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Abstract—In the wake of the development of mobile devices, how to = ~viae ._.v-latency mobile services with
the limited battery power is attracting more and more attention. A n vel sara 'igm, edge computing, can make
services closer to users, which can dramatically reduce the latency ~nd ir~~ ove battery life of UEs. However,
inappropriate placement and utilization of caching can degrade the : rstem performance. In this paper, a
cache-aware task scheduling method in edge computing is ~ropu.~d rirst, an integrated utility function is
derived with respect to the data chunk transmission cost, cachina ~lue and cache replacement penalty. Data
chunks are cached at optimal edge servers to maximize the \. *egrated utility value. After placing the caches, a
cache locality-based task scheduling method is present. .. "~ mnaqel the task scheduling problem as a weighted
bipartite graph. Weights of edges of the graph are main.> influenced by the locations of the required data.
During each heartbeat, maximal weighted matching L “tv. ~2n ¢asks and resources are obtained. All the proposed
algorithms have polynomial time complexities v ..z are rcceptable in edge computing. Furthermore, extensive
experiments show that the cache-aware task schedu. g algorithm outperforms other baseline algorithms in
terms of the cache hit ratio, data locality, ¢-.... *-ansmission time, task response time and energy consumption
costs.

Index Terms—Edge computing, Cachr placen.. - ., Task scheduling, Weighted bipartite graph

1 Introduction

Recently, with the adver. ~f technological evolution of portable mobile devices, such as smartphones,
laptops and sensors, the lir itati ns of battery capacity and bandwidth have been serious obstacles for the
quality of service (QoS) The ti. 'itional solution to cover these limitations is to offload applications with
high resource requirer entc to 7 conventional core cloud [1], [2]. However, it is not efficient enough to
transmit application< =5 the " ,ud due to limited bandwidths. The vision of edge computing that can make
the service closer (1 users 1 3s led the path to a manner with low delays for mobile users. Edge computing
mainly consists ~f 1.'~.ing computing concepts, Fog Computing [3], [4], Cloudlet [3], [4], [5] and
Mobile Edge >omput.1g [3], [4]. Executing a portion of applications on the edge servers can reduce the
amount of data .. ~ne~ 4tted in the network, which reduces both latency and energy consumption costs.

Many “ppr v..0n scenarios benefit from edge computing including face recognition application [6],
[7], 10T [6] & d connected vehicles [6], [8]. All of these applications need low-latency services. The
architecture of edge computing mainly consists of a core cloud, an edge orchestrator (EO) and several
edge servers, as shown in Fig. 1. In order to overlook all edge servers, the edge orchestrator is connected
to the same network with them. Edge servers are installed at WiFi access points or base stations for



various scenarios [9]. Since the location of services is closer to users, the edge computing is receiving
more and more attention.
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Fig. 1 Application scenarios of eu_~ computing

In edge computing system, each edge server has ceraun cache size in the memory. The popular
contents will be dispatched and cached in the edge servers .o further improve the system performance.
Moreover, excessive data transmission will increase ti ~ ) itency and energy costs. In order to improve the
quality of service (QoS), the cache-aware task sc.-c ‘uling is regarded as a valid manner. However, there
are many challenges in cache-aware task scheduling 1> eage computing.

First, caching spaces of edge servers are us.~lly smaller than common servers in cloud computing.
Therefore, the cache replacement occurs freauently if contents are cached at edge servers with high cache
replacement rates. The system should make . decision to cache contents on edge servers not only
according to caching values but also ac.~rd’.1g to the replacement rates of edge servers. Thus, an
integrated utility-based cache place nen’ stra*egy which jointly considers data transmission cost, caching
values and cache replacement per alty 1. ne’ essary.

Second, reading data fror. . ~al cache is faster than reading data from local disk or remote edge
servers. In addition, reading ~'.*a from 10cal caches or disks can reduce the amount of data transmitted in
the network. Most of curr :nt r iche-aware scheduling algorithms require lots of iterations, which may
cause higher entire syste a lateri. * A heuristic algorithm with polynomial time complexity is necessary to
take full advantage f c.mpi .dng and caching resources to reduce both the latency and energy
consumption costs.

The main con ributior.  of this paper are shown as follows:

e An integrated **'** -based cache placement strategy to reasonably place caches in edge computing
system is prog ised by 9intly considering data chunk transmission cost, caching value and cache replacement
penalty. The dat.. ~hiir'.s are cached at optimal edge servers to maximize the integrated utility value of caching.

o Awe qanwe . Jpartite graph model is applied to describe the relationships between tasks and edge servers.
Weights of the raph are mainly derived by the locations of required data. The data transmission cost for task
scheduling is measured by data reading time and energy consumption costs. A heuristic algorithm named
cache locality-based task scheduling algorithm is proposed. The proposed task scheduling algorithm can
obtain maximal weighted matching during each heartbeat, which can reduce both latency and energy



consumption costs.

« Finally, we evaluate the performance of the cache-aware task scheduling method and previous method
via extensive experiments. The results indicate that the proposed task scheduling method i aproves the cache
hit ratio and data locality. And it also reduces the data transmission time, task re ... "se time and the
energy consumption costs of the system significantly.

The remainder of this paper is organized as follows. Section 2 reviews thr rels ed work. Section 3
proposes the cache-aware task scheduling method. Section 4 provides the ana™ sis u. =xperiment results.
Conclusions are made in Section 5.

2 Related work

2.1 Cache placement in edge computing

Some applications in edge computing need low-latency serviues. Th . content caching is regarded as
a promising technique to reduce the network delays. Since cachn._ spaces of edge servers are limited,
only a part of contents can be cached. Many researchers studic.' @dge .aching policies mainly according to
popularity values of contents and cache storage constrainw.. 2f edge servers. In previous references,
contents with high popularity values were selected and .. ~hed in edge servers under various storage space
constraints. Zeydan et al. [10] studied content c~~hina 11, 5G wireless networks and presented a
big-data-enabled architecture. This architecture can ha " .ss a vast amount of data to estimate the content
popularity and cache strategic contents to impro ' *he Lser satisfaction and backhaul offloading. The
authors only considered the limited storage ca~~rities ~f edge servers. In this work, the cache replacement
penalty which is incurred by the limited caching sy ~~es is proposed as a main factor to cache contents. Liu
J et al. [11] proposed both centralized anr ~*<tributed transmission aware cache placement approaches to
reduce users’ average download delay They c nsidered diverse content preferences of different users.
Al-Turjman [12] considered four mai « para.. ~* :rs including age of the data, popularity of requests, delay
to receive the information and dat fid .tity. However, the authors achieved the data popularity only by
data request frequency. In this pe ser, the “".(a access time and average time interval are also considered to
obtain data popularity values. " ran >t al [13] proposed a collaborative caching and processing method in
Mobile-Edge Computing net..c 'ks. They stored both the videos and their appropriate bitrate versions in
the caches and considered “e * anscoding relationships among versions. Wang X et al. [14] proposed an
edge caching architectur : basea .1 the content-centric networking. The authors evaluated content access
delay and traffic loac n :xpe iments. In this paper, cache replacement number is studied as a vital
parameter to indica*. e sys..m stability. Pellegrini F D et al. [15] proposed a caching policy derived by
popularity of conte 1ts, cacl ing strategies of competing content providers and spatial distribution of small
cells. In this car" g se..cine, popular contents were cached in the intermediate servers. In previous works,
only the storz 1e spact 5 of edge servers were seen as constrains to cache contents with high popularity
values. In this v. ="', a dynamic caching process is analyzed. Both content caching and replacing are
studied. T\~ C.ua transmission cost and cache replacement penalty are introduced. The significant
differences ot *he proposed method are that the contents with high popularity values are cached in the
edge servers with low cache replacement rates to avoid the eviction of cached data chunks frequently
when the available cache size of edge servers is less than a certain threshold. Moreover, data chunks
cached in edge servers need to be transmitted from the edge servers that store these data chunks. Thus, the



data transmission cost is also considered.

Compared with servers in cloud datacenters, edge devices and servers are closer to users. Contents
are cached in the edge devices and servers to reduce the data transmission delays. ' Vhen applications
arrive, contents are transmitted from edge devices or servers rather than cloud sen z. There are many
caching approaches to study the content placement in edge devices and servers Drolia J et al. [16]
presented an edge caching system called Cachier for recognition applications. T' ey r oposed to use edge
servers as “caches with computing resources”. Drolia U et al. [17] proposed a ¢ >~hiny ™odel that regarded
edge servers as caches for compute-intensive recognition applications. He .. ~ver, « 2 authors studied a
coarse-grained cache placement problem. We consider a part of the mer ory .n euge servers as caches,
which can be seen as fine-grained caches. Lots of researchers studied the ~ache ~lacement in edge devices
(e.g. smartphones and tablets). Huang Y et al. [18] considered cact ng fain 2ss issue among peer edge
devices in edge computing. The path contention cost that was formulate.’ ~< - (inear transformation of the
contention delay. We also applied the delay as cache replacemer ¢ per an_* Moreover, cache replacement
rate is proposed as a main factor to evaluate edge servers. “hang X ¢ al. [19] partitioned the entire
wireless cell to avoid the interference in the edge computing netw rk. They randomly distributed and
cache the popular contents in the mobile devices. Howeve. ed e devices have limited computing
resources, storage spaces and battery capacities. Moreover, the . ~cess speed of memory is faster than that
of disk. In this work, we consider a part of the memory . fach edge server as cache. Reading data from
local memory of edge servers is faster than readir. . _~*~ from local disk or remote edge servers. The
various configurations of edge servers including availa.>"e caching space, CPU performance and memory
speed are also considered, which can improve the i."*7auon of caching and computing resources in the
system.

2.2 Cache locality-based scheduling

In Hadoop-based systems, some dai. ‘nter .ive applications may cause high delays to slow down the
system performance. Most literatu ¢ st.died the cache locality-based scheduling methods which can
achieve high data availability an lo. dat . transmission cost. Tasks were dispatched to the nodes with
required contents in caches to " "ice data access costs. Lim B et al. [20] presented a cache-aware task
scheduling method (CATS) that considered the data storage in memory layer to improve the system
performance in Hadoop-ba“ 2d s' stems. We consider both cache locality and disk locality to make full use
of system storage resources. .* G et al. [21] cached computing results for some complicated jobs to
reduce the processing .ime of cubsequent jobs with the same inputs and operations. Dai X et al. [22]
proposed a Cache A Repn.~ € n Modification cloud file system to improve its efficiency. They applied a
tripartite graph to | resent v e relationships among computation nodes, data hodes and tasks by considering
limitations of the ca. he si"es and task performance. In this paper, task scheduling problem is formulated
as a weightec bipart. 2 graph in which tasks are processed by logical bundles of computing resources
bound to edge “erverc. Chen Q. et al [23] took full advantage of the file cache by leveraging the output
data as sc « ... ™ was written to the file system in MapReduce. Tanaka M et al. [24] studied I/O-aware
task scheduli. 1 problem to maximize the disk cache hit rate for data-intensive and many-task workflow.
Only time consumption was considered as a main metric. We study the energy costs in both modelling
part and experiments to discuss the energy utilization. Bryk P et al. [25] proposed a dynamic scheduling
algorithm which took advantage of both file locality and data caching in clouds. This task scheduling
algorithm can decrease the number of file transfers. In these references, contents were cached in one



location, such as memory or disk. When tasks were scheduled, only the differences of reading data
between caches and remote servers were studied. In this work, a part of memory is regarded as cache. We
consider the diverse data locations including local caches, local disks and remot’ servers for task
scheduling. Tasks are set to different priority values according to the locations of r.y.red data chunks.
Data transmission costs including data transmission delays and energy costs are achi~ved according to the
above three locations. As a result, all kinds of storage resources are fully utiliz d to .mprove the system
throughput.

Caching can reduce the data transmission costs significantly. Thus, ..™me re.carches applied the
caching to decrease the backhaul cost of popular contents and improve t' e pe fonance of the network.
Zhou Y et al. [26] studied the information-centric virtualized heteroger~aus 1. tworks with mobile edge
computing and in-network caching. They proposed a virtual resource allocati 1 strategy which benefited
from not only virtualization but also caching and computing. In contre.* t~ .ne energy consumption for
task execution in [26], the energy cost for data access is studied and .va uated in this paper. He Y et al.
[27] studied software-defined networks with caching and mok e edge ~omputing for smart cities. They
applied a deep Q-leaening method to improve the utilization rates 0. networking, caching and computing
resources. However computation abilities of edge servers ‘were “~ter ated to guarantee the service quality
for applications. In this work, various computing resource reg.. *ements including CPU and memory are
considered to improve the system utilization. Wang C e. >' [28] studied the computation offloading and
content caching strategy. They applied the allevic .0 “=rkhaul bandwidth as the caching reward to
improve the total revenue of the network. The previous -.searches mainly focused on the backhaul time of
popular contents and the computing capacities of e.'qe ~ervers. In edge computing, applications submitted
by mobile users are usually heterogeneous. Tk ., **= «.»nsider the resource requirements of different tasks.
A weighted bipartite graph is proposed to make fun .'se of caching and computing resources.

3. Cache-aware task schedtilirg method in edge computing

3.1 Cache-aware task schedulir y mou.'
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Fig. 2 The architecture of the cache-aware task scheduling
In edge computing architecture, an edge orchestrator and several edge servers are installed. The edge
orchestrator manages all edge servers by Local Area Network (LAN) or Metropolitan Area Network
(MAN). Mobile devices communicate with edge servers by wireless communications. Edge servers have



some computing and caching resources. The edge orchestrator maintains overall view on both available
computing resources and caching resources. Popular contents are dispatched and cached among all edge
servers. Tasks submitted by users are scheduled and processed in these edge servers. ~he architecture of
the cache-aware task scheduling is shown in Fig. 2.

In order to further reduce latency, popular data should be cached at optimal ~~ae servers and tasks
should be scheduled based on the cache locality. Therefore, the cache-aware cask scheduling method
proposed in this work mainly includes the following two components:

(1) An integrated utility function is derived according to data chunk tra._ Missiu. cost, caching value
and cache replacement penalty. Then, data chunks are cached at optima’ edc : sei vers to maximize the
integrated utility value of caching.

(2) After caching data chunks, tasks will be dispatched to approg iate coi puting resources. The task
scheduling problem is modeled as a matching problem between tasn. =2r-. computing resources in a
weighted bipartite graph model. The weights are mainly influence 1 by ".ic ‘ocations of required data.

3.2 The integrated utility-based cache placement strategy

In order to reasonably cache the data chunks, an intenrate.” 'itil’.y-based cache placement strategy is
proposed. The integrated utility function is a function of the a..~ chunk transmission cost, caching value
and cache replacement penalty to evaluate the caching .~sults. The tabu search is given to obtain the
optimal cache placement with maximal cache placer ... *~tenrated value.

3.2.1 Integrated utility function of caching

An integrated utility function is derived with r.spect to the data chunk transmission cost, caching
value and cache replacement penalty to evaluate *he caching results as shown in equation (1). The data
chunk transmission cost is measured by th~ network distances among edge servers. The caching value is
proposed according to cache capacitics of ed, e servers, replacement rates of edge servers and data
popularity values. The cache replacer ent p.~a'.y is given by the available cache size of edge servers and
caching data size. The goal of the .ptir.al ¢ che placement strategy is to maximize the integrated utility
value of caching (CIUV). There’ore, u.~ “ache placement problem can be formulated as the following
programming problem,

N

Ng
mXxCIUV =>">"x,, -(Value! — Acq; — Penalty;' ). 1)

i=1 n=1

X, e{0l,Vie{,2,...,N,},ne{L2,.. N}

s.t.

[\/12

X, =LVie{l2,.,N,} 2

i,n
n

1

N B

‘{n|xi,n=l,vi e{L2,..., Nd}}‘ <N.

where Va i, '-~otes the caching value, Acqg is the data chunk transmission cost and Penalty;
represents the :ache replacement penalty.

A. Data chunk transmission cost

In the system, data is divided into equal size data chunks. Let D :{di |i =12,..., Nd} be the data
chunk set which consists of N, data chunks. The size of each data chunk is a constant ds. The edge
servers with different configurations are denoted by a set S = {sn |n =12,..., N} . We assume that if a data



chunk needs to be cached at a certain edge server, this edge server should acquire this data chunk from
other edge servers. Then, the data chunk transmission occurs. The data chunk transmission cost Acg;' for
edge server s, to acquire data chunk d; can be defined from (3),

Acq' =a-h(s,-s,),n,n"e{1,2,.. ,N}andn=n’ (3)

where a is a positive constant and h(s,,s,) represents the network distan'e be.ween s, and s, .
Assume that an edge server at which data chunks are cached cannot be the ~ne u.* stores data chunk
replications. Therefore, h(d,,d,)>0.

B. Caching value

The caching value is proposed to evaluate the result that a data ch'ink \. ~ached on a certain edge
server. It is a function of cache capacities of edge servers, data popule ity valu »s and replacement rates of
edge servers. The configurations of edge servers are usually different. Thic ,eads to the different cache
space contentions on edge servers. Thus, it is significant to co side v. rious cache capacities of edge
servers to place caches appropriately. Let Cap, denote the ca~he capac’.y of edge server s, as defined
in (4), which is influenced by the proportion of available caching s, 1ce, CPU performance and memory
speed.

Cap, =3F" =2 ™. )
where Fn(l) denotes the proportion of available -~~he o1 edge server s, , Fn(z) represents CPU
performance of edge server S, and Fn(s) denotes mei. cy performance of edge server s, .

In the following, how to achieve efficacy coe.*w.~nts, F" Fn(z) and Fn(e'), will be introduced. Let

n

cs, denote the cache size of edge server s ~nd &°s  be the available cache size of edge server s, ,

n

where ne{l,2,...,N}. FY can be defined in (5,

n

aca

Fn(l) A Pn
nax p

aca

—-minp;° +a
aca
n

®)

aca

—min p;” +a,

where pi* =acs, /cs, is the perce itap . of t'ie available cache size.

n

Let MIPS, represent Millin Insu *<.10ns per Second (MIPS) of the CPU of edge server s, . Then,
F® can be defined as follow ,

n

=@ __ MIPS, —minMIPs, +a,

= . 6
" maxMIPS, —minMIPS, +a, ©

Let AMAT, rep.~ser. av' rage memory access time (AMAT) of the memory of edge server s, .
Then, F® can be ~_lined . J),

n
@ __ AVAT, —min AMAT, +a,
" max AMAT —min AMAT +a,

()

a, a, and a, ~re ~onstants in equations (5)-(8). Because any one of efficacy coefficients Fn(l) ~ Fn(3)
cannot be > a ‘... @ isin the numerator. If any one of efficacy coefficients is 0, Cap, will be 0 no
matter what t.~ values of the other efficacy coefficients are. Cap, will be 1 when all variables including
ps, MIPS, and AMAT, achieve their minimum values. Hence, aterm &, is in the denominator.
The cache replacement will occur when the available cache size of an edge server is less than a

certain threshold. Because of the heterogeneity of edge servers, a number of edge servers may replace data



chunks frequently. If a cached data chunk is replaced, this data chunk should be transmitted from other
edge servers when users request it. Frequent cache replacements may result in high extra costs. Requested
multiple times by users, a data chunk should be cached at an edge server with low cach . replacement rate.
Let Rep, denote the cache replacement rate of edge server s, as depicted in (8),

Rep, = ii data (8)
cs, 3

where data] represents the data size of caches to be replaced in jth cache ~~plac.ment on edge server
S, -
The total number of cache replacement times is k, on edge server s  Re.  reflects the cache space
contention of edge server s . It means that data chunks cached on edg. servers with high cache
replacement rates will be replaced frequently.

In order to improve the cache hit ratio and utilization of cach : spa" ¢ the data popularity is presented.
Let Pop, be the popularity of data chunk d, which can be achieved as “ollow,

i 1 \ 1
where RN, denotes the number of requests for data ¢i. "k d,, T, denotes the time that data chunk
d, was last requested, T,"* represents the time th7* “=ta chunk d, was first requested, T™" indicates
the current time. In equation (9), RNi/ZRN; inu’c4tes the request frequency of data chunk d.,
T T reflects the recent request for data ¢>u. «, and (Ti'aSt ~T, ) / RN, denotes the average
time interval of requests for data chunk d.,.

Therefore, the value of caching a data chunn d. on edge server s, can be derived as depicted in
(10),

NE[ ei" :M . (10)
Rep,
Then, the total caching value of {, aa.>*nunks can be achieved in (11),
Ng N Ng N .
Value=>"> Valug' => > "x, Pop.Cap, (11)

i=1 n=1 i=1 n=1 Repn

where the binary variab’s x . defined to denote whether a data chunk d; is cached on edge server
s, as follows,
Xi,n

4L if data chunk d, is cached at edge server s, 12)
~ 0, otherwise.

C. Cache replace nent penalty

New data ."unb, will incur the eviction of certain cached data chunks at an edge server when the
available v crie o._z of this edge server is less than a certain threshold. Because future requests for the
evicted data ¢ 'unks cannot be served at this edge server, such eviction leads to replacement penalty. Let
Penalty" be the replacement penalty of caching data chunk d, on edge server s.. Penalty can be
defined as (13),



0, bs < acs,

Penalty;’ = (13)

val = bs ,otherwise
band

n

As mentioned above, an integrated utility function of caching CIUV is propnsed accu.ding to data
chunk transmission cost, caching value and cache replacement penalty. Then, (IUV can be defined as
depicted in (14),

Ng
CIUV = Zixm (Value]' - Acq)" - Pen7 ity (14)

i=1 n=1

3.2.2 Optimal cache placement

The goal of optimal cache placement strategy is to maximize intecrated utility value of caching. The
problem formulated in (1) can be reduced to a knapsack problem v.*"ch is 1n NP-complete problem. Thus,
it is an NP-hard problem. Tabu search (TS) is an efficient methu. that employs local search methods to
solve combinatorial optimization problems [29]. The tabu . ~rch st¢ ts with an initial solution which is
generated according to data popularity values and cache rep. ~cenent rates. The calculation of the initial
solution mainly includes three steps.

First, data chunks are sorted by data popularity values ..> descending order. Edge servers are sorted
by cache replacement rates in ascending order.

Then, a data chunk d; will be cached at . . ~dge server S, with the maximal ratio of Pop, to
Rep, .

Finally, when all data chunks are cacheu, the initial solution is generated. New solutions are
generated based on the initial solution until the stopping criterion (e.g. the maximum number of iterations)
and tabu search can return the best one v nich is chieved during execution period.

3.2.3 The integrated utility-based ¢'.che pic.. .ment algorithm

Algorithm 1: Integrated uti'ity " aser’ cache placement algorithm
Input: Data chunk set D- ¥ li=12,...,N, |, edge server set S={s [n=12,...,N}
Output: Optimal cache r'=cememn result HashMap(D,S>

1:  HashMap(D,< <« J, iniHashMap(D,S) « @ // Initialization

2. foreach d, :D au

3: Calculc = "op, // The popularity of data chunk d,

4: TR~ 2

5: for 2ach s, €S do

6: Caicuiate Rep, // The cache replacement rate of edge server s,

7 R« - Pop,/Rep, // Theratioof Pop, to Rep,

8: uw TR<R then

9: TR<R, iniHashMap(D,S) < HashMap(d,,s,) //Cache data chunk d on
edge server s, and record the mapping

10: end if

11: end for each

12:  end for each



13 Sjua < CIUV (iniHashMap(D,S)) // Obtain the initial solution of cache placement

14:  maxCIUV (HashMap(D,S)) « TS(S, 4, ) // Derive the optimal cache placement result

by tabu search algorithm

15:  return HashMap(D,S)

Algorithm 1 represents the pseudo-code of the integrated utility-based cache r .ac "‘ment algorithm.

First, the popularity value of each data chunk is calculated according to €., at"on (9) (Algorithm 1
line 3).

Secondly, the cache placement rate of each edge server is calculaf:d . croraing to equation (8)
(Algorithm 1 line 6). Thirdly, the data chunk di is cached on edge se: ~r S, with maximal ratio of
Pop to Rep, . And the initial mapping is recorded (Algorithm 1 line %-10).

Then, an initial solution of cache placement is obtained (Algorithi 11 line .3).

Finally, the optimal cache placement result is obtained accord’ ., to uic nitial solution by tabu search
algorithm (Algorithm 1 line 14).

In Algorithm 1, the time expense of deriving an initial solu..>nis O (N, -N) and the time expense
of tabu search algorithm to achieve the optimal cache pl~~ement | :sult is O(Niter . Ndz) where N,.,
denotes the iteration number of tabu search algorithm, N, is t.c ..umber of data chunks and N is the
number of edge servers. Hence, the time complexity ~f *~ - (egrated utility-based cache placement
algorithm is O(Niter - N;)

The core of the proposed cache-placement algor.*hm .5 .ubu search algorithm. Tabu search algorithm
is a well-known example of meta-heuristic sch “uling techniques [33]. An advantage of tabu search
algorithm is that its time complexity is not expor.™nu.' but polynomial [33], [34]. Thus, the program
overhead is relatively negligible [33], [34].

3.3 The cache locality-based task sched’.....; method

In this paper, both cache localit and u.~¥ (ocality are considered. It is noteworthy that reading data
from local cache is faster than rea’ ing Jata from local disk. Reading data from local disk is faster than
reading data from remote edge sr vers. 7 3, the cache locality-based task scheduling method is proposed
to further reduce the latency. Ve .~adel the task scheduling problem as a weighted bipartite graph of
which weights are mainly de'.. 4 by locations of required data chunks. During each heartbeat, a maximal
weighted matching betwee. tas'.s and resources are obtained.

3.3.1 Task scheduling '.10d" i based on weighted bipartite graph

Tasks are handled by _~ ¢ainers that are logical bundles of computing resources (such as <1 CPU,
3GB RAM>) Lound > edge servers. N, tasks are scheduled to N, containers. Let

T={t,]A=12..N! 2°d C={c,[0=12,...,N.} demote the task set and container set respectively.
In addition, w have ‘I, > N..

Asimple g1 G =(U,V,e), whose vertices are divided into two independent sets U and V, is
a bipartite rar.a. ¢ denotes an edge set. Each edge connects a vertex of U with one of V in the
graph. If ever,” edge has an associated weight in a bipartite graph, this bipartite graph is a weighted
bipartite graph. The task scheduling problem can be modeled as a weighted bipartite graph G =(T,C,E)
where the task set T and the container set C represent vertex sets U and V respectively as shown
in Fig. 3. If a task can be handled by a container, there is an edge with a weight between them. Weights



are derived according to the similarity between tasks and resources, task scheduling priority and data
transmission cost.

Containers @ @ @ SND

3 A 1
Tasks (g Q %
Fig. 3 Task scheduling model
A. Similarity between tasks and resources
Tasks have different requirements of computing resources, such a= ZPU a.™ memory. A task can be
defined as a row vector t, =[tc,,tm,] where tc, and tm, dence CPU requirement and memory
requirement respectively. In the same way, a container can be defir~~ as .. ~_w vector c, =[cpu,,mem, ]
where cpu, denotes the CPU of container ¢, and mem, enc.cs he memory of container c,.
Therefore, the similarity between task t, and container c, ca. he acv*_ved from (15),
. t, ‘o)
sim(t,,c, )= NP (15)
[t Gl
B. Task scheduling priority
The priority value of scheduling task t, to c.w...."" ¢, is determined by the priority of the job
including task t, and the location of data required by . sk t, .In this paper, a lower priority value means
the higher priority. Let jp, indicate the priority va: 2 of the job which includes task t, Let loc,,
represent the data location priority value whic - ic ™=- ~ured according to the location of data required by
task t, as shown in Table 1. For example, if the “ata required by task t, is cached by a server that
provides container c,,the loc,, isset’.

Tabi. * Datr iocation priority values

__De alocations Value
Lrcar o “hes Jf edge servers b,
ncal disks of edge servers b,
Re:. ste edge servers b,

where b, <b, <b,. Then, .>= tr sk scheduling priority value tp, , can be achieved from (16),
;o= ip, + Iocﬂ,&' (16)

C. Data transm:..ion Cu..

If the data re wired k7 task t, is not in the cache or disk of computation node which provides
container ¢, w“2n w... t, is dispatched to container c,, the data transmission occurs. The data
transmission wverheat consists of reading time and energy costs. The energy consumption costs are
measured by ti. =~ wer consumed by accessing and transmitting data, such as KWH. The energy
consumptic 1 07 reading a required data chunk for task t, includes the local access energy cost, remote
access energy . ast and data move energy cost [36], [37], [38], which can be achieved as follows,

Ec,, =EL,,+ER,,+EM , 17)
where EL,, denotes the energy consumption cost for local access of edge server s, which provides
container ¢, toexecutetask t,, ER,, denotes the average energy consumption cost for remote access



of other edge servers and EM,, denotes the minimum data move energy cost to container c, to
execute task t,. If the required data chunk in the local cache or disk of an edge server, we have
ER,,=0 and EM,,=0.

The data transmission cost that task t, is executed by container c, can be def’.ic ™ as follows,

0, if required data is in local cache or di<
tc,, =¢ N, -bs
band,

-dis, otherwise (18)

where N, denotes the number of required data chunks, dis indicates the .nu...num distance to get
required data chunks and band, is the network bandwidth of edge server s which provides container
c,. Then, the total data transmission cost can be achieved as follows,
cost, , =&,Ec, , +&,0C, , (19)
where & and ¢, denote the adjustment coefficients Moreover, veh-.c ¢ +¢, =1.
As mentioned above, edge weights of the weighted bipartite graph c7.1 be calculated from (20),

im(t,, t t
eww:al-sfm(‘ C9)—a2- Pas _ascos 22 o={12, ., N}and@e{L2,... N} (20)
sim(t;,c,) th,,  cOSt,,
where
> N sun(t,c)
sim(t,,c,)= * -~ T
Z}llr—h,y
)
tpz,a > (ljb')_ (21)
> > cost,,
,cost, , =—+—°

L
a, & and a, are the weight coe fici- nts nf three influenced factors that can be achieved by a weight
coefficient matrix W as showr in \®?) The three influenced factors f, f, and f, indicate the
similarity between tasks and rec ou. ~es, task scheduling priority and data transmission cost respectively.

Wy, W, Wy,
W= Wy Wy, Wy (22)
Wy 85, Wy

where w, (r=1,2,2=nd¢ 1,2,3) can be calculated as follows,
1 if f, is more important than f,
w,, =<0.5,if f, isasimportant as f, (23)

rc

0, otherwise.

Moreover, «, ~—12,3) can be calculated from (24),

a, =—-1—. (24)



3.3.2 Optimal matching between tasks and computing resources

In order to schedule tasks, the task scheduling problem is formulated as an optimal matching problem
in the weighted bipartite graph as follows,

N, N
max ZZ Y:.68W, 6 (25)

=1 6=1

Yo e{O,l},V}Le{l,Z,...,Nt},Vﬁe{l,Z....," !

S.tq e 26
> Ve =LVie{1,2,..,N} #9)
6=1 Y
where
|1 if task t, is dispatched te container c, »7
Yoo = 0, otherwise. 27)

If N,>N., N,—-N_ hypothetic containers should be added. "he added hypothetic containers are
connected with all tasks by edges whose weights are 0. Th~t is «. <2, the weighted bipartite graph can be
regard as a complete weighted bipartite graph G =(T'.C.F. where T’ denotes the task set which
consists of N_ tasks after adding hypothetic tasks.

Definition 1: A real function I(v) is a wu. "'~ vertex labeling in G=(T',C,E), for
vt eT'c,eC where 2'€{1,2,....,N,,N;,... N},

I(t, ) +1(5) 26w, . (28)

Definition 2: A spanning subgraph G'=(T',C,=') of graph G =(T',C,E) is an equality subgraph,
for ve,,cE',if

Wt (o, ) =ew) . (29)

Theorem 1: The above task sc..~dv ing ' roblem shown in (23) has at least one feasible solution.

Proof: Normally, the numbr « of task. s larger than the number of containers. After adding N, — N
hypothetic containers, the task scheu. 'ing problem can be regarded as a complete weighted bipartite graph
G=(T'.C,E).Let G'=(T',C, *') be an equality subgraph of G. Let V' denote a vertex of T', e
indicate an edge of E anu -’ represent an edge of E’. Suppose that G’ has a matching M’ named
perfect matching that m .cche s all vertices. Therefore, we have

w(M)= Y w(e)= T 1(v)

e'eM’ V'eT’
where w(e) is th> weigh of edge e and w(M') is the sum of all edge weights of perfect matching
M’ . Suppose t'.a. M s a perfect matching of G . We have

w(M)=> w(e)< Y I(v)=w(M").

eeM v'eT’

Hence, the .ho' e task scheduling problem has at least one feasible solution which is a perfect matching of
equality subgre ~hs during each heartbeat.

3.3.3 The cache locality-based task scheduling algorithm

Algorithm 2: Cache locality-based task scheduling algorithm




Input: Task set to be scheduled T ={t,|1=12,...,N,}, Container set C ={c,[0=12,...,N,|
Output: Task scheduling result Matching (T, C)
1: foreach t,eT, c,eC do
2 Calculate sim(t,,c,)// The similarity between task t, and contains. ¢,
3 Calculate tp,, // The task scheduling priority
4: Calculate Ec,, and tc,, // The time and energy consumption c.~ts
5: foreach 0<r<3, 0<c<3 do
6 Calculate W // The weight coefficient matrix
7 end for each
8 foreach 0<w<3 do
9 Calculate a, // The weight coefficient
10: end for each
11:  end for each
12:  for each heartbeat

13: if N, >N, then
14: Add N, - N, hypothetic containers a..' calculate ew, ,// The complete
wely. *ad bipartite graph during each heartbeat
15: Repeat
16: Randomly pick an equalit’ suby ph G’ of the complete weighted bipartite
graph

17: Until G' has a perfect ma. iy 7,C)

18: else

19: Add N_—N, hypot etic w. ks and record the perfect matching (T,C) of the
«"ual’.y subgraph of the complete weighted bipartite graph

20: end if

21: Update Task sche iuling, ves.lt (T,C)

22:  end for each
23:  return task scher'.."ng result Matching(T,C)

Algorithm 2 shows th. nse udo-code of the cache locality-based task scheduling algorithm.

Firstly, similarities task sci..duling priority values and data transmission costs between tasks and
containers are calculat. * ar corc ng to equations (15), (16) and (17) respectively (Algorithm 2 line 2-4).

Secondly, weir’. coeftic.ents are calculated according to the weight coefficient matrix (Algorithm 2
line 5-10).

Then, a c7.iplew weighted bipartite graph is constructed and a maximum weighted bipartite
matching is ol tained a 1ring each heartbeat (Algorithm 2 line 12-22).

In Algorithh.. 7, the time expense of calculating edge weights of a bipartite graph is O(Nt . NC)
where N, s t'.e .umber of tasks to be scheduled and N, is the number of containers. After adding
N, — N_ hypc hetic containers in a heartbeat interval, the time expense to achieve a perfect matching of
equality subgraphs of a complete weighted bipartite graph is O(Nf). Therefore, the time complexity of
Algorithm 2is O([ (N, /N.)]-N?).

Compared with the time expense of task scheduling, the time spent on constructing a weighted



bipartite graph can be ignored. The time complexity of the task scheduling algorithm is with the
polynomial timeo([(N[ / NC)]- Nf). The polynomial time complexity makes the algorithm suitable
option for the task scheduling [22], [35]. Since the time complexities have no exponen’ial terms, the time
overhead of the proposed algorithms is relatively negligible.

4 Performance evaluation

4.1 Experimental environment: smart campus

With the rapid development of edge computing, computer vision and lo ., the traditional education is
changing. Modern campus is emerging by applying these new technic Jes, wi. ch improves the utilization
of available campus resources, heighten the work efficiency of both stu.'snts ~.1d teachers [39], [40], [41].
Smart campus is a novel and significant application of edge comp'.tino .."ich mainly includes smart class,
augmented reality assisted mobile campus and smart lab [421. |+o]. Tt 2 smart class changes the way
students learn.

Compared with traditional classes, smart classes make sw.‘ents nain and active roles. First, teachers
and students log in a smart class system by face recogniti.™ techniques. Second, students select the
teaching contents they favor. When they finish the classc. they can submit their speeches or presentations
which are stored, retrieved and analyzed at edge cor'ting se, vers. Finally, teachers don’t need to record
the presentations for specific students who use the sma.* - 1ass system. The contents used in the smart class
mainly consist of videos and audios. Moreover, .. cuntents are requested by students repeatedly in
particular buildings. Reading contents fror~ clouw is costly and time-consuming. Therefore, it is
significant to deploy edge servers in the buildings ¥ the campus and cache popular contents in these edge
Servers.

The smart campus system mainly 7 )nsists ¢ * an edge orchestrator, edge servers and campus network,
as shown in Fig. 4. Popular teachinc conte..~ are cached in the edge servers which are deployed in the
buildings, such as library, teachin’ bu’.dinr s and dormitories. Students and teachers connect the edge
servers by access points. The edc : orche.* ator that manages and controls all edge servers acts as a master
node. The edge orchestrator ar d ai. ~dge servers communicate with each other by campus network. And
the entire campus network c¢7.. ..'so be connected to the Internet.
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Fig. 4 Experimental environment

The cache-aware task scheduling method is experimentally verified. The experimental environment
is shown in Fig. 4. 1 edge orchestrator and 10 edge servers with different configure’ions are installed.
These 10 edge servers are deployed in 10 different buildings in our campus. The c.a orchestrator is
composed of an Intel Core i5-4590 CPU running at 3.30 GHz and 4GB RAM. Ear* adge seiver that acts
as a slave node is empowered with an Intel Core i5-4590 CPU running at 3.30 7:Hz. Slave 1-Slave 3 are
configured with 4GB RAM. Slave 4-Slave 6 are composed of 6GB RAM. “nd _:~ve 7-Slave 10 are
configured with 8GB RAM.

The network bandwidth of the campus network is 30Mbps. The mor 2l n' mbe. of network switches
is ALCATEL Omnicore5022. The operating system is Linux Ubuntu 14 94.1 : TS, The Hadoop 2.7.1 is
adopted to perform the experiments, the version of the Java Develo| ment Kt is JDK 1.7.0_45 and the
development environment is MyEclipse 10. The Huawei AP3010DN-ACN i- adopted as the WiFi access
point in each building. End devices use IEEE 802.11 radios to con” cc. WIFI access points which are
connected to local edge servers.

The configurations of edge orchestrator and edge servers are shy vn as follows.

Table2 Configurations " edge . .ers

Host name Configura’” .. IP
Master Intel(R)Core(TM) i5-4590CPU 3.3v "Hz RAM: 4G 192.168.202.10
(EO)
Slavel-Slve3 Intel(R)Core(TM) i5-4 . “CPU 2.30GHz RAM: 4G 192.168.203.10
(Edge servers) 192.168.203.11
192.168.203.12
Slave4-Slve6 Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 6G 192.168.204.10
(Edge servers) 192.168.204.11
192.168.204.12
Slave7-Slve8 Intel(".)Cor (TM" i5-4590CPU 3.30GHz RAM: 8G 192.168.205.10
(Edge servers) 192.168.205.11
Slave9-Slvel0 ! iten,.Core(TM) i5-4590CPU 3.30GHz RAM: 8G 192.168.206.10
(Edge servers) - 192.168.206.11

The experimental dat. set including text data about 96 million blog posts of Memetracker comes
from Stanford Networl Anralys.. Project (SNAP) [30]. The data set named memetracker9 includes
Memetracker phrases ..t yperinks between 96 million blog posts from Aug 2008 to Apr 2009 [30]. This
data set consists of *.c real-v. urld text data. Thus, it is general enough to conclude. This data set contains
9 files. The total ize of 11ese files is 13.36GB. In the Hadoop Distributed File System (HDFS), the
default setting r* *he uu. chunk size is 64 MB. Thus, the size of each data chunk is set as 64MB. In order
to evaluate t e perfc mance of the proposed task scheduling algorithm and other task scheduling
algorithms, we a.>*.d WordCount as a benchmark job, which counts the characters from above data set.

The dcail” a wsting parameters are listed in Table 3.

Table 3 Testing parameters

Parameter name Value

The data location priority value bl 10

The data location priority value b2 20



The data location priority value b3 30

The number of edge orchestrators 1

The number of edge servers 10

The data size of each data chunk 64MB

The average cache size of edge servers [25,55] -
The number of data chunks to be read [16,20 71
The number of data chunks to be cached 100
Popularity of data chunks J_b 1.9]
The number of tasks 16 256]
The size of each task 64MB

In table 3, the amounts of some parameters are determined accol.'ing to .ne settings of the software
and hardware. In the Hadoop Distributed File System (HDFS), the defar''t setting of the data chunk size is
64 MB. The default setting of the task size is same as the data ..k si .e. Thus, the sizes of both data
chunks and tasks were set to 64MB.

The numbers of edge orchestrators and servers are dew."mined .ccording to hardware requirements
and real-life environment. In edge computing framework, u.. moue including 1 edge orchestrator and N
edge servers is generally applied at system level [5], [6, o), 1+/]. We also apply this mode. Thus, 1 edge
orchestrator is required. In the smart campus scene which is a ~2al-word experiment environment, 10 edge
servers are deployed to cover most of students on c.mrus. These edge servers are deployed in library,
teaching buildings and dormitories. It is available -.>t 10 ge servers are deployed.

According to [45] and [46], the number of tas: < is set to the multiples of 10 or 20 to evaluate the
performance of algorithms. And the maximum 1. mber of tasks is set to the square of these numbers. And
the maximum number of tasks is set to the square of these numbers. We follow these settings. The
numbers of both tasks and data chunks ¢ e set to the multiples of 16. The maximum value is set to 256.

The average cache size of each 2dge *=rv.r is set to 55 at most. The number of data chunks to be
cached is set to 100. These data ct unk’ shculd be cached in 2 edge servers at least and may incur the
eviction in edge servers. In addit’on, ..~ r .any cached data chunks will weaken the impacts of different
cache placement algorithms. T'«« Yata location priority values and popularity values of data chunks are
defined by equations (9) and /" S). Otheis are obtained according to the relevant references [10], [13].

There are two main part, in experiments of verifying the effectiveness of cache-aware task
scheduling algorithm. Fi st, the "tegrated utility-based cache placement algorithm is compared with the
centralized cache man' aer z2nt r iechanism Hadoop provides and CP-Dynamic algorithm [31] in terms of
cache service ratio, 7~*a re..'"\g time and cache replacement number. Then, the cache locality-based task
scheduling algoritt m is coi "pared with First In First Out (FIFO) scheduling algorithm, D-LAWS algorithm
[32] and CATS alnoi,"»~ 20] in terms of cache hit ratio, data locality ratio, data transmission time, task
response time and ene 9y cost. Since FIFO scheduling algorithm, D-LAWS algorithm and CATS algorithm
are the algorith. = w’_ 1 same objectives as the proposed cache locality-based task scheduling algorithm,
these three a1yu .. ™s are selected as comparison algorithms.

In verifiu 'tion experiments of the integrated utility-based cache placement algorithm, cache service
ratio, data reading time and average replacement number are given to evaluate the algorithm performance.
The cache service ratio CSR represents the ratio of CRN that denotes the number of requested data
chunks that are cached on edge servers to RN which represents the total number of requested data
chunks as shown in (30),



csr= RN (30)
RN
The data reading time denotes the overall time for reading data chunks. The cache reslacement number
denotes the total replacement number of cached data chunks.

In verification experiments of the cache locality-based task scheduling algerithm, cache hit ratio,
data locality, data transmission time, task response time and energy cost ar: gic en to evaluate the
algorithm performance. The cache hit ratio CHR denotes the ratio of LCN *hat u.~ntes the number of
tasks whose required data chunks are in local cache to N, which indicates *".- totai .~umber of tasks. The

cache hit ratio can be calculated as depicted in (31)

LCN

t

CHR=

(31)

The data locality represents the ratio of the number of tasks whosr rea .1 data chunks are stored in local
disk or in local cache to the total number of tasks. When the rrquued d».a chunks for tasks are stored in
remote edge servers, the data transmission will occur. The data tra, “mission time denotes the total time
for transmitting the data chunks which must be transmitted. e tar < response time is the time interval
from the task submission time to the finish time of the .>st task. The energy cost is the energy
consumption for task execution.

4.2 Comparison and analysis
4.2.1 Performance evaluation of integrated utili. ~-2sed cache placement algorithm

In this section, the performance evaluau..n ic.o s of the integrated utility-based cache placement
(IUCP) algorithm and the other two benchmark algo:.thms, the centralized cache management mechanism
Hadoop provides and CP-Dynamic algor.cnm [?1], are evaluated in terms of the cache service ratio, data
reading time and cache replacement nu. ~her. | . order to validate the effectiveness of cache placement
algorithms, each experiment has bee 1 ex>cuteu for 12 times and the average values of evaluation metrics
are given to improve the reliability ~ exrzriment results. How the performance of each algorithm is
affected by various parameters i analyzea oy setting different parameter values.
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Fig. 5 Impacts of different average cache sizes on (a) the cache service ratio, b) the v ta reading time, (c) the cache
replacement number

In this subpart, the size of each data chunk is 64MB. The m xin..in 2umber of data chunks that can
be cached on an edge server denotes the cache size of this er'ne server After cacthing 100 data chunks
according to historical running data by mentioned three algoriu.ms, 160 data chunks will be read
randomly to validate the algorithm performances. The histor..~l rn.ining data includes the numbers of
requests for data chunks, the time that data chunks are firs. vequested, the current time and request
frequencies of data chunks. The mentioned historical run. ing data is used to achieve popularity values of
data chunks according to equation (9).

Fig. 5 depicts how the average cache size of ali - Jge servers affects the cache service ratio, data
reading time and cache placement number by vary,~y *~e value from 25 to 55.

As shown in Fig. 5 (a), the cache servic :~*ins ~f [UCP algorithm, centralized cache management
mechanism and CP-Dynamic algorithm all incre.>= when the average cache size of all edge servers
increases from 25 to 55. This is because, ...*h the increase of average cache size, more and more data
chunks are cached on edge servers. W! »n the a erage cache size is set to 25, compared with centralized
cache management mechanism and € 2-Dyna. “.c algorithm, IUCP algorithm increases cache service ratio
up to 39.07% and 17.25% respectiv “'v.

Fig. 5 (b) depicts that the d' .« reaan.. time acts as a decreasing function of average cache size in all
algorithms. The reason is that eadn. data from local cache is faster than reading data from local disk or
remote edge servers. When *"ie . ‘erage cache size is 25, IUCP algorithm compared with centralized cache
management mechanism ai..' C.2-Dynamic algorithm can reduce the data reading time up to 18.46% and
7.19% respectively.

Fig. 5 (c) shows v~ .ach’ replacement number as a decreasing function of average cache size for
these three algoritf.ns. Unde, the same condition of the average cache size which is set to 25, IUCP
algorithm leads to * reduct in of 18.62% over the centralized cache management mechanism and a 24.63%
reduction over “..« CP-uynamic algorithm in terms of the cache replacement number. This is because the
cache placeme 1t penal y is a main factor of IUCP algorithm.

It is ohvious ..at there are not a lot of differences in terms of the cache service ratio, data reading
time and ca he reptacement number among the three algorithms when the average cache size is 55. The
large average ¢ *che size of edge servers leads to caching more data chunks. Hence, the data chunks to be
read are in the caches with more probability.
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In this subpart, the default settings are as fon. */s. The average cache size of alll edge servers is set to
25, the size of each data chunk is 64MB 2~ *he number of data chunks which are cached on edge servers
by IUCP algorithm, centralized cache r .anagemn nt mechanism and CP-Dynamic algorithm is set to 100.
Then, how the number of data chur s to .. ead affects cache service ratio and data reading time by
varying the value from 16 to 256 is «nal zed All of data chunks are read randomly.

Fig. 6 (a) illustrates how t'2 numi.~ of data chunks to be read affects the cache service ratio by
varying the value from 16 to 2" 6. 1. "~ obvious that the cache service ratio acts as an increasing function of
the number of data chunks tr . “ead among three algorithms. Because the number of data chunks that are
read randomly increases, ti.~ or sbability that these data chunks are cached on edge servers also increases.
When the number of da’1 chunks 0 be read is 256, IUCP algorithm compared with the centralized cache
management mechanis.~ 2 «d C ’-Dynamic algorithm increases the cache service ratio up to 21.88% and
8.71% respectively.

Then, we inv st how lifferent numbers of data chunks to be read affects the data reading time as
shown in Fig. £ (3). ~. u1e number of data chunks which are read randomly increases, the data reading
time increases signific ntly among all three algorithms. The differences among three algorithms are not so
great when the ..~ Ler of data chunks to be read is 16. When the number of data chunks to be read
increase tu 25, +JCP algorithm leads to a 20.76% reduction over centralized cache management
mechanism an ' a 10.59% reduction over CP-Dynamic algorithm in terms of data reading time. IUCP
algorithm considers both data popularity and cache replacement rate of edge servers, which leads to a
longer time to cache popular data chunks.

As shown in Fig. 6 (c), the cache replacement number shows as an increasing function of the number



of data chunks to be read from 64 to 256. The reason is that data chunks cached on edge servers will be
replaced when some new data chunks are read. The performance of IUCP algorithm is always better than
other two algorithms. This is because the replacement penalty is a main factor of IUCP algorithm to cache
new data chunks.
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Fig. 7 Impacts of different average data popularity on (a) the cache service ratio, ‘h) the data reading time

The default settings of this part are shown as follows: the « *arar : cache size of all edge servers is 25,
the number of data chunks cached by IUCP algorithm, cent.'ized cache management mechanism and
CP-Dynamic algorithm is 100, and the size of each data ."unk is 64MB. Then, 160 data chunks are read
randomly. How the average data popularity of all da* _"''~ks to be read affects the cache service ratio and
data reading time via varying the value from 0.4 tn 0.9.

Fig. 7 (2) depicts the cache service ratio as an ‘n.-=asing function of the average data popularity. It is
obvious that the performance of IUCP algori’” .~ i< h tter than others all the way. This is because, IUCP
algorithm considers both the data popularity and eu_~ server cache placement rate, which leads to caching
data chunks with the high data popularity “o. ~ longer time. When the average data popularity is set to 0.9,
IUCP algorithm compared with the centrali ed cache management mechanism and CP-Dynamic
algorithm improves the cache service /atio up * s 52.28% and 19.16% respectively.

As observed from Fig. 7 (b), *he ( the average data popularity increases from 0.4 to 0.9, the data
reading time reduces dramatice «y amo.. all three algorithms. Compared with the centralized cache
management mechanism and CP-Dy. ~mic algorithm, IUCP algorithm reduces the data reading time up to
37.78% and 30.03% when *.ie . verage data popularity is set to 0.9 respectively. The reason is that the
IUCP algorithm can keep c.. "1 ig data chunks with high data popularity values for a longer time.

4.2.2 Performance ev7 .uat’on cof cache locality-based task scheduling algorithm

In this section. *’.. pen. nance evaluation results of the cache locality-based task scheduling (CLTS)
algorithm and the other ti ree benchmark algorithms, First in First out (FIFO) scheduling algorithm,
D-LAWS algoritt™ |o.2] 2.id CATS algorithm [20], are investigated in terms of cache hit ratio, data locality,
data transmis¢ on time task response time and energy cost. When the system keeps stable after a period of
operation, lots u. *=*. chunks are cached in the system. For the purpose of guaranteeing authenticity of all
experimen.: ez .., Xperiment has been executed for 12 times and average values of evaluation metrics are
calculated. He v the performance of each scheduling algorithm is affected by various parameter settings is
studied.
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Fig. 8 Impacts of different average cache sizes on (a) the « ~."e hiv tio, (b) the data locality, (c) the data transmission time,
(d) the task response time

In this subpart of task scheduling experime:.”~ we randomly choose 160 tasks to be executed. There
are lots of cached data chunks when the svstem keeps stable after a period of operation. The maximum
number of data chunks that can be cac' ed on « 1 edge server denotes the cache size of this edge server.
Then, how the average cache size affrcts u.~ m :ntioned evaluation metrics via varying the value from 25
to 55 is investigated.

Fig. 8 (a) shows the cache b’ ratic ~s un increasing function of the average cache size from 25 to 55
for all four algorithms. This "5 .~cause more data chunks are cached when the average cache size
increases. The performance r” ~LTS algorithm is better than that of the other three scheduling algorithms
all the time. The reason i< that CLTS algorithm can keep data chunks with high popularity values for a
longer time.

Then, we study h w t'.e av rage cache size affects the data locality by varying the value from 25 to
55. Fig. 8 (b) depic*~ the €. - zrimental results. It is obvious that the data locality acts as an increasing
function of the ave age cac e size in all algorithms. When the average cache size of edge servers is set to
55, compared with ='"7 scheduling algorithm, D-LAWS algorithm and CATS algorithm, the CLTS
algorithm can increast. the data locality up to 63.76%, 16.59% and 10.34% respectively.

As observe ! frer,) Fig. 8 (c), the data transmission time shows a decreasing function of the average
cache size 'n ar ..ee algorithms when the average cache size increases from 25 to 55. More and more
data chunks t °t are required for executing tasks frequently are cached, which leads to few data transfers.
When the average cache size is 55, CLTS algorithm, compared with FIFO scheduling algorithm, D-LAWS
algorithm and CATS algorithm, reduces the data transmission time up to 36.18%, 30.02% and 16.33%
respectively.



Finally, how the average cache size affects the task response time is analyzed, as shown in Fig. 8 (d).
It is obvious that the task response time of all three algorithms shows a decreasing function of the average
cache size. When the average cache size is set to 55, CLTS algorithm leads to a 45.57% reduction over
FIFO scheduling algorithm, a 33.47% reduction over D-LAWS algorithm and a 18 o." reduction over
CATS algorithm. The reason is that the CLTS algorithm makes full use of the c>~hed data chunks and
dispatch tasks to optimal resources.

In this part of experiments, the default settings of task scheduling e: ~erini ~ts are as follows.
According to references [10], [13] and [14], the ratio of cache size to total s*.. ~ge su. is set from 25% to
85%. Based on the hardware configurations and above ratios, the average -ach’ size of all edge servers is
set to integral multiples of data chunk size, which is from 25 to 55. M~reov. ™ 40 is the median of the
average cache size interval. Thus, the average cache size of all edge ervers set to 40. Then, we study
how the number of tasks affects the cache hit ratio, the data localitv. u.> 4=’ transmission time and the
task response time by varying the value from 16 to 256.

Fig. 9 (a) depicts the cache hit ratio under the different nur~her of tar «s. The cache hit ratio acts as an
increasing of the number of tasks in all algorithms. The reason . that more cached data chunks are
utilized when the number of tasks increases. As observed froi.. Fio 9 (b), the data locality shows as an
increasing function of the number of tasks. When the numwu.~ of tasks is 160, compared with FIFO
scheduling algorithm, D-LAWS algorithm and CATS algo, .*hm, CLTS algorithm increases the data locality
up to 45.34%, 18.64% and 7.62% respectively.

Fig. 9 (c) shows that the data transmission time ac.- as an increasing function of the number of tasks.
When the number of tasks is 16, there are few pe.*u. Mance differences among three algorithms. This is
because the data transmission seldom occure ..~ e number of tasks is small. When the number of
tasks is 256, CLTS algorithm leads to a 21.43% . ~duction over FIFO scheduling algorithm, a 14.24%
reduction over D-LAWS algorithm and a 7..."* reduction over CATS scheduling algorithm in terms of the
data transmission time.

Finally, we investigate how the aumber ¢ tasks affects the task response time by varying its value
from 16 to 256 in Fig. 9 (d). The t.."% r .spor se time acts as an increasing function of the number of tasks
for all algorithms. The reason is that . ore time is needed to process more tasks. There are few
performance differences to deal wio 16 tasks among all algorithms. Compared with FIFO scheduling
algorithm, D-LAWS algorith 1 a d CATS algorithm, CLTS algorithm reduces the task response time up to
29.73%, 17.59% and 11.24+. ¢ spectively when the number of tasks is 256.
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Fig. 10 The ene. >V costs of the whole system

Fig. 10 shows the energy costs of whnle system with various average cache sizes and numbers of
tasks. In Fig. 10 (a), the energy costs ac’ as decr asing functions of average cache sizes. The reason is that
more data chunks are cached in ed¢? sei.>rs with larger average cache sizes, which reduces the data
transmission costs. Compared with ~1F(, scheduling algorithm, D-LAWS algorithm and CATS algorithm,
CLTS algorithm reduces the ene gy cosi.nption up to 35.51%, 16.37% and 8.11% when the average
cache size is set to 25.

As observed from Fig. " (b), the energy costs of all algorithms increase dramatically when the
number of tasks increases. * his s because more data chunks are required to process these tasks. When the
number of tasks is 256, * ie CL1 . algorithm leads to a 39.19% reduction over FIFO scheduling algorithm,
a 26.22% reduction ov r D _AW'3 algorithm and a 15.39 reduction over CATS algorithm

4.2.3 Sensitivity ar alysis

The sensitivity 2nalv.is can provide the details about how the proposed algorithms behave with
varying pararm cters. “"he correlation analysis is a well-known technique to analyze the sensitivity [44].
The Pearson c~rrelat’on analysis is applied to indicate the relationships among the parameters. The
correlatioi . _“f~ient can be achieved as follows,

- n(220)-(2X)(2y)
DX DX

In equation (32), x and y denote the experimental data. The number of data is n. The value of
Pearson correlation coefficient is between -1 and 1, where the positive value indicates positive correlation

(32)




and negative value means negative correlation. In addition, there is no correlation when the value is 0.
The correlation coefficients among the mentioned parameters are shown in the following tables.

Table 4 Pearson correlation coefficients for the integrated utility-based cache placement .igorithm

Parameters a a, a,
b, 0.936 -0.815 -0.837
b, 0.947 0.743 0.891
b, -0.822 0.828 N/A

Table 4 shows the Pearson correlation coefficients of the parameters or 1~ integrated utility-based
cache placement algorithm. a,, a, and a, denote the cache service rau.. ata reading time and cache
replacement number respectively. b, b, and b, denote the averac: cache size, the number of data
chunks to be read and average data popularity respectively. Strong cor, ~lations among parameter pairs are
shown in Table 4. Compared with the correlation between a, aru b, tne correlation between a and
b, is stronger. More data chunks are required when the number 0. 7*.ca ch inks to be read increases. Thus,
the cache service ratio increases. The data reading time is mainly ~ffe.ed by not only the number of data
chunks to be read but also data locations. The relationship L~tween ., and b, is the strongest negative
correlation among all parameter pairs. The reason is tha. *he nwnber of data chunks cached in edge
servers is greater when the average cache size is larg=", ........ «eads to the smaller cache replacement
number.

Table 5 Pearson correlation coefficients for the c. ~t . locality-based task scheduling algorithm

Parameters (o C, & C, Cs
d, 0.958 n aR7 -0.813 -0.687 -0.744
d, 0.972 0.8y 0.821 0.719 0.772

Table 5 shows the Pearson correlati~., . ~efficients of the parameters for the integrated utility-based
cache placement algorithm. ¢, c,, *, ¢, nd c, denote the cache hit ratio, data locality, data
transmission time, task response tir.e and ."ergy consumption respectively. d, and d, are average
cache size and the number of taske Al ¢he - osolute values of Pearson correlation coefficients are greater
than 0.6 in Table 5. Thus, the Pe .rson cu. :lation coefficients indicate that the parameter pairs selected in
experiments are strongly corr :lateu. Compared with the positive correlation between ¢, and d,, the
positive correlation betwer. ., and d, is weaker. The relationship between ¢, and d, is the
strongest positive correlativ. T .iis is because task response time is achieved by not only data reading time
but also task execution dme. In uddition, more data chunks are required to process more tasks, which
increases the cache hiu . ~t") sir aificantly. The correlation of -0.687 between c, and d, is the weakest
negative correlatior. 1ne reasun is that the average cache size mainly affects data reading time which is a
portion of task resy. »nse tin 2.

4.3 Experime 1t Sum, 1ary

IUCF ., ~+thm is compared with the centralized cache management mechanism Hadoop provides
and CP-Dyn. .ic algorithm. Extensive experiments show that IUCP algorithm can improve the cache
service ratio anu reduce the data reading time and cache replacement number effectively. Moreover, CLTS
algorithm is evaluated by comparing it with FIFO scheduling algorithm, D-LAWS algorithm and CATS
algorithm. Many experiments indicate that CLTS algorithm can improve the cache hit ratio and data
locality and reduce the data transmission time, task response time and energy consumption costs



significantly.
5 Conclusion

In this paper, we propose a cache-aware task scheduling method in edge compuu. 3. First, the
integrated utility-based cache placement strategy is presented. The data chunks ar : cac 1ed at optimal edge
servers to maximize the integrated utility value of caching. Then, tasks are scheu !ed according to the
cache placement results. We model the task scheduling problem as a weightad b, ~rtite graph of which
weights are mainly derived by the location of required data, such as local r ache . "l disk or remote one.
During each heartbeat, maximal weighted matching between tasks and .~aurces are obtained. The
proposed algorithms with polynomial time complexities are approprie e in ec_‘e computing. Furthermore,
extensive experiments show that the cache-aware task scheduling alg. rithm outperforms other baseline
algorithms in terms of cache hit ratio, data locality, data transmisc.on ti- -, task response time and energy
consumption costs.
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Highlights

® An integrated utility-based cache placement strategy in edge computing is gicased by jointly
considering data chunk transmission cost, caching value and replacement pen-...y

® A weighted bipartite graph model is applied to describe the relationships .t veen tasks and edge
servers.

® A heuristic algorithm named cache locality-based task schedulin’, alrun. n is proposed. Our
proposed algorithm can obtain maximal weighted matching during ~~<h he. “tbeat.

® \We evaluate the performance of our proposed method anc previc Is method via extensive
experiments. The results indicate that our proposed method ¢ .; imoruve the cache hit ratio and data

locality.
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