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Outsourced dynamic provable data possession with batch update for secure cloud storage
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State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

Abstract

With the advent of data outsourcing, how to efficiently verify the integrity of data stored at an untrusted cloud service provider (CSP)
has become a significant problem in cloud storage. Provable data possession (PDP) is a model that allows clients or a trusted auditor
to verify whether CSP possesses the outsourced data without downloading it. However, this model requires clients to tolerate non-
negligible computation burden incurred by frequent verifications in private schemes, and does not provide any security assurances
when client or/and auditor are dishonest. Therefore, it can not be directly transformed into a secure outsourced auditing scheme,
where any one of three participants (i.e., CSP, client and auditor) may be dishonest and any two participants may be colluded with
each other. In this paper, we propose an outsourced dynamic provable data possession (ODPDP) scheme, which migrates frequent
auditing task to an external auditor to reduce clients’ verification overhead, and simultaneously provides log audit mechanism with
lower computation burden for clients to prevent from dishonest auditor. In addition, we propose a batch update algorithm that can
perform and verify multiple update operations at once, avoiding repetitive calculations and transmissions. Security analysis proves
that our scheme is secure in the enhanced threat model, and experimental results show that our scheme achieves high efficiency in
terms of computation time and communication cost compared with existing outsourced auditing schemes.

Keywords: Cloud storage; provable data possession; outsourced auditing; dynamic update.

1. Introduction

Cloud computing has emerged as a predominant computing
paradigm in recent years, attracting considerable attention of
both industry and academia. It has the following five advan-
tages: on-demand self-service, broad network access, resource
pooling, rapid elasticity or expansion, and measured service [1].
As an important branch of cloud computing, cloud storage pro-
vides data outsourcing service for clients. However, data out-
sourcing means that data are no longer under clients’ control,
it introduces some security risks to the outsourced data, such
as data breaches, data loss, etc [2]. So although cloud storage
is promising, many potential clients are still unwilling to make
the move unless the existing risks are eliminated. As a matter
of fact, one of the major hurdles which make clients reluctant
to use cloud storage is concern about the integrity of data stored
at untrusted servers [3, 4].

To address the concern over data integrity and establish
clients’ confidence in cloud storage, it is critical to develop da-
ta integrity auditing by which clients are able to check the in-
tegrity of their data without downloading the entire data. To
date, a number of solutions have been presented in the litera-
ture to guarantee data integrity [5–21]. All the state of the art
schemes offer probabilistic guarantee of data integrity by sam-
pling a random subset of all data blocks, which has been shown
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to be a practical strategy for verifying the integrity of large da-
ta sets [6]. In private auditing schemes [5, 8–10], clients need
to frequently conduct verifications in order to ensure that their
data stored at CSP are intact, which requires them to have net-
work access and incurs non-negligible computation burden on
them. To alleviate clients’ burden incurred by frequent verifica-
tion process, public auditing schemes were proposed [6, 7, 11–
13, 17–21], which enable a trusted third party auditor (TPA) to
perform integrity auditing task on behalf of clients.

However, existing public auditing schemes do not provide
any security assurances if client or/and TPA are dishonest. An
outsourced auditing scheme was proposed by Armknecht et al.
[15] to address this problem, which can protect against any
one dishonest participant and even against collusion of any t-
wo malicious participants. The scheme can also relieve clients
from the frequent auditing process especially for the ones with
resource-constrained device. Therefore, this novel business
model is more readily adopted by cloud clients and can boost
the development of cloud storage. Unfortunately, the scheme
[15] is limited to static data, where the uploaded data can not
be updated by client remotely. A dynamic outsourced auditing
scheme was presented by Rao et al. [16] to solve this problem,
which provides the same security guarantees as in [15] and can
support dynamic update on the outsourced data by using Merkle
tree. But it introduces some additional information for each tree
node, such as status value and height value, leading to increased
storage cost. In this case, the maintenance cost of Merkle tree
will also be increased if data update occurs, as it needs to ad-
ditionally update the above two values for each affected node.
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Moreover, the scheme [16] can just handle multiple update op-
erations one by one, which wastes additional bandwidth and
computation resources (cf. Section 3.2.5).

In fact, there already exists a dynamic PDP scheme based on
skip list by Esiner et al. [10], which can handle multiple updates
at once and achieve efficiency gains dramatically. Unfortunate-
ly, the scheme only considers private auditing, and can not be
directly extended to support outsourced auditing. The reason
is that the tag construction makes clients have to bear consid-
erable computation effort of O(kl)1 exponentiations when they
check the auditor’s any k log entries once—while this verifica-
tion effort is almost equal to the effort of directly performing
auditing k times with CSP. As a consequence, it can not satisfy
the requirement in [15], which claims that log verification with
auditor should be more computationally efficient than the direct
verification of data with CSP.

In this paper, we propose an outsourced dynamic provable
data possession (ODPDP) scheme to overcome the problems
outlined above, which can perform and verify multiple update
operations at once and support outsourced auditing simultane-
ously. The core thought behind our scheme is that the integrity
of hash values for all data blocks is protected by the rank-based
Merkle tree (RBMT), while the hash values together with the
tags protect the integrity of data blocks. The main contribution-
s of this work are summarized as follows:

(1) We propose a multi-leaf-authenticated (MLA) solution
for RBMT, which is able to authenticate multiple leaf nodes and
their indices all together without storing status value and height
value. Based on MLA solution, we present a batch update al-
gorithm that can perform and verify multiple update operations
at once. The amortized price per authentication/update is de-
creased from 1+ log n to 1+ log (n/c), where n is the total num-
ber of data blocks and c is the number of challenged/updated
data blocks.

(2) We propose an efficient homomorphic verifiable tag (E-
HVT) based on BLS signature to meet with the requirement of
[15], which can reduce clients’ log verification effort in terms of
exponentiations from O(kl)1 to O(1). We further propose a log
audit mechanism by means of which clients can check log files
produced by auditor at a lower frequency to verify if auditor
performed his auditing work honestly in the past.

(3) We describe a concrete ODPDP scheme that is secure
in improved threat model (cf. Section 2.2), and can allevi-
ate clients’ verification overhead by migrating frequent auditing
work to an external auditor. We implement the prototype of the
ODPDP scheme, and experiments certify the high performance
of our scheme.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce a notion of ODPDP scheme, followed by
its threat model, then outline some building blocks exploited
in our scheme. In Section 3, we propose a MLA solution for
RBMT and then describe our construction in detail. Security
analysis and performance analysis are given in Section 4 and 5,

1Where l is the number of challenged data blocks for each auditing between
auditor and CSP, namely, each auditor’s log entry involves l data blocks.

Fig. 1: Framework of ODPDP, where the solid arrows denote the auditing pro-
cedure which consists of steps 1–5, the dotted arrows denote the update process
which consists of steps 6–8, the dashed arrows denote the challenges extrac-
tion and reconstruction. Followed by [15], the random challenges are extracted
from an external Bitcoin-based pseudo-random source to prevent misbehavior
and collusion.

respectively. Related work is discussed in Section 6. Finally,
we conclude the paper in Section 7.

2. System Model and Building Blocks

2.1. ODPDP Scheme

We start with a description of ODPDP framework, as depict-
ed in Fig. 1. The following three participants are involved:

• Cloud Service Provider (CSP): an entity, who has config-
urable computation and storage resources, takes charge of
data management and maintenance;

• Client: a data owner, who plans to outsource her data to
CSP, is concerned about the data’s integrity and may check
whether the auditor did his work honestly;

• Auditor: an external auditor, who receives the auditing
work from client, constantly monitors the integrity of
client’s data stored at CSP.

Then, we describe the workflow of Fig. 1 as follows: 1) clien-
t outsources her data to CSP; 2) client outsources an auditing
work to the auditor; 3) by relying on functionality from Bit-
coin [22], auditor regularly audits with CSP to check if the
outsourced data is intact; 4) after each audit, auditor creates
a log entry that records his auditing work at this point; 5) at any
time, client can audit the log file to check whether auditor per-
formed his auditing work honestly in the past; 6) client sends
updated hash values to auditor; 7) auditor performs updates on
the RBMT and sends an update proof to CSP for verification;
8) client also verifies the update proof received from CSP and
sends updated data blocks to CSP.

Following [15, 16], a formal definition of ODPDP scheme is
given below.
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Definition 1. (ODPDP Scheme) An ODPDP scheme is a col-
lection of six protocols, which are described as below:

• Setup(1κ) → {client: skc, vkc, sk, pk; auditor: ska, vka;
CSP: skCSP, vkCSP} is a randomized key generation proto-
col. It takes a security parameter κ as input, and outputs
a matched signing-verifying key pair (skP, vkP) for each
participant P. In addition, it also returns a pair of secret
and public keys (sk, pk) for client. For simplicity of expres-
sion, we suppose for each of subsequent protocols that an
involved participant always takes as input the public keys
of all participants and its own secret key.

• Store(client: M)→ {client: P, C; auditor: P, C, T ; CSP:
P,M} is an interactive protocol among three participants.
It takes as input the keys of three participants and a data
M held by client, then outputs the processed data M =

(M,Σ) for CSP, where Σ is a tag vector of M generated by
client with her secret key sk. It also outputs a RBMT T
constructed over M for auditor. In addition, it outputs a
public parameter P confirmed by three participants and a
contract C signed between client and auditor.

• AuditData(auditor: Q, T; CSP: M) → {auditor: deca,
L} is an interactive protocol run by auditor and CSP to
convince the auditor that M is still intact at CSP. By lever-
aging functionality from Bitcoin, auditor extracts pseudo-
random challenge Q, and sends it to CSP. Based on Q
and M, CSP computes a proof of data possession and
responds auditor with it. Then auditor verifies the proof
with Q,T, pk, and outputs a binary value deca which indi-
cates whether or not he accepts the proof and a log entry
L which records his auditing work.

• AuditLog(client: B; auditor: T , Λ) → {client: decc} is
an interactive protocol run by client and auditor to enable
client to audit a log file Λ which consists of many log en-
tries produced by auditor, the aim is to check if auditor
was responsible to do his auditing work in the past. After
receiving B, a random subset of indices of Bitcoin blocks
released by client, auditor computes a proof of appointed
logs based on B,T,Λ and sends it to client. Then client
checks the proof, and outputs a binary value decc which
indicates whether she accepts the proof or not. Note that
this protocol should be much less frequent and more com-
putationally efficient than AuditData protocol.

• DynamicUpdate(client: uc; auditor: T; CSP: M) →
{True, False} is an interactive protocol among three partic-
ipants to support provable update to the outsourced data.
It takes as input client’s update command uc, the tree T
from auditor and the processed dataM stored at CSP, and
outputs True if the client’s data is updated correctly, or
False otherwise.

• ImpartialArbitration(participant: evidences) → {True,
False} is a protocol that is executed with the help of trust-
ed arbitrator to deal with any disputes which may occur
among three participants. The goal of this protocol is to

protect the honest participant from malicious participants.
It takes as input some evidences from one participant, and
outputs True if the participant is honest, or False other-
wise.

2.2. Threat Model

Similar to existing work in the area [11, 15], we do not con-
sider confidentiality of the data M in this paper, and more at-
tention is paid to integrity of the data which is the core problem
we study here. In what follows, we define the security goals of
ODPDP scheme.

In outsourced auditing scheme, any one of the three involved
participants may be dishonest, and even any two participants
may be colluded with each other, which is different from tradi-
tional auditing schemes, where only CSP is dishonest. There-
fore, more complex security problems need to be considered
in outsourced auditing scheme. For example, the honest client
should be protected from the collusion between CSP and audi-
tor, or the honest auditor needs to defend against the malicious
client and CSP, etc. Followed by [15], to extend the existing
threat model in [6, 7], the soundness of an ODPDP scheme is
defined as follows.

Definition 2. (Soundness of ODPDP) We say that an ODPDP
scheme is sound if it satisfies the following three properties:
authenticity, liability and extractability.

Authenticity. To support provable update, ODPDP should
guarantee the authenticity of the retrieved leaf nodes, both val-
ues stored in them and their indices.

Observe that if a scheme is secure against two malicious
participants, then it automatically is secure against any one of
them. Hence, it is sufficient to consider the following three cas-
es where exactly one participant is honest.

Liability. For the first case, ODPDP should protect the hon-
est auditor from the malicious client and CSP to minimize the
auditor’s liability in case of potential disputes, e.g., if the data
is lost.

For the latter two cases, let us consider the following game
between a challenger and an adversary A who corrupted CSP
and auditor (or auditor and client):

• Setup: The challenger runs Setup protocol to generate all
used keys, and providesA with secret keys of the corrupt-
ed participants and all public keys;

• Query: The adversary A is allowed to make query to a
store oracle for any data M, and obtains the corresponding
response from the challenger;

• Challenge: The challenger generates a challenge Q and
requires the adversary A to provide a proof of possession
for the data blocks specified by Q;

• Forge: The adversary A computes a proof of possession
for the specified data blocks.

If the proof passes the challenger’s verification, then the adver-
sary A wins the game. In these protocols, the challenger plays
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the role of honest participant and the adversaryA plays the role
of the corrupted participants.

Extractability. If the adversary A wins the above game,
then there exists an extractor that can recover the challenged
data blocks in interaction with A, which means that these data
blocks are actually stored.

2.3. Building Blocks
We introduce some cryptographic building blocks used in our

scheme. For notational simplicity, we use a symmetric bilinear
map to describe our scheme, and our construction can be gener-
ally translated to an asymmetric setting [7] (cf. Section 3.2.7).
Let e : G × G → GT be a bilinear map, where G and GT are
two multiplicative cyclic groups of prime order q [23]. Let g be
a generator of G and κ be a security parameter. In addition, we
define the following functions, as given by [6, 15].

• H2 : {0, 1}∗ → Zq;

• KeyGen: {0, 1}κ → {sk, vk};
• GetRandomness: Γ→ {0, 1}lhash ;

• PRBG: {0, 1}κ × {0, 1}lhash → {0, 1}∗;
• π : {0, 1}κ × {0, 1}log2(n) → {0, 1}log2(n);

• f : {0, 1}κ × {0, 1}log2(n) → Zq.

More specifically, H2 is a cryptographic hash function which
maps an arbitrary length string uniformly to Zq. KeyGen is a
key generation algorithm of a secure digital signature scheme,
that takes the security parameter κ as input and outputs a pair
of signing-verifying keys {sk, vk}. GetRandomness is a Bitcoin
getblockhash function, which takes as input the current time
t ∈ Γ where Γ is a time set, and outputs the latest Bitcoin block’s
hash that is an uniformly random string in {0, 1}lhash . PRBG
is a pseudo-random bit generator which output is long enough
pseudo-random bits. In addition, a pseudo-random permutation
π and a pseudo-random function f are also used to generate
random indices iη and coefficients aη for each challenge respec-
tively (cf. Section 3.2.3).

3. The Proposed Scheme

In this section, to achieve batch update and outsourced audit-
ing, we propose a MLA solution that can authenticate multiple
leaf nodes and their indices all together without storing status
value and height value of tree node. Moreover, we describe a
concrete instantiation of the proposed ODPDP scheme.

3.1. A Novel Multi-Leaf-Authenticated Solution
Inspired by [9], we develop a modification of Merkle tree

[24] to support authentication of indices of leaf nodes, which
we call a rank-based Merkle tree (RBMT). Concretely, the data
field of each tree’s node w in our scheme is composed of only
two elements (r, h). To reduce storage and maintenance costs,
we do not need to store the node’s status value and height value
which are necessary in [16]. The first element r stores the rank

Fig. 2: The RBMT constructed over 14 data blocks, where the challenged nodes
are marked with red, the necessary nodes needed for verification are marked
with blue.

information, which is the number of leaf nodes reachable from
the node w. Particularly, r = 1 if w is a leaf node.

Next, let us explain the definition of the second element h.
The outsourced data M held by client is comprised of n data
blocks, namely M = (m1,m2, · · · ,mn). We bind the i-th data
block mi to the i-th leaf node wi by storing the hash value of
mi at the node wi. Therefore, all the leaf nodes of RBMT are
already sorted by their indices in a left-to-right order. For each
non-leaf node w, let w.le f t and w.right denote the left child and
right child of that node, respectively, and w.le f t.h, w.right.h
denote the hash values of the two children. Let H1 be a secure
hash algorithm and ‖ denote concatenation, now the second el-
ement h is defined as follows

h =


H2(mi), if w is the i-th leaf node;
H1(r‖w.le f t.h‖w.right.h), if w is a non-leaf node.

With the use of a collision-resistant hash function H1, a RBMT
can be constructed over the given n data blocks. Due to the
dependency on all data blocks, knowing a Merkle root hroot (the
hash value of the tree’s root node) is sufficient for later integrity
verification. In Fig. 2, we give an example of RBMT.

For the convenience of later description, we introduce some
operations on a vector Θ = (θ1, θ2, · · · , θτ), where each element
θi ∈ Z+ (1 ≤ i ≤ τ). For any ξ ∈ Z+, we define

Θ ± ξ = (θ1 ± ξ, θ2 ± ξ, · · · , θτ ± ξ);
Θ(i) ± ξ = (θ1, · · · , θi−1, θi ± ξ, θi+1, · · · , θτ);
Θ(i-after) ± ξ = (θ1, · · · , θi, θi+1 ± ξ, · · · , θτ ± ξ);
Θ(i, j) ± ξ = (· · · , θi−1, θi ± ξ, · · · , θ j ± ξ, θ j+1, · · · ).

A strawman solution. When multiple leaf nodes are chal-
lenged, a straightforward solution is verifying these nodes one
by one, just as the previous schemes [9, 11, 12, 14]. How-
ever, this solution leads the verifier to not only retrieve some
repetitive nodes and unnecessary nodes but also perform some
repetitive hash calculations, which incurs additional commu-
nication and computation costs. In the example of Fig. 2,
the proofs of w3 and w7 are Ω3 = {w26,w22,w15,w4,w3} and
Ω7 = {w26,w21,w17,w8,w7}, separately. If the verifier authenti-
cates w3 and w7 individually, then the same node w26 will be re-
trieved twice and the hash values of w25, root will be calculated
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Algorithm 1 GenMultiProof(T,C)
Input: the RBMT T and the challenged index vector C =

(i1, i2, · · · , ic), where iα < iβ for 1 ≤ α < β ≤ c.
Output: the corresponding multi-proof tp for all the c chal-

lenged leaf nodes.
1: initialize empty stacks ts, tp;
2: push (root,C) to ts;
3: for j = 1 to c do
4: (cn,C) = pop(ts); {where cn denotes current node}
5: while cn.r , 1 do
6: initialize empty vectors Cl, Cr;
7: for each element C[γ] in C do
8: if C[γ] ≤ cn.le f t.r then
9: add C[γ] to Cl;

10: else {C[γ] > cn.le f t.r}
11: add C[γ] to Cr;
12: end if
13: end for
14: if Cl , NULL and Cr , NULL then
15: push (cn.right,Cr − cn.le f t.r) to ts;
16: push (I, NULL) to tp;
17: cn = cn.le f t; C = Cl;
18: else if Cl , NULL and Cr == NULL then
19: push (L, cn.right) to tp;
20: cn = cn.le f t; C = Cl;
21: else {Cl == NULL and Cr , NULL}
22: push (R, cn.le f t) to tp;
23: Cr = Cr − cn.le f t.r;
24: cn = cn.right; C = Cr;
25: end if
26: end while
27: if cn.r == 1 then
28: push (E, cn) to tp;
29: end if
30: end for
31: return tp;

twice. In fact, the nodes w21,w22 are unnecessary for verifying
w3 and w7 simultaneously. This situation will be exacerbated
when the number of challenged leaf nodes is increasing. There-
fore, the solution is not a cost-efficient way in ODPDP scheme
if client wants to audit many log entries (involving too many
leaf nodes) in order to check auditor’s auditing work.

To remedy this problem, we propose a MLA solution that
can verify multiple leaf nodes and their indices all together.
Consequently, only the necessary nodes needed for verification
should be retrieved, and only the necessary hash calculations
needed for verification should be performed. More specifical-
ly, the prover generates a multi-proof tp by running Algorithm
1 GenMultiProof(T,C), where C is a challenged index vector
launched by the verifier. This algorithm starts from the pair
(root,C), where root is the root node of T . Then, in each it-
eration of the outer for-loop, this algorithm pushes a number
of flag-node pairs to the stack tp until the left-most challenged
node is included in it. There are four possible flags (such as E,

(a) The multi-proof tp. (b) The updated multi-
proof t∗p.

Fig. 3: The current node cn in each iteration is listed on the left of the stacks
to improve readability. The flag E denotes cn is a challenged node, the flag I
denotes cn is an intersection node, the flag L/R means that the challenged nodes
indexed by the current vector C can be found by following the left/right pointer
from cn.

I, L and R) in this algorithm, which meanings are explained in
the caption of Fig. 3. For each iteration of the outer for-loop
except the first one, it starts from the top element in the stack
ts, which stores the right child of intersection node and the
updated C. Here, the intersection node means that the current
challenged nodes can be found following both the left pointer
and right pointer of it. For example, given C = (3, 7, 8, 10, 13)
in Fig. 2 (page 4), the corresponding multi-proof tp is shown
in Fig. 3(a), where every necessary node appears just once.

After receiving the multi-proof tp from the prover, the verifi-
er executes Algorithm 2 VerMultiProof(tp, n, hroot,C) to verify
the leaf nodes specified by her challenge C all together. This
algorithm goes in a top-down order on the stack tp, which is
contrary to that of multi-proof generation in Algorithm 1. This
order corresponds to a right-to-left and bottom-up traverse in
the tree T , so that hash calculations follow all the dependency
relationships. For the received multi-proof tp, Algorithm 2 it-
eratively computes three values V , r, h in every for-loop. If tp

is a correct multi-proof for the leaf nodes indexed by C, then the
following three properties hold for the values V , r, h computed
in the last iteration of for-loop:

• Value V is equal to the challenged index vector C;

• Value r is equal to the total number of data blocks n;

• Value h is equal to the Merkle root hroot of T .

Note that the two algorithms also go well for a single leaf node.
Now we analyze the performance of our MLA solution. First,

the MLA solution exhibits the worst-case performance only if
the challenged leaf nodes are uniformly distributed among all
the leaf nodes, since the number of repetitive and unnecessary
nodes avoided by the MLA solution is smallest under this case.
Second, for two uniformly distributed leaf nodes, the amortized
price per authentication is equal to the price of verifying the first
node in the left subtree, namely, 1+ log (n/2). Analogously, the
amortized price is 1 + log (n/4) for four uniformly distributed
leaf nodes, and so on. Finally, we argue that if the number of
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Algorithm 2 VerMultiProof(tp, n, hroot,C)
Input: the multi-proof tp, the total number of data blocks n,

the Merkle root hroot and the challenged index vector C =

(i1, i2, · · · , ic).
Output: Accept or Reject.

1: start = c; end = c; δ = c;
2: initialize empty stacks ti, tr and th;
3: initialize verification index vector V = (1, 1, · · · , 1), which

has c elements;
{let tp.top point to the top element in tp}

4: for k = tp.top to 1 do
5: (dk, vk) = pop(tp);
6: if dk == E then
7: if δ , c then
8: push (start, end), r and h to ti, tr and th, respec-

tively;
9: start = start − 1; end = start;

10: end if
11: δ = δ − 1;
12: r = vk.r; h = vk.h;
13: else if dk == I then
14: (tempS tart, end) = pop(ti);
15: V = V(tempS tart, end) + r;
16: r = r + pop(tr);
17: h = H1(r‖h‖pop(th));
18: else if dk == R then
19: V = V(start, end) + vk.r;
20: r = vk.r + r;
21: h = H1(r‖vk.h‖h);
22: else {dk == L}
23: r = r + vk.r;
24: h = H1(r‖h‖vk.h);
25: end if
26: end for
27: if V == C and r == n and h == hroot then
28: return Accept;
29: else
30: return Reject;
31: end if

challenged leaf nodes is c (1 ≤ c ≤ n), then the amortized price
per authentication of MLA solution is 1 + log (n/c) in the worst
case. Note that our solution achieves a constant complexity
O(1) in the case of c = n. However, the performance of the
strawman solution is always 1 + log n, no matter how many leaf
nodes are challenged.

3.2. Outsourced Dynamic Provable Data Possession Scheme

3.2.1. Setup Protocol
Each participant P ∈ {CSP, client, auditor} performs Key-

Gen to obtain a secret signing key skP and a public verify-
ing key vkP. In addition, client samples s + 1 random ele-
ments α1, α2, · · · , αs, x ∈ Zq and computes g1 = gα1 , g2 =

gα2 , · · · , gs = gαs , y = gx ∈ G. After that, client sam-
ples a random element λ ∈ G, now the client’s secret key

Table 1: Workflow of the Store Protocol

Client CSP
1. Disperse M into {miz}1≤z≤s

1≤i≤n ;
2. Compute hi = H2(mi) for

each 1 ≤ i ≤ n, construct T ;
3. Compute σi = (λhi · g∑s

z=1 αzmiz )x

for each 1 ≤ i ≤ n;
M={M,Σ}, Sigskc (M)−−−−−−−−−−−−−−−→

4. Verify Sigskc (M),
if succeed, storeM;

———————–
Auditor

T, Sigskc (T )−−−−−−−−→
5. Verify Sigskc (T ),

if succeed, store T ;
6. Three participants

sign P = {n, hroot};
7. Client and Auditor

sign C = {BI,F, l}.

and public key are denoted as sk = (α1, α2, · · · , αs, x) and
pk = (g, λ, g1, g2, · · · , gs, y), respectively.

3.2.2. Store Protocol
The outsourced data held by client is M = (m1,m2, · · · ,mn),

where each data block consists of s sectors. More precisely,
each data block has the form mi = mi1‖mi2‖ · · · ‖mis (1 ≤ i ≤ n)
such that each sector miz ∈ Zq (1 ≤ z ≤ s), where ‖ denotes
concatenation. The workflow of the Store protocol is shown in
Table 1.

Constructing RBMT: With all data blocks, client first com-
putes hash values hi = H2(mi) (1 ≤ i ≤ n). Then she constructs
RBMT T on top of the ordered hash values, meaning that each
leaf node wi stores the corresponding hash value hi.

Computing EHVT: Based on g, λ and secret key sk, client
computes

σi = (λhi · g
∑s

z=1 αzmiz )x ∈ G (1 ≤ i ≤ n),

where the effort of exponentiations is independent of s, the
number of sectors per block. Thus, this tag construction can
improve Store performance considerably compared to the fol-
lowing traditional method [7, 12]

σi = (hi ·
s∏

z=1

gmiz
z )x ∈ G (1 ≤ i ≤ n), (1)

where the effort of exponentiations is positively correlated with
the parameter s. Then client generates the processed dataM =

{M,Σ}, where Σ = (σ1, σ2, · · · , σn).
Outsourcing data: Client sends M and its signature

Sigskc (M) to CSP. The latter verifies the signature Sigskc (M),
if the verification is not passed, then CSP rejects M, which
means that the client is malicious; otherwise, CSP accepts M
by responding client with its reception and signature.

Outsourcing auditing work: Once the verification on CSP’s
signature is passed, client outsources auditing work to auditor
by sending T with her signature Sigskc (T ). After that, the sig-
nature Sigskc (T ) will be verified by auditor, if the verification is
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passed, then auditor accepts T and responds client with his re-
ception and signature; otherwise, auditor rejects T , which also
means that the client is malicious.

Agreeing parameters: All participants need to agree on a
public parameter P = {n, hroot}, where n is the total number
of data block and hroot is the Merkle root of T . In other words,
three participants must sign P to reach an agreement. In ad-
dition, client and auditor need to further agree on a contrac-
t C = {BI,F, l} that specifies the checking policy for auditor.
Specifically, BI denotes a Bitcoin block index from which the
auditing work will start, F indicates the frequency at which
the auditor launches a challenge, l dictates the number of chal-
lenged data blocks for each checking. Similarly, client and au-
ditor must sign C to confirm the contract.

Now client deletesM and T from its local storage, she only
maintains a constant amount of metadata. Note that the audi-
tor can use public key pk to check the integrity of client’s data,
so there is not need for auditor to generate the parallel tags as
in [15]. Consequently, the high communication cost of down-
loading the entire data from CSP to auditor is avoided in our
Store protocol, and the expensive zero knowledge proof (ZKP)
interaction between client and auditor is also avoided. In addi-
tion, client does not need to verify the auditor’s tag, which is
required in [15] and incurs considerable computation overhead
on client.

3.2.3. AuditData Protocol
Our scheme leverages the Bitcoin blockchain as a time-

dependent pseudo-random source to generate periodic chal-
lenges, its security and randomness have been demonstrated in
[15]. The workflow of the AuditData protocol is shown in Ta-
ble 2. Concretely, by inputting the time t ∈ Γ, auditor first runs
GetRandomness to obtain a hash value hash(b) ∈ {0, 1}lhash of
the latest block (let b denote the index of this block) that has
appeared since time t in Bitcoin blockchain [25]. Then PRBG
is invoked on the input hash(b) to obtain long enough pseudo-
random bits, that will be sequentially used by auditor to select
a pair of keys k(b)

π , k(b)
f . At last, auditor generates a challenge

Q(b) = {b, k(b)
π , k(b)

f } and sends it to CSP, where the block b corre-
sponds to the time t. Due to the property of Bitcoin blockchain,
the challenge Q(b) is unpredictable to CSP and undeniable to
auditor, respectively.

Upon receiving the challenge Q(b), CSP first computes the
challenged indices and coefficients as follows

iη = πk(b)
π

(η), aη = fk(b)
f

(η) (1 ≤ η ≤ l). (2)

Then to prove the integrity of the challenged data blocks, CSP
computes the proof of data possession as follows

µ(b)
z =

l∑

η=1

aηmiηz ∈ Zq (1 ≤ z ≤ s), σ(b) =

l∏

η=1

σaη
iη
∈ G.

Finally, CSP responses the auditor with the proof ρ(b) =

{µ(b)
1 , µ(b)

2 , · · · , µ(b)
s , σ(b)} and its signature SigskCSP (ρ(b)).

Table 2: Workflow of the AuditData Protocol

Auditor CSP
1. Generate a challenge

Q(b) = {b, k(b)
π , k(b)

f };
Q(b)={b,k(b)

π ,k(b)
f }−−−−−−−−−−−→

2. Compute {iη, aη}1≤η≤l;
3. Compute µ(b)

z =
∑l
η=1 aηmiηz

for each 1 ≤ z ≤ s;
4. Compute σ(b) =

∏l
η=1 σ

aη
iη ;

ρ(b)={µ(b)
1 ,··· ,µ(b)

s ,←−−−−−−−−−−−−−
σ(b)}, SigskCSP

(ρ(b))

5. Verify SigskCSP
(ρ(b)),

if succeed, continue;
6. Compute {iη, aη}1≤η≤l;
7. Compute h(b) = λ

∑l
η=1 aηhiη ;

8. Verify e(σ(b), g) ?
=

e(h(b) ·∏s
z=1 gµ

(b)
z

z , y);
9. Create L(b) = {t,Q(b), h(b),
ρ(b),SigskCSP

(ρ(b))}.

If the verification on SigskCSP (ρ(b)) is passed, then auditor ver-
ifies the correctness of ρ(b). First, auditor computes the chal-
lenged indices and coefficients by using Q(b) as in Eq. (2). Sec-
ond, with the corresponding hash values stored in his local T ,
auditor computes the value as below

h(b) = λ
∑l
η=1 aηhiη ∈ G.

Third, auditor verifies the proof ρ(b) by checking the following
equality

e(σ(b), g) ?
= e(h(b) ·

s∏

z=1

gµ
(b)
z

z , y). (3)

If the equality does not hold, meaning that at least one of the
challenged data blocks has been lost or corrupted, then auditor
informs client of this abnormal situation immediately. Other-
wise, auditor is assured that the challenged data blocks are in-
tact. Lastly, auditor creates the following log entry that records
his auditing work

L(b) = {t,Q(b), h(b), ρ(b),SigskCSP
(ρ(b))},

and saves it in his local log file Λ.
Based on the properties of bilinear map, the correctness of

Eq. (3) can be elaborated as follows

e(σ(b), g) = e(
l∏

η=1

(λhiη · g
∑s

z=1 αzmiηz )aη , gx)

= e(
l∏

η=1

(λaηhiη ) ·
l∏

η=1

(
s∏

z=1

g
aηmiηz
z ), y)

= e(λ
∑l
η=1 aηhiη ·

s∏

z=1

g
∑l
η=1 aηmiηz

z , y)

= e(h(b) ·
s∏

z=1

gµ
(b)
z

z , y).
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3.2.4. AuditLog Protocol
Outsourced auditing scheme must resist against malicious

auditor, which is not captured in traditional auditing schemes.
To this end, the AuditLog protocol (i.e., log audit mechanism)
is designed to enable client to check if the auditor did his work
honestly at any point in time. However, it should be noted that
this auditing should be less frequent and more computational-
ly efficient when compared to the direct auditing of data. The
workflow of the AuditLog protocol is shown in Table 3.

As pointed in [15], client can audit the most recent log entry
generated by auditor to minimize her checking work, because
this does mirror the latest state of integrity for the monitored
data. More generally, client can audit any subset of the log file
in a batch way, no matter how many log entries are produced.
More specifically, client chooses a random subset B of indices
of Bitcoin blocks, and sends it to auditor.

Once receiving B, auditor finds Q(b), h(b) and ρ(b) from his log
file Λ for each b ∈ B, and computes

h(B) =
∏

b∈B

h(b) ∈ G, σ(B) =
∏

b∈B

σ(b) ∈ G,

µ(B)
z =

∑

b∈B

µ(b)
z ∈ Zq (1 ≤ z ≤ s).

In addition, for each b ∈ B, auditor reads k(b)
π from Q(b), and

computes the challenged indices iη (1 ≤ η ≤ l) by invoking
πk(b)

π
(η). After eliminating the repetitive indices, the last or-

dered challenge index vector is denoted by C = (i1, i2, · · · , ic).
Then auditor runs Algorithm 1 GenMultiProof(T,C) to obtain
the corresponding multi-proof tp. At last, auditor generates the
proof of appointed logs as below

ρ(B) = {tp, h(B), µ(B)
1 , µ(B)

2 , · · · , µ(B)
s , σ(B)},

and sends it to client with his signature Sigska (ρ(B)).
After verifying the signature Sigska (ρ(B)), for each b ∈ B,

client first invokes PRBG(hash(b)) to get Q(b), and reconstructs
the challenged indices and coefficients iη, aη (1 ≤ η ≤ l) as in
Eq. (2). Then client verifies the correctness of tp by calling
Algorithm 2 VerMultiProof(tp, n, hroot,C), where C can be ob-
tained by utilizing her own constructed indices for all b ∈ B. If
the verification is passed, which means that all the challenged
leaf nodes wi j (1 ≤ j ≤ c) in tp including their indices are
authenticated, then the corresponding hash value hi j stored in
leaf node wi j can be accepted by client. Otherwise, client re-
jects tp, meaning that the auditor is malicious. Finally, with
λ and all authenticated hi j , client verifies h(B) by checking the
following equation

h(B) ?
= λ

∑
b∈B(
∑l
η=1 aηhiη ). (4)

Here, the effort of exponentiations is independent of the two pa-
rameters k = |B| and l due to our EHVT. Thus, this reduces the
effort from O(kl) exponentiations to O(1) exponentiation when
compared to the equation

h(B) ?
=
∏

b∈B

(
l∏

η=1

haη
iη

),

Table 3: Workflow of the AuditLog Protocol

Client Auditor
1. Choose a random subset B

of indices of Bitcoin blocks;
the random subset B−−−−−−−−−−−−−−→

2. Compute h(B) =
∏

b∈B h(b);
3. Compute σ(B) =

∏
b∈B σ

(b);
4. Compute µ(B)

z =
∑

b∈B µ
(b)
z

for each 1 ≤ z ≤ s;
5. Generate tp by running

Algorithm 1;
ρ(B)={tp,h(B),µ(B)

1 ,··· ,←−−−−−−−−−−−−−−−
µ(B)

s ,σ(B)}, Sigska (ρ(B))

6. Verify Sigska (ρ(B)),
if succeed, continue;

7. Verify tp by running
Algorithm 2;

8. If succeed, verify

h(B) ?
= λ

∑
b∈B(
∑l
η=1 aηhiη );

9. If succeed, verify

σ(B) ?
= (h(B) · g∑s

z=1 αzµ
(B)
z )x.

which corresponds to the traditional tag construction in Eq. (1).
If this verification fails, client rejects h(B), which also means that
auditor is malicious. Otherwise, client checks the last equation
by using her secret key sk and the verified h(B)

σ(B) ?
= (h(B) · g

∑s
z=1 αzµ

(B)
z )x. (5)

If the above Eq. (5) does not hold, client rejects µ(B)
1 , µ(B)

2 , · · · ,
µ(B)

s , σ(B), manifesting that auditor has colluded with CSP and
data has been corrupted in CSP. Otherwise, client can rest as-
sured that auditor was honest to audit CSP for all the past chal-
lenged data blocks appointed by B. The correctness of Eq. (5)
can be elaborated as below

σ(B) =
∏

b∈B

l∏

η=1

σaη
iη

=
∏

b∈B

l∏

η=1

(λhiη · g
∑s

z=1 αzmiηz )aηx

= (
∏

b∈B

λ
∑l
η=1 aηhiη · g

∑s
z=1 αz(

∑l
η=1 aηmiηz))x

= (λ
∑

b∈B(
∑l
η=1 aηhiη ) · g

∑s
z=1 αz(

∑
b∈B µ

(b)
z ))x

= (h(B) · g
∑s

z=1 αzµ
(B)
z )x.

Note that, to reduce computation cost as much as possible,
we propose the client can accomplish the last verification with
her secret key sk as in Eq. (5), which is more appropriate for
the outsourced auditing scheme. More precisely, it not only
avoids two pair operations but also reduces s multiplications
and s exponentiations on group G to 1 and 2 respectively, when
compared to the following equation

e(σ(B), g) ?
= e(h(B) ·

s∏

z=1

gµ
(B)
z

z , y).
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Algorithm 3 BatchUpdate(C,U,M∗)
Input: the challenged index vector C = (i1, i2, · · · , ic), the up-

date operation vector U = (U[1],U[2], · · · ,U[c]) and the
new data block vector M∗ = (m∗i1 ,m

∗
i2
, · · · ,m∗ic ).{note that if U[ j] == delete then m∗i j
= NULL}

Output: True or False.
Client:

1: for j = c to 1 do
2: if U[ j] == modify or insert then
3: h∗i j

= H2(m∗i j
); σ∗i j

= (λh∗i j · g
∑s

z=1 αzm∗i jz )x;
{where m∗i j

= m∗i j1
‖m∗i j2

‖ · · · ‖m∗i j s
}

4: else {U[ j] == delete}
5: h∗i j

= NULL; σ∗i j
= NULL;

6: end if
7: end for
8: send update command uc = (C,U,H∗) and her signature

Sigskc (uc) to auditor and CSP;
{where H∗ = (h∗i1 , h

∗
i2
, · · · , h∗ic )}

Auditor:
9: obtain multi-proof tp by calling Algorithm 1;

10: update all challenged leaf nodes by calling Algorithm 4,
and output T ′, W;

11: obtain n∗, C∗ and t∗p by calling Algorithm 5;
12: update other affected nodes in a way similar to Algorithm

2 by inputting T ′, t∗p and C∗, and output the final tree T ∗

and its Merkle root hroot∗ ;
13: generate update proof up = (tp, hroot∗ ), and send up and

his signature Sigska (up) to CSP;
CSP:

14: verify update proof up by calling Algorithm 6; if this veri-
fication passes, then send up and its signature SigskCSP (up)
to client; otherwise, output False;
Client:

15: verify up by calling Algorithm 6; if the verification is
passed, then generate update information ui = (M∗,Σ∗) and
send it to CSP with her signature Sigskc (ui) ; otherwise, out-
put False; {where Σ∗ = (σ∗i1 , σ

∗
i2
, · · · , σ∗ic )}

CSP:
16: for j = c to 1 do
17: if U[ j] == modify and h∗i j

== H2(m∗i j
) then

18: replace mi j , σi j with m∗i j
, σ∗i j

, respectively;
19: else if U[ j] == insert and h∗i j

== H2(m∗i j
) then

20: insert m∗i j
, σ∗i j

before mi j , σi j , respectively;
21: else {U[ j] == delete}
22: delete mi j and σi j , respectively;
23: end if
24: end for

CSP, Client and Auditor:
25: sign the updated P∗ = {n∗, hroot∗ } jointly;
26: return True;

3.2.5. DynamicUpdate Protocol

The three kinds of update operations in our scheme are de-
fined as follows: modification of the i-th data block, deletion

Algorithm 4 UpdateLeafNode(T, uc)
Input: the tree T and the update command uc.
{where uc = (C,U,H∗)}

Output: the updated tree T ′ and the new node vector W.
1: for j = c to 1 do
2: if U[ j] == modify then
3: create new node w∗i j

= (ri j , h
∗
i j

), and replace wi j with
w∗i j

in T ; {note that wi j = (ri j , hi j )}
4: else if U[ j] == insert then
5: create new nodes w∗i j

= (1, h∗i j
), w′i j

= (ri j + 1, h′i j
),

where h′i j
= H(ri j + 1‖h∗i j

‖hi j ), and replace wi j in T
with w′i j

, which has left child w∗i j
and right child wi j ;

6: else {U[ j] == delete}
7: if sn is a leaf node then
8: delete wi j from T , and replace pn with sn;
9: else {sn is a non-leaf node}

10: delete wi j from T , and replace pn with Tsn;
{where sn, pn are the sibling node, parent node of
wi j respectively, and Tsn is a subtree rooted at sn}

11: end if
12: end if
13: end for
14: return T ′ and W = (W[1],W[2], · · · ,W[c]); {note that if

U[ j] == modify then W[ j] = w∗i j
, else if U[ j] == insert

then W[ j] = w′i j
, else U[ j] == delete then W[ j] = NULL}

of the i-th data block, and insertion of a new data block before
the i-th data block. Owing to the fact that insertion of a new
data block after the i-th data block is much similar to the third
operation, thus is omitted here. To prevent malicious behavior
and collusion, we propose the involved three participants need
to reach a consistency of update operations.

When multiple update operations are requested, a straightfor-
ward way is performing these updates one by one. This method,
however, incurs additional computation overhead at the audi-
tor side, as he computes some repetitive hash values. To see
more clearly, let us take the Fig. 2 for example (page 4). Giv-
en two update commands (3,modify, h∗3), (7, delete,NULL) re-
ceived from client, if auditor first modifies the node w3, then he
needs to calculate hashes of w16,w21,w25, root. Later, when
auditor deletes the node w7, he needs to calculate hashes of
w22,w25, root. There are 5 different nodes that auditor needs
to recalculate hashes, but he does 7 hash calculations. This sit-
uation will be aggravated with the number of update operations
increases. In addition, when multiple updates are verified indi-
vidually, it also wastes additional bandwidth and computation
resources at both CSP and client side, as analyzed in previous
strawman solution (cf. Section 3.1).

To conquer the above problems, we design an Algorithm 3
based on MLA solution to handle multiple updates in a batch
way. This algorithm is triggered by client, who first computes
all the hash and tag values of the new data blocks and then sends
the update command uc to auditor and CSP (as shown in lines
1–8). After receiving uc, auditor updates the tree T and sends
the update proof up to CSP (as shown in lines 9–13). Then C-
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Algorithm 5 UpdateMultiProof(U,W, n,C,tp)
Input: the update operation vector U, the new node vector W,

the original total number of data blocks n, challenge vector
C and multi-proof tp.

Output: the updated total number of data blocks n∗, challenge
vector C∗ and multi-proof t∗p.

1: for j = c to 1 do
2: if U[ j] == modify then
3: update tp by replacing the j-th E-marked element (E,

wi j ) with (E, w∗i j
);

4: else if U[ j] == insert then
5: n = n + 1; C = C( j-after) + 1;
6: update tp by replacing the j-th E-marked element (E,

wi j ) with (E, w′i j
);

7: else {U[ j] == delete}
8: n = n − 1; C = C( j-after) − 1;

{let (d, v) denote the first element below the j-th E-
marked element in tp, where v = (r, h)}

9: if d == E then
10: delete the j-th element C[ j] from C;
11: update tp by deleting the j-th E-marked element

(E, wi j ) and its corresponding I-marked element;
12: else if d == I then
13: delete the j-th element C[ j] from C;
14: update tp by deleting the j-th E-marked element

(E, wi j ) and deleting the element (I, v);
15: else if d == R then
16: C = C( j) − r;
17: update tp by deleting the j-th E-marked element

(E, wi j ) and replacing (R, v) with (E, v);
18: else {d == L}
19: update tp by deleting the j-th E-marked element

(E, wi j ) and replacing (L, v) with (E, v);
20: end if
21: end if
22: end for
23: the updated n, C and tp are denoted as n∗, C∗ and t∗p, re-

spectively;
24: return n∗, C∗ and t∗p;

SP verifies the correctness of up and later client also checks it
(as shown in lines 14–15). If one of the verifications fails, this
algorithm returns False; otherwise client sends update informa-
tion ui to CSP. After receiving ui, CSP updates the processed
data (as shown in lines 16–24). At last, the three participants
sign the updated public parameter P∗ = {n∗, hroot∗ }, and output
True (as shown in lines 25–26). Note that to save space, we
omit the signature verification in each above interaction.

In Algorithm 6, our method to verify the update proof up
consists of four parts. First, the multi-proof tp is verified
according to n, hroot,C. Second, based on uc and the ver-
ified tp, we construct the new node vector W by the sim-
ilar way in Algorithm 4. Third, by invoking Algorithm 5
UpdateMultiProof(U,W, n,C,tp), the updated values n∗,C∗,t∗p
are obtained. Fourth, the new Merkle root hroot∗ sent by audi-

Algorithm 6 VerifyUpdateProof(up, uc, n, hroot)
Input: the update proof up, the update command uc, the total

number of data blocks n and the Merkle root hroot.
{where up = (tp, hroot∗ ), uc = (C,U,H∗)}

Output: True or False.
1: if VerMultiProof (tp, n, hroot,C) == Accept then
2: based on uc and tp, obtain the new node vector W in a

way similar to the auditor in Algorithm 4;
3: obtain n∗, C∗ and t∗p by calling Algorithm 5;
4: if VerMultiProof (t∗p, n∗, hroot∗ ,C∗) == Accept then
5: return True;
6: else {VerMultiProof (t∗p, n∗, hroot∗ ,C∗) == Reject}
7: return False;
8: end if
9: else {VerMultiProof (tp, n, hroot,C) == Reject}

10: return False;
11: end if

Fig. 4: The final tree T ∗ after updates, where the updated challenge nodes are
marked with red, the necessary nodes needed for verification are marked with
blue.

tor is verified according to the correct values n∗,C∗,t∗p. If all
the above verifications pass, we confirm the auditor did perform
updates correctly; otherwise we reject the update proof up.

In the example of Fig. 2 (page 4), if the update com-
mand uc = (C,U,H∗) is performed by auditor correctly, where
C = (3, 7, 8, 10, 13), U = (modify, delete, insert, delete, insert),
H∗ = (h∗3,NULL, h∗8,NULL, h∗13), then the final tree T ∗ whose
updated nodes are marked with ∗ is shown in Fig. 4. In addition,
the updated multi-proof t∗p corresponding to C∗ = (3, 7, 9, 12)
is listed in Fig. 3(b) (page 5).

3.2.6. ImpartialArbitration Protocol
This protocol will be triggered if there are any disputes a-

mong the involved three participants. In this case, the honest
participant resorts to a trusted third party, called arbitrator, to
vindicate his/her innocence and detect the malicious behaviors.
As analyzed in Section 2.2, if a scheme is secure against two
malicious participants, then it naturally is secure against any
one of them. Therefore, it suffices to take into account the fol-
lowing three cases where only one participant is honest.

Case 1: Only client is honest. If data corruption has occurred
in CSP, then client can detect this malicious incident even CSP
colludes with auditor. The reason is that the proof of appointed
logs ρ(B) generated by them can not pass the client’s checking.
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If this evidence is submitted to arbitrator, then the collusion of
CSP and auditor will be catched.

Case 2: Only CSP is honest. If auditor colludes with client,
and claims that at least one of the data blocks miη (1 ≤ η ≤ l)
is lost or corrupted by CSP. In this situation, CSP only needs to
submit all these blocks to arbitrator. Based on hroot confirmed
by three participants, arbitrator first authenticates the hash val-
ues hiη (1 ≤ η ≤ l) received from auditor. If this verification is
passed, then arbitrator computes H2(miη ) and compares it with
the authenticated hiη . If H2(miη ) = hiη holds for 1 ≤ η ≤ l, then
arbitrator can prove that all these data blocks are really stored
at CSP.

Case 3: Only auditor is honest. If client deliberately claim-
s that the auditor does not do his auditing work honestly, then
the log file allows auditor to prove his innocence even client
colludes with CSP. This is because the log file reflects the au-
ditor’s past auditing work, arbitrator can check log entry L(b)

to prove auditor’s behavior at the corresponding point in time.
This checking involves Merkle root hroot, CSP’s signature and
client’s public key, so they do not deny the verification result.
If the verification passes, auditor is honest without doubt.

3.2.7. Discussion and Extension
For notational simplicity, we present the ODPDP scheme in

the symmetric bilinear group, where the two parameters of the
pairing belong to the same group G. In fact, our scheme can al-
so be constructed based on an asymmetric bilinear map. In what
follows, we show how to extend our scheme to an asymmetric
setting. In general, the asymmetric bilinear map has the form
e : G1×G2 → GT , where G1, G2 and GT are three multiplicative
cyclic groups of prime order q. Let g and g′ be the generators
of G1 and G2, respectively. The difference is that now the pub-
lic keys λ, g1 = gα1 , · · · , gs = gαs live in G1, and the public
key y = (g′)x lives in G2. Accordingly, the corresponding no-
tations involved in this extension should be adjusted to cater
to the asymmetric setting. As shown in [7, 26], the symmetric
version has a simpler expression, while the asymmetric version
has faster operations under the same security level.

4. Security Analysis

The correctness of our scheme has been demonstrated at the
end of AuditData and AuditLog protocols, thus is omitted
here. In this section, we prove the security of our ODPDP
scheme with respect to three properties: authenticity, liability
and extractability.

Theorem 1. (Authenticity) Assume that hash function H1 is
collision resistant, RBMT guarantees the integrity of hash val-
ues stored in its leaf nodes.

Proof. First, we show that the malicious auditor is not able
to deceive client and pass her verification by replacing a chal-
lenged leaf node with another leaf node. The reason is that the
first property of Algorithm 2 can defend against this replacing-
attack. Second, it is impossible for the auditor to forge a valid
proof of the challenged leaf nodes if one of these nodes has

been tampered. If auditor can make client accept a forged proof
of the challenged leaf nodes, then we can break the collision
resistance of hash function H1 by using a simple reduction as
in [27]. The reduction keeps a local copy of RBMT, if auditor
forges a valid proof, then the reduction would output the proof
together with an authentic proof in the local copy as a collision,
which contradicts our initial assumption.

Summing up, we prove that RBMT can protect the integrity
of hash values stored in its leaf nodes as long as the used hash
function is collision resistant.

Theorem 2. (Liability) In our scheme, the honest auditor can
attest any party that he did his auditing work correctly in case
of conflicts while the malicious auditor will fail.

Proof. We first analyze the case where the auditor is honest
while the other two participants are malicious. Notice that the
auditor’s work consists of three parts, namely, generating the
challenge Q(b), computing the value h(b) and verifying the Eq.
(2). Due to the fact that any challenge generated from Bitcoin
can be reconstructed later on, arbitrator can check if the chal-
lenge Q(b) is correct. Based on the authenticated hash values,
the arbitrator can check if the value h(b) is correct. The verifica-
tion of Eq. (2) can be redone by the arbitrator with the public
key pk. So the honest auditor can be protected by his log file,
which is an objective evidence that can be used to prove the
auditor’s well behavior.

On the other hand, if auditor is malicious and irresponsible
to his auditing work, then his misbehavior would be detected
by client during AuditLog protocol. This is because the client
can audit the log file to check whether the auditor was honest
to do the past auditing work whenever she wants. Thus, the
malicious auditor can not prove he is well behaved unless he
did his auditing work correctly in the past.

The extractability of our scheme is based on computational
Diffie-Hellman (CDH) assumption in bilinear group G, which
is defined as follows.

Definition 3. (CDH Assumption) For any probabilistic poly-
nomial time adversary A, the advantage of the adversary on
computing ua given g, ga, u ∈ G is negligible, namely,

Pr[A(g, ga, u ∈ G)→ ua ∈ G : ∀a ∈ Z∗q] ≤ ε.

Theorem 3. (Extractability) Assuming the CDH assumption
holds in bilinear group G, for any probabilistic polynomial time
adversary A who has corrupted CSP and auditor (or auditor
and client), if A forges a valid proof successfully, then there
exists an extraction algorithm that can recover the challenged
data blocks fromA—except possibly with negligible probabili-
ty.

Proof. We discuss the first scenario where the client is hon-
est while the other participants are corrupted by A. Assume
that there exists an adversary A who wins the following game
on a challenge Q launched by the challenger, we show how to
construct a simulator that is able to extract the challenged data
blocks.
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For the CDH problem, the simulator is given values g, ga, u ∈
G, its goal is to find a value ua. The simulator plays the part of
the game challenger, and simulates an ODPDP environment for
A with the following differences.

In setup phase, the simulator sets the value y to ga, which
means that it does not know the secret value a.

In query phase, the adversary A queries the store oracle
adaptively, the simulator answersA’s store queries as below.

For each z (1 ≤ z ≤ s), the simulator first selects random
values bz, cz ∈ Zq and sets gz = gbz · ucz . Then the simulator
selects a random value d ∈ Z∗q and sets λ = ud.

Upon receiving a hash query for a block mi =

mi1‖mi2‖ · · · ‖mis (1 ≤ i ≤ n), the simulator computes H2(mi) =

−d−1 ·∑s
z=1 czmiz, and sends it back toA.

Upon receiving a tag query for a block mi (1 ≤ i ≤ n), the
simulator computes σi = (ga)

∑s
z=1 bzmiz , and responds A with it.

Note that the tag σi generated by the simulator is in accord with
the protocol specification, since the following equation holds

σi = (λH2(mi) · g
∑s

z=1 αzmiz )a

= ((ud)−d−1·∑s
z=1 czmiz ·

s∏

z=1

gmiz
z )a

= (u−
∑s

z=1 czmiz ·
s∏

z=1

(gbz · ucz )miz )a

= (u−
∑s

z=1 czmiz · g
∑s

z=1 bzmiz · u
∑s

z=1 czmiz )a

= (ga)
∑s

z=1 bzmiz .

IfA can forge a valid proof of possession for the data blocks
determined by the simulator’s challenge Q, then the simulator
can useA to solve the CDH problem. Let a correctly computed
proof be ρ = {µ1, µ2, · · · , µs, σ}, that satisfies the verification
equation by the correctness of our scheme

e(σ, g) = e(h ·
s∏

z=1

gµz
z , y).

Let ρ′ = {µ′1, µ′2, · · · , µ′s, σ′} be a valid proof forged by A, so
this proof also satisfies the verification equation

e(σ′, g) = e(h ·
s∏

z=1

gµ
′
z

z , y).

If µ′z = µz for all 1 ≤ z ≤ s, then the simulator has already
successfully obtained the correct µz (1 ≤ z ≤ s). We analyze
the opposite case where at least one of µ′z = µz (1 ≤ z ≤ s)
does not hold. Hence, it follows from the verification equation
that σ , σ′. Now, dividing the verification equation for the
forged proof by the verification equation for the correct proof,
we obtain

e(σ′ · σ−1, g) = e(
s∏

z=1

g∆µz
z , y)

= e(
s∏

z=1

(gbz · ucz )a∆µz , g),

where ∆µz = µ′z − µz for each 1 ≤ z ≤ s. We can further obtain

σ′ · σ−1 =

s∏

z=1

(gbz · ucz )a∆µz

= (ga)
∑s

z=1 bz∆µz · (ua)
∑s

z=1 cz∆µz .

So far, we have found a solution to the CHD problem

ua = (σ′ · σ−1 · y−
∑s

z=1 bz∆µz )
1∑s

z=1 cz∆µz ,

unless the denominator
∑s

z=1 cz∆µz is zero. However, note that
at least one of ∆µz (1 ≤ z ≤ s) is nonzero, and the values
cz (1 ≤ z ≤ s) are information-theoretically hidden from the
adversary A, so the denominator is zero only with a negligible
probability 1/q.

For each sum of the form µz = a1mi1z + a2mi2z + · · · +

almilz, we show that the simulator may extract the sectors
mi1z,mi2z, · · · ,milz in polynomially-many interactions with the
adversary A. By running AuditLog protocol repeatedly, the
simulator may obtain l independent linear equations in the vari-
ables mi1z,mi2z, · · · ,milz. Then the simulator solves these equa-
tions to get the sectors mi1z,mi2z, · · · ,milz. Therefore, the simu-
lator can extract the data blocks mi1 ,mi2 , · · · ,mil dictated by the
challenge Q. This concludes the first scenario.

It remains to discuss the next scenario, where CSP is honest
while the others are malicious. The simulator takes as input the
data M stored at the honest CSP side, and can trivially extract
the challenged data blocks.

In conclusion, according to Definition 2 (cf. Section 2.2), we
have argued that our scheme is secure based on the above three
theorems.

Note that the auditor can obtain the challenged data block-
s from sufficiently many correct proofs. In other words, the
proofs returned by CSP may leak the data content to the auditor
during the auditing process. As mentioned in Section 2.2, we
do not consider the confidentiality of the data, which is beyond
the scope of the problem we study here. If the confidentiality
of the data needs to be protected, there are two common so-
lutions to be adopted. One is to incorporate privacy-preserving
techniques [18–21] into integrity auditing scheme to prevent the
auditor from learning knowledge about the data, which is one
of the important research directions in this area; the other is rel-
atively straightforward: client encrypts her data prior to starting
the integrity auditing scheme.

5. Performance Analysis

5.1. Theoretical Analysis

The features of our ODPDP scheme are listed in Table 4. We
also include a comparison of related schemes [9–11, 15–18],
in which the scheme [18] refers to the dynamic version. Note
that the Setup and Store protocols are taken as a protocol in
some schemes, so we will put them together for ease of com-
parison. Now, we explain some notations used in this table.
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Table 4: Theoretical comparison of property, computation cost and communication cost.

Scheme Property Computation cost Communication cost

Audit type Update type Setup and Store AuditData AuditLog AuditData AuditLog

DPDP[9] private single nExpZ∗N (l + 1)ExpZ∗N N/A O(log n) N/A
FlexDPDP[10] private batch nExpZ∗N (l + 1)ExpZ∗N N/A O(log n

l ) N/A

Scheme[11] public single 2(ns + 1)ExpG
(2l + 1)ExpG

+4Pair N/A O(log ns) N/A

IPIC-DG[17] public N/A
(ns + 4n + 10)ExpG+(3n
+4)Pair+(3n + 2)ExpGT

(10l + s)ExpG+

5lPair+4lExpGT

N/A O(1) N/A

SEPDP[18] public single (s + 1)ExpG (s + 3)ExpG N/A O(1) N/A
Fortress[15] outsourced N/A (ns + 10n + 4s)ExpZ∗N 0 0 O(1) O(1)

DOA[16] outsourced single (n + 1)ExpZ∗N (l + 5)ExpZ∗N 5ExpZ∗N O(1) O(log n
c )

ODPDP(ours) outsourced batch (2n + s + 1)ExpG
(l + s + 1)ExpG

+2Pair 3ExpG O(1) O(log n
c )

First, let Pair denote the pairing operation on the group G, and
let ExpG, ExpGT , ExpZ∗N denote the exponentiation operations
on the groups G, GT , Z∗N respectively, where N is RSA modu-
lus. Second, let n denote the total number of data blocks and s
denote the number of sectors per block. Third, let l and c de-
note the number of challenged data blocks in AuditData and
AuditLog protocols, respectively. Finally, let N/A denote not
applicable in that case, e.g., the scheme can not support dynam-
ic update or outsourced auditing.

We can see from Table 4 that only Fortress [15], DOA [16]
and our ODPDP support outsourced auditing property, and only
FlexDPDP [10] and our ODPDP support batch update proper-
ty. For computation cost, we only make the comparison with
regards to exponentiation and pairing operations, since the oth-
er operations such as multiplication and addition are relatively
lightweight. IPIC-DG [17] adopts the ZKP protocol to achieve
the anonymity of users, which incurs more exponentiation op-
erations than the others. The results show that SEPDP [18] re-
quires less exponentiations than the others. Observe that only
DOA [16] and our scheme can support outsourced auditing and
dynamic update simultaneously, so we mainly focus on the two
schemes to make a fair comparison. Note that only the num-
ber of cryptographic operations may not reflect the computation
performance of the two schemes, since they are based on differ-
ent group setting. For a more realistic comparison, please refer
to the next Section 5.2. In addition, we find that our scheme
exhibits the same communication performance with DOA [16]
for the AuditData and AuditLog protocols. Moreover, our
scheme reduces the amortized price per update from 1+ log n to
1+ log (n/c) due to the proposed batch update algorithm, where
c denotes the number of updated data blocks.

5.2. Experiment Evaluation

In this section, we evaluate the performance of our ODPDP
scheme in terms of computation time and communication cost.
As a basis for comparison, we implemented the prototype of
our ODPDP scheme and the most related schemes (FlexDPDP
[10], Fortress [15] and DOA [16]) in Python. All cryptographic
operations were conducted in Charm [28, 29], a framework of

rapidly prototyping cryptosystems. In our implementation, we
relied on the Python built-in random number generator, the se-
cure hash algorithm H1 was instantiated by using SHA256, and
the utilized elliptic curve was MNT224. In addition, each ran-
dom challenge was extracted by inputting a Bitcoin block hash,
which can be obtained by using a getblockhash tool as in [15].

We deployed our experiments on a machine possessing 16-
core Intel Xeon E5-2620 v4 CPU @ 2.10GHz, 32GB of RAM,
and 20MB of L3 cache, running CentOS Linux release 7.5.1804
(Linux kernel 3.10.0-514.el7.x86 64).

For ease of comparison, we used the same scenario as in pre-
vious work [16], where the size of outsourced data was set to
1 GB for testing. As suggested in [15, 16], the block size was
set to 16 KB for the most balanced performance. In addition,
the sector size per data block in ODPDP and Fortress was set to
223 bits, and the size of RSA modulus in FlexDPDP, Fortress
and DOA was set to 2048 bits. All evaluation results are the
average of 10 runs.

Pre-processing performance: Fig. 5(a) shows the pre-
processing time (i.e., Store protocol) as a function of data size
for all investigated schemes. To optimize store protocol in
Fortress, we leverage the fact that auditor’s tag is homomor-
phic and verify all the tags in a single batch way. The result-
s show that the computation time required to pre-process 1G-
B outsourced data in ODPDP is almost 1.7, 2.7 and 14 times
faster than FlexDPDP, DOA and Fortress, respectively. This
does mirror the advantage of our EHVT, which can reduce s-
tore effort from O(s) exponentiations to O(1) exponentiations.
The communication cost incurred by authenticated data struc-
ture during Store protocol under different data sizes is illustrat-
ed in Fig. 5(b). In order to generate auditor’s tags, Fortress must
download the client’s raw data from CSP to auditor, so it’s com-
munication cost is naturally larger than FlexDPDP, DOA and
ODPDP, thus is omitted here. Our findings show that the com-
munication cost of FlexDPDP is larger than the other schemes,
since the former stores 2048 bits tag value in each leaf node
while the others only need to store relatively small hash value.
We also find that the communication cost of ODPDP is smaller
than that of DOA, because the latter need to store additional in-
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(a) (b)

Fig. 5: (a) Computation time for client when pre-processing the outsourced
data w.r.t. data size; (b) Communication cost incurred by authenticated data
structure during Store protocol w.r.t. data size.

(a) (b)

Fig. 6: (a) Proof generation time of AuditData protocol w.r.t. the fraction of
challenged data blocks; (b) Proof verification time of AuditData protocol w.r.t.
the fraction of challenged data blocks.

formation (i.e., status value and height value) for each node in
Merkle tree.

AuditData performance: The time incurred by generating
proof at CSP side once w.r.t. the fraction of challenged data
blocks is shown in Fig. 6(a). Our results show that the proof
generation time increases almost linearly with the fraction of
challenged data blocks for all investigated schemes. We can
see that the computation time required by DOA is very close
to that of FlexDPDP, and both are larger than the other two
schemes. The reason is that CSP’s computation time in DOA
and FlexDPDP is dominated by computing the aggregated tag
(involving exponentiation operations), which consumes consid-
erable computation effort compared with the other schemes. In
Fig. 6(b), we measure the computation time incurred by verify-
ing proof w.r.t. the fraction of challenged data blocks. It can be
observed that the computation time in Fortress is smaller than
the other three schemes, this is because verification in Fortress
only involves addition and multiplication operations while the
other schemes require exponentiation operation. Due to only
the constant number of exponentiations is required in DOA and
FlexDPDP while ODPDP needs to perform s exponentiations,
so ODPDP is slightly slower than DOA and FlexDPDP in terms
of proof verification time.

AuditLog performance: In this experiment, the number of
challenged data blocks was set to 460 to achieve 99% proba-
bility of misbehavior detection, as suggested in [6]. Fig. 7(a)
presents the computation time incurred by client to audit the au-
ditor’s past work once under the number of checked log entries.
As expected, the time to check the log file almost increases lin-

(a) (b)

Fig. 7: (a) Computation time for client to check auditor’s log once w.r.t. the
number of checked log entries; (b) Communication cost during AuditLog pro-
tocol w.r.t. the number of checked log entries.

(a) (b)

Fig. 8: Performance of MLA solution in comparison to the strawman solution
w.r.t. the fraction of challenged leaf nodes. (a) Computation time compared;
(b) Communication cost compared.

early with the number of appointed log entries in all investi-
gated schemes. But ODPDP exhibits a better log audit perfor-
mance at client side when compared to the other two schemes.
In Fig. 7(b), we evaluate the communication cost during Au-
ditLog protocol w.r.t. the number of verified log entries. The
different prices of dynamic update caused by ODPDP and DOA
are respectively presented by the distances between the line la-
beled Fortress and other lines, which come from the Merkle
tree proof. The results show that ODPDP results in a smaller
communication cost than DOA, as the node size of Merkle tree
in DOA is larger than our scheme. Note that FlexDPDP is not
applicable for this evaluation, since it does not provide the log
audit mechanism for the client.

Comparison with the strawman solution: In an addition-
al experiment, we evaluate the improved performance of MLA
solution against the straightforward solution, which can only
authenticate the challenged leaf nodes one by one. As shown
in Fig. 8(a) and Fig. 8(b), it can be observed that our solution
considerably improves the performance over the traditional so-
lution in terms of both computation time and communication
cost. The reason is that the multi-proof of challenged leaf nodes
can be generated and verified without the repetitive calculation-
s and transmissions. With the number of challenged leaf nodes
increases, the distance between the two lines will become more
pronounced. This evaluation suggests that our MLA solution is
more suitable for ODPDP scheme.
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6. Related Work

Data integrity auditing is an important technique for secure
cloud storage, which has been extensively investigated in the
past few years. The first proofs of retrievability (POR) scheme
was presented by Juels and Kaliski [5], which relies on sen-
tinel blocks hidden among actual data blocks to detect data cor-
ruption by the untrusted server. But the number of challenges
launched by client is limited, because the sentinel blocks might
be used up after some challenge-response interactions. At the
same year, the first provable data possession (PDP) scheme was
proposed by Ateniese et al. [6], which is based on homomor-
phic verifiable tag (HVT) and random sampling. The scheme
supports an unbounded number of challenges compared with
the one in [5], and can be modified to offer public verifiabili-
ty. After that, two compact POR schemes were presented by
Shacham and Waters [7], which provide full security proofs.
The first scheme with private verifiability is built on pseudo-
random function, and the second one with public verifiability is
built from BLS signature [23].

Unfortunately, the aforementioned schemes only apply to
static scenario, where the outsourced data is never changed by
client. To cope with dynamic scenario, Ateniese et al. [8] pro-
posed a scalable and efficient PDP scheme, which only allows
partial update operations while block insertion at any position
is not supported. To support full update operations, Erway et al.
[9] presented a dynamic PDP scheme based on skip list. Esin-
er et al. [10] extended this work to support variable block-size
update by using FlexList.

To relieve clients from the burden of frequent auditing, Wang
et al. [11] proposed a public auditing scheme that relies on
trusted TPA to check data integrity. The scheme also supports
full dynamic updates by using Merkle tree. To support fine-
grained update, Liu et al. [12] presented a dynamic public au-
diting scheme by employing variable-size block based Merkle
tree. By migrating version information of clients’ data from C-
SP to TPA, a dynamic-hash-table based public auditing scheme
was proposed by Tian et al. [13] in order to reduce computation
overhead and communication cost. All existing public auditing
schemes, however, rely on an assumption that TPA is trusted
and performs auditing task honestly on behalf of client.

To provide security guarantees that have not been covered
in previous auditing schemes, an outsourced auditing scheme
was first presented by Armknecht et al. [15], which can protect
against any one malicious participant and against collusion of
any two participants. But their scheme just applies to static data,
which can not cater to dynamic scenario where clients expect
to update their outsourced data. Rao et al. [16] extended it to
support dynamic update, but it only can handle multiple update
operations one by one, which may limit update efficiency in
practice and is also one of main focuses in our paper.

7. Conclusion

Outsourced auditing is a novel business model for cloud stor-
age service, where a financial contract is established between
clients and auditor by which clients can be assured that the

integrity of their data is continually monitored by auditor. In
this paper, we proposed an ODPDP scheme that can resist any
dishonest participant and collusion, which is not satisfied by
traditional auditing schemes. Due to the proposed EHVT, our
scheme can considerably enhance computation efficiency with
respect to exponentiation operation, especially for clients dur-
ing Store and AuditLog protocols. In addition, our scheme can
not only authenticate multiple leaf nodes and their indices al-
l together but also handle multiple updates at once. Note that
both the tag construction and the batch processing are tailor-
made for ODPDP scheme. Security analysis and experiments
showed that our scheme is provably secure and highly efficient.
In terms of future work, we plan to explore effective solutions to
incorporate the privacy-preserving technique into the ODPDP
scheme.
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[9] C.C. Erway, A. Küpçü, C. Papamanthou, R. Tamassia, Dynamic provable
data possession, in: ACM CCS, 2009, pp. 213–222.

[10] E. Esiner, A. Kachkeev, S. Braunfeld, A. Küpçü, O. Ozkasap, FlexDPDP:
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Highlights 

 

 

 We  present  an  efficient  homomorphic  verifiable  tag  to  improve  computation 

efficiency. 

 We propose a batch update algorithm to reduce the price of dynamic update. 

 We describe an ODPDP scheme which is provably secure and highly efficient. 

 The scheme migrates frequent auditing work from clients to an external auditor. 

 The scheme provides a  log audit mechanism with  lower computation effort  for 

clients. 


