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Abstract—In the wake of the development of mobile devices, how to provide low-latency mobile services with 

the limited battery power is attracting more and more attention. A novel paradigm, edge computing, can make 

services closer to users, which can dramatically reduce the latency and improve battery life of UEs. However, 

inappropriate placement and utilization of caching can degrade the system performance. In this paper, a 

cache-aware task scheduling method in edge computing is proposed. First, an integrated utility function is 

derived with respect to the data chunk transmission cost, caching value and cache replacement penalty. Data 

chunks are cached at optimal edge servers to maximize the integrated utility value. After placing the caches, a 

cache locality-based task scheduling method is presented. We model the task scheduling problem as a weighted 

bipartite graph. Weights of edges of the graph are mainly influenced by the locations of the required data. 

During each heartbeat, maximal weighted matching between tasks and resources are obtained. All the proposed 

algorithms have polynomial time complexities which are acceptable in edge computing. Furthermore, extensive 

experiments show that the cache-aware task scheduling algorithm outperforms other baseline algorithms in 

terms of the cache hit ratio, data locality, data transmission time, task response time and energy consumption 

costs. 

Index Terms—Edge computing, Cache placement, Task scheduling, Weighted bipartite graph 

1 Introduction 

Recently, with the advent of technological evolution of portable mobile devices, such as smartphones, 

laptops and sensors, the limitations of battery capacity and bandwidth have been serious obstacles for the 

quality of service (QoS). The traditional solution to cover these limitations is to offload applications with 

high resource requirements to a conventional core cloud [1], [2]. However, it is not efficient enough to 

transmit applications to the cloud due to limited bandwidths. The vision of edge computing that can make 

the service closer to users has led the path to a manner with low delays for mobile users. Edge computing 

mainly consists of following computing concepts, Fog Computing [3], [4], Cloudlet [3], [4], [5] and 

Mobile Edge Computing [3], [4]. Executing a portion of applications on the edge servers can reduce the 

amount of data transmitted in the network, which reduces both latency and energy consumption costs. 

Many application scenarios benefit from edge computing including face recognition application [6], 

[7], IoT [6] and connected vehicles [6], [8]. All of these applications need low-latency services. The 

architecture of edge computing mainly consists of a core cloud, an edge orchestrator (EO) and several 

edge servers, as shown in Fig. 1. In order to overlook all edge servers, the edge orchestrator is connected 

to the same network with them. Edge servers are installed at WiFi access points or base stations for 



various scenarios [9]. Since the location of services is closer to users, the edge computing is receiving 

more and more attention. 
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Fig. 1 Application scenarios of edge computing 

In edge computing system, each edge server has a certain cache size in the memory. The popular 

contents will be dispatched and cached in the edge servers to further improve the system performance. 

Moreover, excessive data transmission will increase the latency and energy costs. In order to improve the 

quality of service (QoS), the cache-aware task scheduling is regarded as a valid manner. However, there 

are many challenges in cache-aware task scheduling in edge computing.  

First, caching spaces of edge servers are usually smaller than common servers in cloud computing. 

Therefore, the cache replacement occurs frequently if contents are cached at edge servers with high cache 

replacement rates. The system should make a decision to cache contents on edge servers not only 

according to caching values but also according to the replacement rates of edge servers. Thus, an 

integrated utility-based cache placement strategy which jointly considers data transmission cost, caching 

values and cache replacement penalty is necessary.  

Second, reading data from local cache is faster than reading data from local disk or remote edge 

servers. In addition, reading data from local caches or disks can reduce the amount of data transmitted in 

the network. Most of current cache-aware scheduling algorithms require lots of iterations, which may 

cause higher entire system latency. A heuristic algorithm with polynomial time complexity is necessary to 

take full advantage of computing and caching resources to reduce both the latency and energy 

consumption costs. 

The main contributions of this paper are shown as follows:  

• An integrated utility-based cache placement strategy to reasonably place caches in edge computing 

system is proposed by jointly considering data chunk transmission cost, caching value and cache replacement 

penalty. The data chunks are cached at optimal edge servers to maximize the integrated utility value of caching. 

• A weighted bipartite graph model is applied to describe the relationships between tasks and edge servers. 

Weights of the graph are mainly derived by the locations of required data. The data transmission cost for task 

scheduling is measured by data reading time and energy consumption costs. A heuristic algorithm named 

cache locality-based task scheduling algorithm is proposed. The proposed task scheduling algorithm can 

obtain maximal weighted matching during each heartbeat, which can reduce both latency and energy 



consumption costs.  

• Finally, we evaluate the performance of the cache-aware task scheduling method and previous method 

via extensive experiments. The results indicate that the proposed task scheduling method improves the cache 

hit ratio and data locality. And it also reduces the data transmission time, task response time and the 

energy consumption costs of the system significantly. 

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3 

proposes the cache-aware task scheduling method. Section 4 provides the analysis of experiment results. 

Conclusions are made in Section 5.  

2 Related work 

2.1 Cache placement in edge computing 

Some applications in edge computing need low-latency services. The content caching is regarded as 

a promising technique to reduce the network delays. Since caching spaces of edge servers are limited, 

only a part of contents can be cached. Many researchers studied edge caching policies mainly according to 

popularity values of contents and cache storage constraints of edge servers. In previous references, 

contents with high popularity values were selected and cached in edge servers under various storage space 

constraints. Zeydan et al. [10] studied content caching in 5G wireless networks and presented a 

big-data-enabled architecture. This architecture can harness a vast amount of data to estimate the content 

popularity and cache strategic contents to improve the user satisfaction and backhaul offloading. The 

authors only considered the limited storage capacities of edge servers. In this work, the cache replacement 

penalty which is incurred by the limited caching spaces is proposed as a main factor to cache contents. Liu 

J et al. [11] proposed both centralized and distributed transmission aware cache placement approaches to 

reduce users’ average download delay. They considered diverse content preferences of different users. 

Al-Turjman [12] considered four main parameters including age of the data, popularity of requests, delay 

to receive the information and data fidelity. However, the authors achieved the data popularity only by 

data request frequency. In this paper, the data access time and average time interval are also considered to 

obtain data popularity values. Tran et al [13] proposed a collaborative caching and processing method in 

Mobile-Edge Computing networks. They stored both the videos and their appropriate bitrate versions in 

the caches and considered the transcoding relationships among versions. Wang X et al. [14] proposed an 

edge caching architecture based on the content-centric networking. The authors evaluated content access 

delay and traffic load in experiments. In this paper, cache replacement number is studied as a vital 

parameter to indicate the system stability. Pellegrini F D et al. [15] proposed a caching policy derived by 

popularity of contents, caching strategies of competing content providers and spatial distribution of small 

cells. In this caching scheme, popular contents were cached in the intermediate servers. In previous works, 

only the storage spaces of edge servers were seen as constrains to cache contents with high popularity 

values. In this work, a dynamic caching process is analyzed. Both content caching and replacing are 

studied. The data transmission cost and cache replacement penalty are introduced. The significant 

differences of the proposed method are that the contents with high popularity values are cached in the 

edge servers with low cache replacement rates to avoid the eviction of cached data chunks frequently 

when the available cache size of edge servers is less than a certain threshold. Moreover, data chunks 

cached in edge servers need to be transmitted from the edge servers that store these data chunks. Thus, the 



data transmission cost is also considered. 

Compared with servers in cloud datacenters, edge devices and servers are closer to users. Contents 

are cached in the edge devices and servers to reduce the data  transmission delays. When applications 

arrive, contents are transmitted from edge devices or servers rather than cloud servers. There are many 

caching approaches to study the content placement in edge devices and servers. Drolia U et al. [16] 

presented an edge caching system called Cachier for recognition applications. They proposed to use edge 

servers as “caches with computing resources”. Drolia U et al. [17] proposed a caching model that regarded 

edge servers as caches for compute-intensive recognition applications. However, the authors studied a 

coarse-grained cache placement problem. We consider a part of the memory in edge servers as caches, 

which can be seen as fine-grained caches. Lots of researchers studied the cache placement in edge devices 

(e.g. smartphones and tablets).  Huang Y et al. [18] considered caching fairness issue among peer edge 

devices in edge computing. The path contention cost that was formulated as a linear transformation of the 

contention delay. We also applied the delay as cache replacement penalty. Moreover, cache replacement 

rate is proposed as a main factor to evaluate edge servers. Zhang X et al. [19] partitioned the entire 

wireless cell to avoid the interference in the edge computing network. They randomly distributed and 

cache the popular contents in the mobile devices. However, edge devices have limited computing 

resources, storage spaces and battery capacities. Moreover, the access speed of memory is faster than that 

of disk. In this work, we consider a part of the memory of each edge server as cache. Reading data from 

local memory of edge servers is faster than reading data from local disk or remote edge servers. The 

various configurations of edge servers including available caching space, CPU performance and memory 

speed are also considered, which can improve the utilization of caching and computing resources in the 

system. 

2.2 Cache locality-based scheduling 

In Hadoop-based systems, some data-intensive applications may cause high delays to slow down the 

system performance. Most literature studied the cache locality-based scheduling methods which can 

achieve high data availability and low data transmission cost. Tasks were dispatched to the nodes with 

required contents in caches to reduce data access costs. Lim B et al. [20] presented a cache-aware task 

scheduling method (CATS) that considered the data storage in memory layer to improve the system 

performance in Hadoop-based systems. We consider both cache locality and disk locality to make full use 

of system storage resources. Li G et al. [21] cached computing results for some complicated jobs to 

reduce the processing time of subsequent jobs with the same inputs and operations. Dai X et al. [22] 

proposed a Cache A Replica On Modification cloud file system to improve its efficiency. They applied a 

tripartite graph to present the relationships among computation nodes, data nodes and tasks by considering 

limitations of the cache sizes and task performance. In this paper, task scheduling problem is formulated 

as a weighted bipartite graph in which tasks are processed by logical bundles of computing resources 

bound to edge servers. Chen Q. et al [23] took full advantage of the file cache by leveraging the output 

data as soon as it was written to the file system in MapReduce. Tanaka M et al. [24] studied I/O-aware 

task scheduling problem to maximize the disk cache hit rate for data-intensive and many-task workflow. 

Only time consumption was considered as a main metric. We study the energy costs in both modelling 

part and experiments to discuss the energy utilization. Bryk P et al. [25] proposed a dynamic scheduling 

algorithm which took advantage of both file locality and data caching in clouds. This task scheduling 

algorithm can decrease the number of file transfers. In these references, contents were cached in one 



location, such as memory or disk. When tasks were scheduled, only the differences of reading data 

between caches and remote servers were studied. In this work, a part of memory is regarded as cache. We 

consider the diverse data locations including local caches, local disks and remote servers for task 

scheduling. Tasks are set to different priority values according to the locations of required data chunks. 

Data transmission costs including data transmission delays and energy costs are achieved according to the 

above three locations. As a result, all kinds of storage resources are fully utilized to improve the system 

throughput. 

Caching can reduce the data transmission costs significantly. Thus, some researches applied the 

caching to decrease the backhaul cost of popular contents and improve the performance of the network. 

Zhou Y et al. [26] studied the information-centric virtualized heterogeneous networks with mobile edge 

computing and in-network caching. They proposed a virtual resource allocation strategy which benefited 

from not only virtualization but also caching and computing. In contrast to the energy consumption for 

task execution in [26], the energy cost for data access is studied and evaluated in this paper. He Y et al. 

[27] studied software-defined networks with caching and mobile edge computing for smart cities. They 

applied a deep Q-leaening method to improve the utilization rates of networking, caching and computing 

resources. However computation abilities of edge servers were integrated to guarantee the service quality 

for applications. In this work, various computing resource requirements including CPU and memory are 

considered to improve the system utilization. Wang C et al. [28] studied the computation offloading and 

content caching strategy. They applied the alleviated backhaul bandwidth as the caching reward to 

improve the total revenue of the network. The previous researches mainly focused on the backhaul time of 

popular contents and the computing capacities of edge servers. In edge computing, applications submitted 

by mobile users are usually heterogeneous. Thus, we consider the resource requirements of different tasks. 

A weighted bipartite graph is proposed to make full use of caching and computing resources. 

3. Cache-aware task scheduling method in edge computing 

3.1 Cache-aware task scheduling model 
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Fig. 2 The architecture of the cache-aware task scheduling  

In edge computing architecture, an edge orchestrator and several edge servers are installed. The edge 

orchestrator manages all edge servers by Local Area Network (LAN) or Metropolitan Area Network 

(MAN). Mobile devices communicate with edge servers by wireless communications. Edge servers have 



some computing and caching resources. The edge orchestrator maintains overall view on both available 

computing resources and caching resources. Popular contents are dispatched and cached among all edge 

servers. Tasks submitted by users are scheduled and processed in these edge servers. The architecture of 

the cache-aware task scheduling is shown in Fig. 2. 

In order to further reduce latency, popular data should be cached at optimal edge servers and tasks 

should be scheduled based on the cache locality. Therefore, the cache-aware task scheduling method 

proposed in this work mainly includes the following two components:  

(1) An integrated utility function is derived according to data chunk transmission cost, caching value 

and cache replacement penalty. Then, data chunks are cached at optimal edge servers to maximize the 

integrated utility value of caching.  

(2) After caching data chunks, tasks will be dispatched to appropriate computing resources. The task 

scheduling problem is modeled as a matching problem between tasks and computing resources in a 

weighted bipartite graph model. The weights are mainly influenced by the locations of required data.  

3.2 The integrated utility-based cache placement strategy  

In order to reasonably cache the data chunks, an integrated utility-based cache placement strategy is 

proposed. The integrated utility function is a function of the data chunk transmission cost, caching value 

and cache replacement penalty to evaluate the caching results. The tabu search is given to obtain the 

optimal cache placement with maximal cache placement integrated value.  

3.2.1 Integrated utility function of caching 

An integrated utility function is derived with respect to the data chunk transmission cost, caching 

value and cache replacement penalty to evaluate the caching results as shown in equation (1). The data 

chunk transmission cost is measured by the network distances among edge servers. The caching value is 

proposed according to cache capacities of edge servers, replacement rates of edge servers and data 

popularity values. The cache replacement penalty is given by the available cache size of edge servers and 

caching data size. The goal of the optimal cache placement strategy is to maximize the integrated utility 

value of caching (CIUV). Therefore, the cache placement problem can be formulated as the following 

programming problem,  

 ,
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where n
iValue  denotes the caching value, n

iAcq  is the data chunk transmission cost and n
iPenalty  

represents the cache replacement penalty. 

A. Data chunk transmission cost 

In the system, data is divided into equal size data chunks. Let  1, 2, ,i dD d i N    be the data 

chunk set which consists of dN  data chunks. The size of each data chunk is a constant ds . The edge 

servers with different configurations are denoted by a set  1,2, ,nS s n N   . We assume that if a data 



chunk needs to be cached at a certain edge server, this edge server should acquire this data chunk from 

other edge servers. Then, the data chunk transmission occurs. The data chunk transmission cost n
iAcq  for 

edge server ns  to acquire data chunk id  can be defined from (3), 

   , , 1,2, , andn
i n nAcq a h s s n n N n n                      (3) 

where a is a positive constant and  n nh s ,s   represents the network distance between ns  and ns  . 

Assume that an edge server at which data chunks are cached cannot be the one that stores data chunk 

replications. Therefore,  , 0n nh d d   . 

B. Caching value 

The caching value is proposed to evaluate the result that a data chunk is cached on a certain edge 

server. It is a function of cache capacities of edge servers, data popularity values and replacement rates of 

edge servers. The configurations of edge servers are usually different. This leads to the different cache 

space contentions on edge servers. Thus, it is significant to consider various cache capacities of edge 

servers to place caches appropriately. Let nCap  denote the cache capacity of edge server ns  as defined 

in (4), which is influenced by the proportion of available caching space, CPU performance and memory 

speed.   

     1 2 33
n n n nCap F F F   .                            (4) 

where  1
nF  denotes the proportion of available cache of edge server ns ,  2

nF  represents CPU 

performance of edge server ns  and  3
nF  denotes memory performance of edge server ns . 

In the following, how to achieve efficacy coefficients,  1
nF ,  2

nF  and  3
nF , will be introduced. Let 

ncs  denote the cache size of edge server ns  and nacs  be the available cache size of edge server ns , 

where  1,2, ,n N  .  1
nF  can be defined in (5), 
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where aca
n n np acs cs   is the percentage of the available cache size. 

Let nMIPS  represent Million Instructions per Second (MIPS) of the CPU of edge server ns . Then, 
 2

nF  can be defined as follows, 

 2 2

2

min

max min
n n

n
n n

MIPS MIPS a
F

MIPS MIPS a

 


 
.                      (6) 

Let nAMAT  represent average memory access time (AMAT) of the memory of edge server ns . 

Then,  3
nF  can be defined in (7), 

 3 3

3

min

max min
n n

n
n n

AMAT AMAT a
F

AMAT AMAT a

 


 
.                      (7) 

1a , 2a  and 3a  are constants in equations (5)-(8). Because any one of efficacy coefficients    1 3~n nF F  

cannot be 0, a term ia  is in the numerator. If any one of efficacy coefficients is 0, nCap  will be 0 no 

matter what the values of the other efficacy coefficients are. nCap  will be 1 when all variables including 
aca
np , nMIPS  and nAMAT  achieve their minimum values. Hence, a term ia  is in the denominator. 

The cache replacement will occur when the available cache size of an edge server is less than a 

certain threshold. Because of the heterogeneity of edge servers, a number of edge servers may replace data 



chunks frequently. If a cached data chunk is replaced, this data chunk should be transmitted from other 

edge servers when users request it. Frequent cache replacements may result in high extra costs. Requested 

multiple times by users, a data chunk should be cached at an edge server with low cache replacement rate. 

Let nRep  denote the cache replacement rate of edge server ns  as depicted in (8), 

 
1

1 nk
n

n j
jn

Rep data
cs 

                                (8) 

where n
jdata  represents the data size of caches to be replaced in thj cache replacement on edge server 

ns . 

The total number of cache replacement times is nk  on edge server ns . nRep  reflects the cache space 

contention of edge server ns . It means that data chunks cached on edge servers with high cache 

replacement rates will be replaced frequently. 

In order to improve the cache hit ratio and utilization of cache spaces, the data popularity is presented. 

Let iPop  be the popularity of data chunk id   which can be achieved as follow, 

 1

1 1dN

i i i now last last first
i i i i i

Pop RN RN
T T T T RN

  
         

               (9) 

where iRN  denotes the number of requests for data chunk id , last
iT  denotes the time that data chunk 

id  was last requested, first
iT  represents the time that data chunk id  was first requested, nowT  indicates 

the current time. In equation (9), i iRN RN  indicates the request frequency of data chunk id , 
now last

iT T  reflects the recent request for data chunk id  and  last first
i i iT T RN  denotes the average 

time interval of requests for data chunk id . 

Therefore, the value of caching a data chunk id  on edge server ns  can be derived as depicted in 

(10), 

 n i n
i

n

Pop Cap
Value
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
 .                             (10) 

Then, the total caching value of dN  data chunks can be achieved in (11), 
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where the binary variable ,i nx  is defined to denote whether a data chunk id  is cached on edge server 

ns  as follows, 

 ,

1, if data chunk is cached at edge server ,

0, otherwise.
i n

i n

d s
x


 


              (12) 

C. Cache replacement penalty 

New data chunks will incur the eviction of certain cached data chunks at an edge server when the 

available cache size of this edge server is less than a certain threshold. Because future requests for the 

evicted data chunks cannot be served at this edge server, such eviction leads to replacement penalty. Let 
n
iPenalty  be the replacement penalty of caching data chunk id  on edge server ns . n

iPenalty  can be 

defined as (13),  
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                     (13) 

As mentioned above, an integrated utility function of caching CIUV  is proposed according to data 

chunk transmission cost, caching value and cache replacement penalty. Then, CIUV  can be defined as 

depicted in (14), 

 ,
1 1

.
dN N

n n n
i n i i i

i n

CIUV x Value Acq Penalty
 

                     (14) 

3.2.2 Optimal cache placement 

The goal of optimal cache placement strategy is to maximize integrated utility value of caching. The 

problem formulated in (1) can be reduced to a knapsack problem which is an NP-complete problem. Thus, 

it is an NP-hard problem. Tabu search (TS) is an efficient method that employs local search methods to 

solve combinatorial optimization problems [29]. The tabu search starts with an initial solution which is 

generated according to data popularity values and cache replacement rates. The calculation of the initial 

solution mainly includes three steps.  

First, data chunks are sorted by data popularity values in descending order. Edge servers are sorted 

by cache replacement rates in ascending order.  

Then, a data chunk id  will be cached at an edge server ns  with the maximal ratio of iPop  to 

nRep . 

Finally, when all data chunks are cached, the initial solution is generated. New solutions are 

generated based on the initial solution until the stopping criterion (e.g. the maximum number of iterations) 

and tabu search can return the best one which is achieved during execution period. 

3.2.3 The integrated utility-based cache placement algorithm 

Algorithm 1: Integrated utility-based cache placement algorithm 

Input: Data chunk set  1,2, ,i dD d i N   , edge server set  1,2, ,nS s n N    

Output: Optimal cache placement result HashMap ,D S  

 1:      HashMap ,D S  , HashMin ,api D S  // Initialization 

 2:   for each id D  do 

 3:      Calculate iPop  // The popularity of data chunk id  

4: 0TR   

5:      for each ns S  do 

 6:         Calculate nRep  // The cache replacement rate of edge server ns  

 7:         i nR Pop Rep  // The ratio of iPop  to nRep  

 8:         if TR R  then 

 9:         TR R , ini ,HashMap Hash ,Map i nD S d s //Cache data chunk id  on 

edge server ns  and record the mapping 

10:         end if  

11:      end for each  

12:   end for each 



13:    HashMapini ,initialS CIUV D S  // Obtain the initial solution of cache placement 

14:      sm hax M ,Ha ap initialCIUV D S TS S   // Derive the optimal cache placement result 

by tabu search algorithm 

15:   return HashMap ,D S  

Algorithm 1 represents the pseudo-code of the integrated utility-based cache placement algorithm.  

First, the popularity value of each data chunk is calculated according to equation (9) (Algorithm 1 

line 3).  

Secondly, the cache placement rate of each edge server is calculated according to equation (8) 

(Algorithm 1 line 6). Thirdly, the data chunk id  is cached on edge server ns  with maximal ratio of 

iPop  to nRep . And the initial mapping is recorded (Algorithm 1 line 8-10).  

Then, an initial solution of cache placement is obtained (Algorithm 1 line 13).  

Finally, the optimal cache placement result is obtained according to the initial solution by tabu search 

algorithm (Algorithm 1 line 14).  

In Algorithm 1, the time expense of deriving an initial solution is  dO N N  and the time expense 

of tabu search algorithm to achieve the optimal cache placement result is  2
iter dO N N  where iterN  

denotes the iteration number of tabu search algorithm, dN  is the number of data chunks and N  is the 

number of edge servers. Hence, the time complexity of the integrated utility-based cache placement 

algorithm is  2
iter dO N N .  

The core of the proposed cache-placement algorithm is tabu search algorithm. Tabu search algorithm 

is a well-known example of meta-heuristic scheduling techniques [33]. An advantage of tabu search 

algorithm is that its time complexity is not exponential but polynomial [33], [34]. Thus, the program 

overhead is relatively negligible [33], [34].  

3.3 The cache locality-based task scheduling method  

In this paper, both cache locality and disk locality are considered. It is noteworthy that reading data 

from local cache is faster than reading data from local disk. Reading data from local disk is faster than 

reading data from remote edge servers. Thus, the cache locality-based task scheduling method is proposed 

to further reduce the latency. We model the task scheduling problem as a weighted bipartite graph of 

which weights are mainly derived by locations of required data chunks. During each heartbeat, a maximal 

weighted matching between tasks and resources are obtained.  

3.3.1 Task scheduling model based on weighted bipartite graph 

Tasks are handled by containers that are logical bundles of computing resources (such as <1 CPU, 

3GB RAM>) bound to edge servers. tN  tasks are scheduled to cN   containers. Let 

 1,2, , tT t N     and  1,2, , cC c N     demote the task set and container set respectively. 

In addition, we have t cN N .  

A simple graph  , ,G U V e , whose vertices are divided into two independent sets U  and V , is 

a bipartite graph. e  denotes an edge set. Each edge connects a vertex of U  with one of V  in the 

graph. If every edge has an associated weight in a bipartite graph, this bipartite graph is a weighted 

bipartite graph. The task scheduling problem can be modeled as a weighted bipartite graph  , ,G T C E  

where the task set T  and the container set C  represent vertex sets U  and V  respectively as shown 

in Fig. 3. If a task can be handled by a container, there is an edge with a weight between them. Weights 



are derived according to the similarity between tasks and resources, task scheduling priority and data 

transmission cost. 

1c 2c 3c
cNc

1t 2t 3t tNt

Containers

Tasks

...

...

3 44 65 4 7 1...

 

Fig. 3 Task scheduling model 

A. Similarity between tasks and resources 

Tasks have different requirements of computing resources, such as CPU and memory. A task can be 

defined as a row vector  ,t tc tm    where tc  and tm  denote CPU requirement and memory 

requirement respectively. In the same way, a container can be defined as a row vector  ,c cpu mem    

where cpu  denotes the CPU of container c  and mem  denotes the memory of container c . 

Therefore, the similarity between task t  and container c  can be achieved from (15), 

   
, .

T
t c

sim t c
t c
 

 
 





                           (15) 

B. Task scheduling priority 

The priority value of scheduling task t  to container c  is determined by the priority of the job 

including task t  and the location of data required by task t .In this paper, a lower priority value means 

the higher priority. Let jp  indicate the priority value of the job which includes task t  Let ,loc   

represent the data location priority value which is measured according to the location of data required by 

task t  as shown in Table 1. For example, if the data required by task t  is cached by a server that 

provides container c , the ,loc   is set to 1b . 

Table 1 Data location priority values 

Data locations Value 

Local caches of edge servers 1b  

Local disks of edge servers 

Remote edge servers 
2b  

3b  

where 1 2 3b b b  . Then, the task scheduling priority value ,tp   can be achieved from (16), 

, , .tp jp loc                                  (16) 

C. Data transmission cost 

If the data required by task t  is not in the cache or disk of computation node which provides 

container c  when task t  is dispatched to container c , the data transmission occurs. The data 

transmission overhead consists of reading time and energy costs. The energy consumption costs are 

measured by the power consumed by accessing and transmitting data, such as KWH. The energy 

consumption of reading a required data chunk for task t  includes the local access energy cost, remote 

access energy cost and data move energy cost [36], [37], [38], which can be achieved as follows, 

, , , ,Ec EL ER EM                                       (17) 

where ,EL   denotes the energy consumption cost for local access of edge server ns  which provides 

container c  to execute task t , ,ER   denotes the average energy consumption cost for remote access 



of other edge servers and ,EM    denotes the minimum data move energy cost to container c  to 

execute task t . If the required data chunk in the local cache or disk of an edge server, we have 

, 0ER    and , 0EM    . 

The data transmission cost that task t  is executed by container c  can be defined as follows, 

,

0, if required data is in local cache or disk

, otherwiser

n

tc N bs
dis

band
 


  


              (18) 

where rN  denotes the number of required data chunks, dis  indicates the minimum distance to get 

required data chunks and nband  is the network bandwidth of edge server ns  which provides container 

c . Then, the total data transmission cost can be achieved as follows, 

, 1 , 2 ,cost Ec tc                                     (19) 

where 1  and 2  denote the adjustment coefficients Moreover, we have 1 2 1   . 

As mentioned above, edge weights of the weighted bipartite graph can be calculated from (20), 
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1a , 2a  and 3a  are the weight coefficients of three influenced factors that can be achieved by a weight 

coefficient matrix W  as shown in (22). The three influenced factors 1f , 2f  and 3f  indicate the 

similarity between tasks and resources, task scheduling priority and data transmission cost respectively.  
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                             (22) 

where  1, 2,3 and 1,2,3rcw r c   can be calculated as follows, 
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0.5, if is as important as

0, otherwise.
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                     (23) 

Moreover,  1,2,3a    can be calculated from (24), 
3

1
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3.3.2 Optimal matching between tasks and computing resources 

In order to schedule tasks, the task scheduling problem is formulated as an optimal matching problem 

in the weighted bipartite graph as follows, 

, ,
1 1

max
t cN N
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                             (25) 
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If t cN N , t cN N  hypothetic containers should be added. The added hypothetic containers are 

connected with all tasks by edges whose weights are 0. That is to say, the weighted bipartite graph can be 

regard as a complete weighted bipartite graph  , ,G T C E  where T  denotes the task set which 

consists of cN  tasks after adding hypothetic tasks.  

Definition 1: A real function  l v  is a feasible vertex labeling in  , ,G T C E , for 

,t T c C      where  11,2, , , , ,t t cN N N    , if  

    , .cl t l c ew
                                  (28) 

Definition 2: A spanning subgraph  , ,G T C E    of graph  , ,G T C E  is an equality subgraph, 

for ,e E    , if 

    , .cl t l c ew
                                  (29) 

Theorem 1: The above task scheduling problem shown in (23) has at least one feasible solution. 

Proof: Normally, the number of tasks is larger than the number of containers. After adding t cN N  

hypothetic containers, the task scheduling problem can be regarded as a complete weighted bipartite graph

 , ,G T C E . Let  , ,G T C E    be an equality subgraph of G .  Let v  denote a vertex of T  , e  

indicate an edge of E  and e   represent an edge of E  . Suppose that G  has a matching M   named 

perfect matching that matches all vertices. Therefore, we have 

     .
e M v T

w M w e l v
    

   
 
 

where  w e  is the weight of edge e  and  w M   is the sum of all edge weights of perfect matching 

M  . Suppose that M  is a perfect matching of G . We have 

       .
e M v T

w M w e l v w M
  

      

Hence, the above task scheduling problem has at least one feasible solution which is a perfect matching of 

equality subgraphs during each heartbeat. 

3.3.3 The cache locality-based task scheduling algorithm 

Algorithm 2: Cache locality-based task scheduling algorithm 



Input: Task set to be scheduled  1,2, , tT t N    , Container set  1,2, , cC c N     

Output: Task scheduling result Matching  ,T C   

 1:   for each t T  , c C   do 

 2:      Calculate  ,sim t c  // The similarity between task t  and container c  

 3:      Calculate ,tp   // The task scheduling priority 

 4:      Calculate ,Ec   and ,tc   // The time and energy consumption costs  

 5:      for each 0 3r  , 0 3c   do 

 6:         Calculate W  // The weight coefficient matrix 

 7:      end for each 

8:      for each 0 3   do 

9:         Calculate ra  // The weight coefficient 

10:      end for each 

11:   end for each 

12:   for each heartbeat 

13:      if t cN N  then 

14:        Add t cN N  hypothetic containers and calculate ,ew  // The complete 

weighted bipartite graph during each heartbeat 

15:         Repeat 

16:            Randomly pick an equality subgraph G  of the complete weighted bipartite 

graph 

17:         Until G   has a perfect matching  ,T C  

18:      else  

19:         Add c tN N  hypothetic tasks and record the perfect matching  ,T C  of the 

equality subgraph of the complete weighted bipartite graph 

20:      end if 

21:      Update Task scheduling result  ,T C  

22:   end for each 

23:   return task scheduling result Matching  ,T C  

Algorithm 2 shows the pseudo-code of the cache locality-based task scheduling algorithm.  

Firstly, similarities, task scheduling priority values and data transmission costs between tasks and 

containers are calculated according to equations (15), (16) and (17) respectively (Algorithm 2 line 2-4).  

Secondly, weight coefficients are calculated according to the weight coefficient matrix (Algorithm 2 

line 5-10).  

Then, a complete weighted bipartite graph is constructed and a maximum weighted bipartite 

matching is obtained during each heartbeat (Algorithm 2 line 12-22).  

In Algorithm 2, the time expense of calculating edge weights of a bipartite graph is  t cO N N  

where tN  is the number of tasks to be scheduled and cN  is the number of containers. After adding 

t cN N   hypothetic containers in a heartbeat interval, the time expense to achieve a perfect matching of 

equality subgraphs of a complete weighted bipartite graph is  3
tO N . Therefore, the time complexity of 

Algorithm 2 is   3/t c tO N N N    .  

Compared with the time expense of task scheduling, the time spent on constructing a weighted 



bipartite graph can be ignored. The time complexity of the task scheduling algorithm is with the 

polynomial time   3/t c tO N N N    . The polynomial time complexity makes the algorithm suitable 

option for the task scheduling [22], [35]. Since the time complexities have no exponential terms, the time 

overhead of the proposed algorithms is relatively negligible. 

4 Performance evaluation  

4.1 Experimental environment: smart campus 

With the rapid development of edge computing, computer vision and IoT, the traditional education is 

changing. Modern campus is emerging by applying these new techniques, which improves the utilization 

of available campus resources, heighten the work efficiency of both students and teachers [39], [40], [41]. 

Smart campus is a novel and significant application of edge computing, which mainly includes smart class, 

augmented reality assisted mobile campus and smart lab [42], [43]. The smart class changes the way 

students learn.  

Compared with traditional classes, smart classes make students main and active roles. First, teachers 

and students log in a smart class system by face recognition techniques. Second, students select the 

teaching contents they favor. When they finish the classes, they can submit their speeches or presentations 

which are stored, retrieved and analyzed at edge computing servers. Finally, teachers don’t need to record 

the presentations for specific students who use the smart class system. The contents used in the smart class 

mainly consist of videos and audios. Moreover, these contents are requested by students repeatedly in 

particular buildings. Reading contents from cloud is costly and time-consuming. Therefore, it is 

significant to deploy edge servers in the buildings of the campus and cache popular contents in these edge 

servers.  

The smart campus system mainly consists of an edge orchestrator, edge servers and campus network, 

as shown in Fig. 4. Popular teaching contents are cached in the edge servers which are deployed in the 

buildings, such as library, teaching buildings and dormitories. Students and teachers connect the edge 

servers by access points. The edge orchestrator that manages and controls all edge servers acts as a master 

node. The edge orchestrator and all edge servers communicate with each other by campus network. And 

the entire campus network can also be connected to the Internet.  
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Fig. 4 Experimental environment 

The cache-aware task scheduling method is experimentally verified. The experimental environment 

is shown in Fig. 4. 1 edge orchestrator and 10 edge servers with different configurations are installed. 

These 10 edge servers are deployed in 10 different buildings in our campus. The edge orchestrator is 

composed of an Intel Core i5-4590 CPU running at 3.30 GHz and 4GB RAM. Each edge server that acts 

as a slave node is empowered with an Intel Core i5-4590 CPU running at 3.30 GHz. Slave 1-Slave 3 are 

configured with 4GB RAM. Slave 4-Slave 6 are composed of 6GB RAM. And Slave 7-Slave 10 are 

configured with 8GB RAM.  

The network bandwidth of the campus network is 30Mbps. The model number of network switches 

is ALCATEL Omnicore5022. The operating system is Linux Ubuntu 14.04.1 LTS, The Hadoop 2.7.1 is 

adopted to perform the experiments, the version of the Java Development Kit is JDK 1.7.0_45 and the 

development environment is MyEclipse 10. The Huawei AP3010DN-AGN is adopted as the WiFi access 

point in each building. End devices use IEEE 802.11 radios to connect WIFI access points which are 

connected to local edge servers.  

The configurations of edge orchestrator and edge servers are shown as follows. 

Table2 Configurations of edge servers 

Host name Configuration IP 

Master 

(EO) 

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 4G 192.168.202.10 

Slave1-Slve3 

(Edge servers) 

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 4G 192.168.203.10 

192.168.203.11 

192.168.203.12 

Slave4-Slve6 

(Edge servers) 

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 6G 192.168.204.10 

192.168.204.11 

192.168.204.12 

Slave7-Slve8 

(Edge servers) 

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 8G 192.168.205.10 

192.168.205.11 

Slave9-Slve10 

(Edge servers) 

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 8G 192.168.206.10 

192.168.206.11 

The experimental data set including text data about 96 million blog posts of Memetracker comes 

from Stanford Network Analysis Project (SNAP) [30]. The data set named memetracker9 includes 

Memetracker phrases and hyperlinks between 96 million blog posts from Aug 2008 to Apr 2009 [30]. This 

data set consists of the real-world text data. Thus, it is general enough to conclude. This data set contains 

9 files. The total size of these files is 13.36GB. In the Hadoop Distributed File System (HDFS), the 

default setting of the data chunk size is 64 MB. Thus, the size of each data chunk is set as 64MB. In order 

to evaluate the performance of the proposed task scheduling algorithm and other task scheduling 

algorithms, we adopted WordCount as a benchmark job, which counts the characters from above data set. 

The detailed testing parameters are listed in Table 3. 

Table 3 Testing parameters 

Parameter name Value 

The data location priority value 1b  10 

The data location priority value 2b  20 



The data location priority value 3b  30 

The number of edge orchestrators 1 

The number of edge servers 10 

The data size of each data chunk 64MB 

The average cache size of edge servers   25,55  

The number of data chunks to be read  16,256  

The number of data chunks to be cached 100 

Popularity of data chunks  0.5,0.9  

The number of tasks  16,256  

The size of each task 64MB

In table 3, the amounts of some parameters are determined according to the settings of the software 

and hardware. In the Hadoop Distributed File System (HDFS), the default setting of the data chunk size is 

64 MB. The default setting of the task size is same as the data chunk size. Thus, the sizes of both data 

chunks and tasks were set to 64MB.  

The numbers of edge orchestrators and servers are determined according to hardware requirements 

and real-life environment. In edge computing framework, the mode including 1 edge orchestrator and N 

edge servers is generally applied at system level [5], [6], [8], [47]. We also apply this mode. Thus, 1 edge 

orchestrator is required. In the smart campus scene which is a real-word experiment environment, 10 edge 

servers are deployed to cover most of students on campus. These edge servers are deployed in library, 

teaching buildings and dormitories. It is available that 10 edge servers are deployed. 

According to [45] and [46], the number of tasks is set to the multiples of 10 or 20 to evaluate the 

performance of algorithms. And the maximum number of tasks is set to the square of these numbers. And 

the maximum number of tasks is set to the square of these numbers. We follow these settings. The 

numbers of both tasks and data chunks are set to the multiples of 16. The maximum value is set to 256.  

The average cache size of each edge server is set to 55 at most. The number of data chunks to be 

cached is set to 100. These data chunks should be cached in 2 edge servers at least and may incur the 

eviction in edge servers. In addition, too many cached data chunks will weaken the impacts of different 

cache placement algorithms. The data location priority values and popularity values of data chunks are 

defined by equations (9) and (16). Others are obtained according to the relevant references [10], [13]. 

There are two main parts in experiments of verifying the effectiveness of cache-aware task 

scheduling algorithm. First, the integrated utility-based cache placement algorithm is compared with the 

centralized cache management mechanism Hadoop provides and CP-Dynamic algorithm [31] in terms of 

cache service ratio, data reading time and cache replacement number. Then, the cache locality-based task 

scheduling algorithm is compared with First In First Out (FIFO) scheduling algorithm, D-LAWS algorithm 

[32] and CATS algorithm [20] in terms of cache hit ratio, data locality ratio, data transmission time, task 

response time and energy cost. Since FIFO scheduling algorithm, D-LAWS algorithm and CATS algorithm 

are the algorithms with same objectives as the proposed cache locality-based task scheduling algorithm, 

these three algorithms are selected as comparison algorithms. 

In verification experiments of the integrated utility-based cache placement algorithm, cache service 

ratio, data reading time and average replacement number are given to evaluate the algorithm performance. 

The cache service ratio CSR  represents the ratio of CRN  that denotes the number of requested data 

chunks that are cached on edge servers to RN  which represents the total number of requested data 

chunks as shown in (30), 
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and negative value means negative correlation. In addition, there is no correlation when the value is 0. 

The correlation coefficients among the mentioned parameters are shown in the following tables.  

Table 4 Pearson correlation coefficients for the integrated utility-based cache placement algorithm 

Parameters 1a  2a  3a  

1b  0.936 -0.815 -0.837 

2b  0.947 0.743 0.891 

3b  -0.822 0.828 N/A 

Table 4 shows the Pearson correlation coefficients of the parameters for the integrated utility-based 

cache placement algorithm. 1a , 2a  and 3a  denote the cache service ratio, data reading time and cache 

replacement number respectively. 1b , 2b  and 3b  denote the average cache size, the number of data 

chunks to be read and average data popularity respectively. Strong correlations among parameter pairs are 

shown in Table 4. Compared with the correlation between 2a  and 2b , the correlation between 1a  and 

2b  is stronger. More data chunks are required when the number of data chunks to be read increases. Thus, 

the cache service ratio increases. The data reading time is mainly affected by not only the number of data 

chunks to be read but also data locations. The relationship between 3a  and 1b  is the strongest negative 

correlation among all parameter pairs. The reason is that the number of data chunks cached in edge 

servers is greater when the average cache size is larger, which leads to the smaller cache replacement 

number. 

Table 5 Pearson correlation coefficients for the cache locality-based task scheduling algorithm 

Parameters 1c  2c  3c  4c  5c  

1d  0.958 0.857 -0.813 -0.687 -0.744 

2d  0.972 0.894 0.821 0.719 0.772 

Table 5 shows the Pearson correlation coefficients of the parameters for the integrated utility-based 

cache placement algorithm. 1c , 2c , 3c , 4c  and 5c  denote the cache hit ratio, data locality, data 

transmission time, task response time and energy consumption respectively. 1d  and 2d  are average 

cache size and the number of tasks. All the absolute values of Pearson correlation coefficients are greater 

than 0.6 in Table 5. Thus, the Pearson correlation coefficients indicate that the parameter pairs selected in 

experiments are strongly correlated. Compared with the positive correlation between 1c  and 2d , the 

positive correlation between 4c  and 2d  is weaker. The relationship between 1c  and 2d  is the 

strongest positive correlation. This is because task response time is achieved by not only data reading time 

but also task execution time. In addition, more data chunks are required to process more tasks, which 

increases the cache hit ratio significantly. The correlation of -0.687 between 4c  and 1d  is the weakest 

negative correlation. The reason is that the average cache size mainly affects data reading time which is a 

portion of task response time. 

4.3 Experiment Summary 

IUCP algorithm is compared with the centralized cache management mechanism Hadoop provides 

and CP-Dynamic algorithm. Extensive experiments show that IUCP algorithm can improve the cache 

service ratio and reduce the data reading time and cache replacement number effectively. Moreover, CLTS 

algorithm is evaluated by comparing it with FIFO scheduling algorithm, D-LAWS algorithm and CATS 

algorithm. Many experiments indicate that CLTS algorithm can improve the cache hit ratio and data 

locality and reduce the data transmission time, task response time and energy consumption costs 



significantly.  

5 Conclusion 

In this paper, we propose a cache-aware task scheduling method in edge computing. First, the 

integrated utility-based cache placement strategy is presented. The data chunks are cached at optimal edge 

servers to maximize the integrated utility value of caching. Then, tasks are scheduled according to the 

cache placement results. We model the task scheduling problem as a weighted bipartite graph of which 

weights are mainly derived by the location of required data, such as local cache, local disk or remote one. 

During each heartbeat, maximal weighted matching between tasks and resources are obtained. The 

proposed algorithms with polynomial time complexities are appropriate in edge computing. Furthermore, 

extensive experiments show that the cache-aware task scheduling algorithm outperforms other baseline 

algorithms in terms of cache hit ratio, data locality, data transmission time, task response time and energy 

consumption costs. 
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Highlights 

 

 An integrated utility-based cache placement strategy in edge computing is proposed by jointly 

considering data chunk transmission cost, caching value and replacement penalty. 

 A weighted bipartite graph model is applied to describe the relationships between tasks and edge 

servers. 

 A heuristic algorithm named cache locality-based task scheduling algorithm is proposed. Our 

proposed algorithm can obtain maximal weighted matching during each heartbeat. 

 We evaluate the performance of our proposed method and previous method via extensive 

experiments. The results indicate that our proposed method can improve the cache hit ratio and data 

locality. 
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