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Abstract
The use of smart sports equipment and body sensory systems supervising daily sports training is gradually emerging in
professional and amateur sports; however, the problem of processing large amounts of data from sensors used in sport
and discovering constructive knowledge is a novel topic and the focus of our research. In this article, we investigate golf
swing data classification methods based on varieties of representative convolutional neural networks (deep convolutional
neural networks) which are fed with swing data from embedded multi-sensors, to group the multi-channel golf swing
data labeled by hybrid categories from different golf players and swing shapes. In particular, four convolutional neural
classifiers are customized: ‘‘GolfVanillaCNN’’ with the convolutional layers, ‘‘GolfVGG’’ with the stacked convolutional
layers, ‘‘GolfInception’’ with the multi-scale convolutional layers, and ‘‘GolfResNet’’ with the residual learning. Testing on
the real-world swing dataset sampled from the system integrating two strain gage sensors, three-axis accelerometer, and
three-axis gyroscope, we explore the accuracy and performance of our convolutional neural network–based classifiers
from two perspectives: classification implementations and sensor combinations. Besides, we further evaluate the perfor-
mance of these four classifiers in terms of classification accuracy, precision–recall curves, and F1 scores. These common
classification indicators illustrate that our convolutional neural network–based classifiers can basically group the golf
swing predefined by the combination of shapes and golf players correctly and outperform support vector machine
method representing traditional classification methods.
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Introduction

Advances in technology and data science are changing
the way of practicing and training in recreational, ama-
teur, and professional sports. The collection of sports
performance data has become easier and more reliable
with the development of miniature, lightweight sensors,
sensor networks, and communication technologies. The
key issue now is how to analyze the large amounts of
(streaming) data from the above-mentioned wearable
devices. The processing requirements for sensor signals
and data have become more demanding, both in vol-
ume and time constraints.
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Sensors in sports can be attached to the user or an
integral part of the (smart) sports equipment. Systems
and applications in sports that are using wearable sensor
data can be designed for a great variety of uses, from
monitoring particular movements of an individual to
overseeing the complete action in a group sports match.

According to the intended use, the complexity of the
design varies considerably. Our plans are to develop
biofeedback applications, particularly in biomechanical
feedback systems, that would use sensors’ data for pro-
viding the concurrent feedback to the user.1 According
to Sigrist et al.,2 proper motor learning can be acceler-
ated by the identification and prevention (interruption)
of incorrectly performed actions. Our aim is to design
and implement a real-time system that would notify the
user about the incorrect action during the action itself
or immediately after each period of a periodic activity.

As one of the state-of-the-art image classification
approaches, convolutional neural network (CNN) aims
to label elements with predefined classification tags on
the basis of their resemblance; its striking success has
aroused a surge of attention in computer vision, pattern
recognition, and data mining owing to its automatic
feature extraction, high accuracy, and high scalability
in image classification, object detection, image retrieval,
and image inpainting.3 Due to the tremendous develop-
ment in model incarnations, such as GoogLeNet4 and
ResNet,5 and its high reliability and effectiveness in
image classification,6 we intend to transfer common
CNN models into golf swing data classification, to
improve the classification accuracy conducted by mark-
ing data with predefined labels from combinations of
shapes and golf players. Encouraged by the impressive
performance of CNN-based models on computer
vision, CNN-based classifiers presented here are custo-
mized for one-dimensional (1D) golf swing signal classi-
fication. The candidate models take as input a golf
swing datum composed of ns 3 nl data samples, where
ns denotes the number of channels and nl denotes the
length of sequences, and output the likelihood of which
golf player and which swing it belongs to. The evalua-
tion of accuracy on multiple combinations of sensors
can basically illustrate the relevance of sensors attached
to the smart golf club7 and it is also a reference for
reducing the input dimensionality.

The major contributions of this article are as
follows:

� Four different state-of-the-art CNN-based clas-
sifiers are employed to classify 1D sequences of
golf swing signals, group them, and mark them
with the labels conducted by the combinations
of golf players and shapes; meanwhile, it has
been demonstrated that CNN-based models suf-
ficiently show their dramatical superiority over

the support vector machine (SVM) on behalf of
the traditional methods.

� It is a beneficial trial of the well-devised multi-
sensor selection to select the proper sensor or
sensor combination in golf swing classification,
which demonstrates the sensibility and reliability
of these sensors.

� The evaluation on the real-world test set reveals
the comparison and superiority of presented
methods. Compared with the traditional CNN
model, these complex models can be empowered
to classify golf swings accurately. However, the
traditional CNN model is still a feasible solution
to golf classification due to the less calculation
consumption.

This article is organized as follows: section ‘‘Related
work’’ presents some related work concerning CNN
and golf swing signal analysis. Section ‘‘Data collec-
tion’’ briefly introduces the smart golf club we used to
collect golf swing data. Section ‘‘Methodology’’
describes the network model we design and some
implementation details. Section ‘‘Experiments and
results’’ presents the experiment we design and some
experimental results to validate the effectiveness of our
model. Section ‘‘Conclusion’’ concludes this article and
lists some future work we plan to do.

Related work

The surge of devices with one or more sensors related
to the smart sports equipment has been evident in
recent years, and wearable devices used for professional
sports detection and identification were widely used.8–14

Some lightweight and small-size sensors were integrated
into the smart sports equipment to measure and collect
detailed physical and physiological quantities of sports
activities including heart rate, accelerations, and others,
and the collection of measurements and quantities
associated with biological or physiological feedback
has been proven beneficial to athlete performance
improvement. The swing collection of golf wearable
devices focused on motion sensors: accelerometers,
gyroscopes, and magnetometers,15 which are well-
known as inertial measurement units (IMUs).10–13 In
our case, strain gage sensors, three-axis accelerometer,
and three-axis gyroscope are leveraged to collect the
motion and trajectory of golf players and golf balls.

Feature extraction methods extract a set of represen-
tative attributes from original datasets or data
sequences, and these attributes can effectively capture
latent properties that can be used to identify a distinct
data record; furthermore, these attributes are defined
in a lower dimension space rather than a high dimen-
sion space where original data records are defined,
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which can result in lower storage consumption and
faster similarity calculation. Some well-known meth-
ods, such as ReliefF,16 Laplacian score,17 and Fisher
score,18 were common feature selection methods that
were used to extract features from sports sequence
data; they concentrated on and outputted features
holding a high degree of correlation. With an appropri-
ate manual configuration, they can achieve a promising
performance in feature selection for sports sequence
data.

The CNN (ConvNet) applications in computer
vision have been achieving a striking success in recent
years, especially in image classification, object detec-
tion, and image retrieve.3,19 AlexNet20 achieved a suc-
cessful and groundbreaking performance in ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)
competitions21 in 2012, which brought into solving
image classification a surge of development regarding
ConvNet. A series of representative successors based on
CNN architecture, such as VGGNet,22 GoogLeNet,4

and ResNet,5 have gradually made progress one by one
and reached better performance in terms of top-5 accu-
racy in image classification, even exceeded the human-
level performance of 5.1% top-5 test error.6 AlexNet20

proposed ReLU activation function, local response
normalization, and dropout, aiming to alleviate gradi-
ent vanishing/exploding, local data standardization,
and alleviate overfitting, respectively. VGGNet22

exploited a stack of smaller receptive fields to fit a big-
ger receptive field. GoogLeNet4 built hierarchical
Inception modules to extract multi-scale feature maps
to understand deeper semantic context. ResNet5 built
skip connections within convolutional layers to propa-
gate vanishing gradients backward. The trend of unsu-
pervised learning based on the convolutional network
has been raised since Generative Adversarial Network
(GAN)23 was proposed in which the network can be
trained on its own with its specified discriminator and
generator structure instead of the supervision of human
being. Models with surprisingly low top-5 errors have
been gradually proposed on the basis of reorganization
and reconnection of intermediate layers, including
ResNeXt24 building parallel pathways and width-
increasing shortcut connections within convolutional
layers, FractalNet25 leveraging fractal architecture to
reorganize feature maps, and DenseNet26 with dense
blocks; thus, these novel architectures improved the sta-
tistics of classification quality of ImageNet
competition.

CNN-based models have been extended to 1D classi-
fication,27 such as automatic speech recognition,28 elec-
trocardiogram signal classification,29,30 and biomedical
time series classification.31 CNN-based models are able
to extract and leverage latent feature representations in
time series with high tolerance of time translation; thus,
results outperform methods based on hand-crafted

features. We follow these 1D CNN classification imple-
mentations, formalize our golf classification, customize
our CNN-based classifiers, and conduct experiments to
validate their effectiveness among concurrent expressive
classifiers.

Data collection

The sensor configuration of golf club used for collect-
ing data is (a) two single-grid strain gage sensors detect-
ing the golf club shaft bend, (b) one three-axis micro-
electro-mechanical sensor (MEMS) accelerometer
detecting acceleration, and (c) one three-axis MEMS
gyroscope detecting the angular speed of the golf club.
These four sensors sample a golf swing with the fre-
quency of up to 500 Hz in 2 s and generate an eight-
channel golf swing sample, each of which contains 1000
sampling points. Four professional and amateur golf
players are selected to attempt to perform typical golf
swings that are distinguishable and easy to label in
accordance with prior professional golf swing knowl-
edge. For the visualization of collecting golf swings,
Figure 1 shows how a golfer performs a specific golf
swing. Eventually, 213 typical golf swings were col-
lected, presented in Table 1 and in Figure 2.

Methodology

In this section, we present the procedure of data pre-
processing, CNN-based model design, and implementa-
tion details. We first introduce our data preprocessing
involving data augmentation, data shuffling, and data
standardization in sections ‘‘Data augmentation and
shuffle’’ and ‘‘Data standardization.’’ In addition, based
on general CNN architecture, we present the custo-
mized vanilla CNN classifier and three advanced CNN
classifiers derived from VGGNet,22 GoogLeNet,4 and
ResNet5 in section ‘‘Network architecture.’’ Finally, we
give some implementation details in section
‘‘Implementation details.’’

Data augmentation and shuffle

The function x(i)(t) is referred to as the representation
of producing procedure of a golf swing with regard to
time variable t and sensor i, so the sequence y(i) pro-
duced by sensor i can be denoted by equation (1)

y(i) = x(i)(t) ð1Þ

An example of the golf swing in our real-world data-
set is shown in Figure 2. Each golf swing contains eight
sequences from the strain gage sensors, the acceler-
ometer, and the gyroscope sensor, where each sequence
contains 1000 samples that are defined as Analysis
Window and has been proved as the most significant
part in the biofeedback system.15 The analysis on the
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dataset containing the analysis window is valuable on
the basis of the conclusion from Umek et al.15

For the robustness and balance among the dataset,
we customize data augmentation strategy before the
dataset is fed to our classifiers, including data scale-up,
time left-translation, and time right-translation defined
in equations (2) and (3), where the notations a and g

denote the rescaling factors, and the notation Dt

denotes the time-translation factor

y(i) =ax(i)(t 6 Dt) ð2Þ

y(i) = gx(i)(t 6 Dt) ð3Þ

In the discussion of repeatability from Umek et al.,15

sensor signals show high repeatability in both time and
amplitude during several consistent swings from a spe-
cific player; that is, the deviation among swings of one
motion from a player is very small. Consequently, the
distortion of signals brought by equations (2) and (3)
adequately empowers our classifier to robustly charac-
terize golf swings. In practice, a, g, and the sample
delay Dt are set at 1.1, 0.9, and 3, respectively.
Theoretically, the rescaling factors a and g and the
time left-translation factor Dt are hyperparameters and
should be investigated in the experiment to evaluate the
performance of our model. However, in practice,
Umek et al.15 has explored the repeatability of the
smart golf club and have demonstrated that there exists
little deviation in the real-world usage. Therefore, the
default configurations of these factors are feasible to
cover the deviation in the sampled data sequences and
can guarantee the convincing experimental results.

The dataset is further augmented by oversampling
the minorities of golf swings, which enlarges the minor
golf swing set and balances the count of each class of

golf swings. Minorities of golf swings are duplicated
and transformed with the time-translation or data-
rescaling equations defined in equation (2) or equation
(3) randomly, and the whole dataset is shuffled ran-
domly after augmentation as the augmented and
shuffled training and test set are able to reinforce the
robustness and evaluate the intrinsic feasibility of a
well-trained classifier. Figure 3 shows an example of
golf swing replicated by equations (2) and (3).

Eventually, the dataset contains 917 golf swing data
composed of eight channels of 1000 samples, which is
shown in Table 2 where ID, Golfer, Shape, Count, and
AugCount denote the assigned numerical ID, the ID
number of golf player generating these golf swings, the
intended shape of these golf swings, the count of raw
golf swings, and the count of the golf swing set augmen-
ted afterwards, respectively. Each swing is specifically
labeled by the golf player ID and the intended shape
and assigned with a unique numerical ID as a classifica-
tion label. For training an effective model and evaluat-
ing it, the whole dataset is generally split into a training
set containing two-third swings and a test set containing
one-third swings without overlapping; the training set is
in charge of training classifiers, while the test set evalu-
ating them.

Data standardization

For scaling data to eliminate measured divergences in
different sequences, data normalization is a widely
used strategy to preprocess dataset to remove mea-
sures of sequences. Here, Z-score normalization is
used to standardize each sequence by removing means
and scaling to unit variance before classification in
equation (4)

Figure 1. Collecting a specific golf swing. For the visualization of collecting golf swings, we present a series of photographs of a
golfer depicting actions, which illustrate the routine of actions and the trajectory of the smart golf club. (a) Address—approximately
before signal sample 400 in Figure 2. (b) backswing—approximately between signal sample 400 and 850 in Figure 2. (c) backswing—
approximately at signal sample 850 in Figure 2. (d) Impact—at sample 999 in Figure 2. (e) Follow through—after sample 999 in
Figure 2 (not shown in the signal). The attached sensors record the specific movements in a ns3nl tensor.
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y(i)
0
=

y(i) � E y(i)
� �

s y(i)ð Þ ð4Þ

Since some non-standardized strong sequences may
manipulate the classification estimator, which may pre-
vent the estimator learning from other sequences to
calibrate parameters as expected, the data standardiza-
tion32,33 is employed to alleviate the domination of
sequences from one individual sensor in training phase.
In practice, some classification estimators based on gra-
dient descent algorithm should take as input the stan-
dardized dataset since the convergence of estimators
can be accelerated by leveraging the standardized
dataset.

An example of a standardized golf swing is shown in
Figure 4. The mean of each channel is removed; the
amplitude of each channel is rescaled as well, which
results in eliminating the predominance of the single
individual channel and enabling classification estimator
to equally extract and learn features from each channel.
In data processing, it is conventionally assumed that
the training set and the test set are produced from a
unique probability distribution; consequently, they
share the same mean and standard deviation. So, the
mean and standard deviation are calculated on the

Figure 2. An example of a golf swing. Here, a golf swing is
composed of eight-channel sequences from three kinds of
sensors: (a) two sequences from SG sensors, (b) three from
accelerometer, (c) and three from gyroscope.

Figure 3. An example of data augmentation including data
translating and data rescaling. We translate and rescale the golf
swings in order to enrich our training and test set, and the
translation and the rescaling functions are presented in equations
(2) and (3): (a) sequences from SG sensors, (b) sequences from
accelerometer, and (c) sequences from gyroscope.
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training set, and the data standardization is performed
on both the training set and the test set with the above-
mentioned mean and standard deviation.

Network architecture

Vanilla CNN. Here, we present our vanilla CNN archi-
tecture for golf swing classification, which convention-
ally contains three categories of layers20,34,35 to extract
features and classify convolutional layers, pooling
layers, and fully connected layers, as Figure 5(a) shows.

Vanilla CNN architecture distills and reorganizes repre-
sentations latently distributed in golf swings by hier-
archically stacking convolutional layers with learnable
filters and pooling layers with a fixed stride layer by
layer. Intermediate 1D convolutional layers automati-
cally enable the representative relevant features, expand
the receptive fields to gather more, and propagate them
to the backward layers. Max-pooling layers reduce and
constrain the dimensionality of feature maps by down-
sampling the coming feature maps and finally enhance
the significant features. The backward fully connected
layers classify those features and give likelihoods of golf
swings; that is, they play a role of the classifier. The
input golf swing signals contain eight channels and the
output probability distributions indicate the posterior
probability of classes of golf swings. Figure 5(a) shows
the whole architecture of the vanilla CNN.

Here, we refer to ReLU36,37 as the activation func-
tion. ReLU can fully transfer positive activation value
to the following layers without any decay and elimi-
nates negative activation value generated in the linear
part of the current neuron. Furthermore, the gradients
in backpropagation will not decay when passed by
ReLU activation neuron; namely, ReLU is effectively
able to alleviate the diffusion of gradients.38

The last layer consists of softmax39 activation neu-
rons, which outputs vectors representing the posterior
probability of the input signals; the number of softmax
neurons is given corresponding to the predefined cate-
gories of shapes and golf players.

VGG-like CNN. VGGNet22 has, respectively, achieved a
first and a second place in ILSVRC competition 2014
in localization and classification tracks, which brings a
striking attention from tremendous researchers. The
basis of VGGNet is a novel architecture that used very
small receptive fields (3 3 3) in each convolutional stack
composed of multiple convolutional layers, which made
it possible to enlarge the depth to 16 or 19 layers due to
the reduction of parameters and fully connected layers.
The innovative improvement reveals that this config-
uration of deeper convolutional stacks with small

Table 1. Meta-information about real-world golf swing dataset.

ID Golfer Shape Count

0 2 Straight 30
1 1 Straight 79
2 4 Fade 2
3 1 Pull 9
4 4 Push-slice 1
5 2 Pull 1
6 1 Pull-hook 3
7 1 Slice 9
8 1 Push 9
9 4 Draw 4
10 1 Hook 5
11 4 Straight 11
12 3 Straight 15
13 4 Slice 2
14 1 Fade 7
15 1 Push-slice 1
16 4 Push 10
17 1 Draw 11
18 2 Push 4
Total count 213

Table 3. Overall accuracy of CNN-based classifiers for
different sensor types and their combinations in percent.

Model All
sensor (%)

SG
(%)

Acc
(%)

Gyro
(%)

GolfVanillaCNN 95.04 96.03 97.68 66.67
GolfVGG 96.70 94.06 95.05 65.68
GolfInception 97.36 95.38 96.04 67.66
GolfResNet 92.07 96.70 95.71 66.67

CNN: convolutional neural network; SG: strain-gage sensors; Acc: single

accelerometer sensor; Gyro: signal gyroscope sensor.

Table 2. Meta-information about augmented golf swing data.

ID Golfer Shape Count AugCount

0 2 Straight 30 60
1 1 Straight 79 79
2 4 Fade 2 38
3 1 Pull 9 54
4 4 Push-slice 1 32
5 2 Pull 1 32
6 1 Pull-hook 3 42
7 1 Slice 9 54
8 1 Push 9 54
9 4 Draw 4 44
10 1 Hook 5 45
11 4 Straight 11 55
12 3 Straight 15 60
13 4 Slice 2 38
14 1 Fade 7 49
15 1 Push-slice 1 32
16 4 Push 10 50
17 1 Draw 11 55
18 2 Push 4 44
Total count 213 917
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receptive fields can guarantee multiple feature extrac-
tion and facilitate further deep visual representations,
which can lead to a great breakthrough in computer
vision.

We also reinforce our golf feature extraction by
stacking convolutional layers with small receptive fields
hierarchically and remove a fully connected layer with
512 activation units to reduce the number of para-
meters. The first and second convolutional layers are

substituted with stacks of convolutional layers com-
posed of two convolutional layers with small kernels of
size 3, while the third convolutional layer is substituted
with a stack composed of four convolutional layers
with small kernels of size 3. Max-pooling layers are
maintained to reduce the size of feature maps, and two
fully connected layers follow the stacks of convolu-
tional layers and max-pooling layers to classify non-lin-
early. The whole architecture is shown in Figure 5(b).

Inception-based CNN. In spite of achieving a striking suc-
cess with small receptive fields, such as VGG net, a
multi-scale comprehension conducted by multi-scale
receptive fields can be applied to ameliorate the accu-
racy of image classification, which increases the depth

Figure 4. An example of data standardization. We standardize
our golf swing dataset by removing the mean of the dataset and
rescale it to unit variance, in order to amplify latent mere
features: (a) standardized sequences from SG sensors, (b)
standardized sequences from accelerometer, and (c)
standardized sequences from gyroscope.

Figure 5. (a) Vanilla convolutional neural network for golf
classification27 and (b) VGG-like convolutional neural network
for golf classification. We here use a vanilla CNN structure to
evaluate the performance of CNN classifying golf swings, and we
also build a VGG-like CNN classifier to test further. The VGG-
like CNN classifier has wider receptive fields but uses fewer
parameters in convolutional layers, which guarantees to extract
the same scale features when reducing calculation consumption.
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and width of the network. In computer vision,
Inception module is a concatenation of multi-scale
receptive fields, from 1 3 1, 3 3 3, and 5 3 5, and a
downsampling component implemented by pooling,
which performs a multi-scale feature extraction after
concatenating. In practice, receptive fields of size 1 3 1

in Inception module can reduce the dimensionality of
feature maps to avoid the dimensionality exploding, all
of which can decay the growing computational budget
caused by increasing depth and width.

Our Inception-based network hierarchically aggre-
gates three 1D Inception module, where the sizes of the
filter kernels are 1, 3, and 5, respectively. Inner convo-
lutional layers with 1-sized filters facilitate dimensional-
ity reduction since the number of feature maps would
not explode after multiple convolutional layers. Pooling

layers are preserved, while a fully connected layer is
also removed in practice, which is of use in reducing the
dimensionality of feature maps, decreasing the number
of parameters, and declining the computational bud-
gets. The architecture is shown in Figure 6.

Residual-block-based CNN. In practice, the CNN is more
and more difficult to train when the layers are accumu-
lated deeper and deeper since the gradients inevitably
vanish or explode when propagated backward. He
et al.5 proposed a residual learning module to address
the gradient vanishing/exploding issue, which built short-
cut connections in residual blocks to pass the identity
map x sideways. Hybrid gradients can be decomposed
into one term connecting to intermediate layers and
another term skipping the intermediate layers, which can
guarantee that the gradient can be directly propagated to
shallower layers to reinforce the calibration.40 The resi-
dual block can be described in equation (5)

x(‘) =F x(‘�1)
� �

+ x(‘�1) ð5Þ

Inspired by He et al.,5 we customize our model by
superseding intermediate convolutional layers with
concatenations of a residual block stack and a
dimensionality-increasing residual block. The residual
block takes as input the feature maps x(‘�1) from the
previous layer, propagates them forward through a
size-maintained stack of convolutional layers, and
meanwhile outputs the element-wise sum of filtered fea-
ture maps and identity maps x(‘�1). The dimensionality-
increasing residual block similarly convolves and passes
the input feature maps and identity maps sideways as
an ordinary residual block does, but the number of fea-
ture maps is increased in the intermediate convolu-
tional layers. Three convolutional layers are superseded
by residual block stacks and dimensionality-increasing
residual blocks, whereas a fully connected layer is
removed for the purpose of reducing the number of
parameters. Our residual-block-based CNN is shown
in Figure 7.

Implementation details

The architecture of these four CNN-based classifiers
are shown in Figures 5, 6, and 7. The vanilla CNN clas-
sifier is composed of three convolutional layers, three
max-pooling layers, and three fully connected layers.
Layers 1, 3, and 5 are convolutional layers that formu-
lated with 28, 56, and 112 trainable kernels, respec-
tively. The last three fully connected layers contain 512,
259, and 19 neurons with 0.5 dropout to alleviate the
overfitting. ReLU is imposed in the intermediate layers
and softmax neurons in the last layer of classification,
as is shown in Figure 5(a).

Figure 6. Convolutional neural network for golf classification
with Inception module. Inception module concatenates multi-
scale feature maps convolved by prior convolutional layers,
aiming to boot performance by extracting multi-scale features
within this module.
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As for the VGG-like CNN, the stacked convolu-
tional layers with small receptive fields replace the orig-
inal single-layer convolutional layers. The three stacks
contain 2, 2, and 4 convolutional layers with ReLU
activation neurons, and a fully connected layer with
512 neurons is removed in the implementation; the rea-
son why a fully connected layer is removed is that the
nonlinear classifier part should be weakened if the fea-
ture extraction part has been enhanced. Other para-
meters are the same as the vanilla CNN, as shown in
Figure 5(b).

The Inception-based CNN stacks Inception modules
in which the convolutional layers with multi-scale filters

are concatenated after the first convolutional layer. The
convolutional layers with 1-size filters are employed
in Inception modules in order to avoid the dimension-
ality explosion. The fully connected layers and para-
meters are the same as the VGG-like CNN, as shown
in Figure 6.

The residual-block-based CNN stacks residual
blocks where shortcut connections are built to skip two
convolutional layers to pass the residual errors. In a
residual block, the first two convolutional layers do not
expand the volumes of feature maps, whereas the last
two convolutional layers double the volumes of feature
maps. The fully connected layers and parameters are
the same as the VGG-like CNN, as shown in Figure 7.

The input dimensionality of CNN-based models is
nbatch 3 ns 3 nl, where nbatch denotes the size of a mini-
batch of golf swings, ns denotes the number of chan-
nels, and nl denotes the sequence lengths of a golf
swing. Since networks perform classification task and
the output vectors represent the posterior probability
distribution, the loss function category cross entropy
should no doubt be employed here, which is defined by
equation (6)

�L= � 1

jBj
X

i2B

X

j

ti, j log (oi, j) ð6Þ

The optimizer ADAM41 minimizes the loss function
of the defined category cross entropy and offers the gra-
dients for the global trainable variables for the conver-
gence of the loss function.42

Deterministic CNN models output the posterior
probability of input golf swings, and the prediction is
determined by the maximum of the posterior probabil-
ity that is calculated in equation (7)

li = argmax
j

(oi, j) ð7Þ

Experiments and results

Experimental dataset

First, we review our real-world golf swing dataset
briefly. Our device sampled 213 golf swings produced
by four professional or amateur golf players marked
by aliases 1–4, and the dataset contains nine distinct
golf swing shapes at the most from one single golf
player; there are totally 19 categories of different
labels of combined shapes and golf players in the
dataset. The dataset has been balanced, augmented,
shuffled, and standardized by the strategy in sections
‘‘Data augmentation and shuffle’’ and ‘‘Data standar-
dization’’ and has been presented in Tables 1 and 2.

The balance and randomness of the multi-class data-
set have been guaranteed by the strategies of data

Figure 7. Convolutional neural network for golf classification
with residual block module. Residual blocks pass gradients
through the identity map to calibrate and converge faster when
propagating gradients backward.
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augmentation and data shuffling mentioned in sections
‘‘Data augmentation and shuffle’’ and ‘‘Data standardi-
zation.’’ The minorities of golf swings have been drama-
tically enlarged but the counts of majorities maintained;
the difference of count still exists at the same time, so it
is believed that the strategies guarantee the inherent dis-
tribution of the original real-world golf swing dataset,
while the oversampling, random disturbance, and shuf-
fling bring the interferences into the augmented dataset
to reinforce and test the robustness of CNN-based
classifiers.

The augmented dataset is separated into a training
set containing two-third of swings and a test set con-
taining the remaining one-third of data. The 10-fold
cross-validation is performed on the training set to
select proper hyperparameters and models. Classifiers
are implemented by Theano43 and Lasagne44 trained
on the NVIDIA� CUDA� accelerators. So, in the next
parts, we can discuss evaluation indicators including
the overall accuracy, precision–recall indicators and
curves, and F1 scores.

Hyperparameter selection

The 10-fold cross-validation is employed to select the
hyperparameters dominating the accuracy of golf swing
classification. Since the architecture of CNN-based
classification model has been fixed and the learning rate
and the optimizer have been settled empirically, 10-fold

cross-validation can be used to select the models, sensor
combination, and the number of epochs. With other
hyperparameters fixed, the candidate hyperparameters
should be selected from a candidate range or set that is
predefined rationally and empirically according to the
prior knowledge.7 The selections of models and sensor
combinations are, respectively, given in sections
‘‘Experimental dataset’’ and ‘‘Hyperparameter selec-
tion’’; meanwhile, the conclusion of epoch selection can
be summarized from these two sections.

Model selection. The four common CNN-based models
including vanilla CNN model implemented as
GolfVanillaCNN, VGG-like model implemented as
GolfVGG, Inception-based model implemented as
GolfInception, and residual-block-based model imple-
mented as GolfResNet are evaluated here with all sen-
sors and longest sequence length selected in order to
figure out in terms of accuracy which model can clas-
sify more accurately than other models. These four
CNN-based models are constructed and trained on 10
training subsets and evaluated 10 validation subsets
from 10-fold cross-validation. The indicators involving
means of accuracy and standard deviations show the
performance of these models in classification accuracy
that is adequately solid to demonstrate the effectiveness
of the models. The means of accuracy and standard
deviations with respect to epochs and models are
shown in Figure 8.

Figure 8. 10-fold cross-validation results of four different models. We can find that these four classifiers converge and achieve
feasible accuracy, which proves that these four classifiers are adequate to classify golf swings accurately on validation sets. The
overfitting evaluation is discussed in sections ‘‘Hyperparameter selection’’, ‘‘Overall accuracy,’’ and ‘‘Precision-Recall Evaluation.’’
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From Figure 8, it can be concluded that these four
models are adequate to classify golf swing data accu-
rately, and the selection of models has less effect on the
classification performance in terms of accuracy. It is
obvious that the final means of accuracy from these
four models are close enough and almost reach 97.5%,
which basically demonstrates the effectiveness of these
four models in classification. In addition, the less dis-
crepancy of accuracy and narrower standard deviations
among these four models with epochs increasing can
sufficiently support that the selection of models matters
less finally, namely, the vanilla CNN can easily group
the golf swing data. In this case, either of these four
models can be selected to classify the test set of golf
swing data.

Sensor selection. The exploration of sensor selection is
meaningful since the dimensionality of the input golf
swing can be abundantly reduced as long as signals
from single one sensor carry sufficient information for
classification; furthermore, the time consumption can
drop dramatically, which can be a guarantee of real-
time analysis. Signals from all three sensors, together
with the single-strain-gage sensors (sg), the single accel-
erometer sensor (acc), and the signal gyroscope sensor
(gyro), are fed into vanilla CNN model to test which
sensor (or combination) is the most sensitive when

classifying. Figure 9 shows the cross-validation result
of sensor (combination) selection.

From Figure 9, it is obviously concluded that all sen-
sors, the sg sensors, and the accelerometer are effective
in golf swing classification; on the contrary, gyroscope
fails in classification on the whole. The convergence of
means of accuracy among all sensors, the sg sensors,
and the accelerometer shows that it is believed that
these sensors or combination may be identical in classi-
fication, which provides the practical basis for dimen-
sionality reduction. However, signals from the
vulnerable gyroscope cannot enable vanilla CNN
model to classify accurately, and the coherency of low
means of accuracy emphasizes its invalidity, so gyro-
scope could perhaps be one of the candidate sensors
that can be eliminated to speed up the classification. In
this case, all sensors, the sg sensors, and the acceler-
ometer are able to be used to brew a well-trained accu-
rate model except the vulnerable gyroscope.

Epoch selection. The selection of epochs is tested in two
aforementioned cross-validations of hyperparameter
selections. It is concluded that the performance of
CNN-based classifiers can be improved gradually with
the increasing epochs in terms of accuracy. The means
of accuracy can be improved and the standard devia-
tions of accuracy can be narrowed apparently, and the

Figure 9. 10-fold cross-validation for four different sensors (or joint sensor combination). We validate sequences sampled from SG
sensors, accelerometer, gyroscope, and joint sensor combination (all sensors) and find that sequences from all sensors, SG sensors,
and accelerometer hold enough features to be grouped into proper classes except gyroscope, so these three kinds of sensor (or
combination) are used to represent golf swings.
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convergence of means of accuracy and standard devia-
tions supports the improvement of accuracy with
respect to increasing epochs solidly. In this case, 100
epochs should be employed to train the CNN-based
models iteratively.

Conclusions of hyperparameter selection. Some conclusions
can be made in terms of the aforementioned hyperpara-
meter selection.

� The advanced model architecture has less effect
on the classification performance in terms of
accuracy that reaches to 95%, which means all
of them are acceptable in golf swing
classification.

� All the sensor combination, the strain gage sen-
sors, and the accelerometer are effective in golf
swing classification, while the vulnerable gyro-
scope could fail on account of its unpredicted
invalidity; it is positive that CNN-based model
can label data properly with even one single
sensor.

� Sufficient epochs are the guarantee of higher
validation accuracy and less standard deviation,
namely, stable classifiers are brewed after 100
iterations of training.

Overall accuracy

Accuracy should be first discussed since it is a principal
and premier indicator evaluating the performance and
effectiveness of classifiers. The four common CNN-
based models are well-trained on the whole training set
and tested on the preserved test set, fed with signals

from multiple sensor selections, and eventually, they
are evaluated in accordance with accuracy. The multi-
ple evaluation results are shown and illustrated in
Table 3 and Figure 10.

The comparison of accuracy first reveals the super-
iority of CNN-based classifiers. We attribute this to
CNN-based classifiers extracting features more accu-
rately. CNN-based classifiers extract translation-
invariant features from data sequences automatically,
classify them with the latter fully connected layers, and
calibrate learnable receptive fields if they find errors
between their outputs and references. These end-to-end
models directly translate standardized data into corre-
sponding labels without separated preprocessing, which
exploits less prior knowledge distilled from original
data and help to identify golf swings automatically.

We also find that the accuracy on the test set confirms
the coherency of accuracy corresponding to variants of
CNN models from 10-folds cross-validation: fed with
selective sensors or combination, the classifiers based on
advanced CNN components can group golf swing data
from the preserved test set properly in terms of accuracy
after sufficient epochs. Classifiers fed with signals from
gyroscope perform inaccurately as it did in 10-folds
cross-validation. Consequently, the superiority over
SVM and the coherency of the accuracy of CNN-based
models demonstrate the advance of the performance of
CNN-based models in golf swing classification tasks.

Precision–recall evaluation

Precision–recall indicators and curves45 are employed
to show the superiority of CNN-based classifiers in
comparison with SVM on behalf of traditional classi-
fiers. In this case, precision is a measure reflecting golf
swing relevancy, which indicates the rate of correct golf
swings CNN-based classifiers retrieve; recall is a mea-
sure reflecting how many truly relevant golf swings are
retrieved, which indicates the sensitivity of CNN-based
classifiers when the classifiers are confronting plausibly
incorrect golf swings. In this multi-class classification
case, micro precision–recall indicators and curves are
presented to evaluate SVM- and CNN-based classifiers,
which are shown in Tables 4–8 and Figure 11.

We focus on the overfitting issue on each class. The
desired golf classifier should identify all correct golf
swings and distinguish errors accurately; therefore,
both the precision and recall scores are 1.0. However,
the generalization of practical classifiers is not adequate
to classify data perfectly, so we focus on the tradeoff
between precision and recall and hope CNN-based
classifiers are sensitive to errors as well as keep preci-
sion. From, Tables 4–8, we can observe that CNN-
based classifiers perform better than SVM in terms of
averages of both precision scores and recall scores,
which indicates that CNN-based model can group

Figure 10. Test accuracy of CNN-based classifiers. We test
four above-mentioned CNN-based classifiers and SVM classifier
to evaluate the generalization and the superiority of CNN-based
classifiers. In this figure, it is concluded that the consistency of
superb performance over SVM classifier demonstrate that
CNN-based classifiers generalize their acceptable performance
to the test set and outperform SVM classifier on behalf of some
traditional classification models.
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swings into proper classes while assigning proper labels.
It is concluded that CNN-based classifiers are adequate
to overcome overfitting on our test set, which can guar-
antee the usability of CNN-based classifiers in real-
world datasets.

From Figure 11, it is found out that CNN-based
classifiers perform superbly in comparison with the
SVM classifier with whichever sensor is selected to

use and the sequence length is fixed. Precision–recall
curves from CNN-based classifiers are universally
above the curve from SVM classifier, which means
CNN-based classifiers quantitatively exceed SVM
classifier in terms of precision and recall indicators.
In addition, it is likely that the vulnerable gyroscope
may be easy to be intervened and is disabled to pro-
duce distinguishable signals, and errors in Figure
11(d) reveal it as well.

Table 6. Precision–recall of GolfVGG classifier.

Precision Recall f1 score Support

0 1.00 0.92 0.96 24
1 1.00 0.79 0.88 29
2 1.00 1.00 1.00 11
3 0.94 1.00 0.97 17
4 1.00 1.00 1.00 9
5 1.00 1.00 1.00 11
6 1.00 1.00 1.00 14
7 1.00 1.00 1.00 19
8 1.00 0.94 0.97 16
9 1.00 1.00 1.00 15
10 0.94 1.00 0.97 16
11 0.94 1.00 0.97 17
12 0.86 1.00 0.93 19
13 1.00 1.00 1.00 12
14 1.00 0.94 0.97 16
15 1.00 1.00 1.00 10
16 0.94 1.00 0.97 15
17 1.00 1.00 1.00 23
18 0.77 1.00 0.87 10
Average/total 0.97 0.97 0.97 303

Table 4. Precision–recall of SVM classifier.

Precision Recall f1 score support

0 1.00 0.62 0.77 24
1 0.93 0.90 0.91 29
2 1.00 1.00 1.00 11
3 1.00 1.00 1.00 17
4 1.00 1.00 1.00 9
5 1.00 1.00 1.00 11
6 0.61 1.00 0.76 14
7 0.94 0.89 0.92 19
8 0.93 0.81 0.87 16
9 0.85 0.73 0.79 15
10 1.00 1.00 1.00 16
11 0.56 0.88 0.68 17
12 1.00 1.00 1.00 19
13 1.00 0.33 0.50 12
14 0.88 0.88 0.88 16
15 1.00 1.00 1.00 10
16 0.87 0.87 0.87 15
17 1.00 0.78 0.88 23
18 0.53 1.00 0.69 10
Average/total 0.91 0.87 0.87 303

SVM: support vector machine.

Table 5. Precision–recall of GolfVanilla CNN classifier.

Precision Recall f1 score Support

0 1.00 0.83 0.91 24
1 0.88 0.79 0.84 29
2 0.92 1.00 0.96 11
3 0.85 1.00 0.92 17
4 1.00 1.00 1.00 9
5 1.00 1.00 1.00 11
6 0.93 1.00 0.97 14
7 1.00 1.00 1.00 19
8 1.00 1.00 1.00 16
9 1.00 1.00 1.00 15
10 0.94 1.00 0.97 16
11 1.00 0.94 0.97 17
12 1.00 1.00 1.00 19
13 1.00 1.00 1.00 12
14 1.00 1.00 1.00 16
15 1.00 1.00 1.00 10
16 1.00 0.93 0.97 15
17 0.91 0.87 0.89 23
18 0.71 1.00 0.83 10
Average/total 0.95 0.95 0.95 303

CNN: convolutional neural network.

Table 7. Precision–recall of GolfInception classifier.

Precision Recall f1 score Support

0 0.96 0.92 0.94 24
1 1.00 0.79 0.88 29
2 1.00 1.00 1.00 11
3 0.94 1.00 0.97 17
4 1.00 1.00 1.00 9
5 1.00 1.00 1.00 11
6 1.00 1.00 1.00 14
7 1.00 1.00 1.00 19
8 0.94 1.00 0.97 16
9 1.00 1.00 1.00 15
10 0.94 1.00 0.97 16
11 1.00 1.00 1.00 17
12 1.00 1.00 1.00 19
13 1.00 1.00 1.00 12
14 1.00 1.00 1.00 16
15 1.00 1.00 1.00 10
16 1.00 1.00 1.00 15
17 0.92 1.00 0.96 23
18 0.83 1.00 0.91 10
Average/total 0.98 0.97 0.97 303
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F1 score evaluation

F1 score45 is a synthetic indicator taking into consider-
ation both precision and recall; it is interpreted as a
weighted average of precision and recall, as shown in
equation (8) where P denotes precision and R recall

F1= 2 � P 3 R

P+R
ð8Þ

The F1 score takes into account both precision and
recall, so it can indicate the performance of the classifier
synthetically. In the multi-class evaluation, the micro
F1 score takes into consideration all the true positives
(TPs), false negatives (FNs), and false positives (FPs)
and calculates the F1 score globally; on the contrary,
the macro F1 score calculates the unweighted mean of
all the F1 scores for each class. Although the micro F1
score takes label imbalance into account, these two
scores indicate the classification performance equiva-
lently in our cases, since the classes of golf swings have
been balanced in the preprocessing. In our case, a classi-
fier performs perfectly when its F1 score reaches 1.0

Table 8. Precision–recall of GolfResNet classifier.

Precision Recall f1 score Support

0 1.00 0.83 0.91 24
1 1.00 0.76 0.86 29
2 0.92 1.00 0.96 11
3 0.77 1.00 0.87 17
4 1.00 1.00 1.00 9
5 1.00 1.00 1.00 11
6 1.00 1.00 1.00 14
7 1.00 0.95 0.97 19
8 0.67 1.00 0.80 16
9 1.00 1.00 1.00 15
10 1.00 0.88 0.93 16
11 0.84 0.94 0.89 17
12 1.00 1.00 1.00 19
13 1.00 0.92 0.96 12
14 1.00 0.69 0.81 16
15 1.00 1.00 1.00 10
16 0.92 0.80 0.86 15
17 0.92 1.00 0.96 23
18 0.71 1.00 0.83 10
Average/total 0.94 0.92 0.92 303

Figure 11. (a) Micro precision–recall Curves with respect to all sensors, (b) micro precision–recall curves with respect to strain
gage sensors, (c) micro precision–recall curves with respect to accelerometer, and (d) micro precision–recall curves with respect to
gyroscope.
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since it retrieves all correct golf swings without missing
ones and all retrieved golf swings are highly relevant.
So, the comparison of the F1 score within CNN-based
classifiers and SVM classifier presents the performance
in golf swing classification. The experimental results are
shown in Figures 12 and 13.

From Figures 12 and 13, it is found that CNN-based
classifiers perform superbly in comparison with SVM
classifier with whichever sensor and sequence length
are selected to use. F1 scores of CNN-based classifiers
are universally over scores of SVM in Figures 12 and
13, which means CNN-based classifiers quantitatively
exceed SVM classifier when precision and recall are
together taken into consideration; in addition to model
selection, the strain gage sensors or the accelerometer
can independently enable classifiers to classify cor-
rectly. At the same time, it is demonstrated again that
the vulnerable gyroscope is easy to be intervened and
may not produce the distinguishable signals.

Conclusion

In this article, we investigate golf swing data classifica-
tion methods based on varieties of classifiers of deep
CNNs fed with multi-sensor sequences. The CNN-
based classifiers are adequate to correctly group the
multi-channel golf swing data labeled by the hybrid
categories from different golf players and shapes and
quantitatively outperform SVM classifier in terms of
widely accepted evaluation indicators including accu-
racy, precision–recall indicators and curves, and F1
scores on the preserved test set. Some conclusions are
proclaimed again here.

� The indicators including accuracy, precision–
recall curves, and F1 scores can quantitatively
demonstrate that CNN-based classifiers can
reach the acceptable accuracy in the golf swing
classification tasks and outperform the SVM
classifier.

� The consistent performance of accuracy among
sensors can demonstrate that signals from even
one single sensor can be adequate in identifying
shapes of golf swings, while the vulnerable gyro-
scope is easy to be intervened and may not indi-
vidually produce distinguishable signals.

� It has been illustrated that CNN-based classifiers
are basically tolerant with the time translation
and other plausibly existed noise imported ini-
tially since the consistency of indicators is
observed in the 10-fold cross-validation and the
test phase.

In future, we plan to investigate the default hyper-
parameter configuration a, g, and Dt; the interior rea-
son why gyroscope is invalid in our context; and how
to decrease the probability of gyroscope invalidity.
Furthermore, we explore the effectiveness of CNN-
based classifiers on a larger real-world dataset and
discover more evidence that can demonstrate the
availability of CNN-based classifiers in a real-time or
high-noise analysis context.
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44. Dieleman S, Schlüter J, Raffel C, et al. Lasagne: first

release, 2015, DOI:10.5281/zenodo.27878, http://dx.doi.

org/10.5281/zenodo.27878
45. Powers DM. Evaluation: from precision, recall and f-

measure to roc, informedness, markedness and correla-

tion, 2011, https://bioinfopublication.org/files/articles/

2_1_1_JMLT.pdf

Jiao et al. 17


