Accepted Manuscript e

o ) ) ) FIGICIS:
Two approaches for synthesizing scalable residential energy consumption S Rt T

data

Xiufeng Liu, Nadeem Iftikhar, Huan Huo, Rongling Li, Per S
Sieverts Nielsen

PII: S0167-739X(18)31621-2

DOI: https://doi.org/10.1016/j.future.2019.01.045
Reference: FUTURE 4738

To appear in:  Future Generation Computer Systems

Received date: 7 July 2018
Revised date: 19 December 2018
Accepted date: 22 January 2019

Please cite this article as: X. Liu, N. Iftikhar, H. Huo et al., Two approaches for synthesizing
scalable residential energy consumption data, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2019.01.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.future.2019.01.045

Two Approaches for Synthesizing Scalable Residential Energy Consumption
Data

Xiufeng Liu**, Nadeem Iftikhar®*, Huan Huo®, Rongling Li?, Per Sieve *< I elsen®

“Technical University of Denmark
b University College of Northern Denmark
“University of Technology Sydney, Australia

Abstract

Many fields require scalable and detailed energy consumption data ... diffs ;ent study purposes. However, due
to privacy issues, it is often difficult to obtain sufficiently large datasets. .™is paper proposes two different methods
for synthesizing fine-grained energy consumption data for residentia. - ~use :0lds, namely a regression-based method
and a probability-based method. They each use a supervised machine 'earning method, which trains models with a
relatively small real-world dataset and then generates large-scale .. ne series based on the models. This paper describes
the two methods in details, including data generation proc. ss, ¢ y....1ization techniques, and parallel data generation.
This paper evaluates the performance of the two met. s, w. ich compare the resulting consumption profiles with
real-world data, including patterns, statistics, and parallel ‘ata generation in the cluster. The results demonstrate the
effectiveness of the proposed methods and their efficie.. ~v in generating large-scale datasets.

~
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1. Introduction

Energy consumption data is or : . the most popular datasets used for different studies. Many fields, such as
energy, climate, buildings, and sc”.. ~re engineering, require considerable energy consumption data for benchmarking

or derived research purposes. *

o ,0d example is about detecting the occupancy of a household through analysis
of fine-grained residential < aergy consumption data, such as [1, 2]. In addition, the analysis of household energy
consumption data is conside. ~ an ¢ fective way to understand consumer behavior for improving energy efficiency [3].
In our recent Europear H202C »roject, ClairCity [4], we build the model for estimating CO, emission of cities, which
also requires a significa * size ,f household-level energy consumption data as its input. However, most of the studied
cities lack such ¢ ranular “nergy consumption datasets, and a few only have city or national level data. Moreover,

in software enginc. ine ,calable datasets are often used for system benchmarking purposes, including robustness,

scalability, an ' per.u...aance [5]. Smart meter datasets have also been used for benchmarking different time-series
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management systems and the design of analytic algorithms [6, 7]. Nowadays, the ability o handle big datasets
is increasingly becoming a mandatory requirement for software systems, including smart .nerg, 7ata management
systems. Therefore, there is a high demand for large fine-grained energy consumption da“ 1 fo the above studies.

The challenge is that it is often difficult to obtain a scalable set of realistic energy . msumption data, which,
among others, are mainly for the following two reasons. One is the availability rrablen. ~f smart meter data. In
the past few years, many countries have begun to use smart meters, mainly in th- elec cici., sector, when traditional
grids are upgraded to smart grids. Smart meters record energy consumption i~ a she * time interval, usually every
15 minutes or every hour. However, smart meters are mainly installed in { \@ Weste n European countries and the
Asia Pacific countries [8], while in most other countries, smart meters sti’’ ".ave ... oeen deployed. Therefore, high-
resolution energy consumption data are not available in many places. T. = < .aer 1 :ason is about data privacy because
energy consumption data usually contain sensitive information. For e. mpie, the living habits of residents can be
revealed through consumption pattern analysis. To date, a few ope.. »nergy onsumption datasets can be found, such
as [9, 10, 11, 12, 13]. They are anonymized and limited in size. . ~onymization, such as data generalization, can
greatly affect the usability of the data. Due to privacy, many ¢ “mintries have restricted the dissemination and the use
of personally-relevant data by law, including the Scandi ... -~ countries, Denmark and Sweden. In addition, the
recent enforcement of the EU General Data Protectior Regu. don (GDPR) [14] mandates strong privacy protection
for personal data. This makes it difficult to publish any da.. with a bearing on personal privacy, including energy
consumption data. Synthesizing data becomes the 0.."~ cuu.. e for these situations.

Synthetic data generation, however, is a complex task in simulating real-world energy consumption, due to the
difficulty of reproducing time series charactr .istics, 1 ‘cluding trend, seasonality, and pattern. For example, Figure 1
shows a fragment of an electricity consum tion . ~e .eries for one week, with a regular daily pattern of having a peak
in the morning and a peak in the eveni- ¢. T.e o urning peak appears earlier on a weekday than at the weekend, as
the household gets up earlier for wor .. The sc und peak of the weekend lasts longer than the working day, probably
because the family spends more tin.e at ho. ~e on weekends and consumes more energy. A synthetic time series should

be able to reflect this informatic 1.
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Figure 1: Weekly consumption pattern of a typical household



The objective of this paper is to propose methods and algorithms for synthesizing realist’: energy consumption
datasets for different needs. We present two distinct methods for generating scalable ener_y co.. "mption datasets.
One is regression-based, and the other is probability-based. They are both supervised .nac ine-learning methods,
including a training process and a generation process. The regression-based method allows * fferent auxiliary data for
the input, in addition to a small set of time series as the seed, which includes indoe~ actiyv.“es, outdoor temperature
time series, appliance parameters, building data, and other related data. If these a' xilie y a..a are absent, this method
is reduced to the simplest autoregression to synthesize new consumption valus~ by p. diction. In addition, we take
a number of steps to optimize the data generator in order to reproduce the c. aracteri: ics of real-world consumption
time series as well as possible, including de- and re-seasonalization, clus* .’'ng, aw.ing base load and white noise. In
contrast, the probability-based method requires only the seed as its inpu  T".is af yroach first identifies representative
consumption patterns by clustering, then establishes a probability mou.' anu generates new time series. For both
methods, we optimize scalable data generation by implementing .~= prog' xm using the memory-based distributed
computing framework, Spark. This paper is based on our conferc. ~e paper [15], but with a significant extension:
we have added the probability-based method, comprehensive,, ~ompared the proposed two methods, and discussed
several related issues regarding their differences and the s «_"*~~ rules.

To summarize, there are the following contributionc made 1y this paper:
- We propose two distinctly different and nove! aopro.-hes to generate fine-grained energy consumption data.

- We investigate how to simulate real-world energy consumption time series more effectively, including the

preservation of patterns, seasonality, ar A segm. ntation groups.

- We propose and implement two daf . generawc s that can generate large-scale datasets in parallel in a computing

cluster.

- We comprehensively evaluaf . an. ~ompare the proposed data generation methods, their effectiveness in simu-

lating real-world energy ¢ as. nption data, and their scalability of generating large datasets.

The paper is organized 7, follov. - Section 2 reviews related work. Section 3 describes the two data generation
methods. Section 4 descri’ =s p .ralle  data generation on Spark. Section 5 evaluates the two data generation methods.

Section 6 presents cone’ ..i0ns au . suggestions for future work.

2. Related Work

2.1. Energy consun. *~ . synthesis approaches

Energy cou ur ption synthesis has raised an increasing research interest in recent decades. There are different

models proposed 1 r simulating energy consumption profiles in literature. Refs [16, 17, 18] conduct an exhaustive



literature review on methods for energy consumption estimation. In overall, existing methods ¢ .n be grouped into two
broad categories: top-down and bottom-up approaches.

In order to tackle the lack of detailed data in the domestic energy sector, the top-dc vn 1 odelling approach has
been extensively used and implemented. Ref [19] uses statistical data about device pc. tration and combines it
with measurements from a substation to split load profile of the substation into individu.’ household load profiles.
Ref [20] uses a graph signal processing based method to dis-aggregate total ener .y cc usu.._ption down to individual
level, and leverages piece-wise smoothness of the power load signal. Some otk~+ top-_~wn based approaches derive
approximated load profiles by correlating with weather data or building data For exa nple, ref [21] generates hourly
area-level electric demand profiles by scaling down national-level hourly ! _d pru...cs [22], and adjusting it according
to local weather conditions. However, the top-down modeling approac ~ » Juire 5 a large amount of historical data,
and if there is no ancillary data available to adjust the consumption pro..’~ it will be less accurate. The ability of the
top-down approach is also questionable in identifying the improvc. ~ents of demand-side energy management at the
household level [17, 18].

The bottom-up approach, on the other hand, models loaa , -ofiles by incorporating end-user behaviors and their
interaction with, among other things, home appliances 2 « T inment, to achieve better accuracy. Ref [23] is the
first bottom-up approach to build a load profile based on a s. 1ple probability model of appliance use, for example,
by assuming a 90% probability that TV sets are on dur.ng .>= time 19:00-21:00. This approach can approximate
energy consumption of individual appliances, but thc ~omu...2d effects for many appliances, used to obtain the overall
consumption profile, are distorted. A recent approach [24] makes further development based on this idea, which can
generate more accurate realistic load profiles. The in »rovement is to match appliance use to indoor activities, using
them to generate consumption profiles bas :d on . st- dstical model. This approach, however, requires additional data
such as household activities, which arr oftr .1 dif icult to obtain. Ref [25] generates load profiles from simulating
residential behaviors based on a psyc’.ologica. odel, but it requires pre-defined very detailed household templates as
its input, such as the information fa.nily n.. mbers, living habits, and home appliances, and many others. More bottom-
up based approaches are found “or r¢ iidential electricity consumption simulation, including [26, 27, 28, 29, 30]. Yet,
overall, the drawback of the hotto.. -up based methods requires detailed additional data in order to generate accurate
energy consumption time erier. Th~ additional data can be residential indoor activities, home appliances and their
parameters, and consum=*on p. “*<./ns or behaviors of households, which are not easy to obtain.

For the above reas ns, somu other research, instead, create the methods for generating load profiles only relying on
available energy cr~ ump..... time series, which employ statistics and machine learning techniques. These methods
require a certain \mount « f real-world data to train their simulation models. For example, the studies [31, 32] use
statistical averasing vased approaches to generate new electrical consumption values. Ref [33] generates electricity
load profiles 0. » nousehold using representative data sample and statistical averages. Most often, these models
generate normal, k:ighley or Weibull distribution on the seasonal, hourly and social factors. Markov-chain model is
used in [34] to synthesize energy consumption time series. A Markov chain is a stochastic process with a number
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of states, where a state may change to another state with a certain probability depending on ¢ .1e or more of the past
states [35]. Inspired by these works, in this paper we design two methods based on data ar.alysis ~ simulate energy
consumption time series. One is regression-based while the other is probability-based. Th' y bc h only need a small set
of real-world energy consumption data as the seed, but they can generate large-scale datase.. tsing the trained models.
The generated time series have the characteristics as the training data, including pattetn, s. ~<onality, variability, and

segmentation.

2.2. Models for energy consumption data prediction

The research that is relevant to the data generation models used in this , ~~= are as follows. The proposed
regression-based method uses an autoregressive centred moving averag : mr .el, vhich is an improved version of an
autoregressive moving average (ARMA) [36]. Ref [37] generates e.. gy ¢ _.sumption time series using the peri-
odic autoregressive moving average model (PARMA) that takes ir “0 accour seasonality (or period) of a time series.
Additionally, ref [38] uses a periodic autoregressive model with v. ngenuus variables (PARX) for short-term energy
consumption prediction. This model combines exogenous va -uics, such as building area, ages, types, outdoor tem-
peratures, and resident characteristics for further improving ~redictio.. accuracy. There are many other forecast models
that are suitable for fine-grained energy consumption data pr. 1" ction, which, among others, include the weighted vec-
tor quantization (VQ) prediction model [39], the high-o. tc. “z..y time-series forecasting model [40], and the hybrid
autoregressive integrated moving average (ARIMA, .. == -al network model [41].

Ref [42] conducts a survey of time series forecasting, ..nd concludes that regression, stochastic, neural networks,
ARIMA and ARIMA variants now play a r ajor 1 'e in time series forecasting. However, it is worth noting that
other machine learning methods, Support Vecw. - Mar aines (SVMs) and Artificial Neural Networks (ANNs), are also
widely used for energy consumption pre .ictir 2, su<h as [43, 44, 45]. In recent years, as Deep Learning (DL) methods
[46] have been developed, they are be ag usc ' fr  energy prediction, as in [47, 48], which predict consumption values
through the characterization of derr .na . ~files based on measured data. DL uses multiple layer computational models

to learn representations of data, - su. ing in a more powerful prediction capability than those obtained by ANNs [49].

3. Methods

This section descril .. che rey. sssion-based and the probability-based methods for synthesizing energy consump-
tion time series. The both ai : supervised machine learning methods consisting of a training process and a data
generation proces . (he regression-based method generates time series by prediction, while the probability-based

method generates Yy a rar lom walk on a Markov chain. They are detailed as follows.

3.1. The regre. ~ic -based method

As an energy consumption time series has a number of characteristics, including trend, cyclicity and seasonal-
ity/periodicity, to improve simulation accuracy, some pre and post processing of training data are required. Figure 2

5



Actual seasonalized data Actual de-seasonalized data

§ § (without periodic variations)
i e
=} =3
8 9
a a
E g
= =4
1) 1]
= =
5 i 5
2 = ’\
e —
5 5 )
] ]
: AN ISR
0 Monday 24 Tuesday 48 Wednesday 72 0 Monday 24 Tuesday 48 We. ~sday 72
2
) ) Extenc d re es. ‘on line

§ Predicted re-seasonalized data §
= (with periodic variations) Z
=} =3
8 S
2. | Predicted data a
E 3 g
= =
172 "
= K . =
8 AN ) 51
>4 5 Predicted datal
= il H =
2| b S > :
jani S A \ = -

¥ - Actual data _

72 Thursday 96 C Monday 24 Tuesday 48 Wednesday 72 Thursday 96

Figure 2: Overview of the regre 'siv. hased data generation method

shows an overview of the regression-based method. In .ie preprocessing, we first flatten periodic variations of a
training time series, which is called de-seasor uliza:. ~n. The reason is that a model trained on a de-seasonalized time
series can achieve better prediction accuracy |~ V1. V e then use this model to generate new consumption values. In
post-processing, the periodic variations - ce r¢ -applied to a new time series, adding a base load that represents a fixed
consumption for the day. This process .s can. 1 r -seasonalization, which is the last step in the data generation process.

In the following, we provide 1 sre  ~tails for the regression-based data generation method, including algorithms

and optimization techniques.

3.1.1. Model training proce s

For a time series, X = = |, x» ..., x, >, the training process consists of three sequential steps, which includes
fluctuation flattening, ¢ :-seascnahization and autoregressive model training. The output of the training will be used by
the generation process  synth size energy consumption time series. The three steps are described in the following.

Fluctuation f attenir 2. The Centred Moving Average (CMA) method [51] is used to flatten periodic fluctuations
of a time series. CMA is . sliding-window approach of using the time series mean value within a window to replace
the original v. 'uc . = ~~ch sliding interval. In this paper, we use a daily load profile in a fixed window size of 24 hours
and a sliding intc val of 1 hour. The i-th value of a CMA flattened time series, C(i), is defined by Equation 1. Note

that as the period of 24 hours is an even number, we use the mean of two adjacent values as the CMA value, i.e.:



X 1 Xi—12 oo T X+ L+ X
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where x; represents the i-th observation of a time series.
De-seasonalization. De-seasonalization is used to reduce the periodicity of a tir . “=ries. The process of de-
seasonalization for a time series includes the following step.

First, the so-called Ratio-to-Moving-Average or Raw-index is defined:

R@=§% ®)

Then, the periodic index for each hour of the day is computed based ¢ - the raw index values (see Equation 3). The
periodic index for each hour of the day is the mean value of the raw "~dices ‘ ¢ the same hour in all days. For instance,
Z(0) is the mean of the values of R at 0 o’clock in all days. It is, .~=refore, a total of 24 periodic indices, each of

which corresponds to an hour of the day.

Ty=2 Y_; 9 1+ 24i) 3)

where n is the number of days in a time series, and % is an . our of the day, i.e., 0 — 23. Due to the floating point issue
[52], there is a precision problem for the value of 7. It .. *herefore necessary to normalize 7 to ensure that the sum of

the periodic is equal to 1.0. Equation 4 perforr .. . ~ normalization, and derives the normalized periodic indices, I’

24 x I(h)
i L (h)

Finally, the time series is de-seas nalizc ' b using a normalized periodic index, yielding a flattened time series,

1) = 4

X' =<x,..,x],...,x, >, in which
’ Xi

T T

&)

where x; € X and h = i mod ?4.

Autoregressive mode! irai’ ung. The de-seasonalized time series X’ is then used to train the autoregressive (AR)
model. As mentioned ea~'ier, u. r.odels trained on a flattened time series can obtain better prediction accuracy. The
predicted values will 1 = used tc construct the final consumption time series. According to [53], the time series values
of residential enerc; -ons....ption are serially co-related, i.e., current consumption is related to past consumption, as
verified by the ex ‘eriment eported in Section 5.3.2. According to previous studies [38, 53, 54], when the order p = 3,
the autoregres<<ion cau achieve the best result according to the Bayesian Information Criterion (BIC) value (i.e., the
lowest BIC). It ~ .ppropriate to choose the same order value for this study.

In summary, the above training process will result in the following outputs, including periodic indices, flattened
time series, and AR models. The results will be passed to the data generation process for synthesizing time series. In
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the present application, we employ a distributed computing system, Apache Spark, for a para’.el data generation. In
our implementation, we therefore write the output directly to the Hadoop distributed file syst . m (. FS), and organize
the output into two separate text files: one for storing periodic indices and the other for stor 1g the AR models and
the flattened time series. The records in the two files are linked by unique IDs. The purpos. f this implementation is
to generate a large number of realistic time series by combining the records of the o filc. as discussed in the next

section.

3.1.2. Time-series generation process

We now describe the time series generation process using Algorithm 1. 1. ~ tin -series generation process uses
the periodic indices, the autoregressive data and the flattened time series ' s the .up 't for generating data. As mentioned
earlier, we generated scalable time series on the distributed computing ~latfor~ Apache Spark. These parameters are
saved in the Hadoop distributed file system, and read into two Resilient Distr. >uted Datasets (RDDs) in Spark, 7 and
AR. RDD is an in-memory data structure consisting of a collecu. » ot 1._ourds distributed over one or more nodes so
that slave workers can operate in parallel [55]. The two RDD ' *,__.. ... ¢ the structures of <id, periodic-indices> and
<id, AR-coefs, flattened-time-series>, respectively. Theta join [56] 1. *hen applied to them to generate new time-series
values (see line 1-13). Theta join is defined as a binary rela ‘o . function in an analytical query on a database. It can
be formalized as f : wRw' — {1,0}, where w and w’" a.» . "nre.sions, R is the operator, R € {<, <, =,>,>, <>}, and
the function result is a boolean value, True (1) or —.!~~ (0, The theta join in this case is the binary relation on the
expression on id between the two RDDs, 1 and AR. Tu. efore, through the theta join, a large number of time series
can be generated by combining the parameter , trow. the two RDDs tables, but a relatively small dataset is needed as
the seed.

The data generation process is discu< sed s follows, which corresponds to the line 3—12 of Algorithm 1.

(1) Generate new consumption va’ tes: . ne / consumption value is generated based on the following autoregres-

sive function:

P
X' =c+ Z X, (6)
a=1
where c is a constant inter’ ept, ¢, ar . coefficients, and x;_, are the flattened time series values (using p values before
0);
(2) Re-seasonalize the time series, and add base load, as well as white noise, which is expressed by Equation 7.

x!" = x" « I'(h) + baseLoad + ¢ @)

where h = i m0d 24, . = 1,...,n and € is white noise. The re-seasonalization is achieved by simply multiplying the
flattened time-s v’ :s value by the corresponding adjusted periodic index. A base load is added to simulate the energy
consumption that is independent of the activities of a household, for example, the consumption used by the appliances
that are always on, e.g., refrigerators. The base load value can be obtained by averaging the consumption in the middle
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Algorithm 1: The process of generated energy consumption time series

Input : The periodic indices £7 (id, periodic-indices /'), autoregressive models and fla’ .ene. ““me series
AR(d, AR-coefs, flattened-time-series), and the order of auto-regression, p

Output: A set of synthetic time series
1 R PI Xy AR ; /* 6 represents the theta-  ~in operation */
20« 1{}; /+ Initialize an empts se. ¢~ time series =/
3 forre Rdo
4 X <> /* Initiali:e an «mpty time series =/
5 @, < X1, ...y Xy >, I — r(AR-coefs, flattened-time-series, periodic-ir*zes),

6 foric(p+1)..ndo

7 X =+ XN aaxiog

8 h«i mod 24;

9 X"« x" « I(h) + baseLoad + €; ;

10 X—Xeox"; /* Appr nd new value to the time series x/
1 end

12 O« 0U{X};
13 end

14 return O

of the night or the consumption when peop’ : are aw: / from home. A more common approach is to use 10% of the
average hourly consumption value to rep esent the vase load of a household [57], and in this paper we employ this
approach. Finally, we add white noise . < muls.e a slight variation of each hourly consumption value. The white
noise conforms to a standard norma’ ‘istribution: € ~ N(0, 1.0).

(3) Add new values. The valne x’” ge..crated in the previous step is appended to the time series X. As auto-
regression is used, the time se tes v alues in X are all predicted values. The generated time series is added into a

time-series set as the final or .put (. 12).

3.1.3. Optimizing data eonera..~»

We now describe 1 \e optim zation techniques applied to the time series data generator. As discussed in Section 1,
residential energy -~ 1sui.,...on time series have regular time patterns, such as daily, weekly or monthly. In fact,
the appearance ¢ " these ru zular patterns is a complex issue as it is related to many factors, such as changes in the
weather, building chaiacteristics, and living habits of residents. These patterns may also show spatial and temporal
characteristics. ¥ r example, the behavioral patterns of the residents in the same neighborhood may be similar, as
are patterns within a certain time period. Utilities often use a clustering technique to identify customers with similar
patterns in order to provide personalized energy-saving recommendations or better energy services. However, in the

9



generation process, due to the use of theta join, the models and the flattened time series are ¢ wffled to synthesize a
time series. This operation will lead to the loss of customer segmentation information fror.. the « ‘oinal time series.
In order to preserve segmentation information, we optimize the training process by add.ng preprocessing step of

clustering (see Figure 3). The clustered seeds are then used in remaining training and genc. -ing process.

Pre-processing
N

e N\

JLf\ Model 1 N, A
——®| Training [——®| Generating I; ~
-

The seed i
. : Synthet
—p»{Clustering| : : e

U o Model n . 1
| Training [—| Generating Eooe

Figure 3: Preprocess the seed by ciu. "~ring

More specifically, we first cluster the seed based on represe: “ative '=*’y consumption patterns of all time series.
A representative consumption pattern is the mean pattern of 2 time <~ "2g calculated by averaging the consumption

values at the same hour in all days. For example, for a time series « © i, its representative daily pattern is defined as
X[ = {)_C,'!r s Xj, ..,)_C,'!23} ®)

where X;, is the mean consumption value at the hor~ of i ¢” all days.

We then apply k-means clustering algorithm [58] to < "ster all the representative daily patterns. Usually, k-means
clustering uses the Euclidean distance as the r _u.. *o quantify the similarity between two vectors, e.g., [59, 60]. For
example, the Euclidean distance of two rep. “entativ : daily load profiles, X; and X;, is computed by the following

equation:

€))

However, in this study we ch~nse the rearson correlation distance metric [61] to optimize the clustering. The

correlation distance is defined s fol ows:

corrDist ()_(i,)_(j) =1- corr( ,-,)_(j) (10)

where corr is the corre”ation distance defined as follows:
o Sio (Fin — i) ()_Cj,h - ,Uj)
corr (Xi, X;) = =
— 2 —
\/Ziio (Xin = i) \/Ziio (%in = 1))

where y is the mean o1 wie representative daily patterns.

an

The reason ‘s .hat the correlation distance is better for measuring the shape or trend of two patterns, while the
Euclidean distance s for measuring the difference of attributes in values [62]. For example, the Euclidean distance of
Figure 4 (a) and (b) are both V3, but we can see that the two patterns in Figure 4 (b) are completely different.
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As the correlation value corr ranges between -1 and 1, the correlatior *stan.. _urrDist will be between 0 and 2,
(i.e., corrDist = 1 — corr). Usually, a distance of less than 0.5 represe. ts < goo: similarity between two vectors. If

the distance of two vectors is 0, they have identical patterns, as in Figui. * (a,. 1f the distance is 2, they have opposite

patterns, as in Figure 4 (b).

3.2. The probability-based method

We now propose a second method for energy data simulation, w..’ch is a probability-based approach. The process
of this method consists of two steps, including representav. "¢ pattern extraction by clustering and new time series
generation using a probability model. The probability .n¢ 'l 1. constructed using representative daily patterns (see

Figure 5). The procedure is described in the follow ._ ~hec-tions.

3.2.1. Extracting representative patterns

We use the adaptive clustering method [ 31 to ext act representative patterns from normalized daily load profiles
for each household. The normalization p- ocess is u.fined in the following. For a household, i, the load profile of the
d-th day can be represented by X;(d), wi. = X re’ resents an hourly consumption vector with 24 dimensions, X € R**

andd = 1,..., N. The normalized da’._- load prorile is defined as follows:

X;(d
X@= 39 (12)

where X* is the normalized .aily loa." nrofile and S ;(d) is the total energy consumption of day d. Then, the adaptive
clustering is conducted ba. ~d - a all aormalized load profiles, and the centroids of the clusters are used as the repre-
sentative load profiles - « a house..old. As the clustering is based on the normalized data, the representative patterns
derived indicate only e shapr s of the consumption pattern, without indicating consumption intensity. The shapes

can often reflect t".¢ consimption habits or activities of a household. Finally, the representative patterns are encoded

using ASCII alph. bets.

3.2.2. Time se: »s generation
The time series generation includes the following procedures. First, based on the derived representative patterns,

each time series is converted into a sequence of ASCII alphabets. Then, the sequences are used to train a Markov
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chain model, which is then used to generate new sequer-es by ra. dom walks. The new sequence represents the
normalized consumption patterns within a series of continu v ; days. The sequence is then “amplified” to create a
consumption time series by multiplying a random numbv = . mpr2d from the daily consumption distribution generated

by the training dataset.
Markov chains are often used for sequence generatio. , e.g. [34, 64, 65]. A discrete-time Markov chain can be
defined as a finite set of states, S = 1,...,n, r pres. 2ting the events that occur at every discrete time step. The next

state in a Markov chain is conditionally inde, ~ndent ¢ [ the past states, i.e.:
PSi1="95:=,8 =i 1,..80=1p) = P(S;41 = J|Sr =1) (13)

where P(S .1 = jIS, = i) is the pre ability o. che transition between two states i, j. A transition probability matrix
(TPM) of the size nxn is created for each c. ~crete time step. TPM contains all the probabilities of the state transitions.

We compute the transition r .oba' ility P;; by the following equation:
n;j

P
2kes Mik

(14)

ij =
where the numerator rer~=senw. ‘¥ > number of daily pattern changes from i to j between two continuous days, and
the denominator repre ents the wumber of pattern changes from i to all states (including state i), > ;s Pix = 1. When
constructing the TP *, it »....1d be noted that the training datasets may not include the transitions between all states.
This will generat. a sparse TPM. To address this issue, we use Laplace smoothing to increase the transitions by adding
the number 1 ench tha. 110 zero probability exists in the resulting TPM.

When the 1 ™! . for each time step has been derived, we generate new sequences by random walks on the Markov
chain. We start fro.a a randomly selected state, then pick each subsequent state according to the TPM corresponding

to that particular time step. The resulting alphabet sequence represents a series of synthetic normalized consumption
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patterns. When a new alphabet sequence has been generated by a random walk, the load - rofiles of all days are
determined, each of which is generated by the normalized daily pattern multiplied by a rand. m nu. her sampled from
the corresponding daily consumption distribution. To capture the seasonality of the consv apti n behaviors, we create
a distribution for each day using daily consumption values of all households in order that t.. :ampled random number
can reflect energy consumption changes over time. For example, in countries with a widesp.. ~d use of electric heating,

the daily consumption in winter is typically higher than it is in summer, as in Irel- ad a°.d C..aada.

4. Parallel data generation

We use Apache Spark for parallel data generation. Apache Spark s an . n source memory-based distributed
computing framework, which has implemented the distributed computng primiti- es, including map and reduce. Spark
is optimized for iterative algorithms and interactive data analysis. which c¢. n perform iterative computations on the
same dataset. The cluster for deploying Spark typically has the ~rchi. ~* .e of one master node and multiple slave
nodes. The master node assigns jobs to the slave nodes and cnordin~*~ he jobs run in a cluster. A job reads the data
from a Hadoop distributed file system (HDES) or a local machine “ard driver and performs computations on RDDs.
The output is written to HDFS or a local machine. A job . an se composed of several steps that are either maps or
reduces. All data is split into multiple partitions and ti. > . ~mp. “ations are performed on each partition by a separate
task. A task is executed by an executor on a slave p~de.

Using the computation mechanism of Spark, we imp.. ment parallel data generation for the proposed two methods,
for both the training and the generation progr ..u.. Tt is worth noting that the training program does not have to be
implemented using Spark as it is run only .« *ce, an¢ the resulting models can be re-used many times to generate
data. In the following, we therefore de ,crit> only how to parallelize data generation on Spark. For both of the
methods, a map-only data generation 9ro. ‘m i- implemented, i.e., no reducer is needed. The models generated by
the training process are broadcast tc u.> mappers which generate time series separately without inter-communication.
This greatly improves performan~ when generating large-scale datasets (this will be evaluated by the experiments).
For the regression-based meth . t' ¢ broadcast data are periodic indices and auto-regression coefficients. Figure 6
describes the implementatic .1 details «a Spark. The data process on a mapper includes equal join, projection, theta
join and synthesizing time-. ~ .es v .lues by prediction. Each mapper generates new values based on a partition of
the flattened time seri' s. A rrapper does an equal join to look up the auto-regression model that corresponds to a
flattened time series, ai 1 does rojection to select periodic indices from the broadcast data. The resulting RDDs both
will be as the inp . for tt » subsequent time series generation process presented in Algorithm 1. The final results are
the new time serie. writte . back to HDFS. For the Probability-based method, it has a similar implementation process,
but the broaac st u ... “re the transition probability metrics and distribution models of daily readings. The time series
generation proces is conducted by random walks on a Markov Chain within a mapper. In both methods, the generated

time series are then written directly as the map output to HDFS.
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5. Evaluation

This section reports an evaluation of t".e two , = posed time series data generation methods. The Irish electricity
consumption dataset [10] is used for tr ‘nip , the nodels. The consumption data were collected from July 14, 2009
to December 31, 2010 with over 5, JO reside. .1al households and businesses, with a resolution of 30 minutes. We
aggregate them into an hourly reso.tion . - the experiments and we consider only residential consumption. Both of
the data generation methods usr clus ering analysis in the training process. There is no rule-of-thumb about the least
sample size for clustering aralysis “46]. As we intend to maintain a relatively small size of the seed, we randomly
sample 30% of the time se (es 7, the ‘raining dataset.

We evaluate the syr*-~size. 7 .ta by descriptive and exploratory analysis and compare them with the real-world
data. The two propose 1 data ge reration methods are compared under different settings.

All the experir _._is atc vunducted in a computing cluster of four nodes. All of them are used slave nodes, and one
of them is used a: the mas :r node. All nodes have an identical configuration: Intel CPU E5-2650 (3.40GHz, 4 Cores)
with hyper-tb~=ading ecnabled (2 hyper-threads per core), 8 GB RAM, Hard driver (1TB, 6 GB/s, 32 MB Cache and
7200 RPM), an.’ 7 4bit-Ubuntu 12.04.
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Table 1: Pair-wise comparison of the two distanc. metrics
(TS1,TS2) (TS1,TS3) (TS1,TS4) (Ao TS,) [TS2,TSy) (TS3,TS4)
euclDist 6.13 9.12 9.64 11.. 4.73 12.4

corrDist 0.12 0.13 1.06 12 0.76 1.10

5.1. Regression-based results

As described in Section 3.1.3, we preprocessed the sec 1 by clustering before using it to train models. Also, we
used the Pearson correlation distance metric in the cluste. ‘ng. In the following, we will further explain this process by
an example before evaluating the generated tir .« -. “es.

This example is shown in Figure 7, wi. h inclu les typical daily load profiles from four households, denoted
by 7'S1_4. According to energy consur ptior inteusity, 7S5 is the highest, 7S is medium, 7S, and 7'S4 are the
lowest. According to patterns, 7S, 7>, nd 7 53 are similar, as they have a morning peak and an evening peak
within the same-length time windov . - contrast, 7'S 4 has a different pattern, as it has no morning peak and has a low
consumption at roughly 5 o’clock " - the afternoon. Based on pattern similarity, 7S ;, 7S, and 7'S 3 should, therefore,
be in the same group, while 7 - shr ald be in another group.

We now compare the Ev fidean a1..ance and the correlation distance for clustering time series according to pattern
similarity. Table 1 shows u. rair-v .se comparison of the distances for the daily load patterns in Figure 7. When the
correlation distance 1r _tric is used, the distances of the pairs, (7'S{,7S,) and (T'S,TS3), both are smaller than
(TS,TS4). In contra. - the d stance of the pair, (T'S,,TS4) is the smallest when the Euclidean distance metric is
used. Thus, the oad pr files of TS, and T'S4 will be assigned to the same group. This suggests that it is more
preferable to use L. ~ corrv .ation distance metric to cluster consumption patterns or load shapes.

We will . w o .. “nstrate the necessity of preserving customer segmentation information using the clustering
technique. We ge. erate time series using the models trained by the seed with and without preprocessing, respectively.

We perform adaptive clustering on the corresponding daily load profiles, and generate 20 clusters. The top three
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Figure 8: Comparison of pattern preservation whe the ,eeu 1s preprocessed and not preprocessed

clusters are shown in Figure 8. According to the figure, e 1vad profiles in Figure 8 (a) (using a reprocessed seed)
are more cohesive than in Figure 8 (b) (using an un-.. ~nrocessed seed). This demonstrates the effectiveness of the
proposed clustering technique for achieving pat*~ preservation.

‘We now compare the synthetic time serir < with the real-world time series (see Figure 9). The blue line in Figure 9
(a) is the daily load profile of a typical hr asehola, . hile the other two are synthetic load profiles, which result from
clustering on the preprocessed seed whe. ~ ¢ orrel don distance (corrDist) and Euclidean distance (euclDist) are used
respectively. In Figure 9 (a), we ce see that he daily load pattern of synthetic data (corrDist) matches well with
the real-world load pattern: they both have e peaks at the hour of 6-8 and 16-18 (with a slight drift to the left). In
contrast, the pattern of the synt’ etic .ata (euclDist) does not match well with the pattern of the real-world data, as the
latter does not have a peak a’ 1-2 o ."~ck. Figure 9 (b) shows the average weekly patterns. Here, we can also see that

the pattern of synthetic (c. “»D",f) v .tches better than the synthetic (euclDist).

5.2. Probability-base.  results

For the probab’' y-ba... method, the representative daily consumption patterns must first be identified from the
training dataset. Ve use t e seed for training, then use the seed again to validate the results. Adaptive clustering is
implemented on the nuunalized daily load profiles of the seed, resulting in 20 clusters. Figure 10 shows the clustering
results ordered . v .ne number of patterns in the clusters. The 20 representative patterns are labelled with the alphabetic
characters from A .0 T. Each time series is then transformed into a sequence of alphabetic characters according to
its daily patterns. Based on the sequences, the TPMs of the Markov chain are calculated for all days, for which the
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probabilities are calculated according ‘o ky, atio . 14. A resulting alphabet sequence is converted into a synthetic time
series by multiplying the random n’ ai. ~rs sampled from the corresponding consumption distributions of the days.

We then evaluate the data g .. -ator by comparing the real-world and the synthetic data, by examining their
statistical properties. We take .~= ¢ iily consumption of June as an example and calculate the average consumption
of each hour of the day (se . Ficure 11). As can be seen, the shapes of the real and synthetic consumption curves
are relatively similar, with .. © cor amption in the early morning, becoming higher during the day and the evening.
The consumption prof .es for he whole month (June) are shown in Figure 12, which reveals the day-to-day patterns
and the discrepancies L tweer the time series of real-world and synthetic consumption. The result indicates that the
synthetic consurr stion ti, e series share a very similar pattern with the real-world time series.

Based on the « ~ve ~_sults, we believe that the probability-based method can produce reasonably realistic con-
sumption dat.. anc w.... therefore be used to assess building performance or the consumption behaviors according to

patterns.
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5.3. Comparisc
In the previous subsection, we compared the visual patterns or shapes of the synthetic data with the real-world

data. In the following, we will examine the statistical parameters of the data and the scalability of generating large
18



datasets using the proposed methods.

5.3.1. Statistical performance

Figure 13 shows the probability distributions of the real-world and synthetic hourly cc. ~u iption during one month
(June). The results indicate that the distribution of the data generated by the regression-u. “ed method is more similar
to the real-world data than the data generated by the probability-based method. TF.s is - -anse the latter is generated
from the data independently sampled from the consumption distribution of each a._ For further investigation, we
present the distribution of the daily consumption of the real-world data for or e of the lays in Figure 14. As shown in
the figure, the data conforms closely to a normal distribution.

Figure 15 shows a quantitative comparison of the real-world and s nthr .«c « ata with the box-plot method. The
box plot shows the summary statistics including minimum, first quar..’> me** .1, third quartile, and maximum, with
outliers outside the upper limit. The box plot shows the statistic~! parame >rs for the twelve months of a year and
shows that the three datasets are very similar. The biggest diftc. nce ., he length of the box. The synthetic data
generated by the probability-based method are always slight’ ...z wan the real-world data and the synthetic data
generated by the regression-based method. This means that the s, ithetic data generated by the probability-based
method is more distributed over the month. This may be “ cause we use the Laplace method to smooth a zero
probability transition between two states in the TPM. 1. 's "veysifies the transition of patterns in a sequence. On the
other hand, the difference can come from the distrit ...~ ~f. e daily consumption, from which we sample the random
number.

Figure 16 shows the auto-correlation of tt - rear vorld and the two synthetic datasets, with a time lag of up to 50
hours. Auto-correlation is calculated based on .. = nor .alized patterns, which is a good way to examine the appearance
period of repeated patterns. According .o th , auto-correlation function (ACF) values, the regression-based method
provides a better matching with the r .al-w. ‘'d iata. Recall that in the regression-based method, we optimized the
model training using Pearson corre’ atiu. distance to improve the accuracy of pattern recognition, and this experiment
verifies that this optimization c7 . y =1d better results (see also Figure 7 and Table 1). In contrast, the probability-
based method generates patteri, "= ,uences relying on the TPM, which exhibits sub-optimal matching performance

with respect to ACF values

5.3.2. System perform ace

System performans ~ inclu' ing the training and data generation processes will be examined in this section. It
may be remembe ed tha’ the training models can be re-used in the data generation process. For each method, the
training process 1. ~ludes a1 number of steps shown in Figure 17 (from bottom to top). This figure also shows the
correspondin, uu. ~uired in each step when using the entire set of training data. In the regression-based method,
normalization an. K-means clustering are optional steps for the optimization purpose, indicated by the dashed-line

rectangle. As shown in this figure, clustering is the most time-consuming action in both methods because they use
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adaptive clustering. ™ * a two-stage method, which first performs adaptive K-means clustering to find the optimal
number of clus ers asing an elbow method, then performs hierarchy-clustering to merge small clusters [63]. Adaptive
clustering typicall, consumes more computer time than normal K-means clustering (see Figure 15). The total time of

the probability-based method is higher than that of the regression-based method because it consists of five mandatory
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steps in the entire training process.

In the following, we will evaluate the scalability of generatir. - time se .es on Spark. It should be remembered
that the models generated by the training process are broadcast . the workers in Spark. Map-only tasks are used
to generate time series data in parallel. We perform the follc . ‘ug two experiments to evaluate scalability, including
size-up and speedup.

In the size-up experiment, we use a total of four nodes \* , cores) to generate data, but scale the generated data
from 50 to 300 GB. Figure 18 shows the execution time .. = results demonstrate that the time scales well with the
amount of data, almost linearly.

In the speedup experiment, we scale the cores from 4 tu 16 to generate a fixed-size dataset (100G B), and measure

the execution time. The speedup is defined b’ the fo. owing equation:

T.
speedup = F4 (15)

n

where T, is the execution time for - cores (n = 4,8,12 and 16). Figure 19 shows the results. As shown, both of
the proposed methods can achieve good sp 2dup, and the speedup is super linear when the cores increase to 16. In
both experiments, the two met’ ods re quite efficient with respect to running time and scalability because they run
map-only jobs. The perform nce o. “he probability-based method is slightly slower than that of the regression-based
method, mainly due to thr cos’ of ¢ .nstructing an alphabet sequence by a random walk. As the size of the TPM is
very large, n?xm = 2" :535 214,000 (n = 20,m = 365 — 1) where n is the number of states (representative

patterns) and m is the . umber ¢ “days in one year, the cost of lookup operations on TPM is substantial.

5.4. Discussion

In summearv. the pruposed data generators are able to generate realistic time series data with good performance,
and the generat. 1 .ata have the characteristics comparable to the real-world data with respect to patterns and statistical
information. The t.vo methods are supervised machine learning methods that require real-world datasets as the seed
for generating realistic datasets. Our study indicates that clustering is a good way to preserve consumption patterns
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and segmentation information. The two methods differ in the following ways: One uses predic (on to simulate energy
consumption data, while the other uses statistics and probability. For the regression-bas.d mc.~0d, the accuracy
of the simulation depends heavily on the prediction model. In reality, it is often diffir ult \ » establish an accurate
prediction model as it is influenced by many variables, including building type, househo.  characteristics, weather
conditions, and more. The models that incorporate these variables are proved to have bette, ~rediction accuracy, such
as periodic auto-regression with exogenous variables model (PARX) [38]. For dat- avai ab1...y and/or privacy reasons,
the challenge is that data are often difficult to access for these variables. In t+~ pap. - we turn to forecasting with
a simple autoregressive model that only requires energy consumption time ¢ *ries. In contrast, the probability-based
method simulates the real-world time series based on the statistical inf-__aativ.. or the data, which is the statistic
of the representative daily consumption patterns in this experiment. Tt~ r~ jrese 1tative patterns are the centroids of
the clusters. Although the use of representative patterns can still proaw. = sausfactory results, the pattern variances
of the generated time series are smaller than those generated by ti.. regress on-based method, because the peaks are
smoothed when using representative patterns. This can be mitigatea . - multiplying an anomaly factor, for example, to
make a peak sharper [67]. The following rules apply to the sei. ~tion of the data generation methods: The regression-
based method should be the first option, as it provides bet! . . ~~racy and performance for generating a large dataset,
especially when socioeconomic data are available. Otherwis. the probability-based method is a good alternative to
simulating real-world energy consumption data.

The implementation of these methods includes . ning «..d generation programming. The training process in both
methods requires several steps. Comparatively, the regression-based method would require less human and computer
effort if the optional steps for optimization, ormali ition, and clustering were omitted. The most time-consuming
step is clustering for training, i.e., deterr ining =~ ,ehold groups or representative pattern groups. Depending on
the size of the seed, the training progr- mm’ 1g 1.y not have to be implemented as in this paper with a distributed
computer programming framework ‘ach as ., ark. The training process is performed only once, but the resulting
models can be used many times. [he 1. ~lementation of the data generation program is relatively simple, as it is
a map-only program on Spark Th¢ parameters or models for data generation are also distributed to the mappers
during runtime by broadcasting, a. 1 kept in memory to generate data for better efficiency. A distributed computing
framework makes it possit ¢ to .enerate data in parallel. There are other alternatives for parallel data generation, such
as multi-threading. The ~™ster ™~ ,ed approach is, however, the best way to generate large datasets with an order of
tera/petabytes, due to ts high . calability. Large datasets are often required for benchmarking big data management

systems, e.g., [7].

6. Conclusiens and » ucure Work

Scalable real, tic consumption time series are often required for system benchmarking in software engineering

and for building performance evaluation in civil engineering. In this paper, we have presented two different data

22



generators that can accurately simulate time series of real-world fine-grained energy consu’ iption. The proposed
methods are both supervised machine learning methods that include a training process and ¢ data . “neration process.
However, they are based on different techniques: one is regression-based and the other is prou ibility-based. We have
described in detail how to create data models, and how to use the models to generate syntu..* ¢ datasets. We proposed
optimization techniques for a better simulation of real-world energy consumption 7ata, . ~h as the preservation of
segmentation, and implemented the data generators on Spark to generate data in r arall 1. v._ comprehensively evalu-
ated the proposed methods and compared the two methods. The results have sh~wn u. * the proposed methods have
the ability to simulate realistic energy consumption data, and the implemente:. data gei 2rators have good performance
for large-scale data generation.

In future work, we will add more features to improve the data genc -at* ,n m .dels. For example, the regression-
based method can use weather conditions (e.g., outdoor temperatures), . 1 a vroader seasonality (e.g., the seasons of
a year). In addition, we will refine the data generators to make the. = easy tc use for generating various consumption

data such as water, gas, or heat.
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