
Accepted Manuscript

A methodical FHE-based cloud computing model

Paulo Martins, Leonel Sousa

PII: S0167-739X(18)31681-9
DOI: https://doi.org/10.1016/j.future.2019.01.046
Reference: FUTURE 4739

To appear in: Future Generation Computer Systems

Received date : 16 July 2018
Revised date : 11 December 2018
Accepted date : 22 January 2019

Please cite this article as: P. Martins and L. Sousa, A methodical FHE-based cloud computing
model, Future Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.01.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.future.2019.01.046


A Methodical FHE-based Cloud Computing Model

Paulo Martinsa, Leonel Sousaa

a INESC-ID, Instituto Superior Técnico, Universidade de Lisboa
Rua Alves Redol, 9

1000-029 Lisboa, Portugal
Declaration of interests: none

Abstract

Attacks such as Meldown and Spectre have shown that traditional cloud com-
puting isolation mechanisms are not sufficient to guarantee the confidentiality of
processed data. With Fully Homomorphic Encryption (FHE), data may be pro-
cessed encrypted in the cloud, making any leaked information look random to an
attacker. Furthermore, a client might also be interested in protecting the pro-
cessing algorithm. While there has been research on ensuring the confidentiality
of the processing algorithm, the resulting systems are impractical. Herein, we
propose an automatic and methodical technique to approximate a wide range
of functions homomorphically. As the approximations are all evaluated in the
same manner, a homomorphic evaluator has no way to distinguish them. Since
the derivation of the FHE circuit is decoupled from the function development
process, users benefit from traditional programming and debugging tools. The
proposed tools may exploit different kinds of number representations during the
homomorphic evaluation of functions, namely stochastic number representations
and fixed-point arithmetic, each with its own characteristics. Additionally, an
implementation of the system is presented, its applicability is verified in prac-
tice for commonly used applications, including image processing and machine
learning, and the two number representations are thoroughly compared.

Keywords: Homomorphic Encryption, Computer Arithmetic, Cloud
Computing

1. Introduction

Cloud computing has improved the availability of computational resources
and the efficiency of their usage. Increasing computational power permits the
same machine to be used by several users and corporations simultaneously. This
leads to a reduction in infrastructure costs, and allows for corporations to more
quickly adjust the contracted computational power to the market needs. The

Email addresses: paulo.sergio@netcabo.pt (Paulo Martins), las@inesc-id.pt
(Leonel Sousa)

Preprint submitted to Elsevier December 10, 2018



shared nature of computing resources in the cloud infrastructures introduces
new security challenges [1], namely in what concerns the confidentiality of the
offloaded data. Typical cloud architectures ensure the confidentiality of data
while it is being transferred through encryption [2], and through the hypervisor
separation of the guests’ virtual machines when it is being processed [3]. How-
ever, attacks such as Meltdown and Spectre [4, 5] have shown that the scope
of the hypervisor separation might not be enough to prevent the disclosure of
sensitive data. In particular, while the hypervisor guarantees isolation at a soft-
ware level, execution in a processing element leaves traces in shared hardware
elements such as cache memories and branch predictors that may be exploited
by other processes to extract sensitive data. Even the hardware-backed sep-
aration of virtual machines has been shown to be vulnerable to this type of
attacks [6].

FHE is a technique uncovered in 2009 [7] that enables the processing of
encrypted data [8]. If FHE is employed in the context of cloud computing, at-
tacks such as Meltdown and Spectre [4, 5] are rendered useless. All data leaked
through side-channel attacks will be in an encrypted form and will therefore
look random to an attacker. Two main lines of research might be identified in
the area of FHE-based cloud computing models. In one, an entire computer ar-
chitecture is emulated with homomorphic operations [9]. In particular, memory
cells are stored as ciphertexts. Traditional logic to access memory banks is after-
wards translated into their homomorphic counterparts, and memory addresses
are themselves encrypted. After loading a ciphertext from memory, it can be
processed with a homomorphic Arithmetic and Logic Unit (ALU). The ALU is
controlled by encrypted data. A combination of the previous features enables
the implementation of control flow instructions. The Program Counter (PC)
is treated as another encrypted register, which can be written to to implement
goto and if instructions, and is used to load instructions from memory. In
the other line of research, the algorithm one wants to compute is disclosed to
the cloud. In this case, optimised operations and parameters can be specifically
developed for the targeted application [10, 11, 12].

While a completely homomorphic computing system provides the maximum
possible privacy, it has been found not to be practical [9]. Moreover, since the
evaluator has no access to the instructions, it is hard to know when to stop the
computation. While dedicated homomorphic circuits are the most practical,
they are also the least private of the two; and might prove difficult to develop,
since the users need to be aware of many low-level details of FHE. In this paper,
we propose a computational framework, depicted in Figure 1, that draws from
the benefits of both approaches, achieving both strong privacy and practical
performance. A wide range of functions are approximated in a generic way,
producing an encrypted description of them. In particular, we focus on a wide
range of functions whose approximation can be efficiently evaluated in a homo-
morphic manner, namely multivariate continuous functions, which might even
be non-analytic, thus going beyond traditional Taylor-series based approaches.
This type of functions is applied in fields such as machine learning and image
processing. When processing the encrypted function descriptions, the homo-

2



Enc. Dec.

FHE-based
Cloud

Computing
Model

Enc.

Automatic
Function
Approx-
imation

Algorithm
Disclosure

Data
Disclosure

Figure 1: Operation of the proposed FHE-based cloud computing model. Double lines repre-
sent encrypted values. Shields represent blocked attack vectors

morphic evaluator will not be able to infer anything from the function except
for how precisely it is being approximated. This is embodied in Figure 1 as
the blocking of algorithm disclosure. By having a larger number of functions
that can be supported, security is being improved, since the amount of possibil-
ities for the function that is being processed is also large. Moreover, since the
algorithm inputs are encrypted, data disclosure is also prevented.

The translation from the user code to the encrypted approximated descrip-
tion treats the function in a black-box approach, which means that the user
does not need to change his typical development flow, and that he or she can
call other functions, use complex control flows, etc. Furthermore, the encrypted
function approximation can target one of two number representations: a stochas-
tic one [13] or another one supported on a variant of fixed-point arithmetic [14].
Stochastic representations consist of sequences of bits, where a number is rep-
resented by the frequency of bits equal to ‘1’. With batching, one is able to
encrypt a stochastic sequence of bits in a single cryptogram. With the variant
of fixed-point arithmetic, after each homomorphic multiplication, numbers are
scaled down so that the amount of bits necessary to represent them remains
approximately constant, allowing for the selection of efficient scheme parame-
ters [14].

The rest of this paper is organised as follows. After a brief introduction to
FHE and function approximation in Section 2, the proposed formulations and al-
gorithms are presented in Section 3. An implementation of the proposed method
is discussed in Section 4. Experimental evaluations are also carried out in Sec-
tion 4. We not only evaluate the performance of the proposed cryptographic
operations in a general purpose processor, but since the device producing and
consuming data in Figure 1 may have limited computational power, we also

3



evaluate the performance of encryption and decryption in an embedded system.
A comparison with related art is the focus of Section 5. Section 6 concludes this
paper.

2. Background

The techniques used in Section 3 to develop a confidential cloud computing
model are herein introduced. Homomorphic encryption arithmetic and poly-
nomial approximations of functions are discussed. These techniques will later
serve as the basis to homomorphically evaluate multivariate continuous func-
tions, which might be non-analytic.

2.1. Homomorphic Encryption

While other cryptosystems could be considered for the implementation of the
techniques described herein, in this section the Brakerski-Gentry-Vaikuntanathan
(BGV) [15] cryptosystem will be described to support the proposed FHE ap-
proach. This choice was mainly motivated by the availability of mature libraries
for implementing the proposed system [16, 17].
φm(X) ∈ Z[X] is used to denote the m-th cyclotomic polynomial of degree

n = ϕ(m), where ϕ is Euler’s totient function. The ring R = Z[X]/(φm(X)) is
the main structure of BGV. An element of R can be thought of as a polynomial
with integer coefficients and a degree strictly smaller than n. The underlying
space for ciphertexts is Rq = R/qR = Z/qZ[X]/(φm(X)), which is composed
of elements of R with coefficients reduced modulo q. Herein, the notation [·]q
denotes the centred residue modulo q in [−q/2, q/2), while b·e denotes rounding
to the nearest integer.

In the context of the BGV scheme, the secret-key s ∈ R is defined as a
“small” polynomial drawn from a distribution χkey. An encryption of m ∈ Rt,
for t ∈ N, corresponds to a pair of polynomials ct = (c0, c1) ∈ R2

q satisfying:

[c0 + c1s]q = [[m]t + tv]q (1)

where v is a noise term that is originally introduced during encryption (which
is related to a distribution χerr) and that grows as homomorphic operations are
applied. Decryption operates correctly so long as this noise is below a certain
bound, which limits the amount of homomorphic operations one can perform.

BGV provides for the homomorphic addition and multiplication of poly-
nomials in Rt. The homomorphic addition of two ciphertexts corresponds to
the pairwise addition of the ciphertexts’ polynomials. Regarding homomorphic
multiplication, it is useful to see ciphertexts as first degree polynomials with
coefficients in R. For a polynomial c0 + c1y, evaluating it at y = s would
lead to (1). In this context, the homomorphic multiplication of ct1 and ct2

takes place in two steps. First, ctmult ←
([
c10c

2
0

]
q
,
[
c10c

2
1 + c11c

2
0

]
q
,
[
c11c

2
1

]
q

)

is computed. Evaluating ctmult,0 + ctmult,1y + ctmult,1y
2 at y = s would also

enable decryption. In order to prevent the continuous growth of the number of

4



elements in ciphertexts, one has to convert the three-element ciphertext back to
a two-element ciphertext, through a process called relinearisation. In a nutshell,
ctmult,2 is multiplied by a pseudo-encryption of s2 and the result is added to
(ctmult,0, ctmult,1) [15].

Finally, a noise management technique is applied to reduce the growth rate
of the norm of v in (1) due to the homomorphic multiplication. This technique
is called modulus-switching and consists of scaling the ciphertext to a smaller
ring Rq′ with an appropriate rounding, which is performed in two steps:

δi ← t · [−ctmult,i/t]q/q′ for i = 0, 1

ct ←
(

[q′/q · (ctmult,0 + δ0)]q′ ,

[q′/q · (ctmult,1 + δ1)]q′
) (2)

2.2. Homomorphic Arithmetic

In [13], a system was proposed for homomorphic processing exploiting stochas-
tic number representations. A stochastic representation of a number x ∈ [0, 1]
is defined to be a sequence of n bits, x1, . . . , xn, drawn from a Bernoulli dis-
tribution, such that the probability P (xi = 1) = x, ∀1≤i≤n [18]. Batching [19]
is therein exploited to encrypt multiple bits in a single ciphertext, so that one
can AND and XOR the bits of two stochastic representations homomorphically.
While batching can be employed in many cryptosystems [19, 20, 21], we ex-
emplify how it can be implemented in BGV. A binary plaintext space has the
following structure:

P = Z[X]/(φm(X), 2) (3)

φm factors modulo 2 into l polynomials F0, . . . , Fl−1 with the same degree
d. Batching consists in exploiting this factorisation to encrypt multiple bits
in a single ciphertext, so that additions and multiplications operate on them
in parallel. To do so, bits m0, . . . ,ml−1 are encoded as a polynomial m(x)
satisfying:

mi = m(x) mod (Fi(x), 2) ∀0≤i<l (4)

Finally, rotations of the plaintext slots can be obtained through mappings
of the form κi : X 7→ Xi [22].

We highlight the following two stochastic operations, which can be computed
by composing the aforementioned operations, for three independent stochastic
representations of x, y, s ∈ [0, 1] (note that when two representations are not
statistically independent, they can be rotated to become so):

zi = xi ∧ yi ⇒ z = xy (5)

zi = ((1 ⊕ si) ∧ xi) ⊕ (si ∧ yi) ⇒ z = (1 − s)x + sy (6)

where ∧ and ⊕ stand for the AND and XOR operations, respectively.

5



Most FHE schemes include a form of randomisation by adding noise to
encrypted messages. In [14], noise is conceived as being part of a noisy repre-
sentation of numbers. For example, the BGV cryptosystem can be modified so
as to support messages in R, with the following decryption operation:

[c0 + c1s]q = [m+ v]q (7)

With BGV one applies modulus-switching to control the noise growth due to
homomorphic multiplications without affecting the underlying plaintext. This
is possible due to the rounding operation described in Section 2.1. [14] suggests
instead that both the ciphertext modulus and the plaintext are scaled down
by the same amount when modulus switching is applied, through an operation
called rescaling that replaces (2) by (8).

ct ←
(

[bq′/q · ctmult,0e]q′ ,
[bq′/q · ctmult,1e]q′

) (8)

The arithmetic techniques in [14] mimic fixed-point arithmetic. A number
x ∈ R is represented as a polynomial:

x = b∆xe+ v (9)

where ∆ ≈ q/q′ is a scale factor and v corresponds to the noise described
in (7). It is clear that the format in (9) is preserved after additions. After a
homomorphic multiplication z = xy, z is scaled down by a factor of ∆ due to
rescaling, such that (9) is preserved.

2.3. Approximating Functions with Polynomials

While one could produce a function-approximating polynomial using inter-
polation techniques, such as Lagrange’s, there is no generic choice of n points
for which these polynomials converge uniformly to the function as n → ∞. In
contrast, Bernstein polynomials achieve that [23]. Let n1, . . . , nm ∈ N and f be

a function of m variables. The polynomial B
(n1,...,nm)
f (x1, . . . , xm) is called the

Bernstein polynomial of f :

β
(n1,...,nm)
f,k1,...,km

= f

(
k1
n1
, . . . ,

km
nm

)
(10)

B
(n1,...,nm)
f (x1, . . . , xm) =

∑

0≤kl≤nl

l∈{1,...,m}

β
(n1,...,nm)
f,k1,...,km

m∏

j=1

(
nj
kj

)
x
kj

j (1− xj)nj−kj (11)

If f : [0, 1]m → R is a continuous function, then B
(n1,...,nm)
f converges uni-

formly to f as n1, . . . , nm →∞ [23].

6



2.4. Polynomial Evaluation

[13] and [14] respectively propose stochastic and fixed-point homomorphic
operations that suffice for the evaluation of univariate polynomials. De Castel-
jau’s algorithm and Horner’s method are respectively used in [13] and [14] for
the evaluation of polynomials, as described in Algorithms 1 and 2. While the
first exploits a Bernstein representation of polynomials, the second makes use
of the power form.

Algorithm 1 De Casteljau’s algorithm for the evaluation of a polynomial in
Bernstein form [24]

Require: B(x) =
∑d

i=0

(
d
i

)
bix

i(1− x)d−i

Require: x0
1: for i ∈ {0, . . . , d} do
2: b

(0)
i := bi

3: end for
4: for j ∈ {1, . . . , d} do
5: for i ∈ {0, . . . , d− j} do
6: b

(j)
i := b

(j−1)
i (1− x0) + b

(j−1)
i+1 x0

7: end for
8: end for
9: return B(x0) = b

(d)
0

Algorithm 2 Horner’s method for the evaluation of a polynomial in power
form [25]

Require: P (x) =
∑d

i=0 aix
i

Require: x0
1: s := ad
2: for i ∈ {d− 1, . . . , 0} do
3: s := ai + x0s
4: end for
5: return P (x0) = s

3. Proposed FHE-based Cloud Computing System

The proposed system for homomorphically approximating user-provided con-
tinuous functions follows a black-box approach: in a first offline phase, it evalu-
ates the functions at the points in (10), and when online computes (11) homo-
morphically. Algorithms 1 and 2 evaluate univariate polynomials in Bernstein
and power form, respectively, using the basic operations provided by [13, 14].
In order to evaluate (11) homomorphically, one first needs to generalise Algo-
rithms 1 and 2 to the homomorphic multivariate case, and provide methods to
convert polynomials in the Bernstein form to the power form.

7



3.1. Homomorphic Evaluation of Multivariate Polynomials

The strategy herein proposed to generalise Algorithms 1 and 2 consists of
iteratively reducing the problem of evaluating a polynomial in m variables to
the problem of evaluating several polynomials in m−1 variables and afterwards
combining the results, until constant polynomials are reached. As it will be
shown, the step to combine the results of the several evaluations of polynomials
with fewer variables can be performed with the base algorithms. For polynomials
in the Bernstein form, we first rewrite (11) as:

B
(n1,...,nm)
f (x1, . . . , xm) =

n1∑

k1=0

(
n1
k1

)
xk1
1 (1− x1)n1−k1

(
n2∑

k2=0

(
n2
k2

)
xk2
2 (1− x2)n2−k2

. . .

(
nm∑

km=0

β
(n1,...,nm)
f,k1,...,km

(
nm
km

)
xkm
m (1− xm)nm−km

)
. . .

)
(12)

The ith parenthesised expression in (12) can be computed through the fol-
lowing recursive function:

g
(n1,...,nm)
f,k1,...,ki−1

(xi, . . . , xm) =

ni∑

ki=0

(
ni
ki

)
xki
i (1− xi)ni−kig

(n1,...,nm)
f,k1,...,ki

(xi+1, . . . , xm)

(13)
with the base case:

g
(n1,...,nm)
f,k1,...,km

() = β
(n1,...,nm)
f,k1,...,km

(14)

As [13] can homomorphically evaluate Algorithm 1, it can also support the
evaluation of:

B
(n1,...,nm)
f (x1, . . . , xm) = g

(n1,...,nm)
f (x1, . . . , xm) (15)

since Algorithm 1 computes (13) by setting bi = g
(n1,...,nm)
f,k1,...,ki

(xi+1, . . . , xm) and
x0 = xi.

A multivariate polynomial in power form can be described as follows:

P (x1, . . . , xm) =
∑

0≤kl≤nl

l∈{1,...,m}

α
(n1,...,nm)
k1,...,km

m∏

j=1

x
kj

j (16)

The expression in (16) can be factorised as:

P (x1, . . . , xm) =

n1∑

k1=0

xk1
1

(
n2∑

k2=0

xk2
1 . . .

(
nm∑

km=0

α
(n1,...,nm)
k1,...,km

xkm
m

)
. . .

)
(17)

8



As before, each parenthesised expression can be computed through a recur-
sive function:

h
(n1,...,nm)
k1,...,ki−1

(xi, . . . , xm) =

ni∑

ki=0

xki
i h

(n1,...,nm)
k1,...,ki

(xi+1, . . . , xm) (18)

with the following base case:

h
(n1,...,nm)
k1,...,km

() = α
(n1,...,nm)
k1,...,km

(19)

In addition, since [14] homomorphically evaluates Algorithm 2, it can also
compute

P (x1, . . . , xm) = h(n1,...,nm)(x1, . . . , xm) (20)

since Algorithm 2 evaluates (18) by setting ai = h
(n1,...,nm)
k1,...,ki

(xi+1, . . . , xm) and
x0 = xi.

3.2. Conversion between Bernstein and Power Forms

Univariate power polynomials can be written in terms of Bernstein polyno-
mials through the formula provided in [26]:

xj =

n∑

k=j

(
k
j

)
(
n
j

)
(
n

k

)
xk(1− x)n−k (21)

(21) can be readily generalised to the multivariate case:

xj11 . . . xjmm =

n1∑

k1=j1

(
k1

j1

)
(
n1

j1

)
(
n1
k1

)
xk1
1 (1− x1)n1−k1×

. . .×
nm∑

km=jm

(
km

jm

)
(
nm

jm

)
(
nm
km

)
xkm
m (1− xm)nm−km =

∑

jl≤kl≤nl

l∈{1,...,m}

m∏

h=1

(
kh

jh

)
(
nh

jh

)
(
nh
kh

)
xkh

h (1− xh)nh−kh (22)

We associate a vector~b with the coefficients of a polynomialB
(n1,...,nm)
f (x1, . . . , xm)

as follows:

~bk = β
(n1,...,nm)
f,k1,...,km

∀k ∈



0, . . . ,

∏

1≤i≤m
(ni + 1)− 1



 (23)

where (k1, . . . , km) is the unique tuple such that k = k1 + k2(n1 + 1) + . . . +
km(n1 + 1)(n2 + 1) . . . (nm−1 + 1) with 0 ≤ kl ≤ nl ∀l ∈ {1, . . . ,m}. A similar
construct is used to associate the jth entry of a vector ~p with the coefficient

9



f

EncryptE
(
β
(n1,...,nm)
f,k1,...,km

)

or
EncryptE

(
α
(n1,...,nm)
f,k1,...,km

)

x1, . . . , xm

EncryptE(xi)

Homomorphic
Evaluator

de Casteljau or
Horner

EncryptE (f (x1, . . . , xm))

Figure 2: Proposed scheme to derive an encrypted description of multivariate continuous
functions and homomorphically evaluate them

α
(n1,...,nm)
j1,...,jm

of the polynomial P (x1, . . . , xm). Based on (22), a matrix C ∈
R(

∏
1≤i≤m(ni+1))×(

∏
1≤i≤m(ni+1)) can be built to change a vector in the power

form to the Bernstein form:

~b = C~p (24)

where

Ck,j =





∏m
h=1

(kh
jh

)
(nh
jh

)
, if kh ≥ jh for 1 ≤ h ≤ m

0, otherwise.
(25)

and k = k1+k2(n1+1)+. . .+km(n1+1)(n2+1) . . . (nm−1+1) and j = j1+j2(n1+
1) + . . .+ jm(n1 + 1)(n2 + 1) . . . (nm−1 + 1) with 0 ≤ kl, jl ≤ nl ∀l ∈ {1, . . . ,m}.

Conversely, if ~b is provided in Bernstein form, one can obtain the power form
~p by solving the linear system in (24).

3.3. Confidential Computing Model

A diagram of the proposed scheme for the automatic derivation and evalua-
tion of homomorphic circuits can be found in Figure 2. During an offline phase,
the function one wants to approximate homomorphically is evaluated with a

black-box approach, producing the values of β
(n1,...,nm)
f,k1,...,km

. The β
(n1,...,nm)
f,k1,...,km

values
underpin an approximate representation of f through a Bernstein polynomial.
These values are encrypted and sent to a server. When the system is online,
a client can encrypt a tuple x1, . . . , xm of data. The resulting cryptograms are
afterwards sent to the server who applies the proposed multivariate de Casteljau
algorithm homomorphically to produce an encryption of f(x1, . . . , xm). Alter-

natively, the β
(n1,...,nm)
f,k1,...,km

values associated with the Bernstein polynomial can

be converted to an equivalent power form with coefficients α
(n1,...,nm)
f,k1,...,km

. These

10



latter values are encrypted and sent to the server instead of the β
(n1,...,nm)
f,k1,...,km

.
When the server is provided with encryptions of x1, . . . , xm it can similarly
compute an encryption of f(x1, . . . , xm), but using the proposed multivariate
Horner scheme. In the model depicted in Figure 2, the homomorphic evaluator
learns nothing about the function that is being evaluated, which could be any
continuous, possibly non-analytic, function, except for the degree of the poly-
nomial that was used to approximate it. In practice, a service provider might
wish to make several FHE parameters available, each supporting a certain ap-
proximating polynomial degree, and charge its users according to the quality of
the approximation provided.

3.4. Performance Characterisation

The two considered number representations, namely the stochastic repre-
sentation for the de Casteljau algorithm, and the fixed-point approach for the
Horner scheme, are supported on different assumptions about the underlying
homomorphic encryption scheme. A stochastic number representation can be
applied to schemes where batching is used at the bit level. In contrast, a
fixed-point representation assumes that one can rescale the encrypted messages.
While batching has been successfully applied to a large amount of cryptosys-
tems [15, 19, 20, 21], rescaling consists of a modification to modulus-switching,
which is applicable to a more restricted set of cryptosystems [15, 21]. Thus,
stochastic number representations are a more general technique than fixed-point
arithmetic. Nevertheless, the fixed-point approach allows for the application of
the Horner scheme, which is computationally more efficient. Therefore, we use
both representations in this paper, since each can be adopted depending on the
applications and requirements.

While for the multivariate Horner scheme one needs to perform

n1 + (n1 + 1)× (n2 + (n2 + 1)× (. . .× nm)) = O


 ∏

1≤i≤m
ni


 (26)

homomorphic multiplications; with the multivariate de Casteljau algorithm,

3

2
n1(n1 + 1) + (n1 + 1)×

(
3

2
n2(n2 + 1) + (n2 + 1)×

(
. . .× 3

2
nm(nm + 1)

))
=

O




 ∏

1≤i≤m
ni


× nm


 (27)

homomorphic multiplications are required.
It should be noted though that, if enough parallelism is available, the execu-

tion of Algorithm 1 is linear with d, since each iteration of the for loop in line 5

11



Scheme n1 n2 Seq. Time Complexity Par. Time Complexity
Fixed-Point 5 5 -
Fixed-Point 10 10 -
Fixed-Point 15 15 -
Fixed-Point 2 2 8 4
Fixed-Point 3 3 15 6
Fixed-Point 4 4 24 8
Stochastic 5 45 5
Stochastic 10 165 10
Stochastic 15 360 15
Stochastic 2 2 36 4
Stochastic 3 3 90 6
Stochastic 4 4 180 8

Table 1: Time complexity of the proposed scheme in terms of homomorphic multiplications
for univariate and bivariate polynomial approximations of degree n1 in x1 and n2 in x2 using
both a fixed-point approach with Horner’s scheme and a stochastic number representation
with de Casteljau’s algorithm. Since no parallelism can be exploited for the univariate Horner
scheme, values were omitted in that case

is independent of one another, and can be computed in parallel. Hence the mul-

tivariate variant of this algorithm has a time of complexity of O
(∏

1≤i≤m ni

)
.

If, additionally, the recursive calls in (13) and (18) are performed in parallel,

the complexity of both techniques reduces to O
(∑

1≤i≤m ni

)
.

Table 1 presents concrete complexity analyses of the proposed methods for
univariate (f(x1)) and bivariate (f(x1, x2)) polynomial approximations of de-
gree n1 in x1 and n2 in x2. Although the sequential time complexity of de
Casteljau’s algorithm with a stochastic number representation grows at a faster
rate than the fixed-point approach with Horner’s scheme, the former representa-
tion is more widely applicable, since it only depends on batching, and parallelism
may help bridge the performance gap between the two number representations.

4. Implementation Details and Experimental Results

The proposed methods were described using C++ and compiled with GNU’s
C compiler1. The implementation was based on BGV, which supports both
batching and modulus-switching. The most relevant parameters for this cryp-
tosystem are: i) the underlying cyclotomic polynomial φm, which determines
the amount of available batching slots; and ii) the size in bits of the ciphertext
modulus log2 q, which defines the number of homomorphic multiplications one
can compute. A combination of the two defines the level of security the scheme

1The source-code will be made publicly available when this manuscript is published.

12



provides [27]. Herein, the parameters were chosen to ensure at least 80 bits of
security. It should be noted that one could also support the implementation on
other cryptosystems, such as the ones in [20, 19].

The homomorphic operations based on stochastic representations exploit
HElib [16]. Besides enabling an automatic selection of parameters, HElib pro-
vides interfaces for the basic FHE operations, such as encryption, decryption,
homomorphic additions, multiplications and rotations. These operation were
combined to provide homomorphic stochastic arithmetic. The homomorphic op-
erations based on the fixed-point approach were implemented with NFLlib [17].
NFLlib provides solely arithmetic methods for power-of-two cyclotomic rings.
With NFLlib, one selects q as a product of 62-bit primes. Based on the poly-
nomial arithmetic offered by NFLlib, the FHE operations, such as encryption,
decryption, homomorphic additions and multiplications, were implemented. In
addition, the rescaling operation and the fixed-point arithmetic were developed.
Finally, multithreading was exploited with the C++ standard library using the
strategy described at the end of Section 3.4.

The experimental results herein presented focus on two applications where
the usage of non-analytic functions is required, as an example of the wide range
of applications that can be targeted with the proposed method. All experiments
were executed on an octo-core Intel i7-5960X processor, with the Haswell micro-
architecture, with 32GB of RAM, running at 3.0 GHz, operated by Fedora 21,
and featuring hyperthreading (i.e. 16 threads are supported simultaneously in
total at the hardware level). We also provide an experimental evaluation of
the performance of encryption and decryption in embedded devices, since, often
times, data processed in the cloud is produced or consumed by devices with
limited computational resources. In particular, the encryption and decryption
operations presented in Section 4.2 were also executed on a quad-core Cortex-
A53 processor, with the Armv8-A architecture, with 8GB of RAM, running at
950 MHz, and operated by OpenEmbedded [28]. Since NFLlib natively only
supports x86 platforms, it had to be modified to run on the Arm processor.

Algorithm 3 Sparsemax function for mapping scores to probabilities [29]

Require: z ∈ RK

1: Sort (z1, . . . , zK) as (z(1), . . . , z(K)) s.t. z(1) ≥ . . . ≥ z(K)

2: k(z) := max
{
k ∈ {1, . . . ,K}|1 + kz(k) >

∑
j≤k z

(j)
}

3: τ(z) :=
(
∑

j≤k(z) z
(j))−1

k(z)

4: return p s.t. pi := max(0, zi − τ(z))

4.1. Effect of Parameters and Parallelism on Non-Analytic Machine-Learning
Functions

We have evaluated how the choice of parameters and the proposed paral-
lelisation affect the performance of the homomorphic evaluation of non-analytic
functions used in machine learning. We have also assessed the accuracy of the

13



Function Scheme # slots n1 n2 m log2 q MAE
Sequential
Execution
Time [s]

Parallel Exe-
cution Time
[s]

Speedup

sparsemax1(x1, 0) Fixed-point 5 215 744 0.0843 0.489 - -
sparsemax1(x1, 0) Fixed-point 10 215 744 0.0495 0.689 - -
sparsemax1(x1, 0) Fixed-point 15 216 1550 0.0336 9.00 - -

sparsemax1(x1, x2, 0) Fixed-point 2 2 215 744 0.181 0.902 0.543 1.7
sparsemax1(x1, x2, 0) Fixed-point 3 3 215 744 0.133 1.57 0.687 2.3
sparsemax1(x1, x2, 0) Fixed-point 4 4 216 1550 0.120 20.7 6.87 3.0

sparsemax1(x1, 0) Stochastic 630 5 8191 327 0.104 0.409 0.272 1.5
sparsemax1(x1, 0) Stochastic 1024 10 21845 1440 0.063 16.2 6.40 2.5
sparsemax1(x1, 0) Stochastic 2160 15 55831 2592 0.036 83.0 19.5 4.3

sparsemax1(x1, x2, 0) Stochastic 630 2 2 8191 327 0.151 0.301 0.254 1.1
sparsemax1(x1, x2, 0) Stochastic 1024 3 3 21845 985 0.129 9.46 3.58 2.6
sparsemax1(x1, x2, 0) Stochastic 2160 4 4 55831 2592 0.112 39.6 9.78 4.0

Table 2: The functions sparsemax1(x1, 0) and sparsemax1(x1, x2, 0) were approximated and
homomorphically evaluated as described in Section 3.3, using both a fixed-point approach
with Horner’s scheme and a stochastic number representation with de Casteljau’s algorithm

Seq. Fixed-Point Par. Fixed-Point Seq. Stochastic Par. Stochastic
Sample
Pearson
correlation
coefficient

0.89 0.88 0.98 0.95

Table 3: The accuracy of the predictions in Table 1 was evaluated by computing their corre-
lation with the values in Table 2. Values close to 1 indicate a linear dependence between the
two variables

14



performance predictions in Table 1. The sparsemax function [29], described in
Algorithm 3, is used to map vectors in RK to the (K − 1)-dimensional simplex.
Such maps are used in the final layer of neural networks to convert a vector of
scores to a probability distribution. sparsemax was shown to outperform tradi-
tionally used functions in multi-label classification and in attention networks for
natural language inference [29]. In Table 2, one can find experimental results for
the homomorphic evaluation of the functions sparsemax1(x1, 0) (the 1st element
of p in Algorithm 3) using approximating polynomials with n1 ∈ {5, 10, 15} and
of the function sparsemax1(x1, x2, 0) with (n1, n2) ∈ {(2, 2), (3, 3), (4, 4)}. The
functions were approximated in the intervals [−3, 3] and [−3, 3]2, respectively,
by linearly mapping those intervals into [0, 1] and [0, 1]2 and using the strategy
in Section 2.3.

The experimental results for the univariate case suggest that the degree of
the approximating polynomial is inversely proportional to the Mean Absolute
Error (MAE). As more dimensions are considered, the Bernstein polynomials
take longer to converge to the function, as the degree of the approximating
polynomial increases. Since sparsemax1(x1, 0) is univariate, no parallelism was
exploited for the fixed-point approach when approximating this function ho-
momorphically. When approximating multivariate functions, the speedup ob-
tained by parallelising the fixed-point approach follows closely what would be

expected from the complexity analysis in Section 3.3
(

n1+(n1+1)×n2

n1+n2

)
. In con-

trast, since the i7-5960X processor supports at most 16 hardware threads, and
the parallelisation of Algorithm 1 would optimally require 20 and 30 threads for
the evaluation of univariate polynomials of degree 10 and 15, respectively, the
speedup is limited for the stochastic representation. Moreover, one is herein able
to achieve similar levels of precision for both representations, but the stochastic
representation-based scheme takes on average 3.2 times longer to evaluate the
same polynomial than the fixed-point approach, when parallelism is considered.

The performance analysis of Section 3.4 was based on the amount of homo-
morphic multiplications required, without taking into account the characteris-
tics of the underlying FHE system. A more precise analysis should take into
account, for instance, the dependency between the degree of the approximating
polynomials and the parameters of the FHE scheme, along with their influence
on the performance of homomorphic multiplications. Notwithstanding, one can
see from Table 3 that the predicted performance figures in Table 1 correlate
well with the experimental values of Table 2. This suggests that after a spe-
cific number representation and type of implementation are fixed, the analysis
of Section 3.4 accurately predicts how performance depends on the n1 and n2
parameters.

4.2. Image Processing with Non-Analytic Piece-Wise Multilinear Functions

Two non-analytic piece-wise multilinear functions were developed for image
processing, namely grey stretching and image blending, and their encrypted
approximations were automatically derived using the proposed methods. Images
with 256 × 256 pixels from [30] were used to get the results presented in this

15



Figure 3: Image processing

16



System Encryption [s] Filter [s] Decryption [s]
Intel / Arm Intel Intel / Arm

Grey
Stretching

Fixed-
point

52.5 / 685 341 6.9 / 134

Blending
Fixed-
point

52.7 / 684 885 5.3 / 88

Grey
Stretching
Stochastic

34.5 / 914 1340 61.7 / 1172

Blending
Stochastic

47.7 / 1273 2103 89.4 / 1468

Grey
Stretching
Floating-
point [31]

324 / 7935 95.9 92.7 / 2630

Table 4: Average execution time for homomorphic image processing operations on an i7-5960X
(Intel) and on a Cortex-A53 (Arm). When exploiting the fixed-point approach, NFLlib was
exploited with a cyclotomic polynomial φm with m = 214, and log2 q ≈ 372. For the stochastic
number representation, HElib was used with m = 4369 and m = 5461 (accounting for 256 and
378 batching slots), and log2 q ≈ 132 and log2 q ≈ 324 for the grey stretching and blending
algorithms, respectively. The last implementation corresponds to an adaption of [31] to the
proposed system. [31] uses the Paillier cryptosystem with a 2048-bit modulus

paper. The pixels were mapped to the [0, 1] interval, and functions (28) and (29)
were applied, corresponding to grey stretching and image blending, respectively.

g(x1) =





0, if x1 ≤ 0.25

2x1 − 0.5, if 0.25 < x1 ≤ 0.75

1, otherwise.

(28)

b(x1, x2) =

{
x1x2, if x1 ≤ 0.5

1− 2(1− x1)(1− x2), otherwise.
(29)

g was approximated by a Bernstein polynomial with n1 = 3 and b with
n1 = 2 and n2 = 2. An example of image processing can be found in Figure 3,
where processing was applied in the clear (i.e. without encrypting data), using
the homomorphic Horner scheme with the fixed-point approach, and the ho-
momorphic de Casteljau algorithm with the stochastic number representation.
While the employing of Bernstein approximations softens the sharp changes of
tone in (28) and (29), one can see that the resulting images approximate the
expected result in a satisfactory manner.

17



The average execution times of encrypting an image, processing it and de-
crypting the result can be found in Table 4. We have included the timings
of encrypting and decrypting images on a quad-core Cortex-A53 to have ex-
perimental results representative of scenarios where data may be encrypted or
decrypted on an embedded device and processed in the cloud. Since the consid-
ered homomorphic image processing algorithms show a great level of parallelism,
instead of applying parallelism at the arithmetic level, 16 threads were created
on the i7-5960X processor and 4 threads on the Cortex-A53. Each thread se-
quentially processed different parts of the image.

Due to the limited resources of the embedded device, encryption and de-
cryption are, on average, 19.8 and 17.9 times slower to execute on the Arm than
on the Intel processor, respectively. Nevertheless, acceptable performance, in
the order of hundreds of seconds, is still achieved on the Arm processor. Fur-
thermore, while not considered in this work, techniques have been proposed in
related art to reduce the encryption and decryption timings of FHE systems on
embedded systems [32, 33] but at the expense of costlier homomorphic process-
ing.

While NFLlib only deals with power-of-two cyclotomics for efficiency rea-
sons, HElib allows for a more fined-grain tuning of the parameters. This is
reflected in Table 4. For the two considered processors, encryption takes the
same time for both grey stretching and blending when using a fixed-point ap-
proach, because both use the same parameter set. With a stochastic number
representation, HElib allows for the use of smaller parameters for grey stretch-
ing than for blending, leading to a more efficient encryption for the former filter.
Nevertheless, as homomorphic operations contribute to the reduction of the bit-
size of the ciphertext modulus, decrypting the result on both processors after
blending images takes a shorter period than after grey stretching for the fixed-
point approach since the former application is more complex. Furthermore, the
fixed-point approach takes from 2.4 up to 3.9 times less time to process images,
due to the exploitation of power-of-two cyclotomics and the Horner scheme.
Finally, one can see an example of the difference in accuracy in Figure 3. For
the considered parameters, a stochastic number representation leads to grainier
images than a fixed-point one.

5. Related Art

A comparison between the model proposed in Section 3 for cloud computing
and those of related art, regarding performance, development effort, scope and
privacy, is depicted in Figure 4. Traditional cloud computing models [1] process
data in the clear on shared machines. As attacks such as Meltdown and Spec-
tre [4, 5] have shown, currently employed measures to isolate processes might
not be enough to ensure data confidentiality.

Homomorphic encryption solves this problem by allowing data to be pro-
cessed while encrypted: even if an attacker is able to break process isolation,
only random looking data will be leaked. Four approaches to cloud computing
based on homomorphic encryption have been identified in Figure 4: i) Partial

18



Computing
Model

Performance
Development

Effort
Scope Privacy

Traditional [1]

Directly
exploits

CPU
architecture

Traditional
program-

ming
techniques

Supports
any ap-
plication

Vulnerable
to attacks
like Melt-
down and
Spectre

PHE
libraries [31]

Overhead
associated
with PHE

Intricate de-
velopment.
Requires
strong

familiarity
with PHE

Limited
support of

applications
Hides data

FHE w/
application

specific
circuits

(e.g. [10,
11, 12])

Overhead
associated
with FHE

Intricate de-
velopment.
Requires
strong

familiarity
with FHE

Supports
most

applications
Hides data

Proposed
model

Limited
set of FHE
operations

Traditional
program-

ming
techniques

Non-analytic
continuous
functions

Hides
data and
algorithm

FHE w/
encrypted
computer
architec-
ture [9]

Impractical

Halting
problem

may cause
development

issues

Supports
most

applications

Hides
data and
algorithm

Best Worst

Figure 4: Comparative analysis including the proposed model and the remaining state-of-the-
art models

19



Homomorphic Encryption (PHE) libraries; ii) FHE with application specific
circuits; iii) the proposed model; and iv) FHE with a complete encrypted com-
puter architecture. PHE refers to cryptosystems where one can either add or
multiply encrypted data, but not do both. In particular, with Paillier, one
is only able to homomorphically add encrypted messages, and multiply them
by constants. Prior work [31] has provided a toolkit for homomorphic image
processing supported on Paillier.

Due to the limitations of [31], one cannot use it to implement the proposed
scheme as described in Section 3.3. A simplified version of the proposed frame-
work was considered, in order to enable a comparison between the implementa-
tion in Section 4.2 and one based on [31]: only the Horner scheme for univariate

polynomials is supported; during the offline phase the α
(n1)
f,k1

in Figure 2 are

sent to the server in the clear; and a client needs to encrypt x11, . . . , x
n1
1 when

requesting the evaluation of f(x1). The server homomorphically approximates
f by computing:

EncryptE (f(x1)) ≈ α(n1)
f,0 +P

α
(n1)
f,1 ×P EncryptE

(
x11
)

+P . . .+P α
(n1)
f,n1
×P EncryptE (xn1

1 ) (30)

The grey stretching kernel was homomorphically applied for n1 = 3 to the
images previously considered in Section 4.2, using the scheme adapted from [31],
and the experimental results can be found in Table 4. Since [31] does not
support homomorphic multiplications, a large amount of computation (namely
the computation of the powers of the input x) has to be transferred to the client.
This is reflected in Table 4, where the encryption of images took more than 3
times longer to execute in the i7-5960X than their homomorphic processing.
This problem is aggravated for systems with limited computational resources,
such as the considered Cortex-A53, with the encryption taking over than 80
times more to execute than the homomorphic processing in the i7-5960X. One
can thus conclude that using such a scheme would only be beneficial when the
same image needs to be processed multiple times. The modified system has also
the downside of, unlike the system proposed herein, not providing the ability to

hide the function that is being evaluated, since the α
(n1)
f,k1

are sent to the server
in the clear. Finally, extending the adapted system to multivariate functions,
such as blending, seems impractical.

As suggested in Figure 4, FHE extends the applicability of homomorphic
encryption to a wider scope of applications when compared to systems based
on PHE schemes, such as Paillier. Works such as [34, 35] have provided high-
level language constructs that aid with the design of FHE circuits. In [34], a
clean interface to HElib [16] is proposed, supported on Python, along with a
rudimentary Integrated Development Environment (IDE). In [35], a Domain
Specific Language (DSL) is proposed for FHE and Secure Multiparty Com-
putation (SMC) with proved correctness and confidentiality. While both con-
structs [34, 35] provide high-level operators to process messages homomorphi-
cally, they do so without hiding the details about the plaintext space, and with-

20



out any methodical way on how to design FHE circuitry. As a consequence,
conversions of processing algorithms to the FHE domain (e.g. [10, 11, 12]) have
traditionally required deep knowledge of the FHE cryptosystem and great de-
velopment effort. For instance, in [12], numbers are encrypted bitwise and their
homomorphic addition amounts to emulating a ripple-carry adder with the ho-
momorphic operations provided by the FHE cryptosystem. The system herein
proposed differs from these approaches by exploiting a layer that translates
numbers in R into the cryptosystems’ plaintext spaces seamlessly; and that
automates the conversion of algorithms to the FHE domain.

Moreover, neither traditional cloud computing methods nor a straightfor-
ward conversion of them to the FHE domain hide the processing algorithm. In
contrast, the proposed computing model converts algorithms to the FHE ho-
mogeneously, hiding the original algorithm. Hence, along with [9], it achieves
best privacy of the models considered in Figure 4. However, due to the gener-
ality and privacy of the proposed approach, it cannot efficiently target certain
applications such as private database queries or sorting [10, 11]. While one
can develop dedicated circuits to evaluate these applications [10, 11] and use
code obfuscation [36] to improve the circuit privacy, the applicability of code
obfuscation to FHE might be limited. FHE often offers a small set of homo-
morphic operations, each with a very different computational complexity, which
reduces the difficulty of an adversary to distinguish them. Efficiently providing
algorithm privacy in these cases remains an open research question.

Finally, while [9] has proposed to emulate an entire computer architecture
in the cloud with homomorphic operations, these operations are very intensive,
and thus the scheme is impractical. Also, since the PC is itself encrypted, there
is no practical way to know when the execution has finished; which might make
development for such platforms more difficult. We believe that the system pro-
posed herein provides a nice compromise between ease of use and performance,
while, like [9], providing the ability to keep the approximated function hidden

(namely by encrypting the β
(n1,...,nm)
f,k1,...,km

or α
(n1,...,nm)
f,k1,...,km

). Moreover, the amount
of homomorphic operations to execute a circuit is known beforehand, and de-
pends directly on the level of accuracy one wants from the approximation of the
targeted function.

6. Conclusion

While attacks such as Meltdown and Spectre may have damaged the con-
fidence on cloud computing security by providing the means to break process
isolation mechanisms, cryptographic methods are available that maintain con-
fidentiality even when processes are attacked. More concretely, FHE provides
the means to process encrypted data, rendering data leaks useless. While there
has also been research on protecting both the confidentiality of the processing
algorithm and data, this has lead to impractical systems. Herein, we focus on
a wide range of functions whose approximations can be efficiently evaluated
with homomorphic operations. Since the approximations are all evaluated in

21



the same manner, a homomorphic evaluator has no way to distinguish them.
Moreover, the methods herein proposed for the derivation of homomorphic cir-
cuitry completely decouple the algorithm development from their homomorphic
evaluation. As a consequence, one can use traditional tools for function design,
as long as the resulting function is continuous. The proposed system may ex-
ploit two different number representations. One concludes that while stochastic
representations are more widely applicable, a fixed-point approach provides for
better performance.

7. Acknowledgments

This work was supported by Portuguese funds through Fundação para a
Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013 and by the
Ph.D. grant with reference SFRH/BD/103791/2014.

8. References

[1] D. Zissis, D. Lekkas, Addressing cloud computing security is-
sues, Future Generation Computer Systems 28 (3) (2012) 583–592.
doi:10.1016/j.future.2010.12.006.
URL http://dx.doi.org/10.1016/j.future.2010.12.006

[2] S. Alonso-Monsalve, F. Garca-Carballeira, A. Caldern, A het-
erogeneous mobile cloud computing model for hybrid clouds,
Future Generation Computer Systems 87 (2018) 651 – 666.
doi:https://doi.org/10.1016/j.future.2018.04.005.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X17313894

[3] B. Varghese, R. Buyya, Next generation cloud computing: New trends
and research directions, Future Generation Computer Systems 79 (2018)
849 – 861. doi:https://doi.org/10.1016/j.future.2017.09.020.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X17302224

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Man-
gard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown,
arXiv:1801.01207.
URL http://arxiv.org/abs/1801.01207

[5] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, Y. Yarom, Spectre Attacks: Exploiting
Speculative Execution, arXiv:1801.01203.
URL http://arxiv.org/abs/1801.01203

22



[6] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, R. Strackx, Foreshadow: Extract-
ing the keys to the Intel SGX kingdom with transient out-of-order execu-
tion, in: Proceedings of the 27th USENIX Security Symposium, USENIX
Association, 2018.

[7] C. Gentry, Fully Homomorphic Encryption Using Ideal Lattices, in: Pro-
ceedings of the Forty-first Annual ACM Symposium on Theory of Com-
puting, STOC ’09, ACM, New York, NY, USA, 2009, pp. 169–178.
doi:10.1145/1536414.1536440.
URL http://doi.acm.org/10.1145/1536414.1536440

[8] P. Martins, L. Sousa, A. Mariano, A Survey on Fully Homomorphic En-
cryption: an Engineering Perspective, ACM Computing Surveys 50 (6)
(2017) 1–33. doi:10.1145/3124441.
URL http://dl.acm.org/citation.cfm?doid=3161158.3124441

[9] M. Brenner, J. Wiebelitz, G. von Voigt, M. Smith, Secret program execu-
tion in the cloud applying homomorphic encryption, in: 5th IEEE Inter-
national Conference on Digital Ecosystems and Technologies (IEEE DEST
2011), IEEE, 2011, pp. 114–119. doi:10.1109/DEST.2011.5936608.
URL http://ieeexplore.ieee.org/document/5936608/

[10] A. Chatterjee, I. SenGupta, Sorting of Fully Homomorphic Encrypted
Cloud Data: Can Partitioning be effective?, IEEE Transactions on Ser-
vices Computing (2017) 1doi:10.1109/TSC.2017.2711018.

[11] D. Boneh, C. Gentry, S. Halevi, F. Wang, D. J. Wu, Private Database
Queries Using Somewhat Homomorphic Encryption, in: Proceedings of
the 11th International Conference on Applied Cryptography and Network
Security, ACNS’13, Springer-Verlag, Berlin, Heidelberg, 2013, pp. 102–118.
doi:10.1007/978-3-642-38980-1 7.
URL http://dx.doi.org/10.1007/978-3-642-38980-1_7

[12] V. Mai, I. Khalil, Design and implementation of a secure cloud-based
billing model for smart meters as an internet of things using homomorphic
cryptography, Future Generation Computer Systems 72 (2017) 327–338.
doi:10.1016/j.future.2016.06.003.
URL http://dx.doi.org/10.1016/j.future.2016.06.003

[13] P. Martins, L. Sousa, A Stochastic Number Representation for Fully
Homomorphic Cryptography, in: 2017 IEEE International Work-
shop on Signal Processing Systems (SiPS), IEEE, 2017, pp. 1–6.
doi:10.1109/SiPS.2017.8109973.
URL http://ieeexplore.ieee.org/document/8109973/

[14] J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic Encryption for
Arithmetic of Approximate Numbers, Cryptology ePrint Archive, Report
2016/421 (2016).

23



[15] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully Homomorphic
Encryption Without Bootstrapping, ACM Trans. Comput. Theory 6 (3)
(2014) 13:1—-13:36. doi:10.1145/2633600.
URL http://doi.acm.org/10.1145/2633600

[16] S. Halevi, V. Shoup, Algorithms in HElib, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014, pp. 554–571. doi:10.1007/978-3-662-44371-2 31.
URL https://doi.org/10.1007/978-3-662-44371-2_31

[17] C. Aguilar-Melchor, J. Barrier, S. Guelton, A. Guinet, M.-O. Killijian,
T. Lepoint, NFLlib: NTT-based Fast Lattice Library, in: RSA Conference
Cryptographers’ Track, San Francisco, United States, 2016.
URL https://hal.archives-ouvertes.fr/hal-01242273

[18] B. R. Gaines, Stochastic Computing Systems, Springer US, Boston, MA,
1969, pp. 37–172. doi:10.1007/978-1-4899-5841-9 2.
URL http://dx.doi.org/10.1007/978-1-4899-5841-9_2

[19] N. P. Smart, F. Vercauteren, Fully Homomorphic SIMD Operations, Cryp-
tology ePrint Archive, Report 2011/133 (2011).

[20] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
A. Yun, Batch Fully Homomorphic Encryption over the Integers, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 315–335. doi:10.1007/978-
3-642-38348-9 20.
URL http://dx.doi.org/10.1007/978-3-642-38348-9_20

[21] X. Zhang, C. Xu, C. Jin, R. Xie, J. Zhao, Efficient fully homomorphic
encryption from RLWE with an extension to a threshold encryp-
tion scheme, Future Generation Computer Systems 36 (2014) 180 –
186, special Section: Intelligent Big Data Processing Special Section:
Behavior Data Security Issues in Network Information Propagation
Special Section: Energy-efficiency in Large Distributed Computing Ar-
chitectures Special Section: eScience Infrastructure and Applications.
doi:https://doi.org/10.1016/j.future.2013.10.024.
URL http://www.sciencedirect.com/science/article/pii/

S0167739X13002422

[22] C. Gentry, S. Halevi, N. P. Smart, Fully Homomorphic Encryption with
Polylog Overhead, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 465–482. doi:10.1007/978-3-642-29011-4 28.
URL http://dx.doi.org/10.1007/978-3-642-29011-4_28

[23] C. Heitzinger, Simulation and Inverse Modeling of Semiconductor Manu-
facturing Processes, 2002.
URL http://www.iue.tuwien.ac.at/phd/heitzinger/

[24] Z. Š́ır, B. Juttler, On de Casteljau-type algorithms for rational Bézier
curves, Journal of Computational and Applied Mathematics 288 (2015)

24



244–250. doi:http://doi.org/10.1016/j.cam.2015.01.037.
URL http://www.sciencedirect.com/science/article/pii/

S0377042715000497

[25] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1997.

[26] R. T. Farouki, The Bernstein Polynomial Basis: A Centennial
Retrospective, Comput. Aided Geom. Des. 29 (6) (2012) 379–419.
doi:10.1016/j.cagd.2012.03.001.
URL http://dx.doi.org/10.1016/j.cagd.2012.03.001

[27] M. R. Albrecht, R. Player, S. Scott, On the concrete hardness of Learning
with Errors, Cryptology ePrint Archive, Report 2015/046 (2015).

[28] ARM, 64 Bit Juno r2 ARM Development Platform, https://www.arm.

com/files/pdf/Juno_r2_datasheet.pdf (11 2015).

[29] A. F. T. Martins, R. F. Astudillo, From Softmax to Sparsemax: A Sparse
Model of Attention and Multi-Label Classification, Tech. rep. (2016).
arXiv:1602.02068.
URL http://arxiv.org/abs/1602.02068

[30] University of Granada, Test Images, http://decsai.ugr.es/cvg/

dbimagenes/ (2014).

[31] M. T. I. Ziad, A. Alanwar, M. Alzantot, M. Srivastava, CryptoImg: Privacy
preserving processing over encrypted images, in: 2016 IEEE Conference on
Communications and Network Security (CNS), IEEE, 2016, pp. 570–575.
arXiv:1609.00881, doi:10.1109/CNS.2016.7860550.
URL http://ieeexplore.ieee.org/document/7860550/

[32] Y. Doröz, A. Shahverdi, T. Eisenbarth, , B. Sunar, Toward practical ho-
momorphic evaluation of block ciphers using prince, Cryptology ePrint
Archive, Report 2014/233, https://eprint.iacr.org/2014/233 (2014).

[33] Y. Hu, Improving the Efficiency of Homomorphic Encryption Schemes,
Ph.D. thesis, Worcester Polytechnic Institute, https://web.wpi.edu/

Pubs/ETD/Available/etd-042513-154859/unrestricted/YHu.pdf (5
2013).

[34] G. T. Frame, HEIDE: An IDE for the Homomorphic Encryption Library
HElib, Ph.D. thesis, California Polytechnic State University, San Luis
Obispo, California (jun 2015). doi:10.15368/theses.2015.64.
URL http://digitalcommons.calpoly.edu/theses/1403

[35] A. Bain, J. Mitchell, R. Sharma, D. Stefan, J. Zimmerman, A
Domain-Specific Language for Computing on Encrypted Data (In-
vited Talk)doi:10.4230/LIPICS.FSTTCS.2011.6.

25



URL https://www.researchgate.net/publication/220336106_A_

Domain-Specific_Language_for_Computing_on_Encrypted_Data

[36] M. Hataba, A. El-Mahdy, Cloud Protection by Obfuscation: Tech-
niques and Metrics, in: 2012 Seventh International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, 2012, pp. 369–372.
doi:10.1109/3PGCIC.2012.18.

26



 
Paul
the In
2014
Com
Rese
de Pa
comp
stude

 
Leon
Instit
1996
Instit
inclu
He h
for w
ACM

lo Martins 
nstituto Sup

4. He is a Ju
mputadores (
earch United
aris 6 (LIP6
puter archit
ent of IST a

nel Sousa re
tuto Superio

6, where he 
tuto de Eng

ude VLSI ar
has contribut
which he got
M and Senio

 

received th
perior Técni
unior Resear
(INESC-ID)
d Kingdom.
6) during 4 m
ectures, par

and a studen

eceived a Ph
or Técnico (
is currently

genharia de 
rchitectures
ted to more
t several aw

or Member o

e MSc degr
ico (IST), U
rcher with th
). He was an
 He did a co
months in 2
rallel compu
nt member o

 

h.D. degree
(IST), Univ

y Full Profes
Sistemas e C
, parallel co

e than 200 p
wards. He is
of IEEE. 

ree in Electr
Universidad
he R&D Ins
n intern dur
ollaboration

2016. His re
uting, and c
of both IEEE

e in Electric
versidade de
ssor. He is a
Computado

omputing, c
papers in jou
s Fellow of t

rical and Co
de de Lisboa
stituto de E
ring 4 month
n with the L
esearch inter
omputer ari
E and HiPE

al and Com
e Lisboa (UL
also a Senio
ores (INESC
omputer ari
urnals and in
the IET, Di

omputer Eng
a (UL), Lisb
ngenharia d
hs in 2015 a

Laboratoire d
rests includ
ithmetic. He

EAC. 

mputer Engin
L), Lisbon, 
or Researche
C-ID). His r
ithmetic, an
nternational
stinguished

gineering fr
bon, Portuga
de Sistemas
at the Sams
d'informatiq

de cryptogra
e is also a P

neering from
Portugal, in
er with the 

research inte
nd cryptogra
l conference

d Scientist o

rom 
al, in 
e 

ung 
que 

aphy, 
PhD 

m the 
n 
R&D 
erests 
aphy. 
es, 
f 



Highlights 
 

 Proposed computing model hides both data and algorithms from evaluator 
 Users’ functions are automatically converted to the proposed model 
 Two different number representations are supported 


