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Abstract

Attacks such as Meldown and Spectre have sh =vn that sraditional cloud com-
puting isolation mechanisms are not sufficient *o gu. "~ .ee the confidentiality of
processed data. With Fully Homomorphic Encryp ‘on (FHE), data may be pro-
cessed encrypted in the cloud, making any © -uncu unormation look random to an
attacker. Furthermore, a client might also be _~terested in protecting the pro-
cessing algorithm. While there has beei .. ~~~h on ensuring the confidentiality
of the processing algorithm, the resulting s stems are impractical. Herein, we
propose an automatic and methodi. .’ tech. ique to approximate a wide range
of functions homomorphically. As the ap, -oximations are all evaluated in the
same manner, a homomorphic e ! ~*tar “as no way to distinguish them. Since
the derivation of the FHE circuit 15 Yecoupled from the function development
process, users benefit from traditional programming and debugging tools. The
proposed tools may exploit < uter. 't kinds of number representations during the
homomorphic evaluation ¢ functior 3, namely stochastic number representations
and fixed-point arithmetic, e. h v ith its own characteristics. Additionally, an
implementation of the ,ystr.n is presented, its applicability is verified in prac-
tice for commonly usc ' a'plic’ cions, including image processing and machine
learning, and the tv o nun.. ~ representations are thoroughly compared.

Keywords: Hom ;mo1, ~ic Encryption, Computer Arithmetic, Cloud
Computing

1. Introd iction

Cloud c. 'out ng has improved the availability of computational resources
and t} . efficiency of their usage. Increasing computational power permits the
same nachine 5o be used by several users and corporations simultaneously. This
leads v a red uction in infrastructure costs, and allows for corporations to more
o ackly adjust the contracted computational power to the market needs. The
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shared nature of computing resources in the cloud infrastructure int» bduces
new security challenges [1], namely in what concerns the confide~tiali,, of the
offloaded data. Typical cloud architectures ensure the confidentian. - of data
while it is being transferred through encryption [2], and throur a ti e hypervisor
separation of the guests’ virtual machines when it is being  oces ed |o|. How-
ever, attacks such as Meltdown and Spectre [4, 5] have shown _“at the scope
of the hypervisor separation might not be enough to pre.ent tke disclosure of
sensitive data. In particular, while the hypervisor guaran =es isole ion at a soft-
ware level, execution in a processing element leaves traces ™ <*ured hardware
elements such as cache memories and branch predic’ ors t+ * may be exploited
by other processes to extract sensitive data. Even *b har ware-backed sep-
aration of virtual machines has been shown to L vulr~~ .ole to this type of
attacks [6].

FHE is a technique uncovered in 2009 [7] hat ens oles the processing of
encrypted data [8]. If FHE is employed in the ~onte. . of cloud computing, at-
tacks such as Meltdown and Spectre [4, 5] are renu. “ed useless. All data leaked
through side-channel attacks will be in a.. »ncrypted form and will therefore
look random to an attacker. Two main lines 0. “esearch might be identified in
the area of FHE-based cloud computing moc 2 In one, an entire computer ar-
chitecture is emulated with homomorphic ,erations [9]. In particular, memory
cells are stored as ciphertexts. Tradiv .. ~1lo, ‘c to access memory banks is after-
wards translated into their homomorp. ic counterparts, and memory addresses
are themselves encrypted. After “all-~ 2 ciphertext from memory, it can be
processed with a homomorphic Arith. <tic and Logic Unit (ALU). The ALU is
controlled by encrypted data. A combination of the previous features enables
the implementation of con’.ol fic - instructions. The Program Counter (PC)
is treated as another encr, ~ted reg ster, which can be written to to implement
goto and if instructior s, anu ‘< ased to load instructions from memory. In
the other line of resea ch, “ne algorithm one wants to compute is disclosed to
the cloud. In this case, ~ .imis :d operations and parameters can be specifically
developed for the t cgeted «, plication [10, 11, 12].

While a comp! ‘te., homomorphic computing system provides the maximum
possible privacy. it has been found not to be practical [9]. Moreover, since the
evaluator has » 0 ac :ess to the instructions, it is hard to know when to stop the
computation. WV e dedicated homomorphic circuits are the most practical,
they are als ) the i1 <t private of the two; and might prove difficult to develop,
since the » sers aeed to be aware of many low-level details of FHE. In this paper,
we proposc ~ corr yutational framework, depicted in Figure 1, that draws from
the be __its ot - oth approaches, achieving both strong privacy and practical
perfo mance. A wide range of functions are approximated in a generic way,
produ. ‘ng an encrypted description of them. In particular, we focus on a wide
re .ge of runctions whose approximation can be efficiently evaluated in a homo-
11orphic manner, namely multivariate continuous functions, which might even
b non-# ialytic, thus going beyond traditional Taylor-series based approaches.
This type of functions is applied in fields such as machine learning and image
processing. When processing the encrypted function descriptions, the homo-
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Figure 1: Operation of the proposed FHE-based = .. cou wpuving model. Double lines repre-
sent encrypted values. Shields represent blocked atte '- vectors
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morphic evaluator will not be able to int. - anything from the function except
for how precisely it is being approx . ted. This is embodied in Figure 1 as
the blocking of algorithm disclosure. .’v naving a larger number of functions
that can be supported, security i. “c.... > proved, since the amount of possibil-
ities for the function that is being pi. ~essed is also large. Moreover, since the
algorithm inputs are encrypted. data disclosure is also prevented.

The translation from tb : user ode to the encrypted approximated descrip-
tion treats the function i.. 2 black box approach, which means that the user
does not need to chang: his ty, i« al development flow, and that he or she can
call other functions, us : cor .plex control flows, etc. Furthermore, the encrypted
function approximation - .1 tar et one of two number representations: a stochas-
tic one [13] or anot! er one s._ported on a variant of fixed-point arithmetic [14].
Stochastic represe ata. "ns consist of sequences of bits, where a number is rep-
resented by the frequency of bits equal to ‘1’. With batching, one is able to
encrypt a stoc’.asti sequence of bits in a single cryptogram. With the variant
of fixed-point . ~it".metic, after each homomorphic multiplication, numbers are
scaled dow . so th." the amount of bits necessary to represent them remains
approxim- cely constant, allowing for the selection of efficient scheme parame-
ters [14].

Th .cst of s paper is organised as follows. After a brief introduction to
FHE ind func ion approximation in Section 2, the proposed formulations and al-
gorith. ~s are * resented in Section 3. An implementation of the proposed method
is wscussed 1n Section 4. Experimental evaluations are also carried out in Sec-
ton 4. e not only evaluate the performance of the proposed cryptographic
0, ~ratio’ s in a general purpose processor, but since the device producing and
~onsuming data in Figure 1 may have limited computational power, we also




evaluate the performance of encryption and decryption in an embec ‘ed < ystem.
A comparison with related art is the focus of Section 5. Section 6 ~onciu '=s this
paper.

2. Background

The techniques used in Section 3 to develop a confide itial cl. 1d computing
model are herein introduced. Homomorphic encryption arithme sic and poly-
nomial approximations of functions are discussed. Thr-ce v’ _.ques will later
serve as the basis to homomorphically evaluate mu tivar'..> continuous func-
tions, which might be non-analytic.

2.1. Homomorphic Encryption

While other cryptosystems could be considerea “r th : implementation of the
techniques described herein, in this section the b.. “erski-Gentry-Vaikuntanathan
(BGV) [15] cryptosystem will be describe” * ___ort the proposed FHE ap-
proach. This choice was mainly motivated by e availability of mature libraries
for implementing the proposed system ™= 171

¢m(X) € Z[X] is used to denote the w-"a cyclotomic polynomial of degree
n = p(m), where ¢ is Euler’s totien’ “unct. n. The ring R = Z[X]/(¢pm (X)) is
the main structure of BGV. An eleme. t "R can be thought of as a polynomial
with integer coefficients and a d~oree su-ictly smaller than n. The underlying
space for ciphertexts is Rq = R/¢." = ©/qZ[X]/(¢pm (X)), which is composed
of elements of R with coefficients reduced modulo ¢. Herein, the notation [-],
denotes the centred residue » ... "o ¢ in [—¢/2, ¢/2), while |-] denotes rounding
to the nearest integer.

In the context of the b 'V sc’ eme, the secret-key s € R is defined as a
“small” polynomial dre vn from « distribution xxey. An encryption of m € Ry,
for t € N, corresponds to ¢ pair of polynomials ct = (cp,¢1) € R3 satisfying:

[co + 18] = [[m]; + tv], (1)

where v is a noise term u.at is originally introduced during encryption (which
is related to a - istr >ution yer-) and that grows as homomorphic operations are
applied. Deci, ~ti .n operates correctly so long as this noise is below a certain
bound, whi n limi. the amount of homomorphic operations one can perform.
BGV rovites for the homomorphic addition and multiplication of poly-
nomials in .. T e homomorphic addition of two ciphertexts corresponds to
the pa’ ..ise aal cion of the ciphertexts’ polynomials. Regarding homomorphic
multilication it is useful to see ciphertexts as first degree polynomials with
coeffic nts ir R. For a polynomial ¢g + c1y, evaluating it at y = s would
le . to (1). In this context, the homomorphic multiplication of ct! and ct?

{ 1kes pla e in two steps. First, ctyu < ([c},c%}q, [che? + cic%]q, [cicﬂq)

is v, uted. Evaluating ctmuit,o + Ctmuit 1y + ct,nult71y2 at y = s would also
cn. '~ decryption. In order to prevent the continuous growth of the number of




elements in ciphertexts, one has to convert the three-element cipher ~xt "ack to
a two-element ciphertext, through a process called relinearisation. Tn a .. “tshell,
Ctmult,2 is multiplied by a pseudo-encryption of s2 and the result 1. ~dded to
(Ctmult,Oa Ctmult,l) [15]

Finally, a noise management technique is applied to redv e tb . growth rate
of the norm of v in (1) due to the homomorphic multiplication. his technique
is called modulus-switching and consists of scaling the ¢’ phertet to a smaller
ring R, with an appropriate rounding, which is perform d in twc steps:

0, + t- [_Ctmultﬂ'/ﬂq/q’ for i =v,1
ct <+ ([q//q . (Ctmult,O + 60)](1 (2)
[¢'/q - (Ctmar + 61)Jq,>

2.2. Homomorphic Arithmetic

In [13], a system was proposed for homomorphic ~rocessing exploiting stochas-
tic number representations. A stochastic . resentation of a number x € [0, 1]
is defined to be a sequence of n bits, z1,...,., drawn from a Bernoulli dis-
tribution, such that the probability P(."+ — *) = x,Vi<;<n [18]. Batching [19]
is therein exploited to encrypt multiple L ¢ in a single ciphertext, so that one
can AND and XOR the bits of two s. .."asti1 representations homomorphically.
While batching can be employed in n.ny cryptosystems [19, 20, 21], we ex-
emplify how it can be implemer. - - RV, A binary plaintext space has the
following structure:

P ="1X]/(pm(X),2) (3)

& factors modulo 2 in. I po! momials Fy, ..., F;_1 with the same degree
d. Batching consists i* exnloi. g this factorisation to encrypt multiple bits
in a single ciphertext so ’aat .dditions and multiplications operate on them
in parallel. To do o, v s rg,...,my_1 are encoded as a polynomial m(zx)
satisfying:

m; = m(x) mod (F;(x),2) Vo<i<i (4)

Finally, rc atic 1s of the plaintext slots can be obtained through mappings
of the form ¢ : a = X [22].

We hig ig) . the tollowing two stochastic operations, which can be computed
by compo. s the aforementioned operations, for three independent stochastic
represe”ation. ‘. z,y,s € [0,1] (note that when two representations are not
statis 1cally 1. dependent, they can be rotated to become so):

2 = x; Ny = z=u2ay (5)

= (1@ s) Ax) @ (s Ny)) = 2z = (1 — 8)x + sy (6)

w'.ere A and @ stand for the AND and XOR, operations, respectively.




Most FHE schemes include a form of randomisation by add’ ¢ rise to
encrypted messages. In [14], noise is conceived as being part of ~ noiws, repre-
sentation of numbers. For example, the BGV cryptosystem can be 1. ified so
as to support messages in R, with the following decryption oy :rai. on:

[co + c18]g = [m + v], (7)

With BGV one applies modulus-switching to control t 1e noise rrowth due to
homomorphic multiplications without affecting the unde. 'ving p aintext. This
is possible due to the rounding operation described ir Joction «.1. [14] suggests
instead that both the ciphertext modulus and the plai- .ex are scaled down
by the same amount when modulus switching is aopucd, th bugh an operation
called rescaling that replaces (2) by (8).

= ([Lq’/q Ctacor,
(ld'/q - ctmme a1 )

The arithmetic techniques in [14] mimic t..d-point arithmetic. A number
x € R is represented as a polynomial:

(8)

r= A\z] v (9)

where A =~ ¢/q’ is a scale fact~r and » corresponds to the noise described
in (7). It is clear that the formav ™~ () is preserved after additions. After a
homomorphic multiplication z = @y, = is scaled down by a factor of A due to
rescaling, such that (9) is pr .. =d.

2.8. Approximating Functio. = wit! Polynomials

While one could pr duc  a fuaction-approximating polynomial using inter-
polation techniques, s ~h s L grange’s, there is no generic choice of n points
for which these pol nomia. - < onverge uniformly to the function as n — oco. In

contrast, Bernsteir , ~lynomials achieve that [23]. Let nq,...,n,, € Nand f be

a function of m variables. The polynomial Bj(cm""’"’”)(;rl, oo, Tpy) is called the
Bernstein poly .om 1l of f:

(n1,eeynm,) _ E kWL 10

i = £ (e B (10

N ey Ngn N1 yeneylm i n k; ns—k
B = 3 T ) a - e
Jj=1

0<k;<my
le{1,...,m}

If f: 0,1]™ — R is a continuous function, then B}"l""’n’") converges uni-
foru.”, w0 f asny,...,ny, — oo [23].




2.4. Polynomial Evaluation

[13] and [14] respectively propose stochastic and fixed-point * ~mou. ~rphic
operations that suffice for the evaluation of univariate polynomi=ls. L Castel-
jau’s algorithm and Horner’s method are respectively used ir [13) ~~d [14] for
the evaluation of polynomials, as described in Algorithms 1 ~nd 2. While the
first exploits a Bernstein representation of polynomials, the secc. 1 makes use
of the power form.

Algorithm 1 De Casteljau’s algorithm for the evaluation ~¥ - polynomial in
Bernstein form [24]

Require: B(z) = Z?:o (;1) bixi(1 — x)d—?

Require: xg

1: for i € {0,...,d} do

2 bgo) = bz

3: end for

4: for j € {1,...,d} do

5. forie{0,...,d—j} do

6 bz(»J) = bEJ_l)(l — ) + bl(i_ll)@\
7 end for

8: end for

9: return B(zp) = bgd)

Algorithm 2 Horner’s meth~d for the evaluation of a polynomial in power
form [25]

Require: P(x) = Z?:o a;x
Require: zg

1: s:=ayq
2: forie {d—1,. .,0; '
3: s:=a; +xo
4
5

: end for
: return Pl ;, =s

3. Prop sed FH.-based Cloud Computing System

Th- L.opose. system for homomorphically approximating user-provided con-
tinuo s funct. ns follows a black-box approach: in a first offline phase, it evalu-
ates t. » func’ .ons at the points in (10), and when online computes (11) homo-
. phicauy. Algorithms 1 and 2 evaluate univariate polynomials in Bernstein
¢ ad pow. r form, respectively, using the basic operations provided by [13, 14].
L. order .o evaluate (11) homomorphically, one first needs to generalise Algo-
rithms | and 2 to the homomorphic multivariate case, and provide methods to
cc avert polynomials in the Bernstein form to the power form.




3.1. Homomorphic Evaluation of Multivariate Polynomials

The strategy herein proposed to generalise Algorithms 1 anc ? cou. ~ts of
iteratively reducing the problem of evaluating a polynomial in m va. ~bles to
the problem of evaluating several polynomials in m — 1 variabl s ar * ~fterwards
combining the results, until constant polynomials are reaci. 1. As it will be
shown, the step to combine the results of the several evaluations " nolynomials
with fewer variables can be performed with the base algori’ ams. T »r polynomials
in the Bernstein form, we first rewrite (11) as:

B](cnl’m’nM)(xh o 71:7”) _

ni nz ’

PN M EAC D il DN (el EXSA Y s
kl k2

k1 =0 ka=0

The i*" parenthesised expression in ‘?) can ve computed through the fol-
lowing recursive function:

. n; n \ B § N
g;”le " )l(miv-- xm.) - Z / Z\ k 1 _mi)nl klg](fnkll " )(I’L+17---7x7n)

170
(13)

with the base case: ( ( )
() = Bl (14)

As [13] can homome phicaw, valuate Algorithm 1, it can also support the
evaluation of:

B](cn’ T T) = g(nl’ n"”)(ml, ey Tm) (15)
since Algorithm 1 compu.:s (13) by setting b; = g;",cll%:)(xlﬂ, .oy Ty) and
To — Ty;.

A multiva. ate polynomial in power form can be described as follows:

Flay,..zn)= Y. ol ;WH:E (16)

0<k;<ny
171, m}

T. e expre sion in (16) can be factorised as:

Pz, ..., 2m) = Zx’f (nzz’f(nzm atrm) gl )) (17)

k1=0 k2=0 km=0




As before, each parenthesised expression can be computed thre oh 7 recur-
sive function:

Uz
R (@ an) = Y 2R (@, ) (18)
kiIO

with the following base case:

h(n17~~;nm)() _ ("lﬁ;nm) (19)

k1yeookom

In addition, since [14] homomorphically evaluat s A'_or. hm 2, it can also
compute
P(a1,. .. @m) = RO (21, ) (20)

since Algorithm 2 evaluates (18) by setting a; - HQj{“‘ﬁ’m)(xiH, ety Zm) and
To = Ty.

3.2. Conwversion between Bernstein and Po. -r Forms

Univariate power polynomials can b~ written .n terms of Bernstein polyno-
mials through the formula provided in |.3]:

j_n@ln,“ _ . \n—k
x _Zm\\kp (1—x) (21)

k=, "1

(21) can be readily generalised to 1..> multivariate case:

k

J1 Jm - (]11) "n\ k- 1 n1—k1

it .oxlm = g (T) ) (1 —xq) X
k1=j1 1

(Zh> 2y (1 — ap)™ e (22)
h

Ji1<ki<ng h=1 \Jjn
le{1,....m}
We as. ~i cea ector bwith the coefficients of a polynomial B}nl""’n"L) (z1,.
as follo=:
b =By mvk e L0, [ i+ 1) -1 (23)

1<i<m

w ere (F,,...,kn) is the unique tuple such that k = k1 + ka(n1 +1) + ... +
ko,(ng+1)(na+1)...(Nyp—1 + 1) with 0 < &y <Vl € {1,...,m}. A similar
ceastruct is used to associate the j™ entry of a vector p with the coefficient

ey Tm)




f L1y 3y Ty

| |

Encrypt; (5}”‘;1 e ) [ Encryptg(z;) j
or

Encrypt, (a;n]il,’ ,sz))

Homomorphic
Evaluator
de Casteljau or
Horner

Encryptg (f (21, .., %m))

Figure 2: Proposed scheme to derive an encrypted de. “iption of multivariate continuous
functions and homomorphically evaluate them

("17 Tm,)
HJm

J1
R(HKKM(" ) ([hziem™4D) cap be b It to change a vector in the power
form to the Bernstein form:

of the polynomial P(z1,... wn  Based on (22), a matrix C €

n—C1p (24)
where
‘kp,
Lo, ifky>gpfor 1 <h<m
Cr,j = [T G, b= (25)
0, otherwise.
and k = k1+ka(ni+1) -.. . kpn(ni+1)(no+1) ... (nm—1+1) and j = j1+ja2(n1+

D4...Fjmni+ Dy ' 1) c(npm_1+1) with 0 <k, 5 <myVle{l,...,m}.
Conversely, if b "+ providew. in Bernstein form, one can obtain the power form
P by solving the 1'nea: ~vstem in (24).

3.83. Confiden’ .al ¢ rmputing Model

A diagram " ae proposed scheme for the automatic derivation and evalua-
tion of hor omerphic circuits can be found in Figure 2. During an offline phase,
the funct »n » ae vants to approximate homomorphically is evaluated with a
black-box ap, e _h, producing the values of B}"kllr;m) The ﬂ}nkllnkm) values
under »in an “pproximate representation of f through a Bernstein polynomial.
Thesc values re encrypted and sent to a server. When the system is online,
a client ~» _ncrypt a tuple x1,...,x,, of data. The resulting cryptograms are
¢ terwaz s sent to the server who applies the proposed multivariate de Casteljau
¢ 'gorithn homomorphically to produce an encryption of f(x1,...,z). Alter-

(n1,eemm)

nati, .., the ﬂf,kl,.“,lc values associated with the Bernstein polynomial can

m

be couverted to an equivalent power form with coefficients a;",ilnk’fn) These

10




latter values are encrypted and sent to the server instead of the 3\ :'fn’fn).

When the server is provided with encryptions of x1,..., %, it ~an b:”\‘il’arly
compute an encryption of f(x1,...,2m), but using the proposed m. *ivariate
Horner scheme. In the model depicted in Figure 2, the homor orp i~ evaluator
learns nothing about the function that is being evaluated, v rich coulu be any
continuous, possibly non-analytic, function, except for the degi. > of the poly-
nomial that was used to approximate it. In practice, a s :rvice ~rovider might
wish to make several FHE parameters available, each su worting a certain ap-
proximating polynomial degree, and charge its users accora. ~« + . the quality of
the approximation provided.

3.4. Performance Characterisation

The two considered number representations, name. - the stochastic repre-
sentation for the de Casteljau algorithm, and tu. fixed point approach for the
Horner scheme, are supported on different ass. mptions about the underlying
homomorphic encryption scheme. A stochastic == her representation can be
applied to schemes where batching is use. 2t the bit level. In contrast, a
fixed-point representation assumes that ~ne can 1. scale the encrypted messages.
While batching has been successfully a, nlie 1 v a large amount of cryptosys-
tems [15, 19, 20, 21], rescaling consicts of < modification to modulus-switching,
which is applicable to a more restric‘e’ set of cryptosystems [15, 21]. Thus,
stochastic number representations are a more general technique than fixed-point
arithmetic. Nevertheless, the fixe. nowu wpproach allows for the application of
the Horner scheme, which is computau. ‘nally more efficient. Therefore, we use
both representations in this »- ~=r, since each can be adopted depending on the
applications and requireme its.

While for the multivarie. ~ Horr ar scheme one needs to perform

ni+ M+ At me+1) X (.o xny)) =0 H n; (26)
1<i<m

homomorphic multiplicav. ns; with the multivariate de Casteljau algorithm,

3
inl(nl +1) ‘m+1)x

i 3
(énth +1)+(ny+1) x ( X inm(nm + 1))) =
(0] H n; | X ny, (27)
1<i<m

1 omomo. >hic multiplications are required.
Tt shr ald be noted though that, if enough parallelism is available, the execu-
tion or Algorithm 1 is linear with d, since each iteration of the for loop in line 5

11




Scheme ny  mngo Seq. Time Complexity Par. Time Cc. -nlr <ity

Fixed-Point 5 5

Fixed-Point 10 10 -

Fixed-Point 15 15 -

Fixed-Point 2 2 8 4

Fixed-Point 3 3 15 v

Fixed-Point 4 4 24 °
Stochastic 5 45 5
Stochastic 10 165 )
Stochastic 15 360 15
Stochastic 2 2 36 4
Stochastic 3 3 90 6
Stochastic 4 4 180 8

Table 1: Time complexity of the proposed scheme in ter.. ~ of homomorphic multiplications
for univariate and bivariate polynomial approxims** "7 _ceeni in x1 and ng in x2 using
both a fixed-point approach with Horner’s scheme ~d a stochastic number representation
with de Casteljau’s algorithm. Since no parallelism can . =xploited for the univariate Horner
scheme, values were omitted in that case

is independent of one another, and ca. b. ~oraputed in parallel. Hence the mul-
tivariate variant of this algorithr “=<a ime of complexity of O (H1<i<m TLZ)
If, additionally, the recursive calls 1.. /13) and (18) are performed in parallel,
the complexity of both techni~nes reduces to O (Y cicpm T )

Table 1 presents concre .e com) 'exity analyses of the proposed methods for
univariate (f(x1)) and biva. ate ( (x1,x2)) polynomial approximations of de-
gree ny in x1 and ny 1 x~. A. nough the sequential time complexity of de
Casteljau’s algorithm vith 4 stc “hastic number representation grows at a faster
rate than the fixed-p »inu . ~orr ach with Horner’s scheme, the former representa-
tion is more widely mnplicable, since it only depends on batching, and parallelism
may help bridge ‘e pe. “rmance gap between the two number representations.

4. Impleme. *at’on Details and Experimental Results

The pr pos’ d medchods were described using C++ and compiled with GNU’s
C compil ~!. The implementation was based on BGV, which supports both
batchine ana .~ qulus-switching. The most relevant parameters for this cryp-
tosyst :m are i) the underlying cyclotomic polynomial ¢,,, which determines
the a.ount o' available batching slots; and i) the size in bits of the ciphertext
mednlus -, g, which defines the number of homomorphic multiplications one

cn com ute. A combination of the two defines the level of security the scheme

!The source-code will be made publicly available when this manuscript is published.
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provides [27]. Herein, the parameters were chosen to ensure at lea - 80 oits of
security. It should be noted that one could also support the impls menu. ““on on
other cryptosystems, such as the ones in [20, 19].

The homomorphic operations based on stochastic repres ata inus exploit
HElib [16]. Besides enabling an automatic selection of para: ete 5, Hrlib pro-
vides interfaces for the basic FHE operations, such as encrypti. ~ decryption,
homomorphic additions, multiplications and rotations. ".hese ~peration were
combined to provide homomorphic stochastic arithmetic. The hon omorphic op-
erations based on the fixed-point approach were implemenv. 1 w.a NFLIib [17].
NFLIib provides solely arithmetic methods for pow r-of-+ ~ cyclotomic rings.
With NFLIib, one selects ¢ as a product of 62-bit ¢ ir :s. I ased on the poly-
nomial arithmetic offered by NFLIib, the FHE op -atior~ ,uch as encryption,
decryption, homomorphic additions and multiplicatiorn. were implemented. In
addition, the rescaling operation and the fixed-. ‘nt arit .metic were developed.
Finally, multithreading was exploited with th. 4+ __andard library using the
strategy described at the end of Section 3.4.

The experimental results herein presen. 1 tocus on two applications where
the usage of non-analytic functions is required, ..~ an example of the wide range
of applications that can be targeted wit, tne .. sosed method. All experiments
were executed on an octo-core Intel i7-596. *. processor, with the Haswell micro-
architecture, with 32GB of RAM, ru . 'mg &« 3.0 GHz, operated by Fedora 21,
and featuring hyperthreading (i.e. 16 .hre.ls are supported simultaneously in
total at the hardware level). V.,  ai.. r ovide an experimental evaluation of
the performance of encryption and de. “vption in embedded devices, since, often
times, data processed in the cloud is produced or consumed by devices with
limited computational reso .rces. ™ particular, the encryption and decryption
operations presented in Sc *ion 4.2 were also executed on a quad-core Cortex-
A53 processor, with the Armvc. 4 architecture, with 8GB of RAM, running at
950 MHz, and operatr { by OpenEmbedded [28]. Since NFLIlib natively only
supports x86 platforms, ** had ¢o be modified to run on the Arm processor.

Algorithm 3 Sp’ rse. ax function for mapping scores to probabilities [29]

Require: z ¢ P¥
1: Sort (21,. .,2r )as (20, ... 2y st 20 > 0> (K

2: k(z) := max [’c e{l,...,K}1+kz® > D i<k z(j)}

L))
3 7(2) " = Q‘%"zf) )1

4: return , st p; :=max(0, z; — 7(2))

4." Efjec. of Parameters and Parallelism on Non-Analytic Machine-Learning
Fuy. ~tions

We } we evaluated how the choice of parameters and the proposed paral-

lelisation affect the performance of the homomorphic evaluation of non-analytic

fu «ctions used in machine learning. We have also assessed the accuracy of the
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[ec gential

Parallel Exe-

Function Scheme # slots n;  ng m logog MAF  Exc. “tion cution Time Speedup
Ti ae [s] [s]

sparsemax; (z1,0) Fixed-point 5 215 744 0.08'3 J.489 - -

sparsemax; (r1,0)  Fixed-point 10 215 744 0 °19h 0.689 - -

sparsemax; (z1,0) Fixed-point 15 216 1550  0.037. 9.00 - -
sparsemax, (21, r2,0) Fixed-point 2 2 215 744 " .81 0.902 0.543 1.7
sparsemax, (z1,72,0) Fixed-point 3 3 215 744 0100 1.57 0.687 2.3
sparsemax, (z1,2,0) Fixed-point 4 4 216 1550  0..20 20.7 6.87 3.0

sparsemax; (x1, 0) Stochastic 630 5 8191 3z, 0.7)4 0.409 0.272 1.5

sparsemax; (21, 0) Stochastic 1024 10 21845 1.0 y.063 16.2 6.40 2.5

sparsemax; (z1,0) Stochastic 2160 15 55831 2502 (0.036 83.0 19.5 4.3
sparsemax (z1,z2,0)  Stochastic 630 2 2 8191 327 0.151 0.301 0.254 1.1
sparsemax; (r1,z2,0)  Stochastic 1024 3 3 21815 95, 0.129 9.46 3.58 2.6
sparsemax; (z1,z2,0)  Stochastic 2160 4 4 53581 .2 0.112 39.6 9.78 4.0

Table 2: The functions sparsemax; (z1,0) an ' sp. <emax; (1, z2,0) were approximated and
homomorphically evaluated as descril -7 in Se tion 3.3, using both a fixed-point approach
with Horner’s scheme and a stochastic 1. mber . presentation with de Casteljau’s algorithm

Seq r 1 2d-Point

Par. Fixed-Point

Seq. Stochastic

Par. Stochastic

Sample
Pearson
correlation
coefficient

0.."°

0.88

0.98

0.95

Table : The ac uracy of the predictions in Table 1 was evaluated by computing their corre-
lation v ‘th the = alues in Table 2. Values close to 1 indicate a linear dependence between the

twe ariab.c.
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performance predictions in Table 1. The sparsemax function [29], escr ned in
Algorithm 3, is used to map vectors in R¥ to the (K — 1)-dimens‘onal . plex.
Such maps are used in the final layer of neural networks to convert . ~ector of
scores to a probability distribution. sparsemax was shown to ¢ atp rform tradi-
tionally used functions in multi-label classification and in attr 1tior networks for
natural language inference [29]. In Table 2, one can find experime. *al results for
the homomorphic evaluation of the functions sparsemax; ( .1,0) (‘he 15* element
of p in Algorithm 3) using approximating polynomials wi h ny € « 5,10,15} and
of the function sparsemax; (21, z2,0) with (n1,ns) € {(2,., 2 7),(4,4)}. The
functions were approximated in the intervals [—3,3] and " 3, 3]?, respectively,
by linearly mapping those intervals into [0, 1] and [0, 17” and 1sing the strategy
in Section 2.3.

The experimental results for the univariate case su, %est that the degree of
the approximating polynomial is inversely prop. rtional o the Mean Absolute
Error (MAE). As more dimensions are consi’ ~red, .".c Bernstein polynomials
take longer to converge to the function, as the « oree of the approximating
polynomial increases. Since sparsemax; (z1,") 1S univariate, no parallelism was
exploited for the fixed-point approach when a, ~roximating this function ho-
momorphically. When approximating . ‘i .. “te functions, the speedup ob-
tained by parallelising the fixed-point ap, v ach follows closely what would be

. v, . ni1+(ni1+1)XxXn,
expected from the complexity analys’s .~ Se tion 3.3 (W) In con-

trast, since the i7-5960X processor supp rts at most 16 hardware threads, and
the parallelisation of Algorithm 1 v. ~nla uptimally require 20 and 30 threads for
the evaluation of univariate polynomia., of degree 10 and 15, respectively, the
speedup is limited for the ste-’.. “+ic representation. Moreover, one is herein able
to achieve similar levels of ,recisioi for both representations, but the stochastic
representation-based schem. “akes on average 3.2 times longer to evaluate the
same polynomial than t e fixed-. »int approach, when parallelism is considered.

The performance 7 1aly 1s of Section 3.4 was based on the amount of homo-
morphic multiplicat’ yns . ~uj ed, without taking into account the characteris-
tics of the underly ~¢ FHE system. A more precise analysis should take into
account, for insta ice, 1. ~ dependency between the degree of the approximating
polynomials an” e parameters of the FHE scheme, along with their influence
on the perforr ance of homomorphic multiplications. Notwithstanding, one can
see from Table " chat the predicted performance figures in Table 1 correlate
well with *.e experi.aental values of Table 2. This suggests that after a spe-
cific num -er r :pres :ntation and type of implementation are fixed, the analysis
of Section 5._ acr arately predicts how performance depends on the ny and ny
paraxr cters.

4.2. In. <2 " rocessing with Non-Analytic Piece-Wise Multilinear Functions

Two ~on-analytic piece-wise multilinear functions were developed for image
L "ocessin ;, namely grey stretching and image blending, and their encrypted
app. . _..nations were automatically derived using the proposed methods. Images
Wi .. 756 x 256 pixels from [30] were used to get the results presented in this
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(a) Clear (c) Stochastic

(a) Clear (b) Fixed-point (c) Stochastic

Figure 3: Image processing
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System Encryption [s] Filter [s] Decryption [s]
Intel / Arm Intel Intel / Arr

Grey

Stretching 595 / 685 341 6.9/ 34
Fixed-
oint
Blending
Fixed- 52.7 / 684 885 3/88

point

Grey
Stretching 34.5 / 914 1340 LT 1172
Stochastic

Blending .
47.7 / 1273 210 &,.4 / 1468
Stochastic / 0 4/

Grey
Stretching 324 / 7935 9,0 92.7 / 2630
Floating-
point [31]

Table 4: Average execution time for homomo. ~h.. ‘mage processing operations on an i7-5960X
(Intel) and on a Cortex-A53 (Arm). When ex, loiting the fixed-point approach, NFLlib was
exploited with a cyclotomic polynomiai | - w..” * . = 2!4 and log, ¢ & 372. For the stochastic
number representation, HElib was used wit.. m = 4369 and m = 5461 (accounting for 256 and
378 batching slots), and log, ¢ &~ 132 and log, g &~ 324 for the grey stretching and blending
algorithms, respectively. The las’ ...., 'ementation corresponds to an adaption of [31] to the
proposed system. [31] uses the " aillier c. 'ptosystem with a 2048-bit modulus

paper. The pixels were may ped to the [0, 1] interval, and functions (28) and (29)
were applied, correspo.. " g to srey stretching and image blending, respectively.

0, if 21 < 0.25
g(x1) = § 221 — 0.5, if 0.25 <z1 <0.75 (28)
1, otherwise.
if z1 <0.5
Wwy,me) = 1182, oo P (29)
1—-2(1—=21)(1 —x2), otherwise.

g v .. appt. imated by a Bernstein polynomial with n; = 3 and b with
ny = 2and n, = 2. An example of image processing can be found in Figure 3,
where ~rocess ng was applied in the clear (i.e. without encrypting data), using
th . siomoworphic Horner scheme with the fixed-point approach, and the ho-
110morp, ‘c de Casteljau algorithm with the stochastic number representation.
V. hile tb : employing of Bernstein approximations softens the sharp changes of
tone w (28) and (29), one can see that the resulting images approximate the
e¥ yeced result in a satisfactory manner.
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The average execution times of encrypting an image, processin_ it r ad de-
crypting the result can be found in Table 4. We have include? the ‘mings
of encrypting and decrypting images on a quad-core Cortex-A53 1. have ex-
perimental results representative of scenarios where data may e 'mcrypted or
decrypted on an embedded device and processed in the cloud Sin e the consid-
ered homomorphic image processing algorithms show a great leve. ~f parallelism,
instead of applying parallelism at the arithmetic level, 1€ chreac's were created
on the i7-5960X processor and 4 threads on the Cortex- A53. E:¢ ch thread se-
quentially processed different parts of the image.

Due to the limited resources of the embedded ¢ evice -~ncryption and de-
cryption are, on average, 19.8 and 17.9 times slower 1 > # .ecut . on the Arm than
on the Intel processor, respectively. Nevertheless, accep*~"le performance, in
the order of hundreds of seconds, is still achieved on " ¢ Arm processor. Fur-
thermore, while not considered in this work, te.“niques aave been proposed in
related art to reduce the encryption and decry, *ion .. .ungs of FHE systems on
embedded systems [32, 33] but at the expense of cu *lier homomorphic process-
ing.

While NFLIib only deals with power-of-twe ~yclotomics for efficiency rea-
sons, HEIlib allows for a more fined-g1 wn «.." g of the parameters. This is
reflected in Table 4. For the two considc - .d processors, encryption takes the
same time for both grey stretching °..' ble. ling when using a fixed-point ap-
proach, because both use the same pa. amcier set. With a stochastic number
representation, HElib allows for . ' .~ - “ smaller parameters for grey stretch-
ing than for blending, leading to a mo. - efficient encryption for the former filter.
Nevertheless, as homomorphic operations contribute to the reduction of the bit-
size of the ciphertext mod’ (s, a. ~rypting the result on both processors after
blending images takes a si. “rter pe lod than after grey stretching for the fixed-
point approach since the forme. 2 ,plication is more complex. Furthermore, the
fixed-point approach t' kes ‘com 2.4 up to 3.9 times less time to process images,
due to the exploitatio.. . po .er-of-two cyclotomics and the Horner scheme.
Finally, one can ser an exa.. ple of the difference in accuracy in Figure 3. For
the considered pa an.. “ers, a stochastic number representation leads to grainier
images than a fixed-poim one.

5. Related A,

A corr saris on batween the model proposed in Section 3 for cloud computing
and those . © elat d art, regarding performance, development effort, scope and
privac, .. depic :d in Figure 4. Traditional cloud computing models [1] process
data n the c. ar on shared machines. As attacks such as Meltdown and Spec-
tre [4, 5] hav shown, currently employed measures to isolate processes might
nr . ve enough to ensure data confidentiality.

Homc morphic encryption solves this problem by allowing data to be pro-
ce sed wiile encrypted: even if an attacker is able to break process isolation,
only random looking data will be leaked. Four approaches to cloud computing
bs sea on homomorphic encryption have been identified in Figure 4: ¢) Partial
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Computing
Model

PHE
libraries [31]

FHE w/
application
specific
circuits
(e.g. [10,
11, 12))

Proposed
model

FHE w/
encrypt d
compr cer
architec-
tr e 9]

I I I I I
! i Development ! I V. !
; Performance : Effort E Scope | . acy |
Directly Traditional | ’
. Supports
exploits program- any of®
CPU ming plica: on
architecture techniques
-
R ~
Overhead
associated Hides data
with PHE
N
~ @@ -
 E—— -~ e ™
Overhead Supports
associated most Hides data
with FHE applications
N\l J
T —
g
p mging data and
techniques algorithm
4 N N\
Halting
problem Supports Hides
may cause most data and
development | | applications algorithm
issues
S AN J

Best I:- Worst

Fj ure 4: Comparative analysis including the proposed model and the remaining state-of-the-

t models
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Homomorphic Encryption (PHE) libraries; i) FHE with applica ‘on pecific
circuits; #¢) the proposed model; and iv) FHE with a complete er -rypuv. 1 com-
puter architecture. PHE refers to cryptosystems where one can eiv.. = add or
multiply encrypted data, but not do both. In particular, v.th Paillier, one
is only able to homomorphically add encrypted messages, 7 \d r altipty them
by constants. Prior work [31] has provided a toolkit for homo. ~rphic image
processing supported on Paillier.

Due to the limitations of [31], one cannot use it to in nlement the proposed
scheme as described in Section 3.3. A simplified version ot “e » oposed frame-
work was considered, in order to enable a compariso’ betv ~u the implementa-

tion in Section 4.2 and one based on [31]: only the H. »r r scb :me for univariate
(1)
frk1
sent to the server in the clear; and a client needs to et rypt z1,..., 27" when
requesting the evaluation of f(x1). The server 1. mome phically approximates

f by computing:

polynomials is supported; during the offline phas. the in Figure 2 are

Encrypte (f(x1)) ~ affy+»
agfff) xp Encrypte (21) +p .7, - ;néz x p Encryptg (27') (30)

The grey stretching kernel was 1. .. *omc¢ vhically applied for ny = 3 to the
images previously considered in Sectio1 4.z, 1sing the scheme adapted from [31],
and the experimental results cc - L~ . nd in Table 4. Since [31] does not
support homomorphic multiplication. a large amount of computation (namely
the computation of the powers of the input ) has to be transferred to the client.
This is reflected in Table 4 whe. the encryption of images took more than 3
times longer to execute i: the i7- 960X than their homomorphic processing.
This problem is aggrave jed to. <vtems with limited computational resources,
such as the considerec Co’ .ex-A53, with the encryption taking over than 80
times more to execute hra th homomorphic processing in the i7-5960X. One
can thus conclude t'iat usu. such a scheme would only be beneficial when the
same image needs .o =~ processed multiple times. The modified system has also
the downside of, unlike ti. system proposed herein, not providing the ability to
hide the funct’n t at is being evaluated, since the a;"kll) are sent to the server
in the clear. ."ne 1y, extending the adapted system to multivariate functions,
such as ble’ ding, » ~ms impractical.

As sur gest d ir Figure 4, FHE extends the applicability of homomorphic
encryption < a w.der scope of applications when compared to systems based
on PH™. .chemeu , such as Paillier. Works such as [34, 35] have provided high-
level anguag. constructs that aid with the design of FHE circuits. In [34], a
clean ~terfac . to HElib [16] is proposed, supported on Python, along with a
r.unentary Integrated Development Environment (IDE). In [35], a Domain
¢ pecific . anguage (DSL) is proposed for FHE and Secure Multiparty Com-
p. *ation (SMC) with proved correctness and confidentiality. While both con-
structs |34, 35] provide high-level operators to process messages homomorphi-
ce 1y, vhey do so without hiding the details about the plaintext space, and with-
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out any methodical way on how to design FHE circuitry. As a ¢ mse uence,
conversions of processing algorithms to the FHE domain (e.g. [10 11, .. have
traditionally required deep knowledge of the FHE cryptosystem anu ~reat de-
velopment effort. For instance, in [12], numbers are encrypted sitw ise and their
homomorphic addition amounts to emulating a ripple-carry dde’ witu the ho-
momorphic operations provided by the FHE cryptosystem. The ~vstem herein
proposed differs from these approaches by exploiting a iayer “hat translates
numbers in R into the cryptosystems’ plaintext spaces seamles ly; and that
automates the conversion of algorithms to the FHE domau.

Moreover, neither traditional cloud computing » wethe '~ nor a straightfor-
ward conversion of them to the FHE domain hide tl. ~ = .oces ing algorithm. In
contrast, the proposed computing model convert. ~lgori** as to the FHE ho-
mogeneously, hiding the original algorithm. Hence, a.. ng with [9], it achieves
best privacy of the models considered in Figuic 1. How ver, due to the gener-
ality and privacy of the proposed approach, 1. ~anu.’ cfficiently target certain
applications such as private database queries or . ~rting [10, 11]. While one
can develop dedicated circuits to evaluate “hese applications [10, 11] and use
code obfuscation [36] to improve the circuit p.. acy, the applicability of code
obfuscation to FHE might be limited. “n. _"2n offers a small set of homo-
morphic operations, each with a very diffe. - 1t computational complexity, which
reduces the difficulty of an adversary . disu. 1guish them. Efficiently providing
algorithm privacy in these cases remai. : a.. open research question.

Finally, while [9] has propos. - «. - late an entire computer architecture
in the cloud with homomorphic oper. *ons, these operations are very intensive,
and thus the scheme is impractical. Also, since the PC is itself encrypted, there
is no practical way to know when he execution has finished; which might make
development for such plat. ms mc e difficult. We believe that the system pro-
posed herein provides a iice co. °v ;omise between ease of use and performance,
while, like [9], providir g tb - ability to keep the approximated function hidden
(namely by encrypting e B(:,él’;::f%:) or a;n,ilnkM)) Moreover, the amount
of homomorphic or crations .o execute a circuit is known beforehand, and de-
pends directly on .he . el of accuracy one wants from the approximation of the
targeted function

6. Conclurion

While atts cks < ach as Meltdown and Spectre may have damaged the con-
fidence on ci. *d _omputing security by providing the means to break process
isolat’ ,m mechanisms, cryptographic methods are available that maintain con-
fidem ality ev n when processes are attacked. More concretely, FHE provides
the me. °= t~ process encrypted data, rendering data leaks useless. While there
I us alse been research on protecting both the confidentiality of the processing
¢ 'gorithn and data, this has lead to impractical systems. Herein, we focus on
a . 1o ange of functions whose approximations can be efficiently evaluated

"' homomorphic operations. Since the approximations are all evaluated in
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the same manner, a homomorphic evaluator has no way to distir_misl them.
Moreover, the methods herein proposed for the derivation of honr ~mor, “ic cir-
cuitry completely decouple the algorithm development from their hoi.. ~morphic
evaluation. As a consequence, one can use traditional tools for ruu tion design,
as long as the resulting function is continuous. The proposs | sy ¢em may ex-
ploit two different number representations. One concludes that v ~ile stochastic
representations are more widely applicable, a fixed-point .pproa-h provides for
better performance.
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Highlights

e Proposed computing model hides both data and algorithms from evaluator
e Users’ functions are automatically converted to the proposed model
e Two different number representations are supported




