
Accepted Manuscript

Collaborative cache allocation and task scheduling for data-intensive
applications in edge computing environment

Li Chunlin, Tang Jianhang, Hengliang Tang, Youlong Luo

PII: S0167-739X(18)30943-9
DOI: https://doi.org/10.1016/j.future.2019.01.007
Reference: FUTURE 4700

To appear in: Future Generation Computer Systems

Received date : 20 April 2018
Revised date : 29 November 2018
Accepted date : 4 January 2019

Please cite this article as: L. Chunlin, T. Jianhang, H. Tang et al., Collaborative cache allocation
and task scheduling for data-intensive applications in edge computing environment, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.01.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.007

Collaborative Cache Allocation and Task Scheduling for Data-Intensive
Applications in Edge Computing Environment

Li Chunlin1,2,3, Tang Jianhang1 , Hengliang Tang4 , Youlong Luo1
1 Department of Computer Science, Wuhan University of Technology, Wuhan 430063, P.R.China

2 Key Laboratory of Geographic Information Science of Ministry of Education, East China Normal University, Shanghai,

200241, China
3 Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources，Shenzhen,

P.R.China
4 School of Information, Beijing Wuzi University, Beijing 101149, China

* Corresponding author:chunlin74@tom.com

Abstract—In the wake of the development of mobile devices, how to provide low-latency mobile services with

the limited battery power is attracting more and more attention. A novel paradigm, edge computing, can make

services closer to users, which can dramatically reduce the latency and improve battery life of UEs. However,

inappropriate placement and utilization of caching can degrade the system performance. In this paper, a

cache-aware task scheduling method in edge computing is proposed. First, an integrated utility function is

derived with respect to the data chunk transmission cost, caching value and cache replacement penalty. Data

chunks are cached at optimal edge servers to maximize the integrated utility value. After placing the caches, a

cache locality-based task scheduling method is presented. We model the task scheduling problem as a weighted

bipartite graph. Weights of edges of the graph are mainly influenced by the locations of the required data.

During each heartbeat, maximal weighted matching between tasks and resources are obtained. All the proposed

algorithms have polynomial time complexities which are acceptable in edge computing. Furthermore, extensive

experiments show that the cache-aware task scheduling algorithm outperforms other baseline algorithms in

terms of the cache hit ratio, data locality, data transmission time, task response time and energy consumption

costs.

Index Terms—Edge computing, Cache placement, Task scheduling, Weighted bipartite graph

1 Introduction

Recently, with the advent of technological evolution of portable mobile devices, such as smartphones,

laptops and sensors, the limitations of battery capacity and bandwidth have been serious obstacles for the

quality of service (QoS). The traditional solution to cover these limitations is to offload applications with

high resource requirements to a conventional core cloud [1], [2]. However, it is not efficient enough to

transmit applications to the cloud due to limited bandwidths. The vision of edge computing that can make

the service closer to users has led the path to a manner with low delays for mobile users. Edge computing

mainly consists of following computing concepts, Fog Computing [3], [4], Cloudlet [3], [4], [5] and

Mobile Edge Computing [3], [4]. Executing a portion of applications on the edge servers can reduce the

amount of data transmitted in the network, which reduces both latency and energy consumption costs.

Many application scenarios benefit from edge computing including face recognition application [6],

[7], IoT [6] and connected vehicles [6], [8]. All of these applications need low-latency services. The

architecture of edge computing mainly consists of a core cloud, an edge orchestrator (EO) and several

edge servers, as shown in Fig. 1. In order to overlook all edge servers, the edge orchestrator is connected

to the same network with them. Edge servers are installed at WiFi access points or base stations for

various scenarios [9]. Since the location of services is closer to users, the edge computing is receiving

more and more attention.

 Cloud

...

Internet

Edge orchestrator
(EO)

LAN

Edge server Edge server

Access point Base station

Augmented/
assisted/ virtual

reality

IoT

Face recognition

Connected vehicles

Edge server

Access point

......

Fig. 1 Application scenarios of edge computing

In edge computing system, each edge server has a certain cache size in the memory. The popular

contents will be dispatched and cached in the edge servers to further improve the system performance.

Moreover, excessive data transmission will increase the latency and energy costs. In order to improve the

quality of service (QoS), the cache-aware task scheduling is regarded as a valid manner. However, there

are many challenges in cache-aware task scheduling in edge computing.

First, caching spaces of edge servers are usually smaller than common servers in cloud computing.

Therefore, the cache replacement occurs frequently if contents are cached at edge servers with high cache

replacement rates. The system should make a decision to cache contents on edge servers not only

according to caching values but also according to the replacement rates of edge servers. Thus, an

integrated utility-based cache placement strategy which jointly considers data transmission cost, caching

values and cache replacement penalty is necessary.

Second, reading data from local cache is faster than reading data from local disk or remote edge

servers. In addition, reading data from local caches or disks can reduce the amount of data transmitted in

the network. Most of current cache-aware scheduling algorithms require lots of iterations, which may

cause higher entire system latency. A heuristic algorithm with polynomial time complexity is necessary to

take full advantage of computing and caching resources to reduce both the latency and energy

consumption costs.

The main contributions of this paper are shown as follows:

• An integrated utility-based cache placement strategy to reasonably place caches in edge computing

system is proposed by jointly considering data chunk transmission cost, caching value and cache replacement

penalty. The data chunks are cached at optimal edge servers to maximize the integrated utility value of caching.

• A weighted bipartite graph model is applied to describe the relationships between tasks and edge servers.

Weights of the graph are mainly derived by the locations of required data. The data transmission cost for task

scheduling is measured by data reading time and energy consumption costs. A heuristic algorithm named

cache locality-based task scheduling algorithm is proposed. The proposed task scheduling algorithm can

obtain maximal weighted matching during each heartbeat, which can reduce both latency and energy

consumption costs.

• Finally, we evaluate the performance of the cache-aware task scheduling method and previous method

via extensive experiments. The results indicate that the proposed task scheduling method improves the cache

hit ratio and data locality. And it also reduces the data transmission time, task response time and the

energy consumption costs of the system significantly.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3

proposes the cache-aware task scheduling method. Section 4 provides the analysis of experiment results.

Conclusions are made in Section 5.

2 Related work

2.1 Cache placement in edge computing

Some applications in edge computing need low-latency services. The content caching is regarded as

a promising technique to reduce the network delays. Since caching spaces of edge servers are limited,

only a part of contents can be cached. Many researchers studied edge caching policies mainly according to

popularity values of contents and cache storage constraints of edge servers. In previous references,

contents with high popularity values were selected and cached in edge servers under various storage space

constraints. Zeydan et al. [10] studied content caching in 5G wireless networks and presented a

big-data-enabled architecture. This architecture can harness a vast amount of data to estimate the content

popularity and cache strategic contents to improve the user satisfaction and backhaul offloading. The

authors only considered the limited storage capacities of edge servers. In this work, the cache replacement

penalty which is incurred by the limited caching spaces is proposed as a main factor to cache contents. Liu

J et al. [11] proposed both centralized and distributed transmission aware cache placement approaches to

reduce users’ average download delay. They considered diverse content preferences of different users.

Al-Turjman [12] considered four main parameters including age of the data, popularity of requests, delay

to receive the information and data fidelity. However, the authors achieved the data popularity only by

data request frequency. In this paper, the data access time and average time interval are also considered to

obtain data popularity values. Tran et al [13] proposed a collaborative caching and processing method in

Mobile-Edge Computing networks. They stored both the videos and their appropriate bitrate versions in

the caches and considered the transcoding relationships among versions. Wang X et al. [14] proposed an

edge caching architecture based on the content-centric networking. The authors evaluated content access

delay and traffic load in experiments. In this paper, cache replacement number is studied as a vital

parameter to indicate the system stability. Pellegrini F D et al. [15] proposed a caching policy derived by

popularity of contents, caching strategies of competing content providers and spatial distribution of small

cells. In this caching scheme, popular contents were cached in the intermediate servers. In previous works,

only the storage spaces of edge servers were seen as constrains to cache contents with high popularity

values. In this work, a dynamic caching process is analyzed. Both content caching and replacing are

studied. The data transmission cost and cache replacement penalty are introduced. The significant

differences of the proposed method are that the contents with high popularity values are cached in the

edge servers with low cache replacement rates to avoid the eviction of cached data chunks frequently

when the available cache size of edge servers is less than a certain threshold. Moreover, data chunks

cached in edge servers need to be transmitted from the edge servers that store these data chunks. Thus, the

data transmission cost is also considered.

Compared with servers in cloud datacenters, edge devices and servers are closer to users. Contents

are cached in the edge devices and servers to reduce the data transmission delays. When applications

arrive, contents are transmitted from edge devices or servers rather than cloud servers. There are many

caching approaches to study the content placement in edge devices and servers. Drolia U et al. [16]

presented an edge caching system called Cachier for recognition applications. They proposed to use edge

servers as “caches with computing resources”. Drolia U et al. [17] proposed a caching model that regarded

edge servers as caches for compute-intensive recognition applications. However, the authors studied a

coarse-grained cache placement problem. We consider a part of the memory in edge servers as caches,

which can be seen as fine-grained caches. Lots of researchers studied the cache placement in edge devices

(e.g. smartphones and tablets). Huang Y et al. [18] considered caching fairness issue among peer edge

devices in edge computing. The path contention cost that was formulated as a linear transformation of the

contention delay. We also applied the delay as cache replacement penalty. Moreover, cache replacement

rate is proposed as a main factor to evaluate edge servers. Zhang X et al. [19] partitioned the entire

wireless cell to avoid the interference in the edge computing network. They randomly distributed and

cache the popular contents in the mobile devices. However, edge devices have limited computing

resources, storage spaces and battery capacities. Moreover, the access speed of memory is faster than that

of disk. In this work, we consider a part of the memory of each edge server as cache. Reading data from

local memory of edge servers is faster than reading data from local disk or remote edge servers. The

various configurations of edge servers including available caching space, CPU performance and memory

speed are also considered, which can improve the utilization of caching and computing resources in the

system.

2.2 Cache locality-based scheduling

In Hadoop-based systems, some data-intensive applications may cause high delays to slow down the

system performance. Most literature studied the cache locality-based scheduling methods which can

achieve high data availability and low data transmission cost. Tasks were dispatched to the nodes with

required contents in caches to reduce data access costs. Lim B et al. [20] presented a cache-aware task

scheduling method (CATS) that considered the data storage in memory layer to improve the system

performance in Hadoop-based systems. We consider both cache locality and disk locality to make full use

of system storage resources. Li G et al. [21] cached computing results for some complicated jobs to

reduce the processing time of subsequent jobs with the same inputs and operations. Dai X et al. [22]

proposed a Cache A Replica On Modification cloud file system to improve its efficiency. They applied a

tripartite graph to present the relationships among computation nodes, data nodes and tasks by considering

limitations of the cache sizes and task performance. In this paper, task scheduling problem is formulated

as a weighted bipartite graph in which tasks are processed by logical bundles of computing resources

bound to edge servers. Chen Q. et al [23] took full advantage of the file cache by leveraging the output

data as soon as it was written to the file system in MapReduce. Tanaka M et al. [24] studied I/O-aware

task scheduling problem to maximize the disk cache hit rate for data-intensive and many-task workflow.

Only time consumption was considered as a main metric. We study the energy costs in both modelling

part and experiments to discuss the energy utilization. Bryk P et al. [25] proposed a dynamic scheduling

algorithm which took advantage of both file locality and data caching in clouds. This task scheduling

algorithm can decrease the number of file transfers. In these references, contents were cached in one

location, such as memory or disk. When tasks were scheduled, only the differences of reading data

between caches and remote servers were studied. In this work, a part of memory is regarded as cache. We

consider the diverse data locations including local caches, local disks and remote servers for task

scheduling. Tasks are set to different priority values according to the locations of required data chunks.

Data transmission costs including data transmission delays and energy costs are achieved according to the

above three locations. As a result, all kinds of storage resources are fully utilized to improve the system

throughput.

Caching can reduce the data transmission costs significantly. Thus, some researches applied the

caching to decrease the backhaul cost of popular contents and improve the performance of the network.

Zhou Y et al. [26] studied the information-centric virtualized heterogeneous networks with mobile edge

computing and in-network caching. They proposed a virtual resource allocation strategy which benefited

from not only virtualization but also caching and computing. In contrast to the energy consumption for

task execution in [26], the energy cost for data access is studied and evaluated in this paper. He Y et al.

[27] studied software-defined networks with caching and mobile edge computing for smart cities. They

applied a deep Q-leaening method to improve the utilization rates of networking, caching and computing

resources. However computation abilities of edge servers were integrated to guarantee the service quality

for applications. In this work, various computing resource requirements including CPU and memory are

considered to improve the system utilization. Wang C et al. [28] studied the computation offloading and

content caching strategy. They applied the alleviated backhaul bandwidth as the caching reward to

improve the total revenue of the network. The previous researches mainly focused on the backhaul time of

popular contents and the computing capacities of edge servers. In edge computing, applications submitted

by mobile users are usually heterogeneous. Thus, we consider the resource requirements of different tasks.

A weighted bipartite graph is proposed to make full use of caching and computing resources.

3. Cache-aware task scheduling method in edge computing

3.1 Cache-aware task scheduling model

Edge orchestrator
(EO)

LAN/MAN

Edge server Edge serverEdge server

......

...

Data chunks

(a) Cache
 placement

...

Tasks

(b) Cache locality
based task scheduling

...

Access point

Fig. 2 The architecture of the cache-aware task scheduling

In edge computing architecture, an edge orchestrator and several edge servers are installed. The edge

orchestrator manages all edge servers by Local Area Network (LAN) or Metropolitan Area Network

(MAN). Mobile devices communicate with edge servers by wireless communications. Edge servers have

some computing and caching resources. The edge orchestrator maintains overall view on both available

computing resources and caching resources. Popular contents are dispatched and cached among all edge

servers. Tasks submitted by users are scheduled and processed in these edge servers. The architecture of

the cache-aware task scheduling is shown in Fig. 2.

In order to further reduce latency, popular data should be cached at optimal edge servers and tasks

should be scheduled based on the cache locality. Therefore, the cache-aware task scheduling method

proposed in this work mainly includes the following two components:

(1) An integrated utility function is derived according to data chunk transmission cost, caching value

and cache replacement penalty. Then, data chunks are cached at optimal edge servers to maximize the

integrated utility value of caching.

(2) After caching data chunks, tasks will be dispatched to appropriate computing resources. The task

scheduling problem is modeled as a matching problem between tasks and computing resources in a

weighted bipartite graph model. The weights are mainly influenced by the locations of required data.

3.2 The integrated utility-based cache placement strategy

In order to reasonably cache the data chunks, an integrated utility-based cache placement strategy is

proposed. The integrated utility function is a function of the data chunk transmission cost, caching value

and cache replacement penalty to evaluate the caching results. The tabu search is given to obtain the

optimal cache placement with maximal cache placement integrated value.

3.2.1 Integrated utility function of caching

An integrated utility function is derived with respect to the data chunk transmission cost, caching

value and cache replacement penalty to evaluate the caching results as shown in equation (1). The data

chunk transmission cost is measured by the network distances among edge servers. The caching value is

proposed according to cache capacities of edge servers, replacement rates of edge servers and data

popularity values. The cache replacement penalty is given by the available cache size of edge servers and

caching data size. The goal of the optimal cache placement strategy is to maximize the integrated utility

value of caching (CIUV). Therefore, the cache placement problem can be formulated as the following

programming problem,

 ,
1 1

max .
dN N

n n n
i n i i i

i n

CIUV x Value Acq Penalty
 

    (1)

     

 

  

,

,
1

,

0,1 , 1,2, , , 1,2, ,

s.t. 1, 1,2, ,

1 =1, 1,2, , .

i n d

N

i n d
n

i n d

x i N n N

x i N

n x i N N



    
   

    



 





 (2)

where n
iValue denotes the caching value, n

iAcq is the data chunk transmission cost and n
iPenalty

represents the cache replacement penalty.

A. Data chunk transmission cost

In the system, data is divided into equal size data chunks. Let  1, 2, ,i dD d i N   be the data

chunk set which consists of dN data chunks. The size of each data chunk is a constant ds . The edge

servers with different configurations are denoted by a set  1,2, ,nS s n N   . We assume that if a data

chunk needs to be cached at a certain edge server, this edge server should acquire this data chunk from

other edge servers. Then, the data chunk transmission occurs. The data chunk transmission cost n
iAcq for

edge server ns to acquire data chunk id can be defined from (3),

   , , 1,2, , andn
i n nAcq a h s s n n N n n       (3)

where a is a positive constant and  n nh s ,s  represents the network distance between ns and ns  .

Assume that an edge server at which data chunks are cached cannot be the one that stores data chunk

replications. Therefore,  , 0n nh d d   .

B. Caching value

The caching value is proposed to evaluate the result that a data chunk is cached on a certain edge

server. It is a function of cache capacities of edge servers, data popularity values and replacement rates of

edge servers. The configurations of edge servers are usually different. This leads to the different cache

space contentions on edge servers. Thus, it is significant to consider various cache capacities of edge

servers to place caches appropriately. Let nCap denote the cache capacity of edge server ns as defined

in (4), which is influenced by the proportion of available caching space, CPU performance and memory

speed.

     1 2 33
n n n nCap F F F   . (4)

where  1
nF denotes the proportion of available cache of edge server ns ,  2

nF represents CPU

performance of edge server ns and  3
nF denotes memory performance of edge server ns .

In the following, how to achieve efficacy coefficients,  1
nF ,  2

nF and  3
nF , will be introduced. Let

ncs denote the cache size of edge server ns and nacs be the available cache size of edge server ns ,

where  1,2, ,n N  .  1
nF can be defined in (5),

 1 1

1

min

max min

aca aca
n n

n aca aca
n n

p p a
F

p p a

 


 
 (5)

where aca
n n np acs cs is the percentage of the available cache size.

Let nMIPS represent Million Instructions per Second (MIPS) of the CPU of edge server ns . Then,
 2

nF can be defined as follows,

 2 2

2

min

max min
n n

n
n n

MIPS MIPS a
F

MIPS MIPS a

 


 
. (6)

Let nAMAT represent average memory access time (AMAT) of the memory of edge server ns .

Then,  3
nF can be defined in (7),

 3 3

3

min

max min
n n

n
n n

AMAT AMAT a
F

AMAT AMAT a

 


 
. (7)

1a , 2a and 3a are constants in equations (5)-(8). Because any one of efficacy coefficients    1 3~n nF F

cannot be 0, a term ia is in the numerator. If any one of efficacy coefficients is 0, nCap will be 0 no

matter what the values of the other efficacy coefficients are. nCap will be 1 when all variables including
aca
np , nMIPS and nAMAT achieve their minimum values. Hence, a term ia is in the denominator.

The cache replacement will occur when the available cache size of an edge server is less than a

certain threshold. Because of the heterogeneity of edge servers, a number of edge servers may replace data

chunks frequently. If a cached data chunk is replaced, this data chunk should be transmitted from other

edge servers when users request it. Frequent cache replacements may result in high extra costs. Requested

multiple times by users, a data chunk should be cached at an edge server with low cache replacement rate.

Let nRep denote the cache replacement rate of edge server ns as depicted in (8),

1

1 nk
n

n j
jn

Rep data
cs 

  (8)

where n
jdata represents the data size of caches to be replaced in thj cache replacement on edge server

ns .

The total number of cache replacement times is nk on edge server ns . nRep reflects the cache space

contention of edge server ns . It means that data chunks cached on edge servers with high cache

replacement rates will be replaced frequently.

In order to improve the cache hit ratio and utilization of cache spaces, the data popularity is presented.

Let iPop be the popularity of data chunk id which can be achieved as follow,

 1

1 1dN

i i i now last last first
i i i i i

Pop RN RN
T T T T RN

  
         

 (9)

where iRN denotes the number of requests for data chunk id , last
iT denotes the time that data chunk

id was last requested, first
iT represents the time that data chunk id was first requested, nowT indicates

the current time. In equation (9), i iRN RN indicates the request frequency of data chunk id ,
now last

iT T reflects the recent request for data chunk id and  last first
i i iT T RN denotes the average

time interval of requests for data chunk id .

Therefore, the value of caching a data chunk id on edge server ns can be derived as depicted in

(10),

 n i n
i

n

Pop Cap
Value

Rep


 . (10)

Then, the total caching value of dN data chunks can be achieved in (11),

,
1 1 1 1

d dN NN N
n i n
i i n

i n i n n

Pop Cap
Value Value x

Rep   


    . (11)

where the binary variable ,i nx is defined to denote whether a data chunk id is cached on edge server

ns as follows,

 ,

1, if data chunk is cached at edge server ,

0, otherwise.
i n

i n

d s
x


 


 (12)

C. Cache replacement penalty

New data chunks will incur the eviction of certain cached data chunks at an edge server when the

available cache size of this edge server is less than a certain threshold. Because future requests for the

evicted data chunks cannot be served at this edge server, such eviction leads to replacement penalty. Let
n
iPenalty be the replacement penalty of caching data chunk id on edge server ns . n

iPenalty can be

defined as (13),

0,

,otherwise

n
n
i

n

bs acs

Penalty bs
val

band


  


 (13)

As mentioned above, an integrated utility function of caching CIUV is proposed according to data

chunk transmission cost, caching value and cache replacement penalty. Then, CIUV can be defined as

depicted in (14),

 ,
1 1

.
dN N

n n n
i n i i i

i n

CIUV x Value Acq Penalty
 

    (14)

3.2.2 Optimal cache placement

The goal of optimal cache placement strategy is to maximize integrated utility value of caching. The

problem formulated in (1) can be reduced to a knapsack problem which is an NP-complete problem. Thus,

it is an NP-hard problem. Tabu search (TS) is an efficient method that employs local search methods to

solve combinatorial optimization problems [29]. The tabu search starts with an initial solution which is

generated according to data popularity values and cache replacement rates. The calculation of the initial

solution mainly includes three steps.

First, data chunks are sorted by data popularity values in descending order. Edge servers are sorted

by cache replacement rates in ascending order.

Then, a data chunk id will be cached at an edge server ns with the maximal ratio of iPop to

nRep .

Finally, when all data chunks are cached, the initial solution is generated. New solutions are

generated based on the initial solution until the stopping criterion (e.g. the maximum number of iterations)

and tabu search can return the best one which is achieved during execution period.

3.2.3 The integrated utility-based cache placement algorithm

Algorithm 1: Integrated utility-based cache placement algorithm

Input: Data chunk set  1,2, ,i dD d i N   , edge server set  1,2, ,nS s n N  

Output: Optimal cache placement result HashMap ,D S

 1: HashMap ,D S  , HashMin ,api D S  // Initialization

 2: for each id D do

 3: Calculate iPop // The popularity of data chunk id

4: 0TR 

5: for each ns S do

 6: Calculate nRep // The cache replacement rate of edge server ns

 7: i nR Pop Rep // The ratio of iPop to nRep

 8: if TR R then

 9: TR R , ini ,HashMap Hash ,Map i nD S d s //Cache data chunk id on

edge server ns and record the mapping

10: end if

11: end for each

12: end for each

13:  HashMapini ,initialS CIUV D S // Obtain the initial solution of cache placement

14:    sm hax M ,Ha ap initialCIUV D S TS S // Derive the optimal cache placement result

by tabu search algorithm

15: return HashMap ,D S

Algorithm 1 represents the pseudo-code of the integrated utility-based cache placement algorithm.

First, the popularity value of each data chunk is calculated according to equation (9) (Algorithm 1

line 3).

Secondly, the cache placement rate of each edge server is calculated according to equation (8)

(Algorithm 1 line 6). Thirdly, the data chunk id is cached on edge server ns with maximal ratio of

iPop to nRep . And the initial mapping is recorded (Algorithm 1 line 8-10).

Then, an initial solution of cache placement is obtained (Algorithm 1 line 13).

Finally, the optimal cache placement result is obtained according to the initial solution by tabu search

algorithm (Algorithm 1 line 14).

In Algorithm 1, the time expense of deriving an initial solution is  dO N N and the time expense

of tabu search algorithm to achieve the optimal cache placement result is  2
iter dO N N where iterN

denotes the iteration number of tabu search algorithm, dN is the number of data chunks and N is the

number of edge servers. Hence, the time complexity of the integrated utility-based cache placement

algorithm is  2
iter dO N N .

The core of the proposed cache-placement algorithm is tabu search algorithm. Tabu search algorithm

is a well-known example of meta-heuristic scheduling techniques [33]. An advantage of tabu search

algorithm is that its time complexity is not exponential but polynomial [33], [34]. Thus, the program

overhead is relatively negligible [33], [34].

3.3 The cache locality-based task scheduling method

In this paper, both cache locality and disk locality are considered. It is noteworthy that reading data

from local cache is faster than reading data from local disk. Reading data from local disk is faster than

reading data from remote edge servers. Thus, the cache locality-based task scheduling method is proposed

to further reduce the latency. We model the task scheduling problem as a weighted bipartite graph of

which weights are mainly derived by locations of required data chunks. During each heartbeat, a maximal

weighted matching between tasks and resources are obtained.

3.3.1 Task scheduling model based on weighted bipartite graph

Tasks are handled by containers that are logical bundles of computing resources (such as <1 CPU,

3GB RAM>) bound to edge servers. tN tasks are scheduled to cN containers. Let

 1,2, , tT t N    and  1,2, , cC c N    demote the task set and container set respectively.

In addition, we have t cN N .

A simple graph  , ,G U V e , whose vertices are divided into two independent sets U and V , is

a bipartite graph. e denotes an edge set. Each edge connects a vertex of U with one of V in the

graph. If every edge has an associated weight in a bipartite graph, this bipartite graph is a weighted

bipartite graph. The task scheduling problem can be modeled as a weighted bipartite graph  , ,G T C E

where the task set T and the container set C represent vertex sets U and V respectively as shown

in Fig. 3. If a task can be handled by a container, there is an edge with a weight between them. Weights

are derived according to the similarity between tasks and resources, task scheduling priority and data

transmission cost.

1c 2c 3c
cNc

1t 2t 3t tNt

Containers

Tasks

...

...

3 44 65 4 7 1...

Fig. 3 Task scheduling model

A. Similarity between tasks and resources

Tasks have different requirements of computing resources, such as CPU and memory. A task can be

defined as a row vector  ,t tc tm   where tc and tm denote CPU requirement and memory

requirement respectively. In the same way, a container can be defined as a row vector  ,c cpu mem  

where cpu denotes the CPU of container c and mem denotes the memory of container c .

Therefore, the similarity between task t and container c can be achieved from (15),

   
, .

T
t c

sim t c
t c
 

 
 





 (15)

B. Task scheduling priority

The priority value of scheduling task t to container c is determined by the priority of the job

including task t and the location of data required by task t .In this paper, a lower priority value means

the higher priority. Let jp indicate the priority value of the job which includes task t Let ,loc 

represent the data location priority value which is measured according to the location of data required by

task t as shown in Table 1. For example, if the data required by task t is cached by a server that

provides container c , the ,loc  is set to 1b .

Table 1 Data location priority values

Data locations Value

Local caches of edge servers 1b

Local disks of edge servers

Remote edge servers
2b

3b

where 1 2 3b b b  . Then, the task scheduling priority value ,tp  can be achieved from (16),

, , .tp jp loc      (16)

C. Data transmission cost

If the data required by task t is not in the cache or disk of computation node which provides

container c when task t is dispatched to container c , the data transmission occurs. The data

transmission overhead consists of reading time and energy costs. The energy consumption costs are

measured by the power consumed by accessing and transmitting data, such as KWH. The energy

consumption of reading a required data chunk for task t includes the local access energy cost, remote

access energy cost and data move energy cost [36], [37], [38], which can be achieved as follows,

, , , ,Ec EL ER EM          (17)

where ,EL  denotes the energy consumption cost for local access of edge server ns which provides

container c to execute task t , ,ER  denotes the average energy consumption cost for remote access

of other edge servers and ,EM   denotes the minimum data move energy cost to container c to

execute task t . If the required data chunk in the local cache or disk of an edge server, we have

, 0ER   and , 0EM    .

The data transmission cost that task t is executed by container c can be defined as follows,

,

0, if required data is in local cache or disk

, otherwiser

n

tc N bs
dis

band
 


  


 (18)

where rN denotes the number of required data chunks, dis indicates the minimum distance to get

required data chunks and nband is the network bandwidth of edge server ns which provides container

c . Then, the total data transmission cost can be achieved as follows,

, 1 , 2 ,cost Ec tc        (19)

where 1 and 2 denote the adjustment coefficients Moreover, we have 1 2 1   .

As mentioned above, edge weights of the weighted bipartite graph can be calculated from (20),

 
 

   , ,
, 1 2 3

, ,

,
, 1,2, , and 1,2, ,

,
t c

tp costsim t c
ew a a a N N

tp costsim t c

    
 

    

         (20)

where

 
 

 

 

,

,

,

,

,
,

sim t c
sim t c

tp
tp

cost
cost

 
 

 

 
 

 

 
 

 

 

 

 


  

 














 (21)

1a , 2a and 3a are the weight coefficients of three influenced factors that can be achieved by a weight

coefficient matrix W as shown in (22). The three influenced factors 1f , 2f and 3f indicate the

similarity between tasks and resources, task scheduling priority and data transmission cost respectively.

11 12 13

21 22 23

31 32 33

w w w

W w w w

w a w

 
   
 
 

 (22)

where  1, 2,3 and 1,2,3rcw r c  can be calculated as follows,

1, if is more important than

0.5, if is as important as

0, otherwise.

r c

rc r c

f f

w f f


 



 (23)

Moreover,  1,2,3a   can be calculated from (24),
3

1
3 3

1 1

.
rc

c

rc
r c

w
a

w




 





 (24)

3.3.2 Optimal matching between tasks and computing resources

In order to schedule tasks, the task scheduling problem is formulated as an optimal matching problem

in the weighted bipartite graph as follows,

, ,
1 1

max
t cN N

y ew   
  
 (25)

     

 

,

,
1

0,1 , 1,2, , , 1,2, ,

s.t.
1, 1,2, ,

c

t c

N

t

y N N

y N

 

 


 




     



  



 


 (26)

where

,

task is dispatched to container

0, ot

1

h

, i

er

f

wise.

t
y

c
 

 
 


 (27)

If t cN N , t cN N hypothetic containers should be added. The added hypothetic containers are

connected with all tasks by edges whose weights are 0. That is to say, the weighted bipartite graph can be

regard as a complete weighted bipartite graph  , ,G T C E where T denotes the task set which

consists of cN tasks after adding hypothetic tasks.

Definition 1: A real function  l v is a feasible vertex labeling in  , ,G T C E , for

,t T c C     where  11,2, , , , ,t t cN N N    , if

    , .cl t l c ew
     (28)

Definition 2: A spanning subgraph  , ,G T C E   of graph  , ,G T C E is an equality subgraph,

for ,e E    , if

    , .cl t l c ew
     (29)

Theorem 1: The above task scheduling problem shown in (23) has at least one feasible solution.

Proof: Normally, the number of tasks is larger than the number of containers. After adding t cN N

hypothetic containers, the task scheduling problem can be regarded as a complete weighted bipartite graph

 , ,G T C E . Let  , ,G T C E   be an equality subgraph of G . Let v denote a vertex of T  , e

indicate an edge of E and e  represent an edge of E  . Suppose that G has a matching M  named

perfect matching that matches all vertices. Therefore, we have

     .
e M v T

w M w e l v
    

   

where  w e is the weight of edge e and  w M  is the sum of all edge weights of perfect matching

M  . Suppose that M is a perfect matching of G . We have

       .
e M v T

w M w e l v w M
  

    

Hence, the above task scheduling problem has at least one feasible solution which is a perfect matching of

equality subgraphs during each heartbeat.

3.3.3 The cache locality-based task scheduling algorithm

Algorithm 2: Cache locality-based task scheduling algorithm

Input: Task set to be scheduled  1,2, , tT t N    , Container set  1,2, , cC c N   

Output: Task scheduling result Matching  ,T C

 1: for each t T  , c C  do

 2: Calculate  ,sim t c  // The similarity between task t and container c

 3: Calculate ,tp  // The task scheduling priority

 4: Calculate ,Ec  and ,tc  // The time and energy consumption costs

 5: for each 0 3r  , 0 3c  do

 6: Calculate W // The weight coefficient matrix

 7: end for each

8: for each 0 3  do

9: Calculate ra // The weight coefficient

10: end for each

11: end for each

12: for each heartbeat

13: if t cN N then

14: Add t cN N hypothetic containers and calculate ,ew  // The complete

weighted bipartite graph during each heartbeat

15: Repeat

16: Randomly pick an equality subgraph G of the complete weighted bipartite

graph

17: Until G has a perfect matching  ,T C

18: else

19: Add c tN N hypothetic tasks and record the perfect matching  ,T C of the

equality subgraph of the complete weighted bipartite graph

20: end if

21: Update Task scheduling result  ,T C

22: end for each

23: return task scheduling result Matching  ,T C

Algorithm 2 shows the pseudo-code of the cache locality-based task scheduling algorithm.

Firstly, similarities, task scheduling priority values and data transmission costs between tasks and

containers are calculated according to equations (15), (16) and (17) respectively (Algorithm 2 line 2-4).

Secondly, weight coefficients are calculated according to the weight coefficient matrix (Algorithm 2

line 5-10).

Then, a complete weighted bipartite graph is constructed and a maximum weighted bipartite

matching is obtained during each heartbeat (Algorithm 2 line 12-22).

In Algorithm 2, the time expense of calculating edge weights of a bipartite graph is  t cO N N

where tN is the number of tasks to be scheduled and cN is the number of containers. After adding

t cN N hypothetic containers in a heartbeat interval, the time expense to achieve a perfect matching of

equality subgraphs of a complete weighted bipartite graph is  3
tO N . Therefore, the time complexity of

Algorithm 2 is   3/t c tO N N N    .

Compared with the time expense of task scheduling, the time spent on constructing a weighted

bipartite graph can be ignored. The time complexity of the task scheduling algorithm is with the

polynomial time   3/t c tO N N N    . The polynomial time complexity makes the algorithm suitable

option for the task scheduling [22], [35]. Since the time complexities have no exponential terms, the time

overhead of the proposed algorithms is relatively negligible.

4 Performance evaluation

4.1 Experimental environment: smart campus

With the rapid development of edge computing, computer vision and IoT, the traditional education is

changing. Modern campus is emerging by applying these new techniques, which improves the utilization

of available campus resources, heighten the work efficiency of both students and teachers [39], [40], [41].

Smart campus is a novel and significant application of edge computing, which mainly includes smart class,

augmented reality assisted mobile campus and smart lab [42], [43]. The smart class changes the way

students learn.

Compared with traditional classes, smart classes make students main and active roles. First, teachers

and students log in a smart class system by face recognition techniques. Second, students select the

teaching contents they favor. When they finish the classes, they can submit their speeches or presentations

which are stored, retrieved and analyzed at edge computing servers. Finally, teachers don’t need to record

the presentations for specific students who use the smart class system. The contents used in the smart class

mainly consist of videos and audios. Moreover, these contents are requested by students repeatedly in

particular buildings. Reading contents from cloud is costly and time-consuming. Therefore, it is

significant to deploy edge servers in the buildings of the campus and cache popular contents in these edge

servers.

The smart campus system mainly consists of an edge orchestrator, edge servers and campus network,

as shown in Fig. 4. Popular teaching contents are cached in the edge servers which are deployed in the

buildings, such as library, teaching buildings and dormitories. Students and teachers connect the edge

servers by access points. The edge orchestrator that manages and controls all edge servers acts as a master

node. The edge orchestrator and all edge servers communicate with each other by campus network. And

the entire campus network can also be connected to the Internet.

192.168.
203.10-

12

192.168.
204.10-

12

Library

Dormitory

Teaching

building

192.168.
202.10

Internet

Office

Smart classSmart labAR assisted
campus

Teaching
resources

Students

Students

Teachers

192.168.
206.10-

11

Students

Edge orchestrator
(EO)

Edge server

Campus
network

Switch Switch

Switch

192.168.
205.10-

11

Switch Switch

Router

Fig. 4 Experimental environment

The cache-aware task scheduling method is experimentally verified. The experimental environment

is shown in Fig. 4. 1 edge orchestrator and 10 edge servers with different configurations are installed.

These 10 edge servers are deployed in 10 different buildings in our campus. The edge orchestrator is

composed of an Intel Core i5-4590 CPU running at 3.30 GHz and 4GB RAM. Each edge server that acts

as a slave node is empowered with an Intel Core i5-4590 CPU running at 3.30 GHz. Slave 1-Slave 3 are

configured with 4GB RAM. Slave 4-Slave 6 are composed of 6GB RAM. And Slave 7-Slave 10 are

configured with 8GB RAM.

The network bandwidth of the campus network is 30Mbps. The model number of network switches

is ALCATEL Omnicore5022. The operating system is Linux Ubuntu 14.04.1 LTS, The Hadoop 2.7.1 is

adopted to perform the experiments, the version of the Java Development Kit is JDK 1.7.0_45 and the

development environment is MyEclipse 10. The Huawei AP3010DN-AGN is adopted as the WiFi access

point in each building. End devices use IEEE 802.11 radios to connect WIFI access points which are

connected to local edge servers.

The configurations of edge orchestrator and edge servers are shown as follows.

Table2 Configurations of edge servers

Host name Configuration IP

Master

(EO)

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 4G 192.168.202.10

Slave1-Slve3

(Edge servers)

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 4G 192.168.203.10

192.168.203.11

192.168.203.12

Slave4-Slve6

(Edge servers)

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 6G 192.168.204.10

192.168.204.11

192.168.204.12

Slave7-Slve8

(Edge servers)

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 8G 192.168.205.10

192.168.205.11

Slave9-Slve10

(Edge servers)

Intel(R)Core(TM) i5-4590CPU 3.30GHz RAM: 8G 192.168.206.10

192.168.206.11

The experimental data set including text data about 96 million blog posts of Memetracker comes

from Stanford Network Analysis Project (SNAP) [30]. The data set named memetracker9 includes

Memetracker phrases and hyperlinks between 96 million blog posts from Aug 2008 to Apr 2009 [30]. This

data set consists of the real-world text data. Thus, it is general enough to conclude. This data set contains

9 files. The total size of these files is 13.36GB. In the Hadoop Distributed File System (HDFS), the

default setting of the data chunk size is 64 MB. Thus, the size of each data chunk is set as 64MB. In order

to evaluate the performance of the proposed task scheduling algorithm and other task scheduling

algorithms, we adopted WordCount as a benchmark job, which counts the characters from above data set.

The detailed testing parameters are listed in Table 3.

Table 3 Testing parameters

Parameter name Value

The data location priority value 1b 10

The data location priority value 2b 20

The data location priority value 3b 30

The number of edge orchestrators 1

The number of edge servers 10

The data size of each data chunk 64MB

The average cache size of edge servers  25,55

The number of data chunks to be read  16,256

The number of data chunks to be cached 100

Popularity of data chunks  0.5,0.9

The number of tasks  16,256

The size of each task 64MB

In table 3, the amounts of some parameters are determined according to the settings of the software

and hardware. In the Hadoop Distributed File System (HDFS), the default setting of the data chunk size is

64 MB. The default setting of the task size is same as the data chunk size. Thus, the sizes of both data

chunks and tasks were set to 64MB.

The numbers of edge orchestrators and servers are determined according to hardware requirements

and real-life environment. In edge computing framework, the mode including 1 edge orchestrator and N

edge servers is generally applied at system level [5], [6], [8], [47]. We also apply this mode. Thus, 1 edge

orchestrator is required. In the smart campus scene which is a real-word experiment environment, 10 edge

servers are deployed to cover most of students on campus. These edge servers are deployed in library,

teaching buildings and dormitories. It is available that 10 edge servers are deployed.

According to [45] and [46], the number of tasks is set to the multiples of 10 or 20 to evaluate the

performance of algorithms. And the maximum number of tasks is set to the square of these numbers. And

the maximum number of tasks is set to the square of these numbers. We follow these settings. The

numbers of both tasks and data chunks are set to the multiples of 16. The maximum value is set to 256.

The average cache size of each edge server is set to 55 at most. The number of data chunks to be

cached is set to 100. These data chunks should be cached in 2 edge servers at least and may incur the

eviction in edge servers. In addition, too many cached data chunks will weaken the impacts of different

cache placement algorithms. The data location priority values and popularity values of data chunks are

defined by equations (9) and (16). Others are obtained according to the relevant references [10], [13].

There are two main parts in experiments of verifying the effectiveness of cache-aware task

scheduling algorithm. First, the integrated utility-based cache placement algorithm is compared with the

centralized cache management mechanism Hadoop provides and CP-Dynamic algorithm [31] in terms of

cache service ratio, data reading time and cache replacement number. Then, the cache locality-based task

scheduling algorithm is compared with First In First Out (FIFO) scheduling algorithm, D-LAWS algorithm

[32] and CATS algorithm [20] in terms of cache hit ratio, data locality ratio, data transmission time, task

response time and energy cost. Since FIFO scheduling algorithm, D-LAWS algorithm and CATS algorithm

are the algorithms with same objectives as the proposed cache locality-based task scheduling algorithm,

these three algorithms are selected as comparison algorithms.

In verification experiments of the integrated utility-based cache placement algorithm, cache service

ratio, data reading time and average replacement number are given to evaluate the algorithm performance.

The cache service ratio CSR represents the ratio of CRN that denotes the number of requested data

chunks that are cached on edge servers to RN which represents the total number of requested data

chunks as shown in (30),

The data

denotes

In

data loc

algorithm

tasks wh

cache hi

The data

disk or i

remote e

for trans

from th

consump

4.2 Com

4.2.1 Pe

In

(IUCP)

Hadoop

reading

algorithm

are give

affected

a reading tim

the total repl

verification e

cality, data tr

m performan

hose required

it ratio can be

a locality repr

in local cache

edge servers,

smitting the d

he task subm

ption for task

mparison and

erformance e

this section,

algorithm an

provides and

time and cac

ms, each exp

en to improv

by various p

me denotes th

lacement num

experiments

ransmission

nce. The cach

d data chunks

e calculated a

resents the ra

e to the total

, the data tran

data chunks

mission time

k execution.

d analysis

evaluation of

the performa

d the other tw

d CP-Dynam

che replacem

periment has b

ve the reliabi

parameters is

(a)

he overall tim

mber of cache

of the cache

time, task r

he hit ratio C

are in local c

as depicted in

atio of the num

number of ta

nsmission wi

which must b

to the finis

f integrated u

ance evaluati

wo benchmark

ic algorithm

ment number.

been execute

lity of exper

analyzed by s

CRN
CSR

RN


me for reading

ed data chunk

e locality-bas

response time

CHR denotes

cache to tN

(31)

t

LCN
CHR

N


mber of tasks

asks. When t

ill occur. The

be transmitte

sh time of th

utility-based

ion results o

rk algorithms,

[31], are eva

 In order to

ed for 12 time

riment results

setting differe

N

N

g data chunk

ks.

sed task sche

e and energy

 the ratio of

which indic

N

s whose requi

the required d

e data transm

ed. The task

he last task.

d cache place

f the integra

, the centraliz

aluated in term

validate the

es and the av

s. How the p

ent parameter

ks. The cache

eduling algori

y cost are g

LCN that d

ates the total

ired data chun

data chunks f

mission time d

response tim

. The energy

ement algorit

ted utility-ba

zed cache man

ms of the cac

effectiveness

erage values

performance

r values.

 (b

e replacement

rithm, cache

given to eval

denotes the nu

number of ta

nks are stored

for tasks are

denotes the t

me is the time

y cost is the

thm

ased cache p

anagement me

che service ra

s of cache p

of evaluation

of each algo

b)

 (30)

t number

hit ratio,

luate the

umber of

asks. The

 (31)

d in local

stored in

otal time

e interval

e energy

lacement

echanism

atio, data

lacement

n metrics

orithm is

Fig. 5 Im

replaceme

In t

be cache

accordin

randoml

requests

frequenc

data chu

Fig

reading

As

mechani

increase

chunks a

cache m

up to 39

Fig

algorithm

remote e

managem

7.19% re

Fig

these th

algorithm

reductio

cache pl

It i

time and

large av

read are

mpacts of differ

ent number

this subpart,

ed on an edg

ng to histori

ly to validate

s for data ch

cies of data c

unks accordin

g. 5 depicts h

time and cach

shown in Fi

ism and CP-

es from 25 to

are cached on

management m

9.07% and 17

g. 5 (b) depict

ms. The reaso

edge servers.

ment mechan

espectively.

g. 5 (c) show

hree algorithm

m leads to a r

on over the CP

lacement pen

s obvious tha

d cache repla

erage cache s

in the caches

rent average ca

the size of ea

ge server den

cal running

e the algorith

hunks, the tim

chunks. The m

ng to equation

how the aver

he placement

g. 5 (a), the

-Dynamic alg

o 55. This is

n edge server

mechanism an

.25% respect

ts that the da

on is that rea

When the av

nism and CP-

ws the cache r

ms. Under th

reduction of

CP-Dynamic a

alty is a main

at there are n

acement numb

size of edge s

s with more p

ache sizes on (

ach data chun

notes the cach

data by me

hm performan

me that data

mentioned his

n (9).

rage cache si

t number by v

cache service

gorithm all i

because, wit

rs. When the

nd CP-Dynam

ively.

ta reading tim

ading data fro

verage cache s

-Dynamic alg

replacement n

he same cond

18.62% over

algorithm in t

n factor of IU

not a lot of d

ber among th

servers leads

probability.

 (c)

(a) the cache s

nk is 64MB.

he size of th

entioned thre

nces. The hi

a chunks are

storical runni

ize of all edg

varying the v

e ratios of IU

increase whe

th the increa

e average cac

mic algorithm

me acts as a d

om local cach

size is 25, IU

gorithm can r

number as a

dition of the

r the centraliz

terms of the c

UCP algorithm

differences in

he three algo

to caching m

service ratio, (b

The maximu

his edge serve

ee algorithms

storical runn

first request

ing data is us

ge servers aff

alue from 25

UCP algorith

en the averag

se of average

he size is set

m, IUCP algor

decreasing fu

he is faster th

UCP algorithm

reduce the da

decreasing f

average cach

zed cache ma

cache replace

m.

n terms of the

rithms when

more data chu

b) the data rea

m number of

er. After cach

s, 160 data

ning data incl

ted, the curr

sed to achieve

ffects the cac

to 55.

m, centralize

ge cache size

e cache size,

t to 25, comp

rithm increas

unction of ave

han reading da

m compared w

ata reading tim

function of av

he size whic

anagement me

ement numbe

e cache servi

the average

unks. Hence,

ading time, (c)

f data chunks

hing 100 dat

chunks will

ludes the num

rent time and

e popularity v

che service ra

ed cache man

e of all edge

, more and m

pared with ce

ses cache serv

erage cache s

data from loca

with centraliz

me up to 18.

average cache

ch is set to 2

echanism and

er. This is bec

ice ratio, data

cache size is

the data chun

the cache

s that can

a chunks

be read

mbers of

d request

values of

atio, data

nagement

e servers

more data

entralized

vice ratio

size in all

al disk or

zed cache

46% and

e size for

25, IUCP

d a 24.63%

cause the

a reading

s 55. The

nks to be

Fig. 6 Imp

cache rep

In t

25, the s

by IUCP

Then, h

varying

Fig

varying

the num

read ran

When th

managem

8.71% re

The

shown i

time inc

great wh

increase

mechani

algorithm

longer ti

As

pacts of differe

placement numb

this subpart, t

size of each d

P algorithm,

ow the numb

the value fro

g. 6 (a) illust

the value fro

mber of data ch

ndomly increa

he number of

ment mechan

espectively.

en, we invest

n Fig. 6 (b).

creases signifi

hen the num

e to 256, IU

ism and a 10

m considers

ime to cache

shown in Fig

(a)

nt numbers of d

ber

the default se

data chunk is

centralized c

ber of data c

m 16 to 256 i

trates how th

m 16 to 256.

hunks to be r

ases, the prob

f data chunks

nism and CP-

t how differe

As the numb

ficantly amon

mber of data c

UCP algorithm

0.59% reduct

both data po

popular data

g. 6 (c), the c

data chunks to b

ettings are as

64MB and th

cache manage

chunks to be

is analyzed. A

he number of

It is obvious

read among th

bability that th

to be read is

-Dynamic alg

ent numbers

ber of data ch

g all three alg

chunks to be

m leads to

tion over CP

opularity and

chunks.

ache replacem

(c)

be read on (a) t

follows. The

he number of

ement mecha

read affects

All of data ch

f data chunks

s that the cach

hree algorithm

these data chu

s 256, IUCP

gorithm incre

of data chun

hunks which

gorithms. The

e read is 16.

a 20.76% re

P-Dynamic al

d cache repla

ment number

the cache servic

e average cac

f data chunks

anism and CP

cache servic

hunks are read

s to be read

he service rati

ms. Because t

unks are cach

algorithm co

eases the cach

nks to be rea

h are read ran

e differences

When the n

eduction ove

lgorithm in t

cement rate

r shows as an

 (b

ce ratio, (b) the

he size of all

 which are ca

P-Dynamic al

ce ratio and

d randomly.

affects the c

io acts as an i

the number o

hed on edge s

mpared with

he service rat

d affects the

ndomly increa

among three

number of da

er centralized

terms of data

of edge serv

increasing fu

b)

data reading tim

l edge servers

ached on edg

lgorithm is se

data reading

cache service

increasing fu

of data chunk

servers also i

the centraliz

atio up to 21.

data reading

ases, the data

e algorithms a

ata chunks to

d cache man

a reading tim

vers, which le

unction of the

me, (c) the

s is set to

ge servers

et to 100.

g time by

 ratio by

unction of

s that are

ncreases.

zed cache

88% and

g time as

a reading

are not so

o be read

nagement

me. IUCP

eads to a

e number

of data c

replaced

other tw

new data

Fig. 7 Imp

The

the num

CP-Dyn

randoml

data read

Fig

obvious

algorithm

data chu

IUCP a

algorithm

As

reading

managem

37.78%

IUCP al

4.2.2 Pe

In t

algorithm

D-LAWS

data tran

operatio

experim

calculate

studied.

chunks to be

d when some

wo algorithms

a chunks.

pacts of differe

e default setti

mber of data

namic algorith

ly. How the a

ding time via

g. 7 (a) depict

that the perf

m considers b

unks with the

algorithm co

m improves t

observed fro

time reduce

ment mechan

and 30.03%

lgorithm can

erformance e

this section, t

m and the o

S algorithm [3

nsmission tim

on, lots of dat

ments, each ex

ed. How the p

read from 64

new data chu

. This is beca

(a)

nt average data

ings of this p

chunks cache

hm is 100, an

average data p

a varying the v

ts the cache s

formance of I

both the data

high data po

ompared with

the cache serv

om Fig. 7 (b)

es dramatical

nism and CP-

 when the av

keep caching

evaluation of

the performan

other three b

32] and CATS

me, task respo

a chunks are

xperiment has

performance

4 to 256. The

unks are read

ause the repla

a popularity on (

art are shown

ed by IUCP

nd the size of

popularity of

value from 0

service ratio a

IUCP algorith

popularity an

pularity for a

h the centra

vice ratio up t

), when the a

ly among al

-Dynamic alg

verage data p

g data chunks

f cache locali

nce evaluatio

enchmark alg

S algorithm [

onse time and

cached in the

s been execut

of each sched

e reason is th

d. The perform

acement pena

(a) the cache se

n as follows:

algorithm, c

f each data ch

all data chun

.4 to 0.9.

as an increasi

thm is better

nd edge serve

a longer time.

alized cache

to 52.28% an

average data

ll three algor

gorithm, IUCP

popularity is

 with high da

ity-based tas

on results of th

gorithms, Fir

20], are inve

d energy cost.

e system. For

ted for 12 tim

duling algori

hat data chun

mance of IUC

alty is a main

ervice ratio, (b)

the average c

centralized ca

hunk is 64MB

nks to be read

ing function o

than others a

er cache place

. When the av

e managemen

nd 19.16% res

popularity in

rithms. Com

P algorithm r

set to 0.9 re

ata popularity

sk scheduling

he cache loca

rst in First o

stigated in ter

When the sy

r the purpose

mes and averag

thm is affecte

nks cached on

CP algorithm

factor of IUC

 (b)

the data readin

cache size of

ache managem

B. Then, 160

d affects the c

of the average

all the way. T

ement rate, w

verage data p

nt mechanism

spectively.

ncreases from

pared with t

reduces the da

espectively. T

y values for a

g algorithm

ality-based ta

out (FIFO) s

rms of cache

ystem keeps s

of guarantee

ge values of e

ed by various

n edge server

m is always be

CP algorithm

)

ng time

all edge serv

ment mechan

0 data chunks

cache service

e data popula

This is becaus

which leads to

popularity is s

m and CP-D

m 0.4 to 0.9,

the centralize

ata reading ti

The reason is

longer time.

ask scheduling

scheduling al

hit ratio, dat

stable after a p

eing authentic

evaluation m

s parameter s

rs will be

etter than

m to cache

vers is 25,

nism and

s are read

ratio and

arity. It is

se, IUCP

o caching

set to 0.9,

Dynamic

the data

ed cache

ime up to

s that the

g (CLTS)

lgorithm,

a locality,

period of

city of all

etrics are

ettings is

Fig. 8 Imp

(d) the tas

In t

are lots

number

Then, ho

to 55 is

Fig

for all f

increase

all the t

longer ti

The

55. Fig.

function

55, com

algorithm

As

cache si

data chu

When th

algorithm

respectiv

pacts of differe

sk response tim

this subpart o

of cached da

of data chun

ow the averag

investigated.

g. 8 (a) shows

four algorith

es. The perfor

ime. The rea

ime.

en, we study

8 (b) depict

n of the avera

mpared with

m can increas

observed fro

ize in all thre

unks that are

he average ca

m and CATS

vely.

 (a)

 (c)

ent average cach

me

of task schedu

ata chunks w

nks that can b

ge cache size

s the cache hi

hms. This is

rmance of CL

ason is that C

how the ave

ts the experim

age cache size

FIFO sched

se the data lo

om Fig. 8 (c)

ee algorithms

required for

ache size is 55

S algorithm, r

he sizes on (a) t

uling experim

when the syste

be cached on

e affects the m

it ratio as an

because mo

LTS algorithm

CLTS algorith

rage cache si

mental result

e in all algori

duling algorit

cality up to 6

, the data tra

s when the av

executing tas

5, CLTS algo

reduces the d

the cache hit ra

ments, we ran

em keeps sta

n an edge ser

mentioned ev

increasing fu

ore data chun

m is better tha

hm can keep

ize affects th

ts. It is obvio

ithms. When

thm, D-LAW

63.76%, 16.59

ansmission tim

verage cache

sks frequently

orithm, compa

data transmis

atio, (b) the data

ndomly choos

able after a pe

rver denotes t

valuation met

unction of the

nks are cach

an that of the

data chunks

e data localit

ous that the d

the average c

WS algorithm

9% and 10.34

me shows a d

e size increas

y are cached,

ared with FIF

ssion time up

 (b)

 (d

a locality, (c) th

se 160 tasks t

eriod of oper

the cache siz

rics via varyi

e average cac

hed when the

other three s

with high po

ty by varying

data locality

cache size of

and CATS

4% respective

decreasing fu

es from 25 to

which leads

FO scheduling

p to 36.18%,

d)

he data transmis

to be execute

ration. The m

ze of this edg

ing the value

che size from

e average ca

scheduling al

opularity valu

g the value fr

acts as an in

f edge servers

algorithm, th

ely.

unction of the

o 55. More a

to few data t

ng algorithm,

30.02% and

ssion time,

ed. There

maximum

ge server.

e from 25

25 to 55

ache size

lgorithms

ues for a

om 25 to

ncreasing

s is set to

he CLTS

e average

and more

transfers.

D-LAWS

d 16.33%

Fin

It is obv

cache si

FIFO sc

CATS al

dispatch

In

Accordi

85%. Ba

set to in

average

how the

task resp

Fig

increasin

utilized

increasin

scheduli

up to 45

Fig

When th

because

tasks is

reductio

data tran

Fin

from 16

for all

perform

algorithm

29.73%,

nally, how the

vious that the

ize. When the

cheduling alg

lgorithm. Th

h tasks to opti

this part of

ng to referen

ased on the h

ntegral multip

cache size in

e number of t

ponse time by

g. 9 (a) depict

ng of the nu

when the nu

ng function

ing algorithm

.34%, 18.64%

g. 9 (c) shows

he number of

the data tran

256, CLTS a

on over D-LA

nsmission tim

nally, we inve

 to 256 in Fig

algorithms.

mance differen

m, D-LAWS a

, 17.59% and

e average cac

task respons

e average cac

gorithm, a 33

e reason is t

imal resource

experiments

nces [10], [13

hardware conf

ples of data c

nterval. Thus

tasks affects

y varying the

ts the cache h

umber of task

umber of task

of the numb

m, D-LAWS al

% and 7.62%

s that the data

f tasks is 16,

nsmission se

algorithm lea

WS algorithm

me.

estigate how

g. 9 (d). The

The reason

nces to deal

algorithm and

d 11.24% resp

 (a)

he size affect

e time of all t

che size is se

3.47% reduct

hat the CLTS

es.

, the default

] and [14], th

figurations an

chunk size, w

, the average

the cache hit

value from 1

hit ratio under

ks in all algo

ks increases. A

ber of tasks.

lgorithm and

respectively.

a transmission

there are few

ldom occurs

ads to a 21.4

m and a 7.52%

the number o

task respons

is that more

with 16 task

d CATS algor

pectively whe

ts the task res

three algorith

et to 55, CLT

tion over D-L

S algorithm m

t settings of

he ratio of cac

nd above ratio

which is from

e cache size o

t ratio, the da

16 to 256.

r the different

orithms. The

As observed

When the n

CATS algorit

.

n time acts as

w performanc

when the nu

43% reductio

% reduction o

of tasks affec

e time acts a

e time is ne

ks among all

rithm, CLTS

en the number

sponse time i

hms shows a

TS algorithm

LAWS algorit

makes full u

f task schedu

che size to to

os, the averag

m 25 to 55. M

of all edge se

ata locality, t

t number of t

e reason is th

from Fig. 9

number of ta

thm, CLTS al

s an increasin

ce difference

umber of tas

on over FIFO

over CATS sc

cts the task r

s an increasin

eeded to pro

algorithms.

algorithm red

r of tasks is 2

s analyzed, a

decreasing fu

leads to a 45

thm and a 18

se of the cac

uling experim

otal storage si

ge cache size

Moreover, 40

ervers is set t

he data trans

asks. The cac

hat more cac

(b), the data

sks is 160, c

gorithm incre

ng function of

es among thre

ks is small.

O scheduling

heduling algo

response time

ng function o

ocess more t

Compared w

duces the task

256.

 (b)

as shown in F

unction of the

5.57% reduct

8.55% reduct

ched data chu

ments are as

ize is set from

e of all edge s

0 is the media

to 40. Then, w

smission time

che hit ratio a

ched data ch

a locality sho

compared wi

eases the data

f the number

ee algorithms

When the nu

algorithm, a

orithm in term

e by varying

of the number

tasks. There

with FIFO sc

k response ti

Fig. 8 (d).

e average

tion over

tion over

unks and

follows.

m 25% to

servers is

an of the

we study

e and the

acts as an

hunks are

ows as an

ith FIFO

a locality

of tasks.

s. This is

umber of

a 14.24%

ms of the

its value

r of tasks

are few

cheduling

me up to

Fig. 9 Imp

the task re

Fig

tasks. In

more da

transmis

CLTS al

cache siz

As

number

number

a 26.22%

4.2.3 Se

The

varying

The Pea

correlati

In e

Pearson

pacts of differe

esponse time

g. 10 shows t

n Fig. 10 (a),

ata chunks ar

ssion costs. C

lgorithm redu

ze is set to 25

observed fro

of tasks incre

of tasks is 25

% reduction o

ensitivity ana

e sensitivity

parameters.

arson correla

ion coefficien

equation (32)

correlation c

 (c)

nt numbers of t

 (a)

the energy co

the energy co

re cached in

Compared wit

uces the ener

5.

om Fig. 10 (

eases. This is

56, the CLTS

over D-LAWS

alysis

analysis can

The correlat

ation analysis

nt can be achi

xyr 

), x and y

coefficient is

tasks on (a) the

Fig. 10 The

osts of whole

osts act as dec

edge servers

th FIFO sche

rgy consump

(b), the energ

s because mor

S algorithm le

S algorithm an

n provide the

ion analysis

s is applied

ieved as follo


2

n

n x 




 denote the

between -1 a

cache hit ratio,

energy costs of

e system with

creasing func

s with larger

eduling algor

ption up to 3

gy costs of a

re data chunk

eads to a 39.1

nd a 15.39 red

e details abo

is a well-kn

to indicate

ows,

 
 2

xy x

x n



 
  

 
 
experimental

and 1, where

, (b) the data lo

f the whole syst

h various ave

ctions of aver

r average cac

rithm, D-LAW

35.51%, 16.3

all algorithm

ks are require

9% reduction

duction over

ut how the p

own techniqu

the relations

 
2

x y

y y


 
l data. The n

the positive v

 (d)

cality, (c) the da

 (b)

tem

erage cache s

rage cache siz

che sizes, wh

WS algorithm

7% and 8.11

ms increase dr

ed to process t

n over FIFO s

CATS algorit

proposed alg

ue to analyze

hips among

2 


umber of dat

value indicate

data transmissio

sizes and num

zes. The reaso

hich reduces

and CATS al

1% when the

dramatically w

these tasks. W

scheduling al

thm

gorithms beh

e the sensitiv

the paramet

ta is n . The

es positive co

n time, (d)

mbers of

on is that

the data

lgorithm,

e average

when the

When the

lgorithm,

ave with

vity [44].

ters. The

 (32)

value of

orrelation

and negative value means negative correlation. In addition, there is no correlation when the value is 0.

The correlation coefficients among the mentioned parameters are shown in the following tables.

Table 4 Pearson correlation coefficients for the integrated utility-based cache placement algorithm

Parameters 1a 2a 3a

1b 0.936 -0.815 -0.837

2b 0.947 0.743 0.891

3b -0.822 0.828 N/A

Table 4 shows the Pearson correlation coefficients of the parameters for the integrated utility-based

cache placement algorithm. 1a , 2a and 3a denote the cache service ratio, data reading time and cache

replacement number respectively. 1b , 2b and 3b denote the average cache size, the number of data

chunks to be read and average data popularity respectively. Strong correlations among parameter pairs are

shown in Table 4. Compared with the correlation between 2a and 2b , the correlation between 1a and

2b is stronger. More data chunks are required when the number of data chunks to be read increases. Thus,

the cache service ratio increases. The data reading time is mainly affected by not only the number of data

chunks to be read but also data locations. The relationship between 3a and 1b is the strongest negative

correlation among all parameter pairs. The reason is that the number of data chunks cached in edge

servers is greater when the average cache size is larger, which leads to the smaller cache replacement

number.

Table 5 Pearson correlation coefficients for the cache locality-based task scheduling algorithm

Parameters 1c 2c 3c 4c 5c

1d 0.958 0.857 -0.813 -0.687 -0.744

2d 0.972 0.894 0.821 0.719 0.772

Table 5 shows the Pearson correlation coefficients of the parameters for the integrated utility-based

cache placement algorithm. 1c , 2c , 3c , 4c and 5c denote the cache hit ratio, data locality, data

transmission time, task response time and energy consumption respectively. 1d and 2d are average

cache size and the number of tasks. All the absolute values of Pearson correlation coefficients are greater

than 0.6 in Table 5. Thus, the Pearson correlation coefficients indicate that the parameter pairs selected in

experiments are strongly correlated. Compared with the positive correlation between 1c and 2d , the

positive correlation between 4c and 2d is weaker. The relationship between 1c and 2d is the

strongest positive correlation. This is because task response time is achieved by not only data reading time

but also task execution time. In addition, more data chunks are required to process more tasks, which

increases the cache hit ratio significantly. The correlation of -0.687 between 4c and 1d is the weakest

negative correlation. The reason is that the average cache size mainly affects data reading time which is a

portion of task response time.

4.3 Experiment Summary

IUCP algorithm is compared with the centralized cache management mechanism Hadoop provides

and CP-Dynamic algorithm. Extensive experiments show that IUCP algorithm can improve the cache

service ratio and reduce the data reading time and cache replacement number effectively. Moreover, CLTS

algorithm is evaluated by comparing it with FIFO scheduling algorithm, D-LAWS algorithm and CATS

algorithm. Many experiments indicate that CLTS algorithm can improve the cache hit ratio and data

locality and reduce the data transmission time, task response time and energy consumption costs

significantly.

5 Conclusion

In this paper, we propose a cache-aware task scheduling method in edge computing. First, the

integrated utility-based cache placement strategy is presented. The data chunks are cached at optimal edge

servers to maximize the integrated utility value of caching. Then, tasks are scheduled according to the

cache placement results. We model the task scheduling problem as a weighted bipartite graph of which

weights are mainly derived by the location of required data, such as local cache, local disk or remote one.

During each heartbeat, maximal weighted matching between tasks and resources are obtained. The

proposed algorithms with polynomial time complexities are appropriate in edge computing. Furthermore,

extensive experiments show that the cache-aware task scheduling algorithm outperforms other baseline

algorithms in terms of cache hit ratio, data locality, data transmission time, task response time and energy

consumption costs.

Acknowledgment

The work was supported by the National Natural Science Foundation (NSF) under grants

(No.61672397, No. 61873341, No.61472294, No.61771354), Application Foundation Frontier Project of

WuHan (No. 2018010401011290). Fundamental Research Funds for the Central Universities (WUT

No.2017-YB-029), Open Fund of Key Laboratory of Geographic Information Science (Ministry of

Education), East China Normal University (Grant No. KLGIS2017A01), The Project Supported by the

Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation，Ministry of Land

and Resources (Grant No. KF-2018-03-005), Beijing Intelligent Logistics System Collaborative

Innovation Center Open Project (No.BILSCIC-2018KF-02), Any opinions, findings, and conclusions are

those of the authors and do not necessarily reflect the views of the above agencies.

References

[1] Huang G, Liu X, Lu X, et al. Programming Situational Mobile Web Applications with Cloud-Mobile

Convergence: An Internetware-Oriented Approach. IEEE Transactions on Services Computing, 2016,

PP(99), 1-1.

[2] Wang W, Xu P, Yang L T, et al. Cloud-Assisted Key Distribution in Batch for Secure Real-time Mobile

Services. IEEE Transactions on Services Computing, 2016, 11(5): 850 - 863.

[3] Abbas N, Zhang Y, Taherkordi A, et al. Mobile Edge Computing: A Survey. IEEE Internet of Things

Journal, 2018, 5(1): 450 - 465.

[4] Baktir A C, Ozgovde A, Ersoy C. How Can Edge Computing Benefit from Software-Defined

Networking: A Survey, Use Cases and Future Directions. IEEE Communications Surveys & Tutorials,

2017, 19(4): 2359 - 2391.

[5] Dolui K , Datta S K . Comparison of edge computing implementations: Fog computing, cloudlet and

mobile edge computing. Global Internet of Things Summit. IEEE, 2017.

[6] Mach P, Becvar Z. Mobile edge computing: A survey on architecture and computation offloading.

IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628 - 1656.

[7] Shi W, Cao J, Zhang Q, et al. Edge computing: Vision and challenges. IEEE Internet of Things Journal,

2016, 3(5): 637-646.

[8] Taleb T, Dutta S, Ksentini A, et al. Mobile edge computing potential in making cities smarter. IEEE

Communications Magazine, 2017, 55(3): 38-43.

[9] Rimal B P, Van D P, Maier M. Mobile edge computing empowered fiber-wireless access networks in

the 5G era. IEEE Communications Magazine, 2017, 55(2): 192-200.

[10] Zeydan E, Bastug E, Bennis M, et al. Big data caching for networking: Moving from cloud to edge.

IEEE Communications Magazine, 2016, 54(9): 36-42.

[11] Liu J, Bai B, Zhang J, et al. Cache Placement in Fog-RANs: From Centralized to Distributed

Algorithms. IEEE Transactions on Wireless Communications, 2017, to be pubilised

[12] Al-Turjman F M. Cognitive Caching for the future sensors in Fog networking. Pervasive and Mobile

Computing, 2017, 42: 317-334.

[13] Tran T X, Pandey P, Hajisami A, et al. Collaborative multi-bitrate video caching and processing in

mobile-edge computing networks. 2017 13th Annual Conference on Wireless On-demand Network

Systems and Services (WONS). IEEE, 2017: 165-172.

[14] Wang X, Chen M, Taleb T, et al. Cache in the air: exploiting content caching and delivery techniques

for 5G systems. IEEE Communications Magazine, 2014, 52(2):131-139.

[15] Pellegrini F D, Massaro A, Goratti L, et al. Competitive caching of contents in 5G edge cloud

networks. International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless

Networks. IEEE, 2017.

[16] Drolia U, Guo K, Tan J, et al. Cachier: Edge-caching for recognition applications. 2017 IEEE 37th

International Conference on Distributed Computing Systems (ICDCS). IEEE, 2017: 276-286.

[17] Drolia U, Guo K, Tan J, et al. Towards edge-caching for image recognition. IEEE International

Conference on Pervasive Computing and Communications Workshops. IEEE, 2017:593-598.

[18] Huang Y, Song X, Ye F, et al. Fair Caching Algorithms for Peer Data Sharing in Pervasive Edge

Computing Environments. 2017 IEEE 37th International Conference on Distributed Computing

Systems (ICDCS). IEEE, 2017: 605-614.

[19] Zhang X, Zhu Q. Spectrum efficiency maximization using primal-dual adaptive algorithm for

distributed mobile devices caching over edge computing networks. Information Sciences and Systems.

IEEE, 2017.

[20] Lim B, Kim J W, Chung Y D. CATS: cache-aware task scheduling for Hadoop-based systems.

Cluster Computing, 2017, 20(4): 3691–3705.

[21] Li G, Li X, Yang F, et al. Traffic at-a-glance: Time-bounded analytics on large visual traffic data.

IEEE Transactions on Parallel and Distributed Systems, 2017.

[22] Dai X, Wang X, Liu N. Optimal scheduling of data-intensive applications in cloud-based video

distribution services. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(1):

73-83.

[23] Chen Q, Yao J, Li B, et al. PISCES: Optimizing Multi-job Application Execution in MapReduce.

IEEE Transactions on Cloud Computing, 2016, PP(99):1-1.

[24] Tanaka M, Tatebe O. Disk cache-aware task scheduling for data-intensive and many-task workflow.

2014 IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2014: 167-175.

[25] Bryk P, Malawski M, Juve G, et al. Storage-aware algorithms for scheduling of workflow ensembles

in clouds. Journal of Grid Computing, 2016, 14(2): 359-378.

[26] Zhou Y, Yu F R, Chen J, et al. Resource Allocation for Information-Centric Virtualized

Heterogeneous Networks with In-Network Caching and Mobile Edge Computing. IEEE Transactions

on Vehicular Technology, 2017, 66(12): 11339–11351.

[27] He Y, Yu F R, Zhao N, et al. Software-defined networks with mobile edge computing and caching for

smart cities: A big data deep reinforcement learning approach. IEEE Communications Magazine, 2017,

55(12): 31-37.

[28] Wang C, Liang C, Yu F R, et al. Computation Offloading and Resource Allocation in Wireless

Cellular Networks With Mobile Edge Computing. IEEE Transactions on Wireless Communications,

2017, 16(8):4924-4938.

[29] Larumbe, Federico, and Brunilde Sanso. "A tabu search algorithm for the location of data centers and

software components in green cloud computing networks." IEEE Transactions on cloud computing,

2013, 1(1):22-35.

[30] SNAP website: http://snap.stanford.edu/data/index, Accessed 24 June 2017

[31] Xu Y, Ci S, Li Y, et al. Design and evaluation of coordinated in-network caching model for content

centric networking. Computer Networks, 2016, 110: 266-283.

[32] Choi J, Adufu T, Kim Y. Data-locality aware scientific workflow scheduling methods in HPC cloud

environments. International Journal of Parallel Programming, 2017: 1-14.

[33] Zhan Z H, Liu X F, Gong Y J, et al. Cloud computing resource scheduling and a survey of its

evolutionary approaches. ACM Computing Surveys (CSUR), 2015, 47(4): 63.

[34] Youssef H, Sait S M, Adiche H. Evolutionary algorithms, simulated annealing and tabu search: a

comparative study. Engineering Applications of Artificial Intelligence, 2001, 14(2): 167-181.

[35] Abrishami S, Naghibzadeh M, Epema D H J. Deadline-constrained workflow scheduling algorithms

for infrastructure as a service clouds. Future Generation Computer Systems, 2013, 29(1): 158-169.

[36] Qiu M, Chen Z, Ming Z, et al. Energy-aware data allocation with hybrid memory for mobile cloud

systems. IEEE Systems Journal, 2017, 11(2): 813-822.

[37] Baker T, Al-Dawsari B, Tawfik H, et al. GreeDi: An energy efficient routing algorithm for big data on

cloud. Ad Hoc Networks, 2015, 35: 83-96.

[38] Jalali F, Hinton K, Ayre R, et al. Fog computing may help to save energy in cloud computing. IEEE

Journal on Selected Areas in Communications, 2016, 34(5): 1728-1739.

[39] Trinh H, Chemodanov D, Yao S, et al. Energy-Aware Mobile Edge Computing for Low-Latency

Visual Data Processing. IEEE International Conference on Future Internet of Things and Cloud.

IEEE Computer Society, 2017:128-133.

[40] Qi B, Kang L, Banerjee S. A vehicle-based edge computing platform for transit and human mobility

analytics. ACM/IEEE Symposium. ACM, 2017:1-14.

[41] Shahidehpour M, Li Z, Ganji M. Smart Cities for a Sustainable Urbanization: Illuminating the Need

for Establishing Smart Urban Infrastructures. IEEE Electrification Magazine, 2018, 6(2):16-33.

[42] Liu Y, Shou G, Hu Y, et al. Towards a smart campus: Innovative applications with WiCloud platform

based on mobile edge computing. 2017 12th International Conference on Computer Science and

Education (ICCSE). IEEE, 2017: 133-138.

[43] Hentschel K, Jacob D, Singer J, et al. Supersensors: Raspberry Pi devices for smart campus

infrastructure. 2016 IEEE 4th International Conference on Future Internet of Things and Cloud

(FiCloud). IEEE, 2016: 58-62.

[44] Matos R, Araujo J, Oliveira D, et al. Sensitivity analysis of a hierarchical model of mobile cloud

computing. Simulation Modelling Practice and Theory, 2015, 50: 151-164.

[45] Lin X, Wang Y, Xie Q, et al. Task scheduling with dynamic voltage and frequency scaling for energy

minimization in the mobile cloud computing environment. IEEE Transactions on Services

Computing, 2015, 8(2):175-186.

[46] Tang Z, Qi L, Cheng Z, et al. An energy-efficient task scheduling algorithm in DVFS-enabled cloud

environment. Journal of Grid Computing, 2016, 14(1): 55-74.

[47] Farris I , Taleb T , Flinck H , et al. Providing ultra‐short latency to user‐centric 5G applications at

the mobile network edge. Transactions on Emerging Telecommunications Technologies, 2017, 29(4):

e3169.

[48]Li Chunlin, Yan Xin, Zhang Yang, Luo Youlong, Multiple Context Based Service Scheduling for

Balancing Cost and Benefits of Mobile Users and Cloud Datacenter Supplier in Mobile Cloud,

Computer Networks, Elsevier, 2017, July, Volume 122, Pages 138–152

[49] Li Chunlin, Zhu Liye, Luo Youlong, Location-aware Interest-related Micro-cloud Topology

Construction and Bacteria Foraging-based Offloading Strategy, Ad Hoc Networks, Elsevier,

September, Volume 64, 1–21, 2017

[50] Chunlin Li, Jing Zhang, Youlong Luo, Real-Time Scheduling Based on Optimized Topology and

Communication Traffic in Distributed Real-Time Computation Platform of Storm, Journal of

Network and Computer, Elsevier, Volume 87, 1 June 2017, Pages 100–115

[51] Li Chunlin, Zhou Min, Luo Youlong, Elastic resource provisioning in hybrid mobile cloud for

computationally intensive mobile applications, Journal of Supercomputing, Springer-Verlag, 73(9),

3683-3714, Sep. 2017

Biographical notes:

 Chunlin Li is a Professor of Computer Science in Wuhan University of Technology. She received the

ME in Computer Science from Wuhan Transportation University in 2000, and PhD in Computer Software

and Theory from Huazhong University of Science and Technology in 2003. Her research interests include

cloud computing and distributed computing.

Jianhang Tang received his BS degree in Applied Mathematics from South-central University for

Nationalities in 2013 and MS degree in Applied Statistics from Lanzhou University in 2015. He is a PhD

student in School of Computer Science and Technology from Wuhan University of Technology. His

research interests include cloud computing and big data.

Hengliang Tang is the associate professor, School of Information, Beijing Wuzi University, Beijing,

China. He received Ph.D. degree from Beijing University of Technology in 2011. His research interest

covers internet of things, logistics informatization.

Youlong Luo is a vice Professor of Management at Wuhan University of Technology. He received his

M.S. in Telecommunication and System from Wuhan University of Technology in 2003 and his Ph.D. in

Finance from Wuhan University of Technology in 2012. His research interests include cloud computing

and electronic commerce.

 Chunlin Li

Jianhang Tang

Hengliang Tang

Youlong Luo

Highlights

 An integrated utility-based cache placement strategy in edge computing is proposed by jointly

considering data chunk transmission cost, caching value and replacement penalty.

 A weighted bipartite graph model is applied to describe the relationships between tasks and edge

servers.

 A heuristic algorithm named cache locality-based task scheduling algorithm is proposed. Our

proposed algorithm can obtain maximal weighted matching during each heartbeat.

 We evaluate the performance of our proposed method and previous method via extensive

experiments. The results indicate that our proposed method can improve the cache hit ratio and data

locality.

	Collaborative cache allocation and task scheduling for data-intensive applications in edge computing environment

