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A B S T R A C T

In this study, we introduce and discuss features and improvements of the well-established stiffness matrix
method that is used in simulation of wave propagation in layered media. More specifically, we present stiffness
matrices for an acoustic layer and a vertically transverse isotropic (VTI) viscoelastic soil layer. Combining these
stiffness matrices enables a straightforward technique for modeling of acousto-elastic wave propagation in
layered infinite media. In addition, we propose a technique to simulate discontinuity seismic sources, which was
not used earlier in the context of the stiffness matrix method. Finally, we propose a framework to derive a key
parameter of the absorbing boundary domain technique Perfectly Matched Layer (PML). Numerical examples are
presented in order to help understanding the features and improvements discussed in the study from the fields of
geophysics and soil dynamics. It is believed that the features and improvements discussed herein will make the
application of the stiffness matrix method even wider and more flexible.

1. Introduction

The stiffness matrix method is a well-developed approach for si-
mulating wave propagation in layered media, and has been successfully
applied to various problems during the last decades (e.g. [1–3] and
[4]). The method describes the wave motion in a layered medium in
terms of symmetric and banded matrices and with straightforward and
efficient solution procedure, producing the dynamic responses si-
multaneously at all layer interfaces and in all directions. The method
has later been extended to acoustic layers ([5,6]). The discrete version
of the stiffness matrix solution, called Thin-Layer Method (TLM), has
also been developed and applied to various problems ([7–9]). Recently,
TLM has been combined with the so-called Perfectly Matched Layer
method (PML) that enables calculation of wave motion in infinite do-
mains [10]. Despite these extensions, there are still features and im-
provements of the stiffness matrix method that could advance the use of
the method in theoretical and applied problems. The present study in-
troduces and discusses some of those features, including

• Vertically transverse isotropic (VTI) soil layer stiffness

• Discontinuity seismic sources

• Derivation of PML parameters

For completeness, first we present the acoustic layer stiffness

matrices in forms that can be used in offshore or fluid-soil-coupled
applications (e.g. seismic wave in the ocean environment). We in-
troduce three different formulations in terms of vertical displacement,
velocity potential and pressure. Each formulation has its own ad-
vantages and disadvantages. For example, the second and third for-
mulations make it straightforward to implement the so-called air-gun
source that is used as explosive acoustic source in offshore seismic
surveys. This is because the air volume injected by the air-gun is ex-
plicitly defined in the two formulations, which are shown later. On the
other hand, the first formulation is more suitable for applying vertical
disk load on seabed or within water column, because the disk load can
be represented by a term that can be set directly in the matrix equa-
tions. It is also shown that the three solutions are interrelated such that
one can be derived from the other two through relevant constitutive
laws. Next, the soil stiffness matrices for the vertically transverse iso-
tropic (VTI) layers are derived for both P-SV (in-plane) and SH (anti-
plane) wave modes. It is shown that the structure of the VTI soil layer
stiffness matrices is identical to that of the isotropic soil layer, except
that the parameters have different definitions and include the aniso-
tropy factors (a and b). Indeed, the stiffness matrix for the isotropic case
can be recovered by setting the anisotropy factors equal to 1. This al-
lows straightforward extension of existing numerical tools based on
stiffness matrices in isotropic soil to anisotropic soil. The derived
stiffness matrices are used to compute the impedance matrices of square
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foundations on anisotropic soil media and the results are compared
with their isotropic counterparts to highlight the effect of anisotropy on
the foundation impedances. Further, in order to solve the case of in-
jected (air or fluid) volume or dislocation/slip at the interface of two
layers, we formulate a technique to implement displacement dis-
continuity into the stiffness matrix method. This technique enables the
stiffness matrix method to simulate the wave fields generated by e.g. an
air-gun source or dislocation seismic sources. Finally, by means of the
continuum stiffness matrices we derive the key parameter of PML (i.e.
PML thickness, hPML) that can be used in discrete numerical approaches,
for example, in TLM, Finite Element Method (FEM) and Finite
Difference Method (FDM).

2. Stiffness matrices for fluid and anisotropic soil layers

2.1. Acoustic layer

Fig. 1 shows schematically an acoustic layer of thickness h. Wave
motion in an acoustic layer can be described with different equations.
In this study, we have chosen the particle velocity potential (ϕ). The
governing equation in the space-frequency domain has then the fol-
lowing form:

∇ + =ϕ ω
C

ϕ 02
2

2 (1)

where ∇ is the Laplacian operator, ϕ is the velocity potential, ω is the
angular frequency (in radian/s), and C is the wave velocity in the
acoustic layer.

The velocity potential (ϕ) and the vertical velocity (vz=∂ϕ/∂z) in
the wavenumber-frequency domain can be given in matrix forms as
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where A and B are unknown constants to be determined for each
acoustic layer, = −β k ω C/2 2 2 is vertical direction wavenumber in
the acoustic layer, and k is the radial (or horizontal) direction wave-
number. Note that hereby Fourier (for plane wave) or Hankel (for cy-
lindrical wave) transformation from the spatial to wavenumber domain
is already applied, and the wavenumber k replaces all the spatial de-
rivatives with respect to the horizontal (or radial) coordinate. For an
acoustic layer of finite thickness h, we can express explicitly the two
quantities of the velocity potential and the vertical velocity on the top
and bottom interfaces by setting z= h and z=0, resulting in the fol-
lowing two matrix equations.
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Subscripts 1 and 2 indicate, respectively, the quantities on the
bottom and top interfaces. By removing the unknown constant vector
{A, B}T from the two matrix equations, we can obtain the following
direct-relationship between the top and bottom interfaces (i.e. at z= h
and z=0) in terms of the velocity potential and the vertical velocity
given below
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The equations can be rearranged further as
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In the context of the layer stiffness matrix method, we need to
consider the volume change (v ) as the flux condition at an interface,
representing the injected volume via, for example, air-gun source at the
interface. In this way, we can easily assemble the layer stiffness matrix
in the sense of the finite element method. For this, we need to consider
the following relationships:

= −v vz1 1 (7)

=v vz2 2 (8)

The reason for the negative sign in the relationship for the bottom
interface (Eq. (7)) is that the volume change is defined positive as it
increases, which corresponds to the negative vertical velocity at the
bottom interface. Eq. (6) can then be re-written as
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which gives the symmetric acoustic layer stiffness matrix in terms of the
velocity potential. Furthermore, the velocity potential can be converted
into pressure according to the following constitutive law:

= −p iωρϕ (10)

By applying this, we can transform the stiffness matrix in Eq. (9)
into the following form in terms of pressure.
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In addition, we can also express the volume change (v ) in terms of
the vertical displacement (uz), and the pressure (p) in terms of the
normal traction (σz) at the interface. For this, we use a set of con-
stitutive laws of = −v iωuz1 1, =v iωuz2 2, p1 =− σz1 and p2 = σz2. Note
that we need to impose the negative sign for the bottom interface. Then,
we obtain the following stiffness matrix in terms of the vertical dis-
placements.
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As shown in Eqs. (9), (11) and (12), three versions for the acoustic
layer stiffness matrix are available and are related to each other via the
appropriate constitutive laws. It should be noted that the version with
the vertical displacement (Eq. (12)) is in a form to be readily assembled
with the soil layer stiffness matrix in the finite element sense without
any additional condition to satisfy. On the other hand, the other two
versions in Eqs. (9) and (11), with velocity potential and pressure, re-
spectively, require additional interface conditions to satisfy. Such
conditions are the flux continuity at interfaces, as given below in Eqs.

Fig. 1. Acoustic layer of mass density ρ, wave velocity C and thickness h whose
motion is expressed by the particle velocity potential ϕ. Note that two flux
boundary conditions at z=0 and h are given in terms of volume change v .
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(13)–(16), and can be found in the literature (e.g. [8]).
For the velocity-potential acoustic layer stiffness:

= ±v iωuz (13)

= ±σ iωρϕz (14)

For the pressure acoustic layer stiffness:

= ±v iωuz (15)

= ±σ pz (16)

2.2. Anisotropic soil layer

In this section, we present the layer stiffness matrices for a vertically
transverse isotropic (VTI) soil layer whose anisotropy follows the
principal coordinate directions. The procedure for the derivation of the
VTI layer stiffness matrices is similar to that for the isotropic soil case
[1]. Therefore, we skip presentation of most of the details of the deri-
vation. Instead, we show the final result, which is constructed in such a
way that the VTI layer stiffness matrices look similar in form to the
isotropic layer stiffness matrices presented in [1]. As shown later in this
section, the effect of transverse isotropy is accounted for with the help
of two anisotropy factors a and b in the stiffness matrices.

In the elasticity theory, a VTI medium can be described by the
stress-strain constitutive law in cylindrical coordinate system (r,θ,z), as
given by:
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where λt and Gt are the complex Lamé constants that are related to wave
motion propagating in the vertical direction (z), and λ and G are related
to wave propagation in the two horizontal directions (r,θ). These
parameters incorporate linear hysteretic damping through the classical
complex variable formalism. The associated wave velocities can be
expressed as
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Wherein ρ is the mass density; Cp and Cs are the P- and S-wave
velocities in x-y plane (i.e. along the horizontal direction); Cpt and Cst

are the corresponding velocities in the vertical direction. In addition,
we introduce the following three parameters that define the ratios be-
tween these wave velocities.
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By applying the compatibility relationship between strain and dis-
placement and inserting the stress-strain relationship into the mo-
mentum equilibrium equation, we can derive the frequency-domain
wave equation for the VTI medium in cylindrical coordinate system as
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where u, v and w are the displacement components along r, θ and z
directions, respectively; and br, bθ and bz are the body forces in these
directions. Following [1], the wave equation above can be solved by the
separation of variables, where the displacement components are ex-
pressed as in Eq. (21) by:
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In this equation, n is the azimuthal direction wavenumber (di-
mensionless integer); Jn=Jn(kr) are the n-th order cylindrical functions
of first, second or third kind (i.e. Bessel, Neumann, or Hankel functions,
respectively); k is the radial-direction wavenumber; U(z), V(z),W(z) are
the z-direction dependencies (or vertical profiles) of the displacement
modes. Note that U(z) and W(z) are related to the P-SV wave mode and
V(z) to the SH wave mode. The P-SV and SH wave modes of the VTI
medium are completely decoupled from each other, as in the isotropic
medium. The choice of n depends on the source characteristics along
the azimuthal direction. For example, a vertical point load requires only
n=0 (i.e. no variation along θ), while a horizontal point load requires
n=1. However, if the source variation along θ-direction is more
complex, the response should be obtained with the help of Fourier
series and including as many n as needed until the sum is converged.
The middle 3× 3 matrix term on the right hand side in Eq. (21) is a
standard form resulting from the solution by the separation of variables
applied in the context of cylindrical coordinate system.

First, the 4×4 stiffness matrix for a VTI soil layer subjected to P-SV
wave motion is given in the following in the same form as for the isotropic
stiffness matrix presented in [1], except that the involved parameters are
defined by different formula due to the soil anisotropy (See Eq. (26)).

= ⎧
⎨⎩

⎫
⎬⎭

kGK
K K
K K2 t

11 12

21 22 (22)

J. Park, A.M. Kaynia Soil Dynamics and Earthquake Engineering 115 (2018) 169–182

171



=
−

⎧

⎨
⎪

⎩
⎪

⎛
⎝

− ⎞
⎠

− ⎡
⎣

− + ⎤
⎦

− ⎡
⎣

− + ⎤
⎦

⎛
⎝

− ⎞
⎠

⎫

⎬
⎪

⎭
⎪

− + ⎧
⎨⎩

⎫
⎬⎭

=
−

⎧

⎨
⎪

⎩
⎪

⎛
⎝

− ⎞
⎠

− −

− ⎛
⎝

− ⎞
⎠

⎫

⎬
⎪

⎭
⎪

= =
−

⎧

⎨
⎪

⎩
⎪

⎛
⎝

− ⎞
⎠

⎡
⎣

− + ⎤
⎦

⎡
⎣

− + ⎤
⎦

⎛
⎝

− ⎞
⎠

⎫

⎬
⎪

⎭
⎪

+ + ⎧
⎨⎩

⎫
⎬⎭

k γ k γ
D

γ C S C S C C S S

C C S S C S C S

k γ
k γ k γ

D

γ S S C C

C C S S

k γ k γ
D

γ C S C S C C S S

C C S S C S C S

k γ

K

K

K K

( / / )
2

(1 )

(1 )

1
2

(1 / ) 0 1
1 0

( / / )
2

( )

( )

( / / )
2

(1 )

(1 )

1
2

(1 / ) 0 1
1 0

z z

t

γ
γ

γ
γ

γ
γ γ

γ
γ

z
z z

t

γ
γ

γ
γ
γ

T z z

t

γ
γ

γ
γ

γ
γ γ

γ
γ

z

11
1 1 2 2

2 1 2
1
2

2 1 1 2
1
2

1 2

1 2
1
2

1 2
1

1
2 1

1
2

1 2

2 2 12
1 1 2 2

2
1
2

1 2 1 2

1 2
1

1
1
2

2 1

21 22
1 1 2 2

2 1 2
1
2

2 1 1 2
1
2

1 2

1 2
1
2

1 2
1

1
2 1

1
2

1 2

2 2 (23)

The 2× 2 stiffness matrix for a VTI lower (z < 0) half-space sub-
jected to P-SV wave is also derived and expressed as
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Note that the signs of the off-diagonal terms need to be reversed for
the upper half space. Similarly, the stiffness matrices for a VTI layer and
a half-space subjected to SH wave are derived and given in the form:
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The following parameters are defined for the VTI stiffness matrices
presented above.
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The same topic was studied in [2], but only for the P-SV wave case,
whereas the current study includes the SH wave case as well. In addi-
tion, the format and presentation of the matrices in the current study
are more structured and compact than those in [2]. Therefore, they are
more straightforward to be implemented in numerical codes based on

the stiffness matrix approach as in [1]. Note that by setting a=1 and
b=1 in the VIT stiffness matrices, one can recover the stiffness matrices
for the isotropic medium. Finally, it is important to note that all the
parameters used in Eqs. (23–24) are functions of α, a and Ωst, but in-
dependent of b. This implies that the horizontal wave speed (Cs) is not
contributing to the P-SV mode, which is also a finding of the present
study.

3. Impedances of foundations on anisotropic soil

Both as a verification of the developed solution, and investigation of
the effect of soil anisotropy on the stiffness and damping of rigid
foundations, the complex impedances of a rigid square footing resting
on a homogeneous soil layer over a half-space are calculated and
compared with those for isotropic soil [11]. The technique used here to
calculate the impedance is based on the one proposed in [12]. Ac-
cording to this technique, the contact surface between the ground and
foundation is discretized into a regular grid of rectangular elements. By
applying uniformly distributed unit loads on each element in the three
directions and calculating the displacements at all element centres
(nodes), one can derive the flexibility matrix of the ground-foundation
interface which is a relationship between the forces and the corre-
sponding nodal displacements. By imposing the rigid-body motion of
the footing for the desired mode of response (horizontal, rocking and
vertical) and summing the contributions from the element loads one
can compute the forces and moments on the foundation which define
the elements of the foundation impedance matrix.

The following parameters are used for the top soil layer: Cst1

= 150m/s, ρ1 = 1770 kg/m3, damping ratio, ξ1 = 0.05. The corre-
sponding parameters for the half-space are Cst2 = 250m/s, ρ2
= 2000 kg/m3 and ξ2 = 0.03. The pressure wave velocities in the
whole soil system (Cpt1, C pt2) are taken as 1500m/s. The dimensions of
the foundation (2d) and layer thickness (h) are both 4m. See Fig. 2 for
schematic description of the model of interest. An 8× 8 grid is used to
discretize the foundation and the impedances are calculated for fre-
quencies (ω) ranging from 0.0 (static) to 300.0 rad/s. This range cor-
responds to the non-dimensional frequency ωd/Cst1 between 0.0 and
4.0. To present the results, the horizontal and vertical impedance terms
are normalized by Gt1d and the rocking and torsional impedances were
normalized by Gt1d3, where Gt1 = ρ1Cst1

2 is the shear modulus of the
top soil layer.

Fig. 3(a-d) display the real and imaginary parts of the calculated
normalized impedances for the horizontal, vertical, rocking and tor-
sional responses for the ground/foundation system considered. Also
plotted in these figures are the results reported in [11]. Good agreement
is observed between the two solutions. The minor differences are due to
the discretization of the foundation. A finer mesh will bring the two
solutions closer.

Fig. 4(a-d) displays the normalized impedances of a square foun-
dation on a homogeneous half space with properties as the top soil layer
in the preceding analysis. The figures plot the results for several cases as
follows: 1) Isotropic soil (denoted "Isotropic"), 2) Anisotropic soil 1 with
same parameters as in "Isotropic" but with anisotropy factors a=b=1.2
(denoted as "VTI-1"), 3) Anisotropic soil 2 with same parameters as in
"Isotropic" but with anisotropy factors a=b=1.5 (denoted as "VTI-2"),
and 4) Anisotropic soil similar to "VTI-2" with 100m water over half-
space (denoted "VTI-2+100m water"). The figures show the general
trends known from the classical solutions for isotropic soil media; that
is, the real part decreasing with frequency, indicating the effect of
added soil mass, and the imaginary part increasing almost linearly with
frequency, indicating a viscous type radiation damping. The effect of
anisotropy is reflected by the increase in the initial stiffness and
damping, and the effect of water is seen as an increased added mass in
the vertical and rocking responses. The latter observation and trend are
consistent with those reported in other literature [6].
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4. Rayleigh and Love waves in anisotropic half space

The Rayleigh surface wave is a non-dispersive P-SV mode that
propagates laterally without any significant attenuation near the top
surface of a homogeneous half-space. For an isotropic homogenous half-
space, the velocity of the Rayleigh wave (CRayleigh) is well known and
can be approximated as CRayleigh~(0.197ν+0.874)Cs where ν and Cs

are the Poisson's ratio and S-wave velocity of the soil. In a VTI medium,
the situation is more complicated, because the velocities in the hor-
izontal (Cs and Cp) and vertical (Cst and Cpt) directions are different.
Therefore, the velocity of the Rayleigh wave depends not only on the
Poisson's ratio and S-wave velocity, but also on the ratio a=Cpt/Cp. The
so-called characteristic equation for the Rayleigh surface wave can be
obtained by finding Ωst that makes the determinant of Khalf zero. By
applying Eq. (24) to this condition, we can derive the following simple
characteristic equation for the Rayleigh surface wave of a VTI homo-
geneous medium:
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+
−
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⎥ =

γ γ
k γ
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k γ
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1 1
2

1

2 2
2
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The value of Ωst that satisfies this characteristic equation is
equivalent to the ratio of CRayleigh/Cst. Note that Ωst is defined as ω/k/
Cst, and ω/k becomes CRayleigh, when Ωst satisfies Eq. (27). To illustrate
the effect of VTI on Rayleigh waves, we calculate the Rayleigh surface
phase velocity for a set of different α's and plot vs. a in Fig. 5(a). It is
observed that as the two ratios of α and a increase, CRayleigh converges to
Cst. This implies that for such cases, the Rayleigh surface wave may
propagate at almost the same speed as the vertical S-wave velocity (Cst).
Nevertheless, it is still true that the Rayleigh surface wave in a VTI
medium is non-dispersive (i.e. independent of frequency). Fig. 5(b)
shows an example of synthetic seismogram of radial acceleration cal-
culated at 5 km offset on the surface of a VTI homogeneous medium
subjected to a horizontal (x-direction) impulsive point load. The model
parameters of the VTI medium are Cst=556m/s, a=1.225, and α=2.
The solid curve is the seismogram for the VTI medium case and the
dashed curve is for the corresponding isotropic medioum (i.e. a=1).
The corresponding Rayleigh phase velocity is also shown by the dashed
curve in Fig. 5(a). The wave arrival for the vertical S-wave velocity (Cst)
is around 9 s (≈5 km/556m/s), right after which the Rayleigh wave
arrives with large magnitude as shown in Fig. 5(b). Finally, Fig. 5(c,d)
illustrate the normalized mode shape variations along the normalized
depth for a given α of 2 and various a's. It is observed that as the
parameter a increases, the penetration depth for the horizontal motion

Fig. 2. Schematic model description of foundation on layered soil half-space
under 100m water.

Fig. 3. Impedances of rigid square block on two-layer half-space: Present study (symbols) versus [11] (solid and dashed lines) – Real indicates Real part and Imag.
indicates Imaginary part.
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decreases significantly, while that of the vertical motion becomes larger
(compared to about two wavelengths for the isotropic medium). Such
information is important, for example in the context of the spectral
analysis of surface waves (SASW) where the estimated wavelength is
related to the soil depth profile.

For a homogeneous soil layer over a half-space, there exist a group
of guided SH modes (Love waves) that propagate laterally only within
the upper layer. The Love wave is not only dispersive, but also has
multiple modes (or poles) for a given frequency. The condition for the
Love wave to exist is that the wave speed of the upper layer be smaller
than that of the lower half-space. A VTI medium has two different wave
velocities along the horizontal (Cs) and vertical (Cst) directions.
Therefore, the Love wave's behavior in a VTI medium is more compli-
cated than that in an isotropic medium. We illustrate this with a set of
numerical examples and by tuning the velocities of the layers and their
contrasts. We fix the densities of the layer and half-space and the layer
thickness to ρ1 = 1 g/cm3, ρ2 = 2 g/cm3 and h=1 km, and consider
four different combinations of (Cs1,Cst1,Cs2,Cst2) as (1,1,3,3), (2,2,3,3),
(1,2,3,3) and (2,1,3,3) km/s. The results are presented in Fig. 6 that plot
the phase velocity of the Love wave (Cph) versus frequency. As ex-
pected, the Love wave in the VTI medium shows dispersive and mul-
tiple modes. It should be noticed that the range of the phase velocity is
not simply between the slowest and fastest velocities, which is the case
for an isotropic medium. For example, the upper layer's horizontal
velocity (Cs1) governs the lower limit of phase velocity of the Love
wave. On the other hand, the upper layer's vertical velocity (Cst1) to-
gether with the upper layer's horizontal velocity (Cs1) has influence on
the number of modes for a given frequency range. This observation is
important in the searching technique for propagation modes, for ex-
ample in multichannel analysis of surface waves (MASW).

5. Vertical point load applied to layered half-spaces

To investigate the effect of anisotropy on wave propagation, we set

up three different synthetic models. To this end, we consider a three-
layer model with parameters listed in Table 1, and we vary the values of
a and b according to Table 2. In Model 1, all the three layers are iso-
tropic. In Model 2, the bottom two layers are anisotropic, while the top
layer is isotropic. Finally, in Model 3, all the three layers are aniso-
tropic.

To generate waves, we apply a vertical impulse point load of
Hanning shape with the loading period of 0.02 s (e.g. [9]). We compare
the seismograms calculated at the top surface in terms of vertical par-
ticle velocity. Fig. 7 shows the results in the offset-time space, and the
gray scale indicates the relative intensity of the vertical particle velo-
city. The same scale is applied to all the three results and is suppressed
in order to show more clearly the reflected/refracted waves (which
otherwise could be difficult to see due to the large amplitudes of the
Rayleigh wave). The results of Models 1 and 2 in Fig. 7(a) and (b) look
similar, because the top layer is the same for the two models and the
point load and receivers are all located on the top surface. However, the
reflected and refracted waves arriving at far offset (> 5 km) show dif-
ferent behaviors between Models 1 and 2. On the other hand, the
Rayleigh wave propagations of the two models are almost identical,
which can be explained by the fact that the Rayleigh wave propagates
only along the surface and the thickness of the top layer is large enough
so that the surface wave doesn't feel the second layer. The wave pattern
in Fig. 7(c) is quite different from those in Fig. 7(a) and (b). The P and S
direct waves in Fig. 7(c) arrive much earlier than those in Fig. 7(a) and
(b). The Rayleigh surface wave also arrives earlier than in the isotropic
top layer case, and its magnitude is smaller than the isotropic case,
which is also observed in Fig. 5(b). In general, the wave pattern in the
fully anisotropic medium (Model 3) is not only different, but also more
complex than those of Models 1 and 2 at both near offset and far offset.
For example, when the first P-wave reflection from the top of the
second layer arrives the top surface (t=1.66 s and at almost zero
offset) and propagates further, another new wave component develops
even at very short offset. This wave propagates slowly but its magnitude

Fig. 4. Impedances of rigid square block on isotropic and anisotropic half spaces and effect of water: Real and Imag indicate, real and imaginary parts, respectively.
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is increasing significantly near 5 km offset and later decreases again.
This example demonstrates the importance of applying the right ma-
terial model, that is, isotropic or anisotropic.

6. Discontinuity seismic sources

In this section, we explore the possibility of simulating a group of
seismic sources such as explosive blast, fault rupture, and marine air-
gun, which require additional developments in order to fit into the layer

stiffness matrix approach. Such sources have successfully been dealt
with by, among others [13–15] using methods other than the stiffness
matrix formulation. Normally, the layer stiffness matrix approach ap-
plies the force discontinuity by including the externally applied nodal
load in the loading vector on the right hand side of the system of
equations. However, the same approach cannot be used when simu-
lating blasts, fault rupture and marine air-gun sources that are re-
presented by displacement discontinuity.

It should be noted that the marine air-gun source, which is a stan-
dard source in offshore exploration, can readily be modelled by using
the acoustic layer stiffness matrix approach that is formulated by means
of the velocity potential and pressure (Eqs. 9 and 11) without applying
the displacement discontinuity. This is because the term for the volume
change on the right hand side of Eqs. (9 and 11) represents exactly the
marine air-gun source. Herein, however, we consider the layer stiffness
matrix approach that is formulated through displacements (Eq. (12)
and 23–25).

A typical equation of motion of the layer stiffness matrix approach
formulated in terms of displacement for an N-layer system over a half-
space is expressed as
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in which Ki
11, Ki

12, Ki
21 and Ki

22 are the 3× 3 elements in the stiffness
matrix for layer i (Eq. (23–25)) and both of the P-SV and SH modes are
included. In addition, ui and pi are the displacement and force vectors
at interface i indicating top interface of layer i.

When a discontinuous seismic source such as blast, fault rupture,
and marine air-gun is applied at an interface, a displacement dis-
continuity arises. The magnitude of the discontinuity can be re-
presented by δu=[ δU, δV, δW]T defined in the wavenumber domain.
Then, we can write the displacement discontinuity as

− = δu u ui
upper

i
lower (29)

Next, we can disassemble the whole system of equations into the
upper and lower parts, as given by:
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In the case of no displacement discontinuity, the following re-
lationships hold.

= =u u ui
upper

i
lower

i (31a)

Fig. 5. Rayleigh surface wave in a VTI half-space: (a) Phase velocity of Rayleigh
surface wave (CRayleigh) for a VTI homogeneous half-space as function of a=Cp/
Cpt for different α= Cpt/Cst.; (b) synthetic seismogram of radial acceleration
calculated at offset x=5km on top surface due to a horizontal (x-direction)
point load with Cst=556m/s, a=1.225, and α=2; (c, d) normalized hor-
izontal (U) and vertical (W) mode shapes with depth (z/λz) for α=2 and a=1,
1.25, 1.5.

J. Park, A.M. Kaynia Soil Dynamics and Earthquake Engineering 115 (2018) 169–182

175



+ =p p pi
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i
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i (31b)

However, when the displacement discontinuity exists as shown in
Eq. (29), the first of the two relationships above no longer holds. In-
stead, the displacement discontinuity shown above should be applied
for example to the upper part of the system of equations as
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For a known discontinuity δu, we can rearrange the upper part of
the equations to derive the following equation:
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By reassembling the systems of equations for the upper and lower
parts, we can obtain the following modified equation for the whole
system:

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⋱
+

+
+

⋱
+

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⋮

⋮

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⋮
−
−

⋮

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

− − −

− −

+

−

+

−

−

δ
δ

K K
K

K K K
K K K K

K K K
K

K K K

u

u
u
u

u

0

K u
K u

0

0

i i i

i i i i

i i i

N

N N
half

i

i
lower

i

N

i

i

11
1

12
1

21
1

22
2

11
1

12
1

21
1

22
1

11 12

21 22 11
1

12

21 22

1

1

1

12
1

22
1

(34)

in which we assume that there is no external applied force (i.e.
pi=0), except the displacement continuity resulting from marine air-
gun, fault rupture, or blast. We can now solve the whole system of
equations and obtain the response by following the same procedure as
in [1].

6.1. Acoustic source or air-gun

We solve a simple case of an acoustic source of marine air-gun type
that is applied at the interface (z=0) between two isotropic homo-
geneous fluid half-spaces whose properties are identical. We apply the
stiffness matrix in Eq. (12), instead of Eqs. (9 and 11), to demonstrate
how the seismic source modeling approach discussed in this section can
be handled. The relevant stiffness matrix for a homogeneous half-space
can be expressed as

=
ρω

β
u τz

upper upper
2

(35a)

=
ρω

β
u τz

lower lower
2

(35b)

which can be derived by applying h→∞ in Eq. (12) and using the two

Fig. 6. Phase velocity (Cph) of Love waves versus frequency for a VTI layer over an isotropic half-space: (a)-(d) show four different S-wave velocity profiles.

Table 1
Parameters of three layered model.

Layer Thickness [m] Density [kg/m3] Cst [m/s] Cpt (m/s)

1 500 2400 200 600
2 500 2400 400 800
3 Half space 2400 1200 2000

Table 2
Anisotropy parameters a and b for three different models.

Layer Model 1 (fully isotropic) Model 2 (partially VTI) Model 3 (fully VTI)

a b a b a b

1 1.0 1.0 1.0 1.0 1.5 1.5
2 1.0 1.0 1.5 1.5 1.5 1.5
3 1.0 1.0 1.5 1.5 1.5 1.5

J. Park, A.M. Kaynia Soil Dynamics and Earthquake Engineering 115 (2018) 169–182

176



diagonal terms: one representing the stiffness matrix for the lower half-
space and the other representing the upper half-space. It should be
noted that in the current case, as well as the SH wave case, the two
diagonal terms are identical, which is not the case with the P-SV wave
case. When assembled together, the sum of the two diagonal terms
represents the stiffness matrix for the full space. The displacement
discontinuity can be expressed as

− =u u v
iω

*
z
upper

z
lower

(36)

where v * is the injected or increased volume rate (in velocity) by an air-
gun seismic source. After assembling the two stiffness matrices by using
the displacement discontinuity in Eq. (36), we obtain the following

equation:
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The solution of this equation leads to the vertical displacement of
the lower half-space at the interface between the two half-spaces (i.e.
z=0), given by:

= −u v
iω
*

2z
lower

(38)

On the other hand, the same problem can be solved by applying
either of Eqs. (9 and 11). For example, utilizing Eq. (9) and again ap-
plying h→∞ , we can obtain the velocity potential at the interface and

Fig. 7. Seismograms of vertical particle velocity calculated on top surface of three layered half-spaces excited by a vertical impulse load applied at the top surface: (a)
Model 1: fully isotropic layers; (b) Model 2: partially VTI layers, and (c) Model 3: fully VTI layers. Details of models are given in Tables 1 and 2.

J. Park, A.M. Kaynia Soil Dynamics and Earthquake Engineering 115 (2018) 169–182

177



then calculate the vertical displacement for the lower half-space
through the following procedure.
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where = −ϕ z e( ) v
β

βz*
2 and Im β≤ 0. Note that the results of the two

methods are identical.

6.2. Slip motion at large-stiffness-contrast interface

In this section, we consider another example in which a homo-
geneous layer over a half-space is subjected to a displacement dis-
continuity at the interface. We explore an interesting feature of the
model by increasing the stiffness ratio between the half-space and the
layer (Ghalf-space/Glayer). Note that Ghalf-space and Glayer herein are the
shear stiffness related to the vertical wave propagation (i.e. Gt). The
equation for the system can be written as
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Then, the equation of motion of the half-space can be expressed in
terms of ∼uupper

2 (i.e. nodal displacement vector at the bottom of the upper
layer) as
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By assembling the matrix equations for the whole system, we obtain
the following equation:
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Multiplication of both sides by −K[ ]half
2 1 then leads to:
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As the ratio of Ghalf-space/Glayer increases, the magnitude of Khalf
2 will

dominate compared to K1. Therefore, the left hand side of the equation
above can be simplified as
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which results in the solution ≈∼ δu uupper
2 . Once ∼uupper

2 is known, then the
system of equations can be written as
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This equation is nothing but the equation for a homogeneous layer
or plate subjected to a given displacement at the bottom boundary.
Therefore, it is shown that as the ratio of Ghalf-space/Glayer increases, a
homogeneous layer over a half-space may behave almost like a homo-
geneous plate, as the displacement discontinuity is applied at the in-
terface.

We elaborate this example by presenting a set of numerical pro-
blems. The displacement discontinuity at the interface is specified only
along the θ direction, i.e. SH (or pure torsional) wave case. In addition,
we assume the radial wavenumber equal to zero i.e. k=0. That is, only
the vertical propagation is of interest. For more simplicity, we consider
an isotropic medium. The density, S-wave velocity and thickness of the
upper layer are taken as ρ=1g/cm3, Cs1 = 1 km/s and h=1 km, re-
spectively. We vary the S-wave velocity of the half-space (Cs2) in order
to study its effect on the response of the layer. The density of the half-
space is also assumed 1 g/cm3. Fig. 8 shows the magnitude of the θ-
direction displacement at the top of the layer (thick curves) as function

Fig. 8. Displacement magnitude on top surface of a layer with Cs1 = 1 km/s over a half-space (thick lines) subjected to displacement discontinuity at interface
compared with a plate (thin lines) for increasing velocity of half-space: (a) Cs2 = 1 km/s; (b) Cs2 = 2 km/s; (c) Cs2 = 4 km/s; (d) Cs2 = 8 km/s.
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of frequency for different Cs2 of 1, 2, 4 and 8 km/s corresponding to
stiffness contrasts between the half-space and the upper layer (Ghalf-

space/Glayer) equal to 1, 4, 16 and 64, respectively. The thin curve in
Fig. 8 represents the responses of the plate case. It can be seen that the
two curves converge which means that as Ghalf-space/Glayer increases, the
layer over the half-space behaves like a plate.

7. Derivation of PML parameters

The perfectly matched layer (PML) technique is a powerful method
for removing or minimizing artificial reflections from the boundaries of
computational domains. Such reflections are inevitable in numerical
methods such as finite difference and finite element. The basic idea of
PML is to stretch the spatial coordinate into a complex-valued large-
scale one, through which the incident waves into the PML domain die
out and no significant artificial reflection occurs at the computational
boundary. Various PML applications have been reported in the litera-
ture. The real-value stretching approach that was implemented in SASSI
[16] is probably the first solution. [17] developed an approach by
means of field splitting in finite difference simulation of electro-
magnetics. Since then, other PML approaches have been suggested and
applied successfully ([10,18–22]). However, it appears that no unique
PML approach exists. In particular, it is not straightforward and un-
iquely defined how to choose the PML key parameters, namely, thick-
ness, boundary condition, and stretching function. In most studies,
these parameters are determined by trial and error. In this section, we
try to resolve such issues by utilizing the layer stiffness matrix in an
analytical fashion. We focus on two PML parameters: thickness and
boundary condition.

The thickness (hPML) of PML domain should be large enough to
prevent wave reflection back into the main computational domain.
However, it should not be too large either, because it will require high
computational effort in the spatial discretization. Here, we derive an
optimal PML thickness (hPML) by comparing the exact stiffness for an SH
half space and the exact layer stiffness for an SH layer. Through this
case, we also investigate the effect of the boundary condition of the
PML domain.

The linear system of equations for a VTI layer subjected to SH wave
motion is given in the form:
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and the exact stiffness for the VTI continuum for a half-space is of the
form:
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(47)

which is either pure real or pure imaginary, depending on wavenumber
k, unless damping is introduced.

In the following, we try to represent the exact half-space stiffness by
means of the continuum layer matrix and choosing appropriate thick-
ness (hPML). To this end, we could impose one of the two boundary
conditions, namely, Dirichlet or Neumann condition at the bottom of
the continuum layer. For the former, we impose the boundary condition
of u2=0. For the latter, we impose the boundary condition of p2=0.
Fig. 9 shows schematically the idea of the current approach.

For the Dirichlet boundary condition, we obtain the following re-
lationship from the continuum layer matrix, Eq. (46):

=p G k k h u[ coth ]t z z1 1 (48)

where =k kkz z3. In order to represent the homogeneous half-space by
means of the finite-depth continuum layer, the following equation
should be satisfied for all k.

=G k k h G kcotht z z t z (49)

Alternatively, the following simpler equation should be solved.

=k hcoth 1z (50)

If the layer or half-space doesn’t have any damping, the parameter
kz is either purely real or purely imaginary. When kz is real, the real-
valued thickness of h≥ π/kz satisfies coth hkz=1 (see the solid curve in
Fig. 10). On the other hand, when kz is imaginary, that is, kz=iβz with
βz being real-valued, there is no real-valued h that can satisfy coth iβzh
=1. However, if we can assume the thickness as a pure imaginary
value, i.e. h=iη with η being real-valued, then coth iβziη=− coth βzη.
Finally, by increasing the absolute value of η in the negative direction,
i.e. − η≥ π/βz, we can satisfy the condition − coth βzη=1 (see the
dashed curve in Fig. 10). In summary, we can conclude the following
conditions for the thicknesses h and η:

≥h π k/ z (51a)

− ≥η π β/ z (51b)

However, we need to consider simultaneously both cases of kz being
real and imaginary. So, we propose the following complex-valued PML
thickness (hPML):

⎜ ⎟= ⎛
⎝

− ⎞
⎠

h
λ

i
2

1PML SH
z

.
(52)

where ≥λ π k2 /| |z z or π β2 /| |z . While the complex-valued stretching for
the PML technique is well known, we demonstrate here its necessity
through a solid theoretical framework of the stiffness matrix. Fig. 11
shows the performance of this complex-valued thickness by calculating
the function coth(hkz). It is illustrated that the complex-valued thick-
ness performs very well when the above condition in Eq. (52) is sa-
tisfied.

For the Neumann boundary condition of p2=0, we can simplify the
layer stiffness matrix and obtain the following equation.

=p G k k h u[ tanh ]t z z1 1 (53)

This case involves tangent hyperbolic function instead of cotangent
hyperbolic function. The behaviors of the two functions are quite si-
milar, except for the small absolute values of argument (|kzh|< π), as
shown in Fig. 12 and Fig. 13. Therefore, |hkz| for the Neumann con-
dition should also be no smaller than π, as found out in the Dirichlet
boundary condition case, and it is not necessary to repeat the detailed
analysis for the Neumann boundary condition. It is expected that the
two boundary conditions do not show any difference as long as
|hkz|≥ π.

The complex-valued thickness chosen above is dependent not only
on the frequency ω=2πf but also on the horizontal (or radial) wave-
number k. This in turn implies that for a given frequency, the thickness
is dependent on the wave propagation direction. Consequently, when
the wave propagates almost horizontally, i.e. k→ω/Cs (for both iso-
tropic and VTI cases), the thickness should be chosen to approach in-
finity, because the vertical wavelength (λz) does so. This can potentially
be problematic in spatially-discretized numerical methods (e.g. TLM).
However, this problem happens only when the half-space does not have
any damping. If the half-space has even a small damping, the vertical
wavelength never approaches infinity as k→ω/Cs. Fig. 14 plots the di-
mensionless vertical wavenumber kz/(ω/Cs) versus the dimensionless
horizontal wavenumber k/(ω/Cs) in terms of both the real and ima-
ginary parts for damping ratio ξ=0.01. The figure shows that the
vertical wavenumber never becomes zeros, meaning that the vertical
wavelength λz is always bounded. Also, note that the magnitude of
complex-valued kz/(ω/Cs) is minimum at k/(ω/CS)= 1. Then, it natu-
rally follows that the wavelength is maximum when k=ω/Cs. Fig. 15
plots the dimensionless vertical wavenumber kz/(ω/CS) versus the
damping ratio ξ with fixing the horizontal wavenumber k=ω/CS in-
dicating that even with a very small damping, the vertical wavenumber
is never zero.
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Finally, Fig. 16 plots the dimensionless vertical wavelength λz/λS
versus damping ratio ξ, again with fixing the horizontal wavenumber
k=ω/CS (i.e. when λz is maximum). It is noted that with a small
damping, the vertical wavelength λz is always finite, which in turn
means that the PML thickness can also be finite. Fig. 16 shows that for
most practical applications where 0.01≤ ξ the vertical wavelength λz is
less than 4λS. This implies that λz in Eq. (53) should be no shorter than
4λS. When hPML,SH satisfies the above condition, it can be applied to
incident wave propagation at any angle.

For the P-SV wave case, we can apply the same logic as presented
above, except that we replace λs by λp; that is,

≥ −h λ i2 (1 )PML SVP P, (54)

which is relevant for the P-wave damping ratio ξP =0.01. So far we
have derived an optimal PML thicknesses for the SH and P-SV wave
cases, whose amplitude should be larger than |2×wavelength× (1−
i)|. So far, the PML application is discussed in the context of the thin-

Fig. 9. Sketch of proposed PML approach, representing the exact half-space stiffness (right) by means of the continuum layer matrix and choosing appropriate
thickness (left).

Fig. 10. coth(kzh) versus kzh/π (solid, +axis) and –coth(βzη) versus βzh/π
(dashed, −axis).

Fig. 11. coth(kzh) versus real part of kzh/π (solid, +axis) and versus imaginary
part of kzh/π (dashed, −axis).

Fig. 12. tanh(kzh) versus kzh/π (solid, +axis) and – tanh (βzη) versus βzh/π
(dashed, −axis).

Fig. 13. tanh (kzh) versus real part of kzh/π (solid, +axis) and versus imaginary
part of kzh/π (dashed, −axis).

Fig. 14. Dimensionless vertical wavenumber kz/(ω/Cs) versus dimensionless
horizontal wavenumber k/(ω/Cs) in terms of both real and imaginary parts for
damping ratio ξ=0.01.
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layer method (TLM) in which the spatial domain is discretized in the
vertical direction [10]. However, the concept can be applied to 2D/3D
spatial-discretization methods such as finite difference and finite ele-
ment and finite volume (See Section 7.1).

In addition to implementation in discrete solutions, such as finite
element, the continuum PML of complex-valued thickness hPML, de-
scribed above, can be useful also for analytical solution for simulating
an infinite domain. More specifically, it may avoid the need for calcu-
lation of the branch-cut integrals in the course of the associated wa-
venumber contour integration (i.e. Cauchy integration). The reason is
that the kernels, i.e. Green's functions, for a finite thickness layer in the
wavenumber-frequency domain are always even functions with respect
to the dimensionless vertical wavenumbers kz1, kz2 or kz3, which in turn
make the kernels branch-cut free [9]. This can be easily observed by
inspecting, for example, the two stiffness matrices of a layer and a half-
space in Eqs. (46) and (47). In Eq. (46), the two terms of kk hsinh z3 and
kkz3 are located together in the coefficient term, each of which is an odd
function with respect to kz3. Since they are in the same coefficient term,
i.e. in denominator and numerator, respectively, the whole coefficient
term becomes an even function with respect to kz3, hence, branch-cut
free. On the other hand, kz3 exists alone in Eq. (47), resulting in a
branch point at =k 0z3 and requiring the branch-cut integral in the
context of the contour integration in order to transform the wave-
number-domain response to the spatial-domain response.

7.1. Homogeneous stratum subjected to SH line load

A simple canonical problem is considered in this section to de-
monstrate the performance of the PML parameter (hPML) suggested
here. For the PML application, we use the finite element approach
based on COMSOL Multiphysics™ (commercial FE software), in which we
can easily implement the PML technique developed earlier. The cano-
nical problem is a homogeneous stratum of thickness H that is subjected

to boundary conditions of fixed-displacement at the bottom and stress
free at the top surface, and excited by a harmonic SH line load at the top
surface. The exact analytical solution for an isotropic stratum is avail-
able in the modal superposition form [9]. By following the same ap-
proach as in [9], the exact analytical solution for the VTI stratum can be
derived and given as

∑=
=

∞ −
v x z f

P f
iG b H

ϕ z ϕ z e
k

( , , )
( )

( ) ( ) (displacement)
t j

s
k x

j
2

1

j

(55a)

= − − −−k b πf j π H(2 ) [( 1/2) / ] (eigen wavenumber)j
1 2 2 (55b)

= −ϕ z j πz H( ) cos( 1/2) / (mode shape) (55c)

We consider an SH line load of P(f)= 1N and f=10Hz, and the
mechanical properties of the stratum are set to ρ=1500 kg/m3,
Cst=1000m/s, ξ=0.01, H=250m. In addition, we consider the iso-
tropic stratum as well as the VTI in order to compare the two cases.
Finally, we assume z= zs=0.

For the selected frequency of 10 Hz, the wavelength λs(=Cst/f) is
100m. Following the PML approach suggested earlier, we should use
hPML of no shorter than 200m. Fig. 17(a) and (b) depicts the finite
element model and the mesh used in the analysis. Triangular quadratic
elements of ca. 25m size are used in the entire model including the PML
domains on the sides. It is noted that the PML domain size in Fig. 17(a)
is the same as hPML. This means that we are applying no stretching
function for the PML domains so that we can evaluate the performance
solely of hPML suggested earlier. Efficient stretching functions, (e.g.
[10,22]), can be chosen, which can further reduce the computational
effort. Fig. 17 (c) and (d) show the computed responses for the isotropic
and anisotropic strata, respectively, both in terms of real (solid) and
imaginary (dashed) components. In addition, the related exact analy-
tical solutions (real: dashed-dotted; imaginary: dotted) are plotted for
comparison. It is clearly observed that the PML approach suggested in
this study performs very well and produces highly accurate results even
near the interface between the main and PML domains (i.e. x=0 and
800m). It should be noticed that the agreement between the finite
element and Exact solutions near the source point x=250m is poor, as
expected, because of the mesh size applied.

8. Summary and conclusion

In this study, we introduce and discuss features and improvements
of the stiffness matrix method developed in [1] that may enhance the
applicability and flexibility of the method. Several numerical examples
are provided to support the improvements and features. First, we in-
troduce the acoustic layer stiffness matrices by means of three different
formulations in terms of vertical displacement, velocity potential and
nodal pressure, respectively. The latter two are easy for implementing
air-gun source, while the first one is straightforward to apply a vertical
disk load on seabed or within the water layer. Secondly, the soil stiff-
ness matrices for the vertically transverse isotropic (VTI) layer are de-
rived for both P-SV and SH wave modes. The structure of the VTI soil
layer stiffness matrices is constructed in the same fashion as for the
isotropic soil layer and such that the stiffness matrix for the isotropic
case can be recovered by setting the anisotropy factors equal to 1.
Thirdly, in order to simulate wave motions subjected to injected (air)
volume or dislocation/slip at the interface of two layers, we formulate a
technique where the displacement discontinuity can be implemented.
Finally, by means of the continuum stiffness matrices we derive the key
parameter of PML (thickness, hPML) that can be used in discrete nu-
merical approaches (e.g. FEM, FDM, TLM). We also discuss how the
continuum PML can be useful for the contour integration over the
complex wavenumber domain, eliminating the need for the branch-cut
integral, in the context of the wavenumber integration from the wa-
venumber to spatial domain.

Fig. 15. Dimensionless vertical wavenumber kz/(ω/CS) versus damping ratio ξ

with setting k=ω/CS.

Fig. 16. Dimensionless vertical wavelength λz/λS versus damping ratio ξ with
setting k=ω/CS.
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Fig. 17. (a) finite element model description of a 250m-thick homogeneous
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