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Abstract

In this paper, we consider the searc’ ‘~~ nrobicm over ordered sequences. It
is well known that Binary Search (BS) alg~ ithm solves this problem with very
efficient complexity, namely with the ¢ ., lexity 0(log, n). The developments of
the BS algorithm, such as Ternai, ,c.~~h ‘TS) algorithm do not improve the ef-
ficiency. The rapid increase in the amou.t of data has made the search problem
more important than in th. pasi. And this made it important to reduce aver-
age number of comparisons -~ casr s where the asymptotic improvement is not
achieved. In this paper, we dentity and analyze an implementation issue of BS.
Depending on the lo atio. »f t 1e conditional operators, we classify two different
implementations fr S which are widely used in the literature. We call these
two implements ... 1s weak and correct implementations. We calculate precise
number of coi. »ar’sons in average case for both implementations. Moreover, we
transform ne TS aigorithm into an improved ternary search (ITS) algorithm.
We also p. v ose . new Binary-Quaternary Search (BQS) algorithm by using
a nov 1 dividing strategy. We prove that an average number of comparisons
for bo W presr ated algorithms ITS and BQS is less than for the case of correct

ir ipleme ntation of the BS algorithm. We also provide the experimental results.
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1. Introduction

Searching and sorting problems are classical problem ' of com »uter science.
Due to excessive increase in the amount of data in rec- 4 yea.., chese problems
keep attracting the attention of researchers. In our j rev'ous sork [29], we have
made a short summary of the related works about sc *ing aigorithms published
recently [9, 13, 14, 17, 18, 32, 33, 39] . The +udy [1 ] conducted after our
publication proposes two novel sorting algoriti. s, called as Brownian Motus
insertion sort and Clustered Binary Inseri. ‘u sort. Both algorithms are based
on the concept of classical Insertion So* Marszatek [26] describes how to use
the parallelization of the sorting processt = or the modified method of sorting
by merging for large datasets.

Besides of these studies Woz: ... ~* a. [40] modify Merge Sort algorithm for
large scale data sets. Marszalek [25| . oposes a new recursive version of fast
sort algorithm for large dat . set.  WoZniak et al [41] examine quick sort algo-
rithm in two versions for la:, ~ dats sets. Dymora et al [11] calculate the rate of
existence of long-term  orre ations in processing dynamics of the quicksort algo-
rithm basing on Hur it co fici- at. Napoli et al [31] propose the idea of applying
the simplified fire”.y 'eorithm to search for key-areas in 2D images. Wozniak
and Marszalek "™ use classic firefly algorithm to search for special areas in
test images. ~‘as .nd Khilar [10] propose a Randomized Searching Algorithm
and compe e its peilormance with the Binary Search and Linear Search Algo-
rithms. . ~v sho that the performance of the algorithm lies between Binary
Searc! and Tinear Search. Ambainis et al [1] study the classic binary search
proble m, wit} a delay between query and answer. They give upper and lower
b unds ~f the matching depending on the number of queries for the constant
a lays. " inocchi and Italiano [12] investigate the design and analysis of the

. *ino and searching algorithms resilient to memory faults. Chadha et al [6]




propose a modification to the binary search algorithm in which i’ che ks the
presence of the input element at each iteration. Rahim et al [34; ~rovi. the
experimental comparison the linear, binary and interpolation s :arch algorithms
by testing to search data with different length with pseudo . ~ ess approach.
Kumar [22] proposes a new quadratic search algorithm b sed or binary search
algorithm and he experimentally shows that this algoritl n bettr : than binary
search algorithm.

Carmo et al [5] consider the problem of searching .or a siven element in a
partially ordered set. Bonasera et al [4] propose an aw. otive search algorithm
over ordered sets. Proposed by Mohammed ~t ai. "20] ' ybrid search algorithm
on ordered datasets is similar to the adaptive sea. h algorithm. Bender et al
[2] develop a library sort algorithm, which is '~veloped based on insertion sort
and binary search (BS) algorithm.

It is well known that BS algori “m is -ne of the widely used algorithms
in computer applications due to obtaming a good performance for different
data types and key distributions. - works on the principle of the divide-and-
conquer approach [37]. This aleorithm is used in solving several problems. For
instance, Gao et al [15] p opose a scheduling algorithm for ridesharing using
binary search strategy. Hatau '~ . [19]presents a binary search algorithm for
data clustering. BS is a si iple «nd understandable algorithm, although it may
contain some tricks in impi. aentation. Donald Knuth emphasized: Although
the basic idea of Linary . ~arch is comparatively straightforward, the details can
be surprisingls tric <y [21]. Most of the implementation issues in the binary
search were desc bed in the literature. Pattis [35] notes five implementation
errors. T e ¢ ady [36] involves a program to compute the semi-sum of two
integers. In . “rr, this approach solves the problem of overflow that happens
in bi' ary sea ch for very large arrays. Bentley discusses some errors in the
imnlem. ~*~*"on of the binary search in the section titled the challenge of binary
s arch [

_- “'.us paper, we discuss two different implementations of the BS algorithm,

w'.acn we call as weak and correct implementations. We calculate an average




number of comparisons for both implementations precisely. We dis miss .he TS
algorithm which is known as slower than BS, and then we present .~ imy,. sved
ternary search (ITS) algorithm which is faster than the correc’ 1m Jlementation
of the BS algorithm. We prove this fact by calculating an a. ~ ge number of
comparisons for ITS algorithm precisely. Moreover, we tfer a new searching
algorithm called as Binary-Quaternary Search (BQS) alg vithm. We calculate
an average number of comparisons for the BQS algor’ .hm -~ 1 we show that this
algorithm is better than the correct implementation v. BS o gorithm. Theoret-
ically, BQS slightly shows more average comparisons ‘umber compared with
presented ITS algorithm.

The rest of the paper is organized as follows: In . ~~tion 2 we discuss the weak
and correct implementation of the BS algoriti.. - In this section we also calculate
average number of the comparisons for -ean .. ' correct implementation of the
BS algorithm. In section 3 we dic wss t. » TS algorithm. In Section 4 we
propose ITS algorithm and we calculate ave.age number of comparisons for this
algorithm. In section 5 we develop . new searching algorithm BQS and we find
precisely average number of comparisons for BQS algorithm. In section 6 we
compare the implementati .ns of t1 > ITS and BQS algorithms. In section 7 we
demonstrate experiment . resu. ~ .nd comparison of these searching algorithms.

Finally, we summariz: our resv’.s in section 8.

2. Binary Search an’ Tts Two Different Implementations

In this ser ion we discuss the weak and correct implementation of the BS
algorithm. We also -calculate average number of comparisons for both imple-
mentatio.. ¥ /e te <e the correct implementation from the book [37]. The weak
impler .entation we meet in many works, for example, see [7, 24, 28]. Table 1
conta. s the «orrect and the weak implementation that is used in this study.
I".terence between these two implementations occurs when the first “if” state-
L =nt is 1 1ade to search for the desired key (contains equality test only), and

ta second “if” statement is used to decide whether half (right or left) will be




selected for the next iteration. In result of this difference, we hav a d derent
number of comparisons in each iteration. In regard, while the ».~ary » arch
used as a search function in the Binary Search Tree (BST) d- ¢a . tructure, we
noticed the same issue in BST widely is observed. For examn., 'e see the BST
implementation in [27, 38]. Meanwhile, the author of [20] preserted the correct
implementation of BST for recursive version and the we k imp! mentation of
the iterative version of BST. This drawback decreas :s th~ ~earch speed in the

binary search tree as well.

2.1. Binary Search Weak Implementation Ana.,~is (Average case)

Figure 1 shows the comparisons tree ¢. “ne weak implementation of binary
search (Table 1). The main reason that ~akes th weak implementation slower
than the correct implementation is the cc t of selecting the next half that con-
tains the required key, whereas the «'gu ‘thin consumes three comparisons to

select both halves (right or left k. . ™ «.“her words, in Figure 1, the branching

to both children nodes consumes three omparisons.

|¢&£14b1

Figure 1: Comparison tree of binary search for the weak implementation.

T+, =2F — 1. Hence k = logy(n + 1). Let C[j] be equal to a number of

cc nparisons made for finding a jth element of the array. The average number




Table 1: Binary search correct and weak implementation comparisou.

Correct binary search implementation

Weak binary . ~arch implementation

template <typename T>inline int
correctBS (T A[], left ,

int right, T const& key)

int

int mid ;

while (left <= right)

{
mid = (left+ right) / 2;
if (key < A[mid])

right = mid — 1;
else if (key > A[mid],
left = mid + 1;
else

return mid;
} // end while

return —1; / mot ound

template <. rvename T>inline int

W akBS T A[], int left , int

rig. + . 7 const& key)
int -aid ;
whi = (left <= right)

mid = (left+ right) / 2;
if (key == A[mid])
return mid;
if (key > A[mid])
left =

else
mid + 1;
else

right = mid — 1;

}

return —1; // not found

n .
of comparison. ‘s ;(n) = Y % By the algorithm for one value (namely, for
j=1

median) ¢ 7, ~ e should make 2 comparisons (1 comparison for the base case

“while left ~ -igh’ , 1 comparison for equality of key with median). For 2 values

of j (or a m. lian of left part and right part), we have to do 5 comparisons (1

compa. ~on f,r the base case, 1 comparisons for equality key, 1 comparison

for pass. g to left or right and plus previous comparisons.) For 4 values of j,

siv. ‘Tarl* | we have to add 3 comparisons. Therefore, exactly for 2!~1 values of j

we ue..e to do 37 — 1 comparisons. Hence we have the following formula for the




average number of comparisons:

k

fony =3 B2 1)

i=1

Let i
Sp=) 2! (2)
=1

By multiplying by 2

k

k
25, =2 27 =) iz (3)
=1

f=1

By subtracting (2) from (3) we obtain
k-1
Sp=—-1-> 2"+ k2" =-2F 414 k2" (4)
i=1

Hence,

Sp=(k 1,2F+1 (5)

From the formula (5) for the average ~mmber of comparisons we have

k k

3em. ., 1 S 1 3 1 1 3(n+1)

== 2i=1_Z N "ot g Sk 1) = Z[k2k ok ]2k = T ), 1)—4

Joy =52 =03 Sk—(21) = S22 2t = S logy (1)
(6)

Therefore,

f(n) -3logy(n+1)+

3logy(n +1) 4 )

2.2. Binary Sc ~c . Correct Implementation Analysis (Average Case)

In this subr sction, we calculate the average number of comparisons for cor-
rect binary » ~rc’. algorithm precisely. As in subsection 2.1, we suppose that
n="7°"—1. Ne define also the functions C[j] and f(n) such as in subsection
2.1.

Acco. ling to the algorithm for one value of j (for median) C[j] is equal to
3. T e value of j (for a median of the left half) C[j] is equal to 5. For one
ve ae of j(for a median of right half) C[j]is equal to 6. The values of C[j] we



Figure 2: Comparison tree of binary seai. - tor the correct implementation.

show by the binary tree in Figure 2 for v e alue n = 31. We will call this tree
by binary comparison tree (BCT).

According to correct BS alg~+ithm ‘witially, each iteration consumes one
comparison by “while” statement. 1. ™ it may execute one or two comparisons
in both “if” statements. If ... “rst one is true, the algorithm goes to the left
child node in the tree (Fig. = 2) an | consumes two comparisons for the current
iteration in total. Hov ever if w.e second condition gets true, the algorithm
goes to the right chila < de ¢ msuming three comparisons during the current
iteration. Otherw’ - the current node is equal to the required key, while this
case also adds three compurisons to the total number of comparisons.

Briefly, as exp! .ined in Figure 2, walking to the left adds only two com-
parisons wt.le wai. ‘mg to the right adds three comparisons. Moreover, we add
three cor nar’,ons f we find the desired key in the current node. The number
at eac’ ..ode rc, resents the total number of comparisons when the algorithm
termi ated at this node.

v/e can observe that the values at i level change from 2i 4+ 3 to 3i + 3 in the

1 CT.

. ~rem 1. For any 0 < m < ¢, number of values 2i + 3 + m at i level in the




BCT is equal to

Proof. We will prove by induction. For ¢ = 1 it is tru. A ,sume that it
is true for all k£ < i. Let us calculate the number of 2i - o + m a. i level for
0 < m <. For m = 0 we get the value 2i43 by adding 2 . » the vo ue 2(: —1)+3
at ¢ — 1 level. By other words, we have only one value 22+ 2 at ¢ level. Similarly,
for the m =i we get the value 3i + 3 from the value “ 2 — 1, + 3 at (¢ — 1) by
adding 3. If 0 < m < i we obtain the value 2i + 3 4+ 7. ~t ¢ level from the value
2(i—1)4+34+m at i — 1 level by adding 2 or frou. *he ve ue 2(i —1)+3+m—1
at ¢ — 1 level by adding 3.

By induction, the number of the values o' —1)+3+m at i — 1 level is equal

i—1
to and the number of the va. ves ".(z+--1)+3+m —1 at i — 1 level is
m
i—
equal to . Therefore by th- property of binomial coefficients, the
m—1

number of the values 2i + 3 + m at 4 1. ¢l is equal to

Now we can cal” alate a. .verage number of comparisons for correct binary
search algorithm.  We “ave for the average number of comparisons f(n) the

following form .a ¢ '\mparisons

n . k—1 1
C 1
fln) = L:, (20 +3+m)

j=1 n n i=0 m=0 m

Hence
1 k—1 i i i
f/L)ZE (204 3) +Zm

=0 m=0 m m=0 m

I'roposi ion 1.
m =21
m=0 m




i )
_ 4!
- ml(i—m)!

Proof. We have the formula

m
Therefore, for all 0 < m < 1,
i itm il i(i— ! i1
o 1 T ml—m) T m—Dlii—m)! m—)i—1) - (m—1)  \ g1
\
| i RS
For m = 0 and m = ¢ we have 0 =0and i =

i’m i o i +§m i /i\' Uty | g Gy |
m=0

+i ‘
m 0 me=1 m 7 . m=1 \ m—1 m=0 \ M
Thus, we proved Proposition 1. Now we h. =
= ‘ ‘ 1k ‘ 5ol g kol
fy == [@i+3)2' +i2 7 =~ 37 [5 2 432 =) a2y
i=0 i=0 i=0 i=0

By the formula (5) we have
Spo1=(k 2)28 141
Therefore we obtain
5 k—1 3 ok
fr,="[(k—2)2""+1] +=(2"-1)
n n
Since 28 =n+1, «=log, ¢+ 1)and 2""! =2l 5o

. 1
rin) = | (logy(n + 1)~ 2)" 2

+1|4+—mn
n

Finally, we have ' 1e formula

51 +1
4 ogy(n ) _

o 2 (8)

Fln) = 2 logy(n +1)

By cc mparing equation (7) and (8), we find that the average comparison num-
ber of w -1 aplementation is greater than the number of correct binary search.
. pproxii ately, the average number of comparisons of weak implementation is
equ.' * the worst-case comparison number of correct binary search. Conse-

q 2nuiy, binary search performance declined within this weak implementation.

10



Experimentally, the performance of weak implementation bec mes slower
when the cost of a single comparison operation increased. It happen. “rins ance
when the algorithm searches a list with long string keys. Le us discuss why
the difference between correct and weak implementation occu ~ If we look at
the binary search again, we will find the issue occurs whe 1 the rosition of “if”
statements have been altered. While nested “if” stateme. s are - sidely used in
most computer application, we will discuss the case of v - the nested ”if ”
statements and the influence of their occurrence probauility  a the performance
of the whole program.

Let us examine the following two pseudo-coac ~xar ples. Assume the loop
repeats a nested “if” block for n times. We will . -amine how the position of
“if” statement impacts the average number 0. ~omparisons. However, to get the
best performance, the “if” statement w."h v. . “zhest probability of occurrence
(the specified condition is true) mus ~ome Srst. Then it should be followed by

the second highest probability “if” sta.~mcat and so forth.

11




Example 1

1: for i=1 to n do

2: if condition1 then > . comparison
3: statement 1 > Execution p. ~Fability = 80%
4: else if condition2 then > 2 comps risons till here
5: statement 2 > Executi n prot .bility = 15%
6: else > 2 - ~mparisons till here
7: statement 3 > Exceutior probability = 5%
8: end if

9: end for

Average Number of comparisons= (1 x0.c -2 0.15+ 2% 0.05)n = 1.2n.

Example 2

1: for i=1 to n do

2: if condition3 then > 1 comparison till here
3: statement 3 > Execution probability = 5%
4: else if condition2 t’.en > 2 comparisons till here
5: statement 2 > Execution probability = 15%
6: else > 2 comparisons till here
7: statement 1 > Execution probability = 80%
8: end if

9: end for

Average Nuw.” er of comparisons= (1% 0.05 +2%0.15 4+ 2% 0.8)n = 1.95n.
Example ~ rey esents the best performance which consumes 1.2n comparisons
in averaee. U. “ve ,pondingly, example 2 represents the weak performance which
const nes 1. 'm comparisons in average. The weak performance occurs as a

resnlt 0. *h~ pad distribution of “if” statements.

12




3. The Ternary Search Algorithm

The ternary search is presented as an alternative to the bina»v sea. h. This
algorithm provides less number of iterations compared to bins .y se «rci. lowever
it has a higher number of comparisons per a single iteratior In . ‘< section we
explain this circumstance in detailed.

In literature, there are several studies presented fr- ter...  search such as
the analysis study in [23], the following pseudo-co 'e / ilgo ithm 1) which is

presented in [38] as a ternary search. In regard, .“ere . a similar approach

presented in [27].

13




Algorithm 1 The Ternary Search Algorithm
1: procedure TS( array, left, right, X)

2: array is the array that required to search

3: left is the index of left most element in ar vy
4: right is the index of right most element i . urray
5: X is the element that we search for

6: while left < right do

7 Lei ¢ | 2xleltiright |

8: Rci + LMJ

9: if X = array[Lci] then

10: return Lci

11: end if

12: if X = array[Rci] then

13: return Rci

14: end if

15: if X <array[Lci] the.

16: right < Lci

17: else if X > arr y[Rcy “hen
18: left < Rci

19: else

20: left+- Lo, 1

21: rig t < Rci—1

22: end .1

23: end w. ‘l¢

24: ret'.rn - 1 > not found

25: end p1. edv.e

To. "1 cor parisons are 5 per iteration. Therefore, the maximum number of
¢ ympari. »ns consumed by the ternary search is 5logs n, while it is 3log, n in the
bi. ary ¢ arch. Consequently, the comparison number in the ternary search is

ar ., higher than the comparison number in binary search algorithm because

14




5logzn > 3log, n.

4. Proposed Improved Ternary Search (ITS) Algorith a

The following pseudo-code (Algorithm 2) is the impresed te ~ary search.
This algorithm divides the length of the given array b - three. Then it cal-
culates the left cut index (Lci) and the right cut ir?ox(s.. ). This method
approximately divides the array into three equal par s. * the required key X is
less than the key which is located at the Lci, the 1™ thi. . of the array will be
contained X. Correspondingly, If X is greater "han the ey located at Rci, the
right third of the array will be held X. Other. ‘se, vue middle third holds the
required key X. These operations repeat. iwciavively or recursively until the
length of the scanned part of the array hecomes ‘ess than or equal to 3. Then
the algorithm uses a linear search to fir.' { among remained keys to decide

whether the search will finish success 1. - or ansuccessfully.

4.1. Improved Ternary Search Anau, is(Average Case)

Improved ternary search .. ~ases the average number of comparisons. This
occurs because the algorit. m conti wously divides the array without searching
for the required key un’.l the length becomes less than or equal to 3.

Assume j is the pc “.on [ the required element, C[j] is the number of
comparisons requi- 1 to retrieve the element at j position. In each division
process (iteration) there ., only two possible states, if j at the left third, the
algorithm cor ,ume , 2 comparisons to go to left part (1 comparison in “While”
or base cas , plus . ~omparison in the first “if” statement), so we have to add
2 to C[j! in *ais case. If j residents at right or middle third, the algorithm
require . . comyp risons to go to the corresponding part (previous comparisons
plus . for the second “if” statement), so we have to add 3 to C[j] in this case.

+he comparisons tree of the improved ternary search algorithm is shown in
1igure 3. Walking to the left child node consumes two comparisons. Whereas

walking to the middle or right child consumes three comparisons. However, the

15




Algorithm 2 Improved Ternary Search
1: procedure ITS( array, left, right, X)

2: array is the array that required to search

3: left is the index of left most element in .. .ay
4: right is the index of right most element '‘n arra '
5: X is the element that we search for

6: while right — left > 2 do

7: third « | “eht-telt |

8: Lei + left + third

9: Rci < right — third

10: if X <array[Lci] then

11: right < Lci

12: else if X > array[Rci] then
13: left < Rci

14: else

15: left + Lei+ 1

16: right < Rci -1

17: end if

18: end while > start linear search for remained items
19: if X =arra lef, *h' n
20: return ej.
21: else if ". - array[right] then
22: rete M ight

23: els . if ¥ = wrray[left + 1] then

24: L arn eft+1

25: else

26: ret urn —1 > not found
e cd if

2¢ end procedure

16




improved ternary search uses a linear search (in last three “if” ste eme its) to

find X, if n or the remained number of elements is less than or eq. ~1 to «

1,2,3,4,5,6,7,8,9
+3
+2 +3
1,2,3 4,56 4,56
+2 +4 +3 +2 +4\ 43 +2 +4 +3
.
C[1]=4| |C[2]=6] |C[3]=5 Cl4]=5 C[5]=/| (C[6] =6 C[71=5]| (C[8] =7||C[9] =6
L

Figure 3: 1. " Comparisons Tree

After the division proc ss enc -, the algorithm consumes 1 comparison to
end the loop (“while” state.. mt) Considering this comparison, linear search
adds 2, 4 or 3 compari ons .or the total number of comparisons that consumed
in the division pror:ss L. “r the algorithm terminated. Let n = 3F. The
minimum number o1 . ~mparisons in the level 7 (2 < i < k) of the comparison
tree for the ITS a., orithm is equal to 2i. Therefore, in the best case the number
of comparison. is :qual to 2logzn . The maximum number of comparisons at
level i(2 < ¢ < k) 15 equal to 3i + 1. Hence, in the worst case the number of
comparison. 3 ea .al to 3logzn + 1. To calculate the average case comparisons
numb r, we Mave to calculate the total number of comparisons consumed by
impro. ~d ter ary search. From the comparison tree we can observe that we

I ave the following recurrence for the ITS algorithm:

C[3*] =3C[3% 1 +8.3kL k>2
C[3] = 9.

17



From here ,

C[3*] = 3C[3F1] + 8.3k~1 = 3(3C[3F2] + 8.3k—2) 4- 8.3+ 1
=32C[3* 2] +2.8.3F1 = 32(3C[3F 3] +8.3k73) 2.6 5
=33C[3F 3] +3.8.3F1 = .
= 3103 + 8(k — 1)3+!
= (8k 4+ 1)3~1

Since k = loggn we obtain C[n]| = w . The. _.ore, werage number of
comparisons f(n) is equal to %logSn + % . Since 3* -~ 2% 50 15log, 3 > 16.

. . 5 8
From here we have the inequality 5 > TTog; 3"
Average number of comparisons for correct BS a..' ITS are f(n) = %logQ (n+

1) + 5logy(n+1)

2 —2and g(n) = %logg n + 5 -orrespondingly. Let us compare

these functions.

\

) 5
f(n) > §log2(n-‘ L= > §log2n— 2

~ 8logyn
~ 3log, 3

8
g(n) < glogg. +1

Thus, improved ternary sea’ ch a. orithm makes comparisons less than the cor-
rect implementation of bin. *v sear :h algorithm in average case for sufficiently
large n.

Table 2 briefly ccnpe s t} 2 complexity of binary search and ternary search

in term of compar s. ~s number for the best, worst and average cases.

5. The Pro; ase'. Binary-Quaternary Search Algorithm

The propos :d Rinary-Quaternary search (BQS) is similar to ITS regarding
the impleme.. ~t*)n. The main difference that BQS divides the length of the
given array o. °r four instead of three in ITS. Consequently, the behavior of the
algoritl. > -+ unged. Figure 4 shows the behavior of dividing technique in BQS.

Wher the required key X residents in the left quarter (X < array[Lci)),
Bl ' (right=Lci) which excludes 75% of the length of the array for the next
it cavion. Likewise, when X residents in the right quarter, BQS sets (left=Rci).
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Table 2: Complexity of Binary Search and Improved Ternary Searci.

Comparisons No. | Correct Binary Search ‘

Improved Ternary Search

Best Case 3 2loggn = 1.821n(n)

Worst Case 3logo(n+1)+3=4.32In(n+1, +3 3logsn+1=273In(n)+1

Slogy(n 1) + PREEED o

Average Case 7.21In(n+1)
3.6In(n + 1) + =1 - 2

Slogsn + 3

=2421In(n) + 0.3

In the case of X residents in the middle ha.. ‘hetween Lci and Rei), BQS works
like ordinary binary search by dividing .0 Tenetn over 2 . However, the main
benefit of BQS is in each iteration, there 1. a chance of 50% to divide the given
length over four consuming the same cc uy.. “isons number in binary search. This
approach is reducing the iteration. nw...l ~ remarkably. In turn, it increases the

performance of BQS.

Lai Rei
Left mm— J _+ R|ght

Figure 4: The Dividing technique of BQS

Algorit! m 3 illus. rates the pseudo-code of BQS. Initially, BQS calculates Lci
which it .. Yir ates .he end of the left quarter of the array and Rci denotes the
begin» .ng of the right quarter of the array.
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Algorithm 3 Binary-Quaternary Search

1

2:

3:

4:

10:

11:

12:

13:

14:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

: procedure BQS( array, left, right, X)

array is the array that required to search

X is the element that we search for
while right — left > 3 do

Quarter + LWJ

Lci < left + Quarter

Rci < right — Quarter

if X < array|Lci] then
right < Lci

else if X > array[Rci] the:
left + Rci

else
left « Lei+ 1
right < Rci — 1

end if

end while

return le t

else if X =a, ~w[right] then
retu ., ‘ght

else v ¥ :array[left + 1] then
etunlejt+1

else © X - array[right — 1] then
re ‘rn right — 1

~lse
return —1

ed if

_ d procedure

left is the index of left most element in ar -y

right is the index of right most element i . urray

if X =array[l ft] hep > start linear search for remained items

> not found
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5.1. The Binary-Quaternary Search Algorithm Analysis (Average * ase’

Let n = 2*. Total number of comparisons for n = 2,4, 8,16,32is . 4,4y, 118, 298

respectively. Let C(n) be total number of comparisons. We o' serv ~ “hat

C2YH) =2002%)+C(2%) +2211 =214+ 46 + " = 11c
C(2%)=20(23) + C(2*) +23.11 = 2.46 + 118 +88 =198

Now we will prove by induction that for all kK > 4 w* have +he following recur-

rence.

c@2hy =202 +0@F ) +2 211 (9)
We have seen that the formula (9) is true for - = 4. 7 -, the formula be true for
all 4 <m < k.

By BQS algorithm we have the following a. *sion for n = 2% :

— \

[1.27] [224125 -2 7 [2" -2

It means that we b .ve t'.e formula
C@2y =202 H+C@N + fk)
By induction w .. ve
Cc2q =202 3 @Y 231

COR2 =202 4 o283 1 2Rt

Then
flk)y =2.2F411 42311 =2F211

"L he last ormula proves (9).
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Now we will express C(2¥) by C(4) and C(8). Let us define t = fo .owing
sequences:
Thio = Th1 + 22, k>4
Ty =2, (10)

.’E5:2.

Yero = Yet1 + 20k, k>4 ]

ya=1, ; (11)
Ys = 3. J
242 = Zp41 + 225 + k=" k>4
z4 =1, (12)
zZ5 = 3.

Theorem 2. For all k¥ > 2 the formule
C(2F2) = 2442C  +) +yp 20(8) + 44249 (13)

holds.
Proof.

Since
C(2Y)=2C4) - Clo)+ 44

So the formula is tr.e for ¥ 2. Let the formula (13) be true for all 2 < m < k.

Then we have
C(Zk '71) C- $k+10(4) + y]g+10(8) + 44Zk+1
C (28 = 2,C(4) + ypC(8) + 442,
By the .ormula J)

C(2F ™ =2(2F) + O (2841 + 2811
= 22;,C(4) + 2y, C(8) + 2.442), + 7411C(4) + yp10(8) + 4dzpq + 2811
= 2z + 2p41)C(4) + 2k + Yrr1)C(8) + 44(22), + 2511 +2772)
= Z312C(4) + Yk y2C(8) + 44z
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It means that the formula (13) is true.
Now we will solve recurrences (10),(11) and (12).Characteristic ~uatw 1 for

all tree recurrences is the following quadratic equation.
rP—r—2=0
From here we find 7; = 2 and ro = —1. Therefore we hav.
rp =128 + eo(=1)F

and

yr = di2% 4 dy(=1)F

From the initial value conditions for all k. 4 we nnd the formulas

2k o 5
=15 50 (14)
and
2k 1 i
ey (D) (15)

Now we will seek a particular solution of the inhomogeneous equation (12) in
the form

oo a(k—2)2k2

Then

Zpyr = a(k — 1)2F1
Zk+4+2 = ak?k

If we substitute .~ ese values in the equation we find a = %. Then we find z; in
the form

(k—2)2k2

Zp = ez’ +eo(—1)F 4 g

Fro— tne © laal value conditions for all k£ > 4 we obtain finally

=2k (=1)F  (k—2)2k2
- 1
2k 36 + 9 + 6 (16)
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From the formulas (14), (15), (16) for all k¥ > 4 we find

C2%) = 2,.0(4) + yeC(8) + 44z
= (B +30) o
+(5 -5 o)

Since C'(4) = 14, C(8) = 46 so we find total n. »ber of comparisons for the

following formula:

k28 2 1w i
= 2

o2k =
Therefore, the average number of compa isc s 1s calculated by the formula:

k k
c@t) 1L 1 10(-1)
2k 6 9 9 2k

Since k = logy n we see that the aver._= number of comparisons for BQS algo-
rithm is very close to the m .o - 1“0% )

By comparing BQS av. age co 1parisons number with the average case of
correct BS and ITS (Ta"le 2}, we can see that BQS consumes fewer comparisons

operations compared w. * BS. and slightly greater than ITS.

6. Implement-=tion o1 i{TS and BQS algorithms

The compu.  ased in the experimental work was configured to optimize
the sourcr coc: by default. However, most compilers optimize the division
operation 1.~ a .nultiplication operation since the CPU consumes less time
comp red to “he division operation. Furthermore, compilers optimize division
or mul. ~lic2’ ,on into shift operations when possible because the shift operation
i much ster than the division and multiplication operations.

The J++ line in the ternary search ”Third = (right-left)/3;” and the line
"Caa. = (right-left)/4;” in the BQS were compiled into assembly language by
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the compiler, as in Table 3 . In the ternary search, the compiler o; “imj ed the
division over 3 by converting it into multiplication. Corresponding’* the som-
piler optimized the division over 4 into a shift operation in the 8,3 Moreover,
the assembly code in the BQS was smaller than that in the ™ 3. In another
word, division over 4 is faster than division over 3. In t’ (n, thi= increases the
performance of the BQS compared to the ITS. In brief, t1 » BQS howed better
performance compared to the ITS when the cost of a cor arison operation is
less than the cost of division operation.

In this context, BS uses division over 2, so that cou., iler optimize this oper-
ation into a shift operation likewise BQS. While .S } s less average compar-
isons number compared to BS , so that BQS runs “ster than BS for any type
of data key.

7. Experimental Results and C' mpa. ‘'sons

The experimental environme: = ~¢ thi. study is the same software and hard-
ware configuration those were used in |<?]. The experimental test has been done
on empirical data that gene ateu ~andomly using a C++ library [8]. Two types
of generated data are used, . nume ic array of 8-byte number (double) and text
array of 100 characters’ key lengtn. The cost of a comparison process obviously
effects on the performa.. » of ¢che algorithms under check. This cost is influ-
enced by data tyr : =nd hardware considerations. For instance, the computer
needs more tim~ *o compare two strings of 100 bytes than two numbers of 8
bytes. Furthe wor ., the cost of any comparison increased when time to access
the main r emory 1. reased. The other case that increases the cost of the com-
parison p. "~¢ s is Jhe external search. External search is the search when the
array .ze is oreater than the main physical memory or available memory. Cer-
tainly access o secondary storage devices increases the time of the comparison
[ ocess.

In pre vious sections, we calculated the average comparisons number for cor-

~~t and weak BS, ITS and BQS algorithms precisely. To validate these results
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Table 3: ITS and BQS implementation differences in assembly languag.

Ternary Search assembly code of C++ line: - BQ Searcn ssemoly code of C++ line: -
Third= (right-left)/3; Mmar=(right-left) /4;
BaseAdd= starting address of BiseAdd = starting address of
Ternary_Search function BO search function
BaseAdd+26: mov 0xc(%ebp),%eax Bas A d+26: mov 0xc(%ebp ), %eax
BaseAdd+29: mov 0x10(%ebp),%edx BageA (d+29: mov 0x10(%ebp),%edx
BaseAdd+32: mov Pedx, % ecx Ba eAdd+32: sub Teax ,%edx

BaseAdd+34: sub Yeax,%ecx D .seAdd+34: mov Yedx ,%eax
BaseAdd+36: mov $0x55555556 %~4-  BaseAdd+36: lea 0x3(%eax),%edx

BaseAdd+41: mov Toecx ,%eax BaseAdd+39: test %eax ,%eax
BaseAdd+43: imul Yedx BaseAdd+41: cmovs %edx,%eax
BaseAdd+45: mov Y%ecx , % - BaseAdd+44: sar $0x2,%eax
BaseAdd+47: sar $0x1f.%ea - BaseAdd+47: mov %eax ,%ebx

BaseAdd+50: sub Peax, % 'x
BaseAdd+52: mov 7 ' %eax
BaseAdd+54: mov %eax,% ebx

experimentally, w .. ~asured the execution time of running each algorithm N
times on N elerr  “s. In other words, we search for the all items of the tested list
randomly the we record elapsed time. For figures (5,6 and 7), execution-time
recorded ir Y-axis, . iter each probe N increases by N = N x 1.5 until reaches
the final «. "o sizr (X-axis).

Ev serimenta: results show that the difference between weak and correct
imple. "entatic o is not detected in our test environment when the 8-byte key
ved. Fioure 5 explains the experimental execution time for the weak and the
¢ rrect i iplementation of binary search for 100-byte key length. The figure

1

'~ that there is a small gain in execution time for small size array and the
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gain increases when the array size increases.

104
X
6 T T —_
Correct Binary Search
Weak Binary Search
5 -
4 .
g 3| i
T
£
E
2 -
1 - -
—
0 o —_ 1
104 10° 10 ® 107
Array ‘ize
Figure 5: Binary search - - and correct implementation execution time.

Our presented algorithms ["TS and BQS) have less number of comparisons
compared with the bi .ary sear-h. However, the drawback is they have more
primitive operation: comp. < « to the binary search. One of the advantages is
that the cost of t'.e ca. lation of these variables does not depend on the data
type or interne ;e. "ernal memory access operations. The other advantage is a
limited numbe. ~ variables involved in this computation, so the cache memory
or CPU rr ziste s could hold these variables to reduce the access time to these

variables, a. to ’ae frequent access to these variables.
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BQ Search
Binary Search
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Figur 6: 7 xecution time of BS, ITS and BQS for 8-byte key (double).
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BQ Search

Binary Search

5000 |- Ternary Search
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3000 |- -
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2000 |- -

1000 |- -

0 L Il I 1

Array Sizo 10

Figure 7: Execution time ot » ~ 11, «ad BQS for 100-byte key (string).

Figure 6 shows the exps.1me.. al execution time of BS, ITS and BQS with
a key of 8-byte double data “vpe. We see the ITS execution time is less than
the time consumed by the 3S for moderate size array. The gain in the time
increased when the <ize ¢ the searched array increased. However, BQS offered
better performanc : .. ~n ITS and correct BS in all array sizes.

Figure 7 sho . *he execution time for the same three algorithms runned with
a key of 100-L_+e ¢ .ring data type. We see the I'TS search execution time is less

than the ti ae consu.ied by the BS and BQS.

8. Cr aclusion

We _ -~ _qaed the binary search algorithm in terms of comparisons. For BS
e ident. ied two implementations: weak and correct implementations. Our
stu - - .plained that the correct implementation is faster than the weak imple-

m .ntation of BS.
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We presented a new efficient improved ternary search algorithn (IT ). ITS
has been analyzed and compared theoretically and experimentally -ith cc rect
binary search. Comparison results showed that the improved a’gor. thm is faster
than the correct binary search. Our improvement on ternary » ~ :h is obtained
by reducing the number of comparisons per iteration.

Additionally, we proposed a new Binary-Quaternary s arch a gorithm. The
proposed algorithm is used to search ordered lists. the ™S is a divide-and-
conquer algorithm and uses a new dividing technioue, wnere "¢ divides the given
array length by 2 or 4 randomly. Theoretical analysis .. s shown that BQS has
lower average comparison numbers than BS ana . ‘#eht’y higher than ITS. On
other hand, our experimental results showed tha. “he BQS is faster than the
ITS when the cost of a comparison operation . lower than the cost of a division
operation.
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We propose improved ternary search (ITS) algorithm
We also propose a new Binary-Quaternary Search (BQS) algorithm
We discuss weak and correct implementations of the binary search (BS) algorithm

We calculate average number of comparisons for weak and correct implementatio..” ¢ the BS algorithm
precisely

We calculate average number of comparisons for the ITS and BQS algorithm' pre ise.



