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a b s t r a c t

Job planning with resource allocations constitutes a classical subfield of scheduling. This research is
devoted to connecting a batch-scheduling problem with resource allocations to a bin-packing problem
(BPP). A mechanism of transforming the batch-scheduling problem into BPP is proposed. Based on
the transformation mechanism, a heuristic is proposed by utilizing an effective approach for BPP. In
order to evaluate the efficiency of the proposed heuristic, extensive experiments are carried out on the
performance comparisons against several availablemethods. The results show that the proposed heuristic
can be a strong alternative for the problem under study, which, in turn, demonstrates the effectiveness of
the proposed mechanism.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling with resource allocations originates from various
real-life systems [1–4], where the processing or setup times are
controllable by resource allocations such as money, energy, fuel or
additionalmanpower. Sincemore andmore people from industrial
or academic areas are concerned about improving the resource
efficiency, deep investigation into this subfield has high practical
significance.

Since its appearance in [5,6], lots of researches have been de-
voted to this subfield of scheduling. The following lists two criteria
(other criteria can be found in [7]) that can be used to classify re-
searches in the subfield. On the one hand, according to themachine
settings, the relevant researches can be categorized as follows: sin-
gle machine scheduling [8–13], parallel machine scheduling [14],
flow-shop scheduling [15,16], and batch-scheduling [17–22]. On
the other hand, researches in this subfield can also be classified
into the following categories: scheduling without or with resource
constraints. The former problem setting receives more attention

∗ Corresponding author.
E-mail address: zhousc@mail.ustc.edu.cn (S. Zhou).

in relevant researches [17,18]. The latter setting assumes that the
allocations for each operation should not exceed the maximal
amount. Such constraints are called technological constraints here-
after.

The problem under study combines batch-scheduling [23,24]
with resource constraints. Such a combination leads to the opti-
mizations in both criteria, for which the scheduling and allocation
decisions should be determined simultaneously to achieve effi-
cient system performance.

In literature, there exist lots of researches dealing with similar
problem settings. Cheng and Kovalyov [12] studied the problem of
scheduling a batchingmachine with deadlines, where the process-
ing and setup times were controllable. Cheng et al. [17] presented
several interesting characteristics for optimal solutions of a single
batching machine in which the resource allocation was the same
for all jobs. Ng et al. [18] investigated the batch-scheduling with
resource constraints where the total allocations for the processing
and setup operations were upper bounded. Similar settings were
employed further in [1,25]. Other interesting applications can be
seen in [26,27]. The consideration that the resources for setup or
processing operations are upper bounded are more practical and
may arouse more complex applications.
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In order to deal with the variants in this subfield of scheduling,
almost all the researches tried to figure out the scheduled job set
as well as the resource allocation set. Garey et al. [28] studied
a special case of the general multiprocessor scheduling problem
with resource constraint. They showed that the problem can be
transformed into generalized BPP (bin-packing problem) that has
been examined extensively in literature [29–31]. Investigating the
connections between different problems can present theoretical
basis for developing common approaches for different research
groups. The transformation provides relevant community with
theoretical basis for applying manymature approaches in the field
of BPP.

Inspired by the above research,we aim to study the connections
between batch-scheduling and classical optimization problems.
In this context, it is proved that batch-scheduling with resource
constraints can be solved by dealingwithmultiple BPPs. In order to
validate the efficiency of such transformation, we present a heuris-
tic for a variant of batch-scheduling with resource constraints.
The experimental study shows that the proposed heuristic outper-
forms GAMS and some existing approaches in solution quality. To
the best of our knowledge, this is the first research work devoted
to investigating the connections between schedulingwith resource
allocations and classical optimization problems.

The remainder of the paper is organized as follows. In Section 2,
several relevant preliminaries are introduced. In Section 3, the
problemunder study is formulated. In Section 4, a lower bound and
the characteristics of optimal solutions are proposed. In Section 5,
the mechanism for the transformation into BPP is presented and a
heuristic is proposed for validation. In Section 6, an experimental
study is carried out to evaluate the algorithm proposed. Conclu-
sions on the study and directions for future research are provided
in Section 7.

2. Preliminaries

Batch-scheduling problems with resource allocation are speci-
fied by the following two factors: the resource consumption func-
tions and the resource allocation policies within each batch.

2.1. Resource consumption functions

One of the most widely employed models is the linear resource
consumption function [11–14,17], which has the form of

pi(ui) = p̄i − aiui, i = 1, . . . , n, 0 ≤ ui ≤ ūi < p̄i/ai (1)

where n is the number of non-preemptive jobs, ui is the amount
of resource allocated to job i, pi(ui) is the processing time of job
i which is a function of ui, ūi is the upper bound on the amount of
resource that can be allocated to job i, ai is the positive compression
rate of job i and p̄i is the incompressible processing time for job
i. The compression rate ai represents the linear decrease of pi
when the resource allocation ui increases by one unit (within the
predefined constraint ūi) and the incompressible processing time
p̄i denotes the initial processing time with no resource allocation.

However, in many resource allocation problems, especially
those related to physical and economic systems, the linear re-
source consumption function fails to reflect the law of diminishing
marginal returns, which states that productivity increases at a
decreasing rate with respect to the amount of resource employed.
To avoid this, some studies, including [32–36], applied a specific
convex-decreasing resource consumption function of the form

pi(ui) = (
wi

ui
)k, i = 1, 2, . . . , n, ui > 0, (2)

where wi is a job-dependent parameter (the workload of job i)
and k > 0 is a constant positive parameter that is identical for

all jobs. Similarly, the resource consumption function for the setup
operations is as follows,

Sj(Vj) = (
S
Vj

)k, Vj > 0, (3)

where S denotes the workload of the setup operation of a single
machine which is independent of the batches and Vj signifies
the resources that are allocated to the setup operation of the jth
batch. Eqs. (2) and (3) share the same exponent k when resource-
dependent processing and setup times are considered simultane-
ously.

Monma et al. [37] studied several significant applications in
the resource allocation problems with precedence constraints and
non-renewable resources, and then showed that k = 1 case corre-
sponds to many actual government or industrial projects and that
k = 0.5 case arises from VLSI (Very Large Scale Integration) circuit
design. They further pointed out that the product of the silicon area
(resource) and the square of the time spent (time squared) equals
a constant value (the workload) for an individual job.

2.2. Resource allocation policies

The other factor that affects the total system performance is the
resource allocation policy among the jobs within each batch. The
policies existing in literature can be categorized as follows.

The first policy assumes that all processes of resource alloca-
tions can be manually controllable, i.e., the resource allocation set
can be any combination of the resource allocations as long as the
summation of resources equals the available resources [34,35,38,
39]. Although such policy is the most efficient one (theoretically
speaking), lots of applications fail to follow it due to the machine
or resource restrictions.

The second policy is that resources are evenly allocated within
each batch [18,25,40]. Biskup and Jahnke [40] gave two examples
where the resource allocation is the same for all the jobs in each
batch. In the steel production industry, a furnace can be heated
to a specific temperature every day before the processing of an
order for ingots (jobs) starts. It is not beneficial to change the
temperature for every single job. A higher temperature reduces the
processing times but incurs a cost for using the furnace. A similar
situation might occur for a machine at which specific tools have to
be changed after a fixed period of time, like a week. Each time a
new tool is installed, a decision about the tool characteristics that
is the productive power, needs to be made. For example, a drilling
machine might run with a diamond drill, a high- or a low-quality
steel drill. If the diamond drill is set up, the processing of the jobs
can be carried out faster than with a steel drill by incurring higher
costs.

Another example given in [40] is an assembly line in which the
speed depends on the number of workers and tools available. It is
generally not possible or advantageous to change the speed during
the day. Since the available resource allocation for each batch
determines a common processing speed for all the jobs contained,
it would be more practical to consider that more resources should
be guaranteed if a longer processing time is required. Relying on
such cases, another resource allocation policy is proposed inwhich
the amount of resources that is allocated to each job is in direct
proportion to its processing time.

For a brief representation, the short notations ERA (even re-
source allocation), MCRA (manually controllable resource alloca-
tion) and PRA (proportional resource allocation) are employed to
denote the three resource allocation policies. For MCRA, Oron [26]
proved that in a batching environment each job gets such resource
allocation that its processing time equals to the batch processing
time in any optimal solution. For a pair of jobs (i, j) in the same
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Fig. 1. Resource allocation policies. ui and uj represent the actual resource consumption of jobs i and j.

Table 1
Notations.
Notation Description

n Number of jobs
J Job set, J={J1, J2 . . . , Jn}
wi Workload of job Ji
S Workload of machine setup operation
pi Processing time of job Ji
ui Resource allocation for job Ji
m Number of batches
Bj The jth batch, j=1, 2, . . . ,m
Oj The component set of Bj
|Oj| The number of jobs in Oj
π Batch sequence, π={B1, B2, . . . , Bm}

β Number capacity for each batch
v Resource constraint for each setup
u Resource constraint for each batch
B_Sj Setup operation of Bj
γ Setup sequence, γ={B_S1, B_S2, . . . , B_Sm}
Pj Processing time of Bj
Sj Setup time of B_Sj
Uj Resources allocation for Bj
Vj Resources allocation for B_Sj
C Makespan constraint

batch, Fig. 1 summarizes the different constraints among ERA,
MCRA and PRA in relevant optimal solutions.

Since optimal resource allocation decisions differ among the
resource allocation policies (ERA, MCRA and PRA), the solutions for
ERA andMCRA employed in the above-cited literature do not fit for
the problems with PRA.

3. Problem formulation

Before the problem setting is proposed, a detailed description of
the notations that have been employed orwill be used is presented
in Table 1. Additionally, each notation will be explained in detail
upon its first appearance in the following.

In the problem studied, considering the corresponding practical
backgrounds, the convex-decreasing resource function andPRAare
employed. Under PRA, for each Ji in Oj, the resources allocated to Ji
is given by

ui =
piUj∑
Jl∈Oj

pl
(4)

Accordingly, by substituting the above equation into Eq. (2), Pj can
be given by

Pj(Uj) =
(
∑

Jl∈Oj
w

k
k+1
l )k+1

Uk
j

. (5)

The batch-scheduling problem with resource constraints is
modeled with six basic objects: jobs, batches, setups, constraints,
decision variables and objective.

1. Jobs. A job set J is available for processing at time zero. Each
job Ji ∈ J has a workload wi, a processing time pi and a
resource allocation ui.

2. Batches. The jobs are to be processed in batches. The arrange-
ment of these jobs forms a set of batchesπ . Each Bj ∈ π has a
resource allocationUj, a processing time Pj, and a component
job set Oj.

3. Setups. A setup operation is required before any batch pro-
cessing operation is started. Each setup operation B_Sj ∈ γ
has a resource allocation Vj and a setup time Sj, where γ
represents the set of setups.

4. Constraints. Each job can be allocated to only one batch, and
the number capacity for each batch is β:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
j=1

xij = 1, i = 1, 2, . . . , n,

n∑
i=1

xij ≤ β, j = 1, 2, . . . ,m.

(6)

For each batch, the resource allocations for processing and
setup operations should not break the resource constraints:{
Uj ≤ u, j = 1, 2, . . . ,m,

Vj ≤ v, j = 1, 2, . . . ,m.
(7)

The time constraints on processing and setup operations are
given by Eqs. (3) and (5)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pj =
(
∑n

i=1 xijw
k

k+1
i )k+1

Uk
j

, j = 1, 2, . . . ,m,

Sj = (
S
Vj

)k, j = 1, 2, . . . ,m.

m∑
j=1

(Pj + Sj) ≤ C .

(8)

5. Decision variables. The decision variables include: m, the
number of batches; xij ( xij equals ‘‘1’’ if Ji is allocated to
Oj and ‘‘0’’ otherwise); and additionally Uj, Vj, the resource
allocation for each Bj and B_Sj.

6. Objective. The objective of the problem considered is to
minimize the resources invested:

Min
m∑
j=1

(Uj + Vj) (9)

This problem is a continuous optimization problem. Follow-
ing the three-field notation introduced by [41] for scheduling
problems, the problem under consideration can be represented
by 1|s-batch, conv, wi,Uj ≤ u, Vj ≤v, Cmax≤C |

∑
(Uj+Vj), where

s-batch denotes serial-batchingmachine [42,43] and conv specifies
the convex resource function. For more brief representation, it is
denoted by RCM (Resource Consumption Minimization).
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4. Characteristics

4.1. A lower bound

In order to analyze the problem properties and to evaluate the
approaches, this section is devoted to presenting an effective lower
bound by employing KKT conditions [44,45]. Several constraints in
the above formulation are relaxed for conducting KKT conditions:

• On one hand, the resource constraints are eliminated, i.e., ig-
noring Eq. (7);
• On the other hand, it is assumed that the resource allocations

among jobs are manually controllable.

Since all setup operations share the same status, it is obvious
that in any optimal solutions, each setup is allocated the same
resources, denoted byVs in the following parts. The proposed lower
bound is based on the following model,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Min ⌈

n
β
⌉Vs +

n∑
i=1

ui

s.t. C − ⌈
n
β
⌉(

S
Vs

)k −
n∑

i=1

(
wi

ui
)k ≥ 0.

(10)

Any resource allocation decision that satisfies the KKT condi-
tions of the above model is optimal. By solving the necessary and
sufficient KKT conditions we yield an effective lower bound

LB = (
1
C
)
1
k (⌈

n
β
⌉S

k
k+1 +

n∑
i=1

w
k

k+1
i )

k+1
k (11)

4.2. Characteristics of optimal solutions

This subsection reveals the characteristics of resource utilities
in the optimal solutions. Utility refers to the satisfaction that each
choice provides to the decisionmaker. The resource utilities are the
deviations of Pj and Sj, which are denoted by e in the following.

Lemma 1. Given any optimal solution of RCM, each Bj or B_Sj has
identical resource utility, respectively.

Proof. The proof can be easily obtained by employing Lagrange
analysis, which is neglected for the sake of simplicity. □

Based on the above lemma, the optimal solutions can be re-
stricted into an infinite set ρ, where ρ=

⋃
ρ(ei) (ei ∈ ℜ+) and

ρ(ei) is a set of feasible schedules completed at C whose processing
operations have the same resource utility ei. Lemma 1 can also
be drawn by employing marginal analysis, which can derive the
following lemmas as a by-product.

Lemma 2. Given any optimal solution in ρ(e), the relationship
between Vs and e can be expressed as follows

Vs =

⎧⎪⎨⎪⎩
v, e <

kSk

vk+1 ,

(
kSk

e
)

1
k+1 , e ≥

kSk

vk+1 ,

(12)

and the total processing time can be calculated by
m∑
j=1

Pj = (
e
k
)

k
k+1

n∑
l=1

w
k

k+1
l (13)

Proof. In every infinitesimally-divisible step in making resource
allocation decisions, an operation with the highest resource utility
is allocated resources under the resource constraints Eq. (7). As

resources are invested, the resource utilities decrease. However,
no resource is allowed for the setup operations when the resource
reaches v with the resource utility kSk/vk+1. Therefore, in optimal
resource allocation decisions, if e < kSk/vk+1, v amounts of re-
sources should be allocated to each setup operation to achieve the
highest utilities; and if e ≥ kSk/vk+1 and e = kSk/vk+1

0 (0 < v0 ≤

v), v0 unit is invested to the setup operations, which completes our
proof. □

Lemma 3. Given any schedule subset ρ(e), the optimal schedules, if
exist, have the fewest batches.

Proof. According to Lemma 2, for any schedule in ρ(e), the total
processing time

∑
Pj, the total setup time

∑
Sj are fixed. Hence,

the total resource consumption is given by∑
(Uj + Vj) = mVs +

m∑
j=1

Uj

= (
k
e
)

1
k+1

n∑
l=1

w
k

k+1
l + S(

1∑m
j=1 Sj

)
1
k m

k
k+1

(14)

which implies that there exists a positive correlation between m
and the objective value. Thus, given any subset ρ(e), the optimal
schedules, if exist, have the fewest batches. □

Lemma 3 implies that, if ρ(e) is already known, the optimal
solution lies in those solutions with the fewest batches. This ob-
servation may provide an effective way to build the connection
between RCM with BPP.

5. Transforming RCM into BPPs

Based on the preliminary idea of transforming RCM into BPP,
this section is devoted to proposing themechanism for such trans-
formation:

1. In the first part, the mechanism for transforming RCM into
BPPs is proposed.

2. Based on such mechanism, a heuristic is proposed for RCM.

5.1. Transformation mechanism

The properties and conditions in Section 3 are rearranged to
form the constraints for the optimal solutions in this subsection.

Theorem 1. The constraints for optimal solutions of RCM can be
summarized into two types

(1) equivalent constraints: Vs and e can be rewritten as the func-
tions of m respectively as follows:

Vs =

⎧⎨⎩(
mSk + S

k2
k+1

∑n
l=1 w

k
k+1
l

C
)
1
k , if cond(m) = 1,

v, otherwise.
(15)

and

e =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kC
k+1
k

(m+ S−
k

k+1
∑n

l=1 w
k

k+1
l )

k+1
k S

, if cond(m) = 1,

(
C −m( S

v
)k∑n

l=1 w
k

k+1
l

)
k+1
k k, otherwise.

(16)

where

cond(m) =

⎧⎨⎩0, if m >
Cvk
− S

k2
k+1

∑n
l=1 w

k
k+1
l

Sk
,

1, otherwise.
(17)
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(2) batching constraints: for any batch Bj, the following constraints
hold⎧⎪⎪⎨⎪⎪⎩

∑
Jl∈Oj

w
k

k+1
l ≤ u(

e
k
)

1
k+1 ,

|Oj| ≤ β.

(18)

Proof. (1) According to Lemma 2, for each batch in any solution in
the set ρ(e), the total processing and setup time can be given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
j=1

Pj = (
e
k
)

k
k+1

n∑
l=1

w
k

k+1
l ,

m∑
j=1

Sj = m(
e
k
)

1
k+1 S

k2
k+1 .

(19)

Associating Eq. (12) with Eq. (19) yields the expression Eqs. (15)–
(17).

(2) According to Lemma 3, since each processing operation has
resource constraint u, the following expression holds:

(
k
e
)

1
k+1

n∑
l=1

w
k

k+1
l ≤ u. (20)

Therefore the batching constraints for RCM are two-fold: the
summation ofwk/k+1

i should not exceed u(e/k)1/(k+1); the maximal
number of jobs that can be packed into each batch is β , which can
be expressed as Eq. (18). □

As can be concluded from Eq. (18), for a unique value of e, the
batching constraint is an off-line one-dimensional BPP. There is a
set of n itemswith weights ofW={W1,W2, . . . ,Wn},Wi=w

k/(k+1)
i ,

which are to be assigned to a binwith the capacity of c=u(e/k)1/(k+1)
such that the total weight of items in each bin does not exceed c
and the maximal number of items assigned to each bin is β . The
objective is to minimize the number of bins used (the optimal
solution for BPP is denoted by SOB hereafter). The values of e
determine the capacities of BPPs and thus for different e, their
relevant BPPs are non-identical.

As can be concluded, e is dependent on m uniquely and inde-
pendently, which implies that there exists only one corresponding
BPP for each m. Following Lemma 3, if m is equal to SOB, then the
current solution is optimal. A feasible approach can start by assign-
ing a specifiedm to Eqs. (15)–(17), and then verifying whether it is
identical to the optimal solution of the corresponding BPP. Since
⌈n/β⌉≤m≤n, RCM can be tackled by solving at most n−⌈n/β⌉+1
BPPs.

5.2. A heuristic for RCM

A heuristic called RMB-BPP (Resource Minimization Based on
BPP) is proposed in this subsection. In the RMB-BPP algorithm,
variable m ranges from ⌈n/β⌉ to n. Each m is verified in terms of
its equality to SOB of the corresponding BPP. For the case where
a first tie occurs, the objective value is calculated and then RMB-
BPP is ended. Due to the NP-completeness of BPP [46], the compu-
tational effort for gaining the global optima is exponential. Fig. 2
illustrates the detailed process of how different approaches find
the corresponding solution.

As can be seen in Fig. 2, since the optimal solution for the BPP
problem cannot be guaranteed, the solution quality of RCM greatly
depends on the performance of BPP solving-approaches. In order to
guarantee both an efficient solution and reasonable computational
time, effective approaches for BPP should be employed.

In order to solve the multiple BPPs, the SAWMBS heuristic
proposed by [47–49] is employed. If the maximum number of
items that fit in one bin is β , it has a time complexity of O(nβ+1).

Fig. 2. An illustration of the process of solution validation. The marked global
optimum is the target solution. The dotted line is the validation line. The approaches
for BPP determine the solution quality. Themarkers located on the line illustrate the
results obtained by different approaches.

With all the analysis presented above, the RMB-BPP heuristic is
presented in Algorithm 1. Note that each operation in the loop can
be completed inO(1) time except for the SAWMBS algorithm. Since
the loops are executed by n−⌈n/β⌉ times at most, RMB-BPP has a
time complexity of O((n−⌈n/β⌉)nβ+1).

Algorithm 1: RMB-BPP
Input: Job set J , bin number capacity β , resource constraints u, v
Output: Resource consumption U∗
Initial value: unpacked bin set L←W , initial bin A∗=∅;
begin

m← ⌈n/β⌉
whilem ≤ n do

SOB←0
Calculate Vs according to Eq. (15)
Calculate e according to Eq. (16) /* Calculate Vs and
e */;
c←u(e/k)1/(k+1) /* Obtain the capacity of the
corresponding BPP */;
while |L|>0 do

A∗← Pack a new bin by SAWMBS;
L←L\A∗ /* Remove the packed bin */;
SOB←SOB+ 1

ifm̸=SOB then
m←m+ 1
continue /* Skip to next loop */;

U∗←mVs + (k/e)1/(k+1)
∑n

l=1 w
k/(k+1)
l /* Output the

result when the first tie happens */;
break /* Skip out of the loop */;

6. Experimental study

The experimental study is devoted to the following issues:

1. Comparing RMB-BPPwith GAMS for small-scale instances in
terms of solution quality;

2. Comparing RMB-BPP with other comparative approaches in
literature on small- and large-scale instances.

6.1. Dataset, experiment protocols and comparative approaches

To the best of our knowledge, there is no available dataset
corresponding to the PRA policy. In our experimental study, the
instances were generated based on themethods of [27,39]: the job
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Table 2
Performance comparisons of RMB-BPP with GAMS.

n RD(I)

0 5% 10% 15% 20% 25% 30% 35% 40%

RMB-BPP

8 0.30 0.33 0.33 0.03 0.00 0.00 0.00 0.00 0.00
20 0.10 0.40 0.33 0.17 0.00 0.00 0.00 0.00 0.00
30 0.07 0.33 0.20 0.30 0.10 0.00 0.00 0.00 0.00
40 0.00 0.13 0.23 0.23 0.27 0.13 0.00 0.00 0.00

GAMS

8 0.30 0.33 0.33 0.03 0.00 0.00 0.00 0.00 0.00
20 0.13 0.17 0.13 0.30 0.27 0.00 0.00 0.00 0.00
30 0.00 0.00 0.30 0.07 0.27 0.20 0.00 0.00 0.00
40 0.00 0.00 0.07 0.23 0.13 0.17 0.07 0.17 0.17

number n was given before each performance test; the machine
capacity β was generated from a discrete uniform distribution
ranging between ⌈n/15⌉ and ⌈n/3⌉ and the workload of the setup
operations S was obtained from a continuous uniform distribution
[0.5, 1.5]; the resource constraint parameters v and u were gen-
erated from continuous uniform distributions, i.e., from 1.0 to 2.0
and from2.0 to 4.0, respectively; kwas selected randomly from the
set {0.8, 0.9, 1.0, 1.1, 1.2, 1.3}; the workload parameter wi was
generated from a discrete uniform distribution ranging from 1 to
7; the makespan C was also generated from a discrete uniform
distribution ranging from 4n to 8n.

In the experimental study, the performance of the RMB-BPP
algorithm is compared with available optimization software and
approaches in literature. In the first part, the performances of
RMB-BPP and GAMS on small instances are compared, and in the
second one, RMB-BPP, BFF-KKT (Batch First Fit principle with KKT
conditions) and SGA-KKT (Simple Genetic Algorithm with KKT
conditions) are evaluated on both small- and large-scale problems.
BFF is one of the simplest heuristics developed by Uzsoy [50] for
scheduling a batch processingmachinewith nonidentical job sizes.
SGA is a stochastic search algorithm which uses the mechanics
of natural selection and natural genetics [51,52]. The fitness is
set to

∑
(Uj + Vj)max −

∑
(Uj + Vj) where

∑
(Uj + Vj)max is the

maximum possible value of
∑

(Uj + Vj). The parameters of SGA-
KKT are taken as follows: the population size is 1000, the crossover
probability is 0.5, and the mutation probability is 0.02. SGA-KKT
is stopped after 1000 generations. Both BFF-KKT and SGA-KKT
are based on the following strategy: batching first and allocating
resources afterwards. Both approaches apply the KKT conditions
for resource allocation.

The GAMS results were provided by applying GAMS IDE (Ver.
23.2.1) with the formulations in Section 3. The other approaches
were implemented on MATLAB R2013b (8.2.0.701). All the ap-
proaches were executed on a 2.2 GHz, Core II processor, 2 GB RAM
PC with Win7 OS.

6.2. Performance comparisons against GAMS

GAMS is amodeling system formathematical programming and
optimization, which offers a stable of commercial solvers. During
the executions, it was found that when n is equal to or greater
than 50, GAMS cannot provide an effective solution in reasonable
time (2000 s for 50 jobs). Therefore, the performance comparisons
of RMB-BPP against GAMS are conducted on relatively small-scale
instances, including 8, 20, 30, and 40 jobs.

For each n, 30 instances were generated at random. The results
of RMB-BPP and GAMS are compared with the lower bound com-
puted by Eq. (11). The parameters that were kept record of are the
relative deviation:

RD(I) =
Ai(I)− LB(I)

LB(I)
, (21)

Table 3
Wilcoxon signed rank test for RMB-BPP, SGA-KKT and BFF-KKT.
(RMB-BPP)-(SGA-KKT) (RMB-BPP)-(BFF-KKT)

n p-value n p-value

20 0.0021 20 0.0004
40 0.0036 40 0.0003
80 0.0032 80 0.0020
100 0.0220 100 0.0024
150 0.0014 150 0.0009
200 0.0018 200 0.0013
All 0.0000 All 0.0000

where Ai(I) represents the result gained by method Ai (A1 = RMB-
BPP, A2 = GAMS) and LB(I) denotes the lower bound of instance
I .

Among the 30 instances of each n, for both RMB-BPP and GAMS,
the percentages of RD were kept track of, which are less than or
equal to 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%. The results are
shown in Table 2.

According to Table 2, in general, RMB-BPP shows better perfor-
mance in that RMB-BPP can achieve smaller RD values (for the 8
case, ties happen). In order to better illustrate the results, the radar
chart of each instance configuration is presented in Fig. 3, and the
comparisons of the median and average values are given in Fig. 4.

As can be seen from Figs. 3 and 4, most of the values gained are
lower than 0.2, which demonstrates that both RMB-BPP and GAMS
are effective. Except for the instances of 8 jobs, RMB-BPP achieved
better performance than GAMS. An interesting observation is that,
the gap between RMB-BPP and GAMS increases as the problem
scales from 8 to 40, which implies that RMB-BPP has better scal-
ability than GAMS.

6.3. Comparisons against BFF-KKT and SGA-KKT

The comparisons among RMB-BPP, BFF-KKT and SGA-KKT are
carried out on the instances with 20, 40, 80, 100, 150, 200 jobs. For
each case, 10 instances are generated. RMB-BPP and BFF-KKT are
executed on each instance for once and SGA-KKT for 5 times. The
results of each instance are compared with the corresponding LBs.

Fig. 5 shows the convergence curves of SGA-KKT on the first
instance of each case. To make brief comparisons, the results of
RMB-BPP and BFF-KKT are also presented.

As can be seen from Fig. 5, generally speaking, RMB-BPP can
achieve better performance than BFF-KKT and SGA-KKT. BFF-KKT
has the most unsatisfying behavior. In some cases (for example,
instance of 80 jobs), the result by SGA-KKT is very close to RMB-
BPP. However, SGA-KKT spent much more time than RMB-BPP to
provide the final results. Moreover, being a stochastic searchmeta-
heuristic, the solution quality of SGA-KKT cannot be guaranteed
theoretically.

The box plots of the results on all the instances are presented
in Fig. 6. As can be seen from Fig. 6, most of the values of RMB-
BPP are between 0.1 and 0.2, which demonstrates that it can be
a strong alternative for solving RCM. Under special cases, SGA-
KKT can achieve better (or not worse) performance than RMB-BPP.
However, for each case, the median value of SGA-KKT is greater
than RMB-BPP, which in turn proves that RMB-BPP achieves more
efficient solutions. BFF-KKT presents the worst behavior for all the
instances.

To statistically compare the performance of the algorithms, a
Wilcoxon signed rank test is performed with a significance level
of 0.05. As the results depicted in Table 3 show, the difference
between RMB-BPP and SGA-KKT is statistically significant on all
the instances. The difference between RMB-BPP and BFF-KKT is
statistically significant on all the instances.

Based on the above experiments, the following conclusions can
be drawn:
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Fig. 3. Radar charts for RDs of RMB-BPP and GAMS. The closer a result is to 0, the better it is.

Fig. 4. Comparison results of RMB-BPP against GAMS. The results on both the average and median values for different job numbers (each with 30 instances) are presented.

1. Both RMB-BPP and GAMS show competitive performances
on small-scale instances.

2. The computational time of GAMS is huge, which makes it
improper for large-scale instances.

3. RMB-BPP outperforms SGA-KKT and BFF-KKT in solution
quality, especially for large-scale instances.

7. Conclusions

In this paper, the mechanism for transforming RCM into BPP
is studied. To construct the mechanism, the characteristics of the

optimal solutions are analyzed. Following the analysis, it is shown
that the problem can be tackled by finite BPPs. Based on a mature
approach for BPP, the heuristic algorithm, RMB-BPP is provided.
In order to demonstrate its effectiveness and efficiency, exten-
sive experiments are conducted. The results of the experiments
show that RMB-BPP is effective in both small- and large-scale
instances, which provides the best results among all the compared
approaches. The conclusions provide theoretical basis and a new
view for tackling problems in this subfield of scheduling.

The paper presents a new view of allocating resources by bin-
packing. Concluding the precursory research [28] and this work,
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Fig. 5. Convergence curves of SGA-KKT on the first instance of each case. For comparison, the results of RMB-BPP and BFF-KKT are also presented. Both BFF-KTT and RMB-
BPP start from the time when they present the final solution. The curve of SGA-KKT is the one with the best result in 5 executions. The value of each Y axis starts from the
corresponding LB.

the resource constraints in scheduling problems are capacity-like,
which explains the potential of the transformation into BPP vari-
ants. Note that in scheduling with resource allocations, there exist
lots of capacity-like (upper-bounded) constraints. It is believed
both interesting and challenging to investigate other variants,
which may generate meaningful applications.
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