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Abstract：There is a growing demand for methods to estimate the effective viscoelastic 

response of viscoelastic composites, for their applications in structural vibration and noise control. 

This paper proposes a novel reformulation and numerical implementation algorithm for the 

asymptotic homogenization theory for predicting the effective complex moduli of viscoelastic 

composites in the frequency domain. In the new algorithm, an equivalent harmonic analysis is 

established and a double-layer elements method is proposed to solve the local problem in the 

homogenization process. On the basis of the new algorithm, the effective complex moduli can be 

obtained easily by using commercial software to serve as a black box. Numerous elements and 

techniques for modeling and analysis available in commercial software can be applied to 

complicated microstructures without mathematical derivation. The numerical examples presented 

show the validity of this new implementation algorithm. 

Keywords: asymptotic homogenization; viscoelastic composites; complex moduli; loss factor; 

double-layer elements method 

1 Introduction 

Increasing demands for controlling vibration and noise in structures have boosted the search for 

high-performance wave or vibration-absorbing structures and materials. Active or semi-active 

vibration-control techniques (1-3) and the applications of passive damping (4) are two of the most 

widely used methods for effectively vibration absorption, over a range of frequencies. Of these 

methods, passive damping using viscoelastic materials is popular due to its simple implementation 

and cost-effectiveness. However, very few solid materials can reach the engineering standards 

necessary for damping applications. Viscoelastic composites, which have desirable damping 
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characteristics and provide design flexibility (5-7), have captured the attention of researchers (8-10). 

The increasing applications of the damping materials have also driven up demands for accurate 

estimation of the effective viscoelastic response of composites. 

Micromechanical method provides overall behavior of the composites from known properties 

of their constituents through an analysis of a unit-cell model (11, 12), then the heterogeneous 

structure of the composite is replaced by a homogeneous medium with anisotropic properties. 

Several methods have been developed over the past few decades to theoretically predict the effective 

elastic properties of composite materials, such as self-consistent scheme (SCS) (13), generalized 

self-consistent scheme (GSCS) (14), the Mori–Tanaka method (M-T) (15), representative volume 

element method (RVE) (16) and asymptotic homogenization method (AH) (17). Of which, SCS, 

GSCS and M-T method are usually be applied to derive the approximate analytic formula of 

composite material with simple microstructures. When the geometry configuration of the 

microstructure is complex or material properties differ greatly between different phases, these 

methods often exhibit a large error. RVE method and AH method are two widely used numerical 

methods to determine the effective moduli of heterogeneous materials with complicated 

microstructures. These two methods all construct the boundary-value problems of the microstructure 

and then obtain the effective material properties of composite materials based on the characteristic 

displacement or strain fields. In RVE method, correct boundary conditions need to be applied to 

model different loading situations and the accuracy of the RVE approximation depends on how well 

the assumed boundary conditions reflect each of the myriad boundary conditions. Hori and 

Nemat-Nasser (18) presented a universal inequality which indicates that the homogeneous 

displacement and homogeneous traction boundary conditions will give the upper and lower bounds 

of the effective modulus, respectively. Asymptotic homogenization method, which is developed 

based on perturbation theory, can also be regarded as one particular RVE method with special 

boundary conditions when the first order perturbation expansion of displacement is considered only. 

Since microstructure is assumed to be periodic across the problem domain in AH method, periodic 

boundary conditions are applied. Unit strain field related forces are used to obtain the characteristic 

displacements and a special equivalent formulation is given for computing the effective elastic 

coefficients. 

The effective viscoelastic performance of materials is characterized by the complex modulus 

         , which is frequency-dependent (19). Both the real and imaginary parts are 

proportional to the storage energy and the dissipated energy in the materials, respectively. Hashin 

(20) gave the first explicit expressions for the complex moduli of composites reinforced by 

continuous elastic fibers and spherical particles by applying the correspondence principle to the 
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elastic concentric cylinder and the concentric sphere assemblage models, respectively. Christensen 

(21) derived analytical expressions for the upper and lower bounds of the effective complex shear 

modulus of a linear viscoelastic matrix containing either spherical voids or perfectly rigid spherical 

inclusions. Wang et al (22) extended the Eshelby-Mori-Tanaka method into the Laplace domain to 

examine the linearly viscoelastic behavior of a transversely isotropic material with aligned 

spheroidal inclusions and an isotropic material with randomly oriented inclusions. Luciano et al (23) 

studied the viscoelastic problem of composite materials with periodic microstructures, and obtained 

the formulas for the Laplace transform of the relaxation functions of the composite in terms of the 

properties of the matrix and the fibers as well as the function of the nine triple series. Tran et al (24) 

proposed a numerical multiscale method computing the response of structures made of linearly 

non-aging viscoelastic in the time domain based on RVE method. Yi etc. (25) systematically 

formulated a way of obtaining the effective viscoelastic moduli both in the time and frequency 

domain for viscoelastic composites with periodic microstructures by the asymptotic homogenization 

method. On basis of this method, Liu et al (26) predicted the viscoelastic properties of layered 

materials and obtained explicit formulas for predicting the viscoelastic relaxation modulus of 

layered materials. Recently, a two-step homogenization approach based on mechanics of structure 

genome (MSG) is proposed by Liu etc. (27) to predict the viscoelastic behaviors of textile 

composites. Microstructure designs for an optimal damping performance have been attempted by 

some scholars (28-32) by combining asymptotic homogenization techniques and the topology 

optimization method. 

Due to its rigorous mathematical foundation, asymptotic homogenization has been one of the 

most widely used methods for predicting the effective coefficient of periodic composites (33-37). A 

few analytical solutions to the unit cell problems for laminated and particulate composites, such as 

grid-reinforced composite structures (38), have been derived by several asymptotic homogenization 

methods. However, for complicated microstructures, the numerical methods apply better due to the 

difficulty in obtaining analytical solutions. Contrary to the rapid development seen in commercial 

software for finite element analysis of macro-structural performance, development of tools for 

analyzing the microstructural performance is still important, although some commercial software or 

unified tools, such as Digimat (39, 40),  Altair Multiscale Designer (41), SwiftComp (42) and 

Multimechanics (43), have been developed for determining the effective properties of composite 

materials based on different micromechanical methods, such as RVE, AH, MSG, etc. If the 

asymptotic homogenization process can be solved with existing commercial software without the 

need for any complicated mathematical derivation, and leveraging the powerful modeling and 

analytical techniques readily available in commercial software to obtain the effective moduli of 
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arbitrarily complicated microstructures, it would enhance the application of asymptotic 

homogenization methods in engineering or researches greatly. Motivated by this intention, Cheng et 

al (44) developed a novel implementation of the asymptotic homogenization method by using 

commercial finite element analysis（FEA）software in a black box role for predicting the effective 

elastic moduli of periodic materials. This new implementation method replaces generalized unit 

strains with equivalent characteristic displacement fields and can be implemented in commercial 

software with a unified code, without introducing any simplifying assumptions of the asymptotic 

homogenization method. In addition, this method has already been applied in calculating the 

effective elastic constant of periodic plate structures (45-47) and of periodic heterogeneous 

beams(48, 49). Zhang et al (50) extended this method to calculate the effective coefficient of thermal 

expansion of periodic composite materials. Zhao et al (51) applied this new method to predict the 

elastic properties of PVC/ABS/nano-CaCO3 polymer nanocomposites. 

Inspired by the work of Cheng et al (44), the work discussed in this paper proposes a novel 

reformulation and numerical implementation algorithm of the asymptotic homogenization theory for 

predicting the effective complex moduli of the periodic composites in the frequency domain for 

damping characteristics. Contrary to the elastic problem, the calculation of the asymptotic 

homogenization for the complex moduli of viscoelastic composites is categorized within the field of 

complex numbers. To solve this problem, an equivalent harmonic analysis is established and a 

double-layer elements method is proposed to solve the local problem in the homogenization process. 

The subroutine for solving the equivalent harmonic problem is available in commercial software. On 

the basis of the new algorithm, the effective complex moduli can be obtained easily by using 

commercial software in a black box role. Furthermore, inverse Fourier transformation can be applied 

to obtain the viscoelastic response in the time domain. 

This paper is organized as follows: the asymptotic homogenization method for predicting the 

effective complex moduli of periodic composites and its finite-element formulation is introduced in 

Sections 2 and 3. The new reformulation and implementation of asymptotic homogenization on the 

basis of commercial software is proposed in Section 4. The flow chart of the method is included in 

Section 5. In Section 6, the method is applied to examples illustrating its effectiveness. Finally, the 

conclusions are drawn. 

2 Asymptotic homogenization method for linear viscoelasticity in the frequency domain 

The homogenization method has been developed from the studies of partial differential 

equations with rapid oscillating coefficients and has been applied to the estimate the effective 
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moduli of composites with periodic microstructures (33). In this section, a brief summary of the 

asymptotic homogenization method for obtaining the effective complex moduli is presented in order 

to render the paper self-contained, readers can see Ref. (17, 52) for the more details. 

2.1 Governing equation for linear viscoelasticity 

 

Fig. 1 Schematic representation of the periodic material and corresponding unit cell. 

As shown in Fig. 1,   denotes a heterogeneous medium with periodic microstructures. It is 

assumed that the viscoelastic structure is under steady-state harmonic excitation with isothermal 

conditions. Applying the Correspondence Principle (53), the equation of motion for the structure at a 

fixed frequency ω is: 

 
    

    

   
           

       (1) 

where   is the excitation frequency;    is the density of the material;   
     and    

     are the 

spatial parts of the displacement and stress, respectively.   denotes the position coordinate.   

represents the dependency of response fields on microstructural heterogeneities, i.e. response fields 

oscillate at the wavelengths of the order of characteristic volume size. Here and in the sequel, all 

Latin indexes assume 1,2,3 for 3D and 1,2 for 2D, and the repeated indexes are summed over the 

range. Bold fonts are reserved for tensor and matrix/vector representations. The constitutive 

response of the heterogeneous body is expressed as: 

    
                

       (2) 

where    
     is the strain tensor and the          is the complex modulus tensor, which is given 

by: 

               
           

        (3) 

where      ,      
       and      

        denote the frequency-dependent storage 

modulus and loss modulus, respectively. Under the assumption of small deformation, the 
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relationship of strain-displacement can be written as: 

    
     

 

 
 

   
    

   
 

   
    

   
    (4) 

Equations (1)-(3) are considered together with the following boundary conditions: 

  
                      

                             
                                               (5) 

in which n is the outward unit normal vector along the traction boundaries.        and       

denote the prescribed displacement and traction data, respectively. For viscoelastic materials, the 

loss angle   is defined by the ratio between the loss modulus (the imaginary part) and the storage 

modulus (the real part): 

        
     

     

     
    

   (6) 

This parameter measures the ability of a material to absorb energy and the relationship of 

(ijkl)-components between the loss modulus and the storage modulus can be written as: 

   
                  

         (7) 

2.2 Asymptotic homogenization method in viscoelasticity 

For the effective dynamic response of a periodic composite materials, there are two natural 

length scales in the problem, which are the microscale   that defines the fluctuations on the scale of 

microstructure Y and the macroscale     , where         is the wavenumber of the host 

medium, and c0 is the wave velocity (54, 55). On the basis of these definitions, two independent 

length scales are introduced in the asymptotic homogenization method: 

    
  

    
           (8) 

where      is some expansion in  , tending to zero as    ;         is the small 

parameter denoting the relationship between the microscale   and macroscale     , so that    

and    are short and long length scales, respectively. Let us suppose that we can expand the      

in asymptotic expansions of the form: 

           
     

          (9) 

Since the higher order dispersive corrections are not considered in this paper and equation (9) is 

simplified as       . As a consequence of introducing the variable   , the derivatives must be 

transformed according to 

 
 

   
 

 

   
 

 

 

 

   
   (10) 

The most important and essential postulate in the homogenization method is that the field 
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variables are represented by asymptotic expansions in the following form: 

                                                  (11) 

    
          

   
          

   
           

   
              (12) 

It should be noted that           is Y-periodic and independent of  . By substituting 

equations (8), (10), (4) and (2) into equation (1) and considering the periodicity, one can readily 

eliminate the variable y from the first term     , that is the leading order displacement      is a 

function of variable x only. Subsequently, by substituting equations (11), (12) and (10) into equation 

(1) and considering terms with like powers of  , one obtains a series of differential equations of 

which the first two expressions are 

 
    

   

   
     (13) 

 
    

   

   
 

    
   

   
           

       (14) 

where 

    
   

       
   

   

   
 

   
   

   
    (15) 

    
   

       
   

   

   
 

   
   

   
    (16) 

A combination of equations (13) and (15) leads to the following expression: 

 
 

   
      

   
   

     

   
   

         

   

   
   

   

   
   (17) 

which is defined over the unit cell. Taking advantage of the linearity of equation (17) and using the 

separation of variables, the displacement  
   

      can be expressed as: 

   
   

       
   

   
   

   
  

           (18) 

where   
   is the characteristic displacement.   

   is a 3rd rank tensor with symmetry on the second 

and third indices (i.e.   
     

  ) and are periodic in y, which satisfies 

 
 

   
           

   
  

   
  

           

   
   (19) 

      is the homogenous solution of equation (17). It should be noted that equation (19) only 

depends on variable y and thus is solved within the domain of the unit cell, and this is referred to the 

unit cell problem or the local problem.   
   is normalized to ensure uniqueness: 

    
       

 

   
   

       
 

  , (20) 

in which     
 

   
      
 

denotes the averaging operator in the unit cell, and     is the volume of 
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the unit cell. Substituting equations (18) and (15) into equation (14) and applying this averaging 

operator, exploiting the local periodicity of     , we derive the homogenized equation of motion as: 

      
     

   
   

      
        

       (21) 

where the coefficients      
  is the effective homogenized viscoelastic complex modulus which can 

be computed by: 

      
     

 

   
                       

   
  

   
 

 
     (22) 

It can be noticed that equations (19) and (22) share the same formulations with the elastic 

homogenization method but in a complex number field. The following homogenized stress-strain 

relations can be obtained: 

           
           (23) 

where      and      are the strain and stress tensor of the homogenized structure respectively. By 

now, we have derived the asymptotic homogenization method for obtaining the effective complex 

moduli of viscoelastic material. The procedure is summarized as: 

Step 1: Solving the unit cell problem or the local problem (19) to obtain the characteristic 

displacements   
  . 

Step 2: Computing the effective complex moduli      
     by integrating over the domain of 

the unit cell based on the equation (22). 

3 Finite element formulation 

Analytical solutions to the unit cell problems for laminated, fiber-reinforced, and particulate 

composites have been already derived by researchers. However, for complicated microstructures, 

obtaining analytical solutions can be challenging and finite-element method is widely used to solve 

these problems. Integrating equation (19) over the domain Y and using the Gauss theorem with the 

consideration of the local periodicity boundary condition, the weak form of equation (19) can be 

written as: 

                        
   

  

   
 

 

  

   
              (24) 

where                                denotes the function space of periodic functions 

defined in unit cell Y,   represents the virtual displacement. Considering the symmetry of the 

modulus tensor       and   
  , that is                         and   

     
  , we define   

and   as the matrix forms of elastic moduli and characteristic displacement expressed in contracted 

Voigt notation. The components of these matrix are obtained from       and   
   by following the 
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replacement of ij or kl:                                        .We seek the solution 

of the characteristic displacement   
   in the finite dimensional space: 

   
              

        
 ,  (25) 

where       denotes the shape function of node i within the discretization of the characteristic 

volume; Nn denotes the total number of nodes, and   
      

 is the nodal coefficients. For 2D 

problems, (kl)=(11,22,12); for 3D problems, (kl)=(11,22,33,12,13,23). Following the standard 

Bubnov-Galerkin setting,    is defined similarly to equation (25). Substituting the discretization of 

the influence function and the weight function into the weak form and expressing the terms in 

matrix–vector form using the Voigt notation yields the following discrete system: 

         (26) 

where    is the nodal displacement matrix,   and   are the stiffness matrix and the force matrix, 

respectively, which are formed by assembling the element matrices: 

                
      (27) 

                 
      (28) 

where    corresponds to the unit strain fields,   is the strain-displacement matrix in element. 

Take the 2D problem for example: 

                                     
    

           

      

     

          

      
 

 

   (29) 

in which T denotes the matrix transpose, Me denotes the total number of nodes in each element. 

Define  
     

 as the kl-th column in the matrix  
 
 and by rewriting the complex matrix and 

vectors  ,        and     in the terms of real and imaginary parts 

            (30) 

          
         

        (31) 

       
      

     (32) 

the equation (26) can be written as 

             
         

         
      

  ,  (33) 

where the stiffness matrix and the force vector are written as 

                  
                       

      (34) 

   
                      

       
                       

      (35) 

It should be noted that the equation (33) should be solved under the periodic boundary 

conditions. The effective homogenized viscoelastic complex modulus defined in equation (22) at a 
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given frequency then can be computed by 

       
 

   
                      
 

    (36) 

 

4 New implementation algorithm of the AH of viscoelasticity 

In the past section, the finite-element formulation for obtaining the effective complex modulus 

by the asymptotic homogenization method is derived. Firstly, the characteristic displacement fields 

       are obtained by solving equation (33). Subsequently, substituting        into equation (36) 

provides the effective complex modulus. But the formulations of the unit cell problems given 

previously [equations (33)–(36)] remain difficult to solve for the force vector and the stiffness 

matrix are element type-related. Various element types (e.g. solid, beam, shell, and mixed, must be 

written for the different microstructures. 

This section presents a novel reformulation and numerical algorithm for obtaining the effective 

complex modulus       by using the commercial software as a black box. In the new method, an 

equivalent harmonic analysis is established and a double-layer elements method is proposed to solve 

the local problem in the homogenization process. The instructions for the process are detailed below. 

4.1 Implementation of and formulation of the force vector 

In order to achieve the force vector (33) in commercial software, the equation (28) is re-written 

as 

  
                     

  
 

 

               
        

  
 

 

                 
      

  
 

 

                                                                         (37) 

where        is the nodal displacement vector corresponding to the unit strain field       , which, 

for every node, can be written as follows. 

                
     

  
  

 
      

     
  

 
  

       
     

  
     

     
   (38) 
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 ,    
     

  
     

     

 

      
     

 

 
     

 
     

      
     

  

 
     

     

   (39) 

Here,   
     

 is the nodal displacement vector of i-th node corresponding to the (kl)-th case, 

and   ,  ,   are the nodal coordinates of the i-th node. Rewriting equation (37) in the terms of the 

real and imaginary parts, we obtain the following: 

   
      

         
      

        (40) 

In commercial software, the displacement        can be applied on the nodes, and the static 

analysis for the two elastic problems is ran under the prescribed displacement with the material 

elastic constitute       and       , respectively, to achieve the corresponding nodal reaction 

force   
   and   

  . 

4.2 Reformulation and implementation to obtain the characteristic displacement 

4.2.1 Equivalent harmonic response analysis model 

After calculating the nodal force vector       
      

   by equation (40), the finite element 

equation (33) should be solved to obtain the characteristic displacement fields       . To solve this 

equation, a harmonic response analyses model is established: 

                   
      

      
      

                    (41) 

where    represents the structural stiffness matrix;    represents the structural mass matrix and    

represents the structural damping matrix;    is the circular frequency of the force; and   
   and 

  
   are the real displacement vector and the imaginary displacement vector, respectively. By 

comparing equations (33) and (41), and defining as follows: 

                 
  

  
   (42) 

the following is obtained: 

   
        

      
        

  .  (43) 

In this way, the problem of solving the complex linear equation (33) is transformed into solving 

a harmonic response analysis (41). Next, the discussion focuses on establishing the formulations (42) 

through the use of commercial software. By setting the elastic material properties as      , the 

material density as 0, then the structural stiffness matrix    equals    , and the structural mass 
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matrix     equals to the zero matrix. However, the ability to define         though the use of 

commercial software remains difficult because of the lack of damping models. To solve this 

challenge, equation (33) is modified to the form: 

                    
 

 
       

         
         

      
     (44) 

where   is a small positive number         to ensure that             and      

  
 

 
     , hence this equation shares the same solution of equation (33). The reason for 

constructing this approximate formulation is mainly to establish a weak linear relationship between 

the real part and the imaginary part. “Weak” here means that each terms in the two parts have a 

linear relationship, such as the first term in the real part    and second first term      in the 

real part is linear with the coefficient 0, similarly, the second term in the real part   
 

 
   and 

second first term   
 

 
   in the real part is linear with the coefficient  . In this way, the 

proportional damping model which is widely applied in commercial software can be used. By 

comparing equations (44) and the harmonic response model (41), the following is defined 

                             
 

  
      

 

 
        (45) 

It should be noted that the methodology holds for any    and for simplicity, we take      is 

used in this paper; hence formulae (45) can be rewritten as 

                                  
 

 
       (46) 

In this way, the local problem (33) is transformed to an equivalent harmonic response equation 

(41) with the stiffness, mass and damping matrices defined by equation (46). In next section, a 

double-layer elements method is proposed for establishing the model defined in formulation (46) 

and then the harmonic response problem can be solved easily by the readily available subroutine in 

commercial software. 

4.2.2 Double-layer elements method 

Rewrite equation (46) at an element-level: 

       
     

           
      

           
  

 

 
    

    (47) 

where the superscript e denotes the element matrix. By observing this formulation, it is apparent that 

all the matrices are sums of two parts. Here, a double-layer elements method is proposed for 

modeling the summation of the element stiffness, damping and mass matrices. The basic idea is that, 

for each mesh, there are two elements on two layers, which share the common nodes but have 
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different material properties. As shown in Fig. 2, Element 1 (first-layer element) and Element 2 

(second-layer element) share the common Mesh 1 with Nodes 2, 5, 4 and 1. Therefore, for each 

mesh, the stiffness (damping or mass) matrix of the mesh will be summed by two element-stiffness 

(damping or mass) matrices: 

              (48) 

This method can be realized through most commercial software, e.g., ANSYS. One efficient way 

is to discrete the CAD model, copy all the elements, and then merge the nodes that share the same 

locations. 

 

(a) A mesh with two elements which shares the same nodes 

 

(b) Illustration of the final finite element model 

Fig. 2 Illustration of the double-layer elements method. 

The properties of the material assigned to the first-layer elements are       (the storage 

modulus) as the elastic modulus, the density at zero, and the damping ratio. The ones assigned to the 

second-layer elements are         (  times the loss modulus) as the elastic modulus, the density 

at zero, and the damping ratio    . It should be noted that, in practice, both of the material densities 

of the two elements equal    (    ), a small positive number, prevents singularity. The material 

properties for the elements on these two layers are defined and given in Table 1.  

Table 1  Material properties of the two layers 



  

A novel implementation of asymptotic homogenization for viscoelastic composites with periodic microstructures 

 

Layer Material elastic matrix Material density Material damping ratio 

Layer 1          0 

Layer 2                

 

By following the setting of the material properties in the commercial software, the nodal force 

vector       
      

   is computed by equation (40) for all the nodes, and the finite-element 

model [equation (44)] under periodic boundary conditions can be solved by the harmonic response 

analyses. The characteristic displacement field          
         

     
 can be obtained directly 

from the outputs provided by the software. 

4.3 Implementation of obtaining effective complex moduli 

The effective viscoelastic complex modulus formulated by equation (36) can also be expressed 

in the form of strain energy (56, 57): 

    
 

   
                         
 

     (49) 

The physical meaning of this formulation is the strain energy of unit cell; in which the 

corresponding strain equals the difference between the unit strain and the characteristic strain. Thus, 

Eq. (49) can be rewritten in the matrix form as 

    
 

   
                 

 

   
                (50) 

where   ,   ,   and    are complex matrices, which are assembled by       ,       ,      
 and 

      , respectively. Of which       ,       , and       have been obtained by equations (38) or (39), 

equation (44) and equation (24), respectively, and        is defined as 

                         
         

       

  
          

          
         

          
          

        (51) 

All the quantities in these equations are either given or are outputs direct from the commercial 

software and are prepared for calculating the effective stiffness coefficients of the structure in the 

commercial software. 

5 Flow chart 

To better illustrate our method, Fig. 3 provides a flowchart: 

Step 1. Establish the finite-element model of the unit cell by using commercial software. 

Step 2. Apply nodal displacement fields        given in equation (38) or (39) on each node. 
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Set the material elastic property as storage modulus   ; run one static analysis for each condition 

(solve the equation (40)); and get the corresponding nodal reaction force   
  . Then, modify the 

material elastic property to loss modulus     and perform the same computation to obtain the nodal 

reaction force   
  . Thus, the nodal force vector       

      
   is obtained. 

Step 3. Establish a new finite-element model by executing the double-layer elements method 

described in Section 3.2. Then apply nodal reaction force     on each node, run a harmonic 

response analysis with periodic boundary conditions (solve the equation (44)), and obtain the 

characteristic displacement field           
         

      . After which,   
     

 and   
     

 are 

obtained. Merge all elements, which share the same mesh. 

Step 4. Apply the characteristic displacement field        on each node. Set the material elastic 

property of the element as storage modulus   ; run the static analysis again; and obtain the nodal 

reaction force     
     

. Similarly,     
     

,    
     

and     
     

can also be obtained. According 

to equation (51), obtain the force vector          
         

     
. 

Step 5. Calculate the effective complex modulus matrix by    
 

   
               

[equation (50)]. 
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Fig. 3 Flowchart of the new implementation of asymptotic homogenization 

6 Numerical examples 

In this section, to demonstrate the effectiveness of the new implementation of the AH method 

in predicting the viscoelastic modulus of periodic composite materials, three examples are examined 

by using the commercial software ANSYS. 

6.1 Particle-reinforced composite 

As the first example, the effective viscoelastic responses of particle-reinforced composite with 

circular inclusions in a square matrix are computed by using the novel implementation method 
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outlined previously. Assume the constituent materials are assumed isotropic and the volume fraction 

of the inclusion is 50%. The finite element mesh for the microstructure is shown in Fig. 4. This 

model has been solved by traditional implementation in (32). To validate our proposed method, we 

use two different material properties of matrix and inclusion, and the results obtained by the new 

implementation are compared to the results given by Yi et al.  

 

Fig. 4 Illustration of the finite element mesh of the microstructures 

First, a viscoelastic composite with elastic circular inclusion in the viscoelastic matrix 

(Composite 1) and a viscoelastic composite with a viscoelastic circular inclusion in the elastic 

matrix (Composite 2) are considered, respectively. The material properties of the elastic inclusions 

(Material 1) are 

                   (52) 

 The material properties of the viscoelastic matrix (Material 2) are given as  

                            (53) 

Table 2 gives a comparison of the results computed by the new implementation of asymptotic 

homogenization (NIAH) and the results by Yi et al (Ref) (32) for frequency equals to 0.5. It is 

apparent that the results of new implementation coincide very well with the traditional 

implementation with the minor errors for different finite-element mesh. 

Table 2 Comparison of the results of new implementation and traditional implementation 

Microstructure 
Frequency 

(ω) 

   
  

    
  

        

NIAH Ref NIAH Ref NIAH Ref 

Material 1 0.5 73.56 73.56 0.00 0.00 0.000 0.000 

Material 2 0.5 1.71 1.71 1.14 1.14 0.667 0.667 

Composite 1 0.5 4.58 4.64 2.83 2.86 0.618 0.618 

Composite 2 0.5 24.84 23.28 1.10 1.14 0.044 0.049 

 

Next, composites with the microstructures composed of two isotropic viscoelastic materials 
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with different relaxation times are considered. The relaxation moduli are given as follows:  

                                               (54) 

                                            (55) 

A similar comparison of the results is given in Table 3. It is apparent again that the results of 

new implementation coincide very well with the traditional implementation. Fig. 5 shows the loss 

tangents of the two given constituent materials and the two conventional composites as a function of 

frequency. The results show that by designing the topology of the microstructure, the preferred 

damping characteristics of the composite can be obtained within an interesting range of frequency. 

This can help obtain the maximum damping ratio at fixed frequency. 

Table 3 Comparison of results of new implementation and traditional implementation 

Microstructure 
Frequency 

(ω) 

   
  

    
  

        

NIAH Ref NIAH Ref NIAH Ref 

Material 1 
0.04 1.04 1.04 1.18 1.18 1.132 1.132 

0.4 3.79 3.79 0.80 0.80 0.212 0.212 

Material 2 
0.04 0.58 0.58 0.14 0.14 0.237 0.237 

0.4 1.04 1.04 1.18 1.18 1.132 1.132 

Microstructure 1 
0.04 0.84 0.84 0.43 0.43 0.510 0.510 

0.4 2.04 2.04 1.36 1.36 0.672 0.670 

Microstructure 2 
0.04 0.81 0.80 0.52 0.50 0.637 0.625 

0.4 2.14 2.10 1.19 1.20 0.555 0.571 

 

 

Fig. 5 Variations of loss tangents against frequency  . 
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6.2 Fiber reinforced composite  

 

Fig. 6 Unit cell and finite element mesh of fiber reinforced composite. 

In this example, a fiber-reinforced composite, whose unit cell is shown in Fig. 6 is considered, 

and a complete process using the new method to obtain the viscoelastic modulus in the frequency 

and time domain is presented. The fiber is a transversely isotropic elastic material, whereas, the resin 

matrix is a viscoelastic material with the constitutive equation: 

               
       

  
  

 

 
         (56) 

where        is the deviatoric stress tensor;   is the spherical stress tensor;      is the deviatoric 

strain tensor; and   is the spherical strain tensor. K is the bulk modulus, and its bulk deformation 

satisfies the elastic behavior.      is the shear modulus, and its shear deformation satisfies the 

three-parameter solid model: 

            
  

     
    

  
     

       (57) 

where   ,   are the elastic modulus of the viscoelastic material and    is the viscosity coefficient. 

Fig. 7 illustrates a three-parameter solid model. The shear moduli are written within the time domain, 

and the complex modulus can be obtained by Fourier transform: 

        
   

        
   

         (58) 

where        
  

     
 ,   

   
 

     
 and   

     

  
. 

 

Fig. 7 Illustration of the three-parameter solid model. 

The constitutive equation (56) also can be written as: 
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   (59) 

where      is the relaxation modulus and can be written in the matrix form: 

   

 
 
 
 
 
 
 
   

 

 
   

 

 
   

 

 
    

  
 

 
   

 

 
   

 

 
    

  
 

 
   

 

 
   

 

 
    

      
      
       

 
 
 
 
 
 
 

   (60) 

In this paper, the resin matrix material is ED-6, and the fiber material is graphite fiber T300, 

whose material constants are presented in Table 4 and Table 5, respectively.  

Table 4 Viscoelastic material constants of ED-6 in room temperature 

                                

ED-6 3.2 1.8 300 4.44 

 

Table 5 Elastic material constants of T300 

                                           

T300 13.8 22.1 5.52 9.0 0.25 0.2 

 

Through the new implementation of asymptotic homogenization, the effective moduli of the 

viscoelastic composite can be computed. Fig. 9 shows the effective modulus    
 , and damping ratio 

    for fiber volumes fraction equals 0.3. The subscript ‘ij’ is use  to  enote the value in the i-th 

row, j-th column in the matrix (60). From Fig. 9 it is possible to find that the maximum damping 

ratio occurs at        and that the damping ratio decreases with the increase of frequency, 

whereas the storage modules increase for supplying a stiffness. 
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Fig. 8 . Variations of the effective modulus     and the damping ratio     for fiber volume fractions equals 

0.3 against frequency  . 

In particular, it can be demonstrated that, by adjusting the volume fraction of the fiber in a 

matrix, it is possible, in principle, to modify its damping response in the frequency domain. As 

shown in Fig. 9, the damping ratio decreases while adding the fiber volume fraction. It should be 

noted that the frequency at which the maximum damping ratio occurs also slightly decreases with 

the increase in fiber volume fractions. 
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(d) (e) 

Fig. 9 Composite of the damping ratios for the different fiber volume fractions: (a)    ; (b)    ; (c)    ; (d) 

   . 

Assuming the effective viscoelastic modulus of the composite also satisfies the three-parameter 

solid model, it follows that 

    
        

    

   
   

   
     

   
   

    (61) 

Consequently, the analytical functions of the effective viscoelastic modulus of the composite 

can be obtained by using a linear least-squares fit to obtain the values of parameters   ,    and 

  . Furthermore, the inverse Fourier transformation is used to obtain the effective viscoelastic 

modulus in the time domain (as shown in Fig. 10). 

 

Fig. 10 Effective viscoelastic modulus for different volumes of fiber in the time domain. 
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6.3 Octet-truss lattice material 

In this example, an octet-truss lattice material with the unit cell shown in Fig. 11 is 

considered. The unit cell consists of an internal octahedral cell (dark color) and eight outer 

tetrahedral cells (light color), whose effective elastic properties have been investigated through 

analytical and FE calculations by Deshpande et al (58) and Cheng et al (44). In this paper, the 

effective viscoelastic moduli are computed for this unit cell, in which all the rods have lengths 

of 1.0mm, and the cross sections have diameters of 0.1mm. 

 

Fig. 11 Unit cell of the octet-truss lattice material consisting of one internal octahedral cell and eight outer 

tetrahedral cells. 

Two types of elements, the tetrahedral solid element and the beam element, are used to 

establish the finite element models (Fig. 12) of the unit cell. For the finite element discretized by the 

solid elements, 49,784 elements and 169,048 elements are used for the two different mesh sizes. 

Whereas, for the finite element discretized by the beam elements, only 360 elements are used. 

Assume the unit cell is a homogeneous isotropic viscoelastic material with Young's modulus 

               and Poisson's ratio        . The effective complex moduli of the 

octet–truss lattice material can be computed for these three finite-element models; the results are 

presented in Table 6. It is apparent that the results obtained by the beam element model are close to 

those of the solid-element models. However, the solid-element models used a large number of 

tetrahedral elements to achieve sufficient accuracy, and the beam-element model used only a few 

beam elements. Finer mesh in the unit cell results in a convergence with the result from the 

beam-element model; however, the computing time for the solid-element models is much longer. 
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(a) (b)  

Fig. 12 Finite element of the unit cell. (a) solid element; (b) beam element. 

Table 6 Effective complex moduli of octet-truss lattice material for the three finite element models 

Mesh 
Element Number 

   
  

    
   

             
  

    
   

          

Beams 360 1.68e-2 1.12e-2 0.666 8.39e-2 5.59e-2 0.666 

Tetrahedral 
49784 1.92e-2 1.28e-2 0.666 9.02e-2 6.01e-2 0.666 

169048 1.88e-2 1.25e-2 0.666 8.86e-2 5.91e-2 0.666 

 

Next, by assuming that the unit cell is heterogenetic, the internal octahedral cell consists of an 

isotropic elastic material with the properties                  , whereas, the eight outer 

tetrahedral cells consists of viscoelastic material with the properties                    

    . The beam-element model is used to compute the effective complex modulus for simplicity 

and efficiency. Fig. 13 shows the variations of effective modulus     and the damping ratio     

with   for the octet-truss material. Because the loss modulus is much lower than that of the 

storage modulus of the composite, the variation tendency of the damping ratio against the 

frequency is similar to that of the loss modulus.  
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Fig. 13 Variation of the effective modulus     and the damping ratio     with   for octet-truss material. 

7 Conclusions 

In this paper, a novel numerical implementation algorithm of the asymptotic homogenization 

theory for predicting the effective complex moduli of a composite in the frequency domain is 

proposed. To solve the local problem in the homogenization process, an equivalent harmonic 

analysis is performed, and a double-layer elements method is proposed. Through this algorithm, the 

viscoelastic response of the composites in the frequency domain can be obtained easily by using 

commercial software in a black-box role. In this way, the powerful modeling and analytical abilities 

of the commercial software are utilized for computing complicated unit cells. The viscoelastic 

properties of the particle-reinforced composites, the fiber-reinforced composites, and the octet-truss 

lattice materials are computed with this method to illustrate the effectiveness and simplicity of this 

new implementation. 
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