic RVE geometric model of composite reinforced by a transversely
isotropic random fibre network containing 200 complete fibres, where the
matrix is partitioned into brick elements and the fibres are partitioned into
Timoshenko beam elements.

Table 1
Mesh size effect on the in-plane and out-of-plane Young’s moduli and Poisson’s ratios of RVE.

Elastic properties Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

Size of elements (mm×mm×mm) 4×4×1 1.5× 1.5× 0.8 1.5× 1.5× 0.6 1.25× 1.25×0.6 1× 1×0.5 0.8× 0.8× 0.4
9%(Vf ) E11 4.37 3.99 3.86 3.8 3.74 3.7

E33 1.89 1.71 1.565 1.54 1.5 1.48
v12 0.339 0.337 0.336 0.335 0.335 0.334
v31 0.094 0.096 0.097 0.098 0.1 0.101

30%(Vf ) E11 12.4 12.01 11.9 11.88 11.86 11.87
E33 4.15 3.81 3.55 3.46 3.45 3.4
v12 0.291 0.288 0.332 0.331 0.329 0.328
v31 0.039 0.041 0.041 0.041 0.042 0.042
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results of the five independent elastic constants with two different
element types. E11 andG31 of RVEs with beam elements show smaller
values than those of RVEs with solid elements whereas E33 of RVEs with
beam elements is larger than that of RVEs with solid elements. It can be
calculated that the difference between the stiffnesses with the two
different element types is around 15%. One unavoidable problem is
computing efficiency. When solid elements is adopted, the number of
elements in a RVE reaches 1–2millions or even larger depending on the
dimensions of fibres, which is really time-consuming and unaffordable
for a research involving several hundreds of such RVEs. Therefore, it
can be a good choice to use beam elements in consideration of feasi-
bility, efficiency and accuracy in computation. This is also how most
other researchers deal with complex fibre reinforced composites.

2.5. Transverse isotropy of RVE

In order to evaluate the transverse isotropy, we simulated 10 models
which each has 200 complete fibres, the density of cross-linkers =N 11c ,
the overlap coefficient c=0.3 and the aspect ratio =L d/ 100. Table 3
lists the Young’s moduli, shear moduli and Poisson’s ratios, and shows
that the mean values of Young’s moduli and the Poisson’s ratio for 10
models are almost identical in the x and y directions (i.e. =E E11 22 and

=ν ν12 21). In addition, the results also show that the shear modulus,
Young’s modulus and Poisson’s ratio in the x-y plane meet the re-
ationship = +G E ν/[2(1 )]12 11 12 . Moreover, =G G13 23, =ν ν13 23 and

=v ν31 32 with the largest error less than 5%. These all suggest that the
random fibre network composite structure is transversely isotropic and
only five independent elastic constants, E v E v, , ,11 12 33 31 andG31, are
needed for full elastic analysis.

3. Numerical results

3.1. Elastic behaviours of fibre network composites

By using periodic boundary conditions and imposing a tensile or
shear strain of 1‰ to the RVEs with 200 complete fibres, aspect ratio L/
d=100, the same Poisson’s ratios = =v v 0.3f m and various values of
E E/f m(=100, 50, 10, 5), the results of the five independent elastic
constants in terms of fibre volume fraction, respectively, have been
obtained and shown in Fig. 5, where E11, E33 andG31 are normalised by
Em. As can be seen, the in-plane Young’s modulus E11, out-of-plane
Young’s modulus E33 and shear modulus G31 all increase as the fibre
volume fraction increases, which indicates that both tensile and shear
stiffnesses can be improved by raising the volume fraction of the fibre
network. Specifically, E11 shows a linear relation with the fibre volume
fraction Vf while E33 appears as a quadratic function of Vf when the
fibre volume fraction Vf is still less than 0.4, and then becomes a linear
function of Vf . G13indicates a similar relationship with the volume
fraction as E33. In terms of Poisson’s ratio, it can be seen from Fig. 5(b)
and (d) that v12 slightly fluctuates around 0.3, which is about the same
value as vf or vm, for different fibre volume fractions while v31 decreases
as the fibre volume fraction increases. In addition, there is no doubt that
E11, E33 andG31 are increased with larger value of E E/f m. However, v12
seems not affected by changing the value of E E/f m whereas v31decreases
with the increase of E E/f m and Vf . In the case when both the value of
E E/f m and volume fraction Vf become sufficiently large, v31 tends to
reach 0, which suggests that the out-of-plane tension/compression in-
troduces almost no effect on in-plane expansion under this condition.
However, this may not be true because if solid elements are used to
model the fibres whenVf is very large, the value of, v31 should be largely
dependent on the Poisson ratio of the fibre material vf .

3.2. Comparison of the in-plane and out-of-plane elastic properties

Fig. 6 presents the re-organised data from Fig. 5 for composites with
Poisson’s ratios = =v v 0.3f m and the ratio of =E E/ 50f m and 10, re-
spectively. Also, E11, E33 andG31 are normalised by Em. The results in

Fig. 4. Mesh size effects on the mean in-plane and out-of-plane Young’s Moduli
for 10 RVEs of composites with fibre volume fractions of 9% and 30%, re-
spectively.

Table 2
The independent elastic properties of RVE with beam and solid fibre element
types, respectively, in which the density of cross-linkers =N 15c , overlap coef-
ficient c= 0.4 and aspect ratio =L d/ 30. The values are averaged for 10 RVEs.

Fibre element type E11 v12 E33 v31 G31

Beam 2.496059 0.225184 1.383805 0.207891 0.466779
Solid 2.862772 0.190082 1.142895 0.127317 0.526806

Table 3
Young’s moduli, Poisson’s ratios and shear moduli of 10 RVEs with density of
cross-linkers Nc =11, overlap coefficient c=0.3, number of complete fibres
N=200, and aspect ratio L/d=100. The volume fraction is 9%.

E11 v12 v13 E22 v21 v23

01 3.874956 0.313329 0.245138 3.833344 0.309964 0.248317
02 3.972831 0.338440 0.235412 3.702278 0.315392 0.242851
03 3.960358 0.373321 0.226916 3.374779 0.318121 0.243142
04 3.777534 0.361487 0.227803 3.546943 0.339420 0.233979
05 3.624164 0.329107 0.239986 3.838568 0.348577 0.234099
06 4.245049 0.354521 0.233621 3.498124 0.292142 0.249743
07 3.549718 0.298000 0.254791 3.896780 0.327136 0.245870
08 3.797864 0.310732 0.245548 3.941230 0.322462 0.240366
09 3.989732 0.324433 0.241150 3.779278 0.307320 0.246934
10 3.861258 0.360456 0.231369 3.452893 0.322335 0.240102
Mean 3.865346 0.336383 0.238173 3.686422 0.320287 0.242540
Std. 0.197312 0.025311 0.008820 0.202581 0.016048 0.005491

E33 v31 v32 G12 G23 G31
01 1.562067 0.098820 0.101188 1.392429 0.454912 0.452931
02 1.579220 0.093577 0.103589 1.439120 0.453450 0.456408
03 1.560705 0.089424 0.112444 1.484580 0.448540 0.457150
04 1.575962 0.095038 0.103961 1.525346 0.452607 0.456802
05 1.565345 0.103655 0.095464 1.468601 0.455882 0.452770
06 1.570637 0.086438 0.112133 1.433872 0.449030 0.460255
07 1.531894 0.109956 0.096656 1.344693 0.452540 0.447162
08 1.576973 0.101958 0.096176 1.410652 0.455451 0.453879
09 1.567528 0.094746 0.102420 1.406203 0.451545 0.453021
10 1.560764 0.093522 0.108530 1.459255 0.448647 0.456727
Mean 1.565110 0.096713 0.103256 1.436475 0.452260 0.454711
Std. 0.013519 0.006999 0.006245 0.051342 0.002785 0.003582
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Fig. 6 indicate that the in-plane Young’s modulus E11 is higher than the
out-of-plane Young’s modulusE33. Moreover, the larger the volume
fraction is, the bigger the difference between the in-plane Young’s
modulus and out-of-plane Young’s modulus is. The in-plane Young’s
modulus can be 3 times the out-of-plane Young’s modulus when the
fibre volume fraction reaches approximately 50% and the ratio of

=E E/ 50f m (see Fig. 6(a)). Fig. 6(b) shows that the out-of-plane Pois-
son’s ratio v31is always smaller than the in-plane Poisson’s ratio v12 and
the difference between the out-of-plane and in-plane Poisson’s ratios is
getting larger as the volume fraction increases since the in-plane Pois-
son’s ratio remains constants whereas the out-of-plane Poisson’s ratio
decreases with the increase of the fibre volume fraction. Besides, the in-

plane shear modulus G12 and out-of-plane shear modulus G31 are also
compared in Fig. 6(c). It can be seen that the in-plane shear modulus is
also always larger than the out-of-plane shear modulus and, for in-
stance, the in-plane shear modulus is almost 5 times the out-of-plane
shear modulus when the fibre volume fraction reaches approximately
50% and the ratio of =E E/ 50f m .

3.3. Effect of Poisson’s ratio on the elastic properties

Poisson’s ratio is a crucial parameter for the mechanical properties
of composites [11,36]. The effective elastic properties of fibre-re-
inforced composites are significantly dependent on the Poisson ratios of

Fig. 5. Effects of fibre-network volume fraction on (a) in-plane Young’s modulus E11, (b) in-plane Poisson’s ratio v12, (c) out-of-plane Young’s modulus E33, (d) out-of-
plane Poisson’s ratiov31 and (e) out-of-plane shear modulus G31 of composites with the aspect ratio L/d=100 and same Poisson’s ratios = =v v 0.3f m . All the Young’s
moduli and shear moduli are normalised by Em.
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fibres and matrix. It is well known that the Poisson ratios of most
conventional solid materials range from 0.1 to 0.4 and this range can be
extended to (−1, 0.5) for some isotropic materials or designed struc-
tures. For instance, re-entrant open-celled foams could have a Poisson’s
ratio close to −1; rubber and low density open-celled foams possess a
Poisson’s ratio close to 0.5 [36].

In order to explore the influence of Poisson’s ratio alone on the
elastic properties of the composites, the ratio of E E/f m is kept constant
(e.g. 100 here) while different combinations of Poisson’s ratios, either
positive or negative, are adopted (i.e. = =v v0.05& 0.495f m ,

= =v v0.3& 0.3f m , = =v v0.495& 0.05f m and = = −v v0.495& 0.8f m ). The
effects of the Poisson ratios on the relationships between
E v E v, , ,11 12 33 31and G31, respectively, and the fibre volume fraction are
shown in Fig. 7 (a)–(e), where E11, E33 andG31 are normalised by Em.

For the in-plane Young’s modulus E11, the proportional increasing
tendency seems not affected by the choice of different combinations of
the Poisson ratios. Specifically, there is no difference for the situations

= =v v0.3& 0.3f m and = =v v0.495& 0.05f m , whereas the combination
between = =v v0.05& 0.495f m shows a slightly higher value than the
former two situations. However, we have also noticed that the choice of
negative Poisson’s ratio (down triangle dot curve) can remarkably in-
crease the in-plane Young’s modulus compared to the combinations
between positive Poisson’s ratios. This inspires us of a method to en-
hance the elastic modulus during the material design.

As for the out-of-plane Young’s modulusE33, positive Poisson’s ratios
can also dramatically affect its magnitude, not to say negative Poisson’s
ratios. It can be seen from Fig. 7(c) that E33 with the case of

= =v v0.05& 0.495f m indicates a smaller value than that of
= = −v v0.495& 0.8f m when the volume fraction is less than around 10%

and then surpasses and increases faster than the later as the fibre vo-
lume fraction arises. Still, the situations when = =v v0.3& 0.3f m and

= =v v0.495& 0.05f m demonstrate almost identical results in E33.
When the in-plane and out-of-plane Poisson’s ratios (v12and v31) of

the composites are compared, we can see that both are affected by
different combinations of fibres and matrix Poisson’s ratios. However,
v12shows a smaller variety (0.2–0.5) than v31 (0–0.5) for positive fibres
and matrix Poisson’s ratios. For the scenario of composites with nega-
tive matrix Poisson’s ratio, v12 varies from −0.6 to 0.2 while v31 ranges
from −0.6 to 0. Therefore, we can design the geometry with the ex-
pected effective in-plane and out-of-plane Poisson’s ratios varying from
negative to positive. It is also noticed that the out-of-plane shear
modulusG31 does not change significantly as the Poisson’s ratios change
within the positive range whereas negative Poisson’s ratios drastically
improveG31.

4. Analytical results

Based on the simiplified geometry model (see Figs. A1 and A2 in the
Appendix) and by application of the fixed value of =E E/f m 100 and
different combinations of the Poisson ratios (i.e. = =v v0.05& 0.495f m ,

= =v v0.3& 0.3f m , = =v v0.495& 0.05f m and = = −v v0.495& 0.8f m ), the
analytical results for the relationships of E11, v12, E33 and v31 are ob-
tained, respectively, in terms of the fibre volume fraction in Fig. 8
(a)–(d).

On the whole, the analytical results in Fig. 8 agree well with the
simulation results in Fig. 7 in respect of the trend of each curve and the
relative relation among curves under different combinations of Pois-
son’s ratios. For example, both E11 and E33, when = =v v0.3& 0.3f m and

= =v v0.495& 0.05f m are applied seperately, have shown almost iden-
tical values; E33 under the case of = =v v0.05& 0.495f m indicates a
smaller value than that of = = −v v0.495& 0.8f m when the volume
fraction is less than around 10% and then surpasses the later as the
volume fraction arises; all the elastic moduli increase with the fibre
volume fraction. However, it is also noted that the numerical and
analytical results do have some disagreement, especially for the relative
relations when the volume fraction is very large (i.e. larger than around

Fig. 6. Comparison of the in-plane and out-of-plane elastic properties of com-
posites with =E E/ 10f m and 50: (a) in-plane and out-of-plane Young’s moduli,
(b) in-plane and out-of-plane Poisson’s ratios, (c) in-plane and out-of-plane
shear moduli. All the Young’s moduli and shear moduli are normalised by Em.
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25%) or very small (i.e. less than around 5%). Besides, the analytical
results in Fig. 8(c) have revealed that E33 increases as a linear relation
with the fibre volume fraction when <V 0.15f , and then becomes a
parabolic function when Vf is larger, while the simulation results of E33
always remains an approximate linear linear relation with Vf . In gen-
eral, the numerical results agree with the analytical results on condition
that the volume fraction is neither too large nor too small and the
numerical results can be reliable in predicting the trend and relation
between the elastic properties and volume fraction under the influence
of Poisson’s ratios.

5. Discussion

In order to demonstrate the superior elastic properties of this new
type of 3D transversely isotropic fibre-network reinforced composites,
we compared the in-plane and out-of-plane Young’s moduli with the
experimental [10,37–40] and numerical [2,3,41–43] results of other
conventional fibre or particle composites (see Table 4 and Fig. 9). When
compared to the simulation results of two transversely isotropic fibre
composites without any intersections among the fibres, one with in-
clined randomly distributed short straight fibres [3] and the other with
curved planar randomly distributed short fibres [41], both the in-plane

Fig. 7. Effects of fibre volume fraction on the elastic properties (a)E11, (b)v12, (c)E33, (d)v31 and (e)G31 of composites with different combinations of Poisson’s ratios.
All the Young’s moduli and shear moduli are normalised by Em.
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and out-of-plane stiffnesses of the proposed composite indicate sig-
nificantly larger values. Further comparison with the cross-ply com-
posites [37] has been conducted and our designed composites still de-
monstrates superior in-plane stiffness to the later. Besides, the novel
fibre-network composites demonstrates much larger in-plane stiffness
than particle composites (Glass/epoxy [39] and Particle/matrix [42]).
These results verified the expectation of the elastic properties of this
novel structure, that is, with the intersections among fibres, the net-
work can greatly enhance the stiffness of the composites.

The in-plane Young’s modulus of our proposed composite is also
compared with both the experimental results [38] and FEA results [2]
where all the fibres in the composites are randomly distributed in
parallel to the transverse plane (i.e. the x-y plane). By applying the
same materials properties (Ef =75GPa, Em=1.6GPa, vf =0.25
andvm =0.35) as given in [2], the relationship between E11 and the

fibre volume fraction of our new type of composites has been obtained
and demonstrated in Fig. 9 together with the experimental results and
FEA results for comparison. All the results have demonstrated an ap-
proximately proportional tendency, which is consistent with the nu-
merical results of E11 shown in Fig. 5(a). As can be seen in Fig. 9, the
values of the in-plane Young’s modulus of our proposed composite are
larger than the experimental results [38] and FEA results [2] under the
same volume fraction. It should be noted that all fibres are straight and
planar randomly distributed in [2] and [38] whereas the fibres are
curved and the fibre segments are inclined out of the transverse plane in
our fibre-network composite. Similarly, the transversely isotropic
composite architecture studied in [40] (experimental study) and [43]
(numerical analysis) is composed of fibres which are physically overlaid
on each other [43] and intersections among fibres are ignored. The in-
plane stiffness of our proposed composite also exhibits a larger value

Fig. 8. Analytical results of the effects of Poisson’s ratios on the effective elastic properties of composites (a) E11; (b) v12; (c) E33; (d) v31. All the Young’s moduli and
shear moduli are normalised by Em.

Table 4
Stiffness comparison between this research and others’ experimental and numerical results.

Composites Vf(%) Ef (GPa) Em(GPa) vf vm Stiffness E11 (GPa) Stiffness E33 (GPa)

Cross-ply [37] 43 193 0.7 0.3 0.3 29 –
This research 41.9 193 0.7 0.3 0.3 33.36 –
Short fibre [3] 13.5 70

70
3
3

0.2
0.2

0.35
0.35

6.8656 5.7658
This research 13.7 10.2261 7.1698
Short curved fibre [41] 35.1 70 3 0.2 0.35 14.47 9.49
This research 34.3 70 3 0.2 0.35 17.15 12.31
Glass/epoxy [39] 31 69 3 0.15 0.35 5.3 –
This research 32 69 3 0.15 0.35 10.3765 –
Particle/matrix [42] 20 450 70 0.17 0.3 96 –
This research 20.2 450 70 0.17 0.3 105.4307 –
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than both the experimental and numerical results. In addition, the
proposed composite has been compared with the similar composite
reinforced by a fibre network mat [10]. As shown in Fig. 9, the pro-
posed fibre network composite still illustrates larger stiffnesses. This is
possibly due to the difference in in-plane curvatures of fibres, which are
straight in the proposed model and curved in [10]. This is consistent
with a conclusion drawn in [43] that the Young’s modulus decreases as
the fibre curvature increases.

To conclude, the reason why our composite structure has a larger
stiffness can be attributed to the introduction of cross-linkers between
the fibres in the composites. Besides, there is no doubt that the cross-
linkers along the out-of-plane direction in the fibre-network composites

also render a superior out-of-plane stiffness to planar random fibre
composites. Therefore, it is conjectured that both the in-plane and the
out-of-plane stiffnesses of our new type of composite are superior to
those of planar random fibre composites.

6. Conclusions

A novel transversely isotropic composites reinforced by a self-con-
nected fibre network has been successfully constructed and simulated to
obtain the elastic properties. The simulation results are compared to the
analytical results and other relevant experimental and FEA results. It is
found that both the in-plane and out-of-plane stiffnesses of the new type
of composites are superior to those of other types of transversely iso-
tropic fibre-reinforced composites in which the fibres are not self-con-
nected. It is also found that the combination of the Poisson ratios of the
constituent materials could significantly affect the overall elastic
modulus and Poisson’s ratio of the composites. The analytical ex-
ploration of the simplified model has also shown a good agreement with
the numerical results under moderate fibre volume fractions. Another
advantage of this new type of composites lies in that the self-connected
fibre-network, as a whole single ply, can dramatically minimize the
delamination among fibres and thus prevent crack initiation and pro-
pagation. As a plate structure, the thickness of the fibre network com-
posite is adjustable and can be tailored according to the dimensions and
mechanical behaviours demanded in industry. The new structure can
also simplify the manufacturing process while maintaining improved
mechanical behaviours especially in the through-thickness direction.
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Appendix A. An analytical model

A1 geometrical and mechanical model

Based on the simulation results of the elastic properties of the fibre network reinforced composites, we also aim to obtain analytic results for
comparison. Since the fibres are randomly distributed, it increases the complexity and difficulty of deducing the theoretical expressions, not to
mention the structures with two phases. Therefore, for simplification and similarity, a simplified scaffold alike model has been proposed for analysis
as shown in Fig. A1. The fibre network consists of several layers of fibres that are in parallel to the x-y plane, in which half of the fibres are oriented in
the x direction and and the other half in the y direction respectively. Moreover, the connected fibres are overlapped to some extent which is
determined by the overlap coefficient c. Also, the cross section of each fibre is set as a square with side length of d for the sake of predigesting
analysis and the error caused by the cross section difference is likely to be neglectable when the fibres are slender (i.e. the aspect ratio of fibre is
sufficiently enough). Therefore, the overlap thickness between two fibres will be cd. For a geometry model with fibre length of L and cross-linking
concentration of Nc, the length of each fibre segment will be =l L N/c c. By this way, a regular fibre network with cross-linking has been generated and
the volume fraction of fibres can be controlled by adjusting the values of Nc and c. Then the matrix fills in the gap of the fibre network in three
dimensions to make it a complete composite structure. Although the simplified geometry model is not strictly transversely isotropic as the fibres are
along either the x direction or the y direction, the mechanism of deformation under axial loading is still similar and can be referential to this type of

Fig. 9. Comparison of several results of Young’s modulus E11 in terms of volume
fraction.

Fig. A1. A simplified geometry model of the fibre network reinforced composites with aligned fibres distributed along x and y directions.

X. Lin et al. Composite Structures 208 (2019) 33–44

41



fibre network reinforced composites, including the geometry model we proposed with stochastical fibres.
In consideration of the periodicity of the simplified structure, a representative volume element (RVE) of it can be selected to simplify the analysis

as shown in Fig. A2. The dark blue blocks with square cross section represent fibres and the rest light green block represents the matrix. Besides, due
to the existing verlap between the connected fibres, which renders the cross section of fibres more complex at the joints, the whole RVE has to be
devided into 20 blocks as indicated with dash lines in Fig. A2. The interfaces between fibres and matrix are assumed to be perfectly bonded and we
only consider the normal stresses within the 20 cuboids and the compatibility conditions on the outer surfaces while ignoring the shear stresses and
the compatibility conditions on the interfaces of the blocks [36]. Thus when a uniaxial load is applied in the x, or y, or z direction, only the three
normal stresses on the surface of each bock will be taken into account and the three normal stresses inside of each cuboid are assumed to be
constants. The RVE is not only periodic, but also symmetical in the z direction. Therefore there are 6 different normal stresses (i.e. σx1, σx2, σx3, σx4, σx5

andσx6) in the x direction, 6 different normal stresses (i.e. σy1, σy2, σy3, σy4, σy5 andσy6) in the y direction and 4 different normal stresses (i.e. σz1, σz2, σz3

andσz4) in the z direction as labelled in Fig. A2. When an axial force/displacement is loaded, either in the x direction or in the z direction. In elastic
study, the normal stress-strain relations for the blocks in series can be expressed as follows according to Hook’s law

1) Normal stress-strain relations in the x direction:

− − − + − − =l d
l E

σ v σ v σ d
l E

σ v σ v σ ε( ) ( ) ( )c

c m
x m y m z

c f
x f y f z x1 1 1 1 2 2

(A1)

− − − + − − =l d
l E

σ v σ v σ d
l E

σ v σ v σ ε( ) ( ) ( )c

c m
x m y m z

c f
x f y f z x2 3 1 2 5 2

(A2)

− − − + − − =l d
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c m
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c m
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2) Normal stress-strain relations in the y direction:

− − − + − − =l d
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Fig. A2. A representative volume element (RVE) of the simplified geometry model.
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− − − + − − =l d
l E

σ v σ v σ d
l E

σ v σ v σ ε( ) ( ) ( )c
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3) Normal stress-strain relations in the z direction:
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In the case of strain loading in the x direction, which means εx is given, periodic boundary conditions of the RVE require zero total force in the y
and z directions, as given by

− − + − + − + − − + + − =l d d cd σ d d cd σ cd l d σ l d d cd σ cd σ d d cd σ( )( 2 ) ( 2 ) 2 ( ) ( )( 2 ) 2 ( 2 ) 0c y y c y c y y y
2

1 2 3 4 5 6 (A17)

− + − + − + =l d σ d l d σ d l d σ d σ( ) ( ) ( ) 0c z c z c z z
2 2

1 2 3 4 (A18)

Thus, the 18 unknown normal stresses and strains, i.e. σx1, σx2, σx3, σx4, σx5, σx6, σy1, σy2, σy3, σy4, σy5, σy6, σz1, σz2, σz3, σz4, εy and εz, can be solved from
the above 18 simultanous equations. Accordingly, the Young’s modulus in the x direction can be worked out through
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=v
ε
εxy

y

x (A20)

In the anner similar to the case of loading in the x direction, εz will be given when a strain load is applied in the z direction. Then the rest 18
unknown normal stresses and strains need to be solved from 18 simultanous equations, and the Young’s modulusEzand Poisson ratio = −v ε ε/zx x z can
accordingly be obtained.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compstruct.2018.09.097.
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