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Abstract

In this paper, we consider the searching problem over ordered sequences. It

is well known that Binary Search (BS) algorithm solves this problem with very

efficient complexity, namely with the complexity θ(log2 n). The developments of

the BS algorithm, such as Ternary Search (TS) algorithm do not improve the ef-

ficiency. The rapid increase in the amount of data has made the search problem

more important than in the past. And this made it important to reduce aver-

age number of comparisons in cases where the asymptotic improvement is not

achieved. In this paper, we identify and analyze an implementation issue of BS.

Depending on the location of the conditional operators, we classify two different

implementations for BS which are widely used in the literature. We call these

two implementations weak and correct implementations. We calculate precise

number of comparisons in average case for both implementations. Moreover, we

transform the TS algorithm into an improved ternary search (ITS) algorithm.

We also propose a new Binary-Quaternary Search (BQS) algorithm by using

a novel dividing strategy. We prove that an average number of comparisons

for both presented algorithms ITS and BQS is less than for the case of correct

implementation of the BS algorithm. We also provide the experimental results.
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1. Introduction

Searching and sorting problems are classical problems of computer science.

Due to excessive increase in the amount of data in recent years, these problems

keep attracting the attention of researchers. In our previous work [29], we have

made a short summary of the related works about sorting algorithms published

recently [9, 13, 14, 17, 18, 32, 33, 39] . The study [16] conducted after our

publication proposes two novel sorting algorithms, called as Brownian Motus

insertion sort and Clustered Binary Insertion Sort. Both algorithms are based

on the concept of classical Insertion Sort . Marsza lek [26] describes how to use

the parallelization of the sorting processes for the modified method of sorting

by merging for large datasets.

Besides of these studies Woźniak et al [40] modify Merge Sort algorithm for

large scale data sets. Marsza lek [25] proposes a new recursive version of fast

sort algorithm for large data sets. Woźniak et al [41] examine quick sort algo-

rithm in two versions for large data sets. Dymora et al [11] calculate the rate of

existence of long-term correlations in processing dynamics of the quicksort algo-

rithm basing on Hurst coefficient. Napoli et al [31] propose the idea of applying

the simplified firefly algorithm to search for key-areas in 2D images. Woźniak

and Marsza lek [42] use classic firefly algorithm to search for special areas in

test images. Das and Khilar [10] propose a Randomized Searching Algorithm

and compare its performance with the Binary Search and Linear Search Algo-

rithms. They show that the performance of the algorithm lies between Binary

Search and Linear Search. Ambainis et al [1] study the classic binary search

problem, with a delay between query and answer. They give upper and lower

bounds of the matching depending on the number of queries for the constant

delays. Finocchi and Italiano [12] investigate the design and analysis of the

sorting and searching algorithms resilient to memory faults. Chadha et al [6]



propose a modification to the binary search algorithm in which it checks the

presence of the input element at each iteration. Rahim et al [34] provide the

experimental comparison the linear, binary and interpolation search algorithms

by testing to search data with different length with pseudo process approach.

Kumar [22] proposes a new quadratic search algorithm based on binary search

algorithm and he experimentally shows that this algorithm better than binary

search algorithm.

Carmo et al [5] consider the problem of searching for a given element in a

partially ordered set. Bonasera et al [4] propose an adaptive search algorithm

over ordered sets. Proposed by Mohammed et al [30] hybrid search algorithm

on ordered datasets is similar to the adaptive search algorithm. Bender et al

[2] develop a library sort algorithm, which is developed based on insertion sort

and binary search (BS) algorithm.

It is well known that BS algorithm is one of the widely used algorithms

in computer applications due to obtaining a good performance for different

data types and key distributions. It works on the principle of the divide-and-

conquer approach [37]. This algorithm is used in solving several problems. For

instance, Gao et al [15] propose a scheduling algorithm for ridesharing using

binary search strategy. Hatamlou [19]presents a binary search algorithm for

data clustering. BS is a simple and understandable algorithm, although it may

contain some tricks in implementation. Donald Knuth emphasized: Although

the basic idea of binary search is comparatively straightforward, the details can

be surprisingly tricky [21]. Most of the implementation issues in the binary

search were described in the literature. Pattis [35] notes five implementation

errors. The study [36] involves a program to compute the semi-sum of two

integers. In turn, this approach solves the problem of overflow that happens

in binary search for very large arrays. Bentley discusses some errors in the

implementation of the binary search in the section titled the challenge of binary

search [3].

In this paper, we discuss two different implementations of the BS algorithm,

which we call as weak and correct implementations. We calculate an average
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number of comparisons for both implementations precisely. We discuss the TS

algorithm which is known as slower than BS, and then we present an improved

ternary search (ITS) algorithm which is faster than the correct implementation

of the BS algorithm. We prove this fact by calculating an average number of

comparisons for ITS algorithm precisely. Moreover, we offer a new searching

algorithm called as Binary-Quaternary Search (BQS) algorithm. We calculate

an average number of comparisons for the BQS algorithm and we show that this

algorithm is better than the correct implementation of BS algorithm. Theoret-

ically, BQS slightly shows more average comparisons number compared with

presented ITS algorithm.

The rest of the paper is organized as follows: In section 2 we discuss the weak

and correct implementation of the BS algorithm. In this section we also calculate

average number of the comparisons for weak and correct implementation of the

BS algorithm. In section 3 we discuss the TS algorithm. In Section 4 we

propose ITS algorithm and we calculate average number of comparisons for this

algorithm. In section 5 we develop a new searching algorithm BQS and we find

precisely average number of comparisons for BQS algorithm. In section 6 we

compare the implementations of the ITS and BQS algorithms. In section 7 we

demonstrate experimental results and comparison of these searching algorithms.

Finally, we summarize our results in section 8.

2. Binary Search and Its Two Different Implementations

In this section, we discuss the weak and correct implementation of the BS

algorithm. We also calculate average number of comparisons for both imple-

mentations. We take the correct implementation from the book [37]. The weak

implementation we meet in many works, for example, see [7, 24, 28]. Table 1

contains the correct and the weak implementation that is used in this study.

Difference between these two implementations occurs when the first “if ” state-

ment is made to search for the desired key (contains equality test only), and

the second “if ” statement is used to decide whether half (right or left) will be
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selected for the next iteration. In result of this difference, we have a different

number of comparisons in each iteration. In regard, while the binary search

used as a search function in the Binary Search Tree (BST) data structure, we

noticed the same issue in BST widely is observed. For example, see the BST

implementation in [27, 38]. Meanwhile, the author of [20] presented the correct

implementation of BST for recursive version and the weak implementation of

the iterative version of BST. This drawback decreases the search speed in the

binary search tree as well.

2.1. Binary Search Weak Implementation Analysis (Average case)

Figure 1 shows the comparisons tree of the weak implementation of binary

search (Table 1). The main reason that makes the weak implementation slower

than the correct implementation is the cost of selecting the next half that con-

tains the required key, whereas the algorithm consumes three comparisons to

select both halves (right or left half). In other words, in Figure 1, the branching

to both children nodes consumes three comparisons.

 

Figure 1: Comparison tree of binary search for the weak implementation.

Let n = 2k − 1. Hence k = log2(n + 1). Let C[j] be equal to a number of

comparisons made for finding a jth element of the array. The average number
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Table 1: Binary search correct and weak implementation comparison

Correct binary search implementation Weak binary search implementation

template <typename T> i n l i n e i n t

correctBS (T A[ ] , i n t l e f t ,

i n t r i ght , T const & key )

{
i n t mid ;

whi l e ( l e f t <= r i g h t )

{
mid = ( l e f t + r i g h t ) / 2 ;

i f ( key < A[ mid ] )

r i g h t = mid − 1;

e l s e i f ( key > A[ mid ] )

l e f t = mid + 1 ;

e l s e

re turn mid ;

} // end whi l e

re turn −1; // not found

}

template <typename T> i n l i n e i n t

WeakBS (T A[ ] , i n t l e f t , i n t

r i ght , T const & key )

{
i n t mid ;

whi l e ( l e f t <= r i g h t )

{
mid = ( l e f t + r i g h t ) / 2 ;

i f ( key == A[ mid ] )

re turn mid ;

e l s e i f ( key > A[ mid ] )

l e f t = mid + 1 ;

e l s e

r i g h t = mid − 1;

}
re turn −1; // not found

}

of comparisons is f(n) =
n∑

j=1

C[j]
n . By the algorithm for one value (namely, for

median) of j, we should make 2 comparisons (1 comparison for the base case

“while left ≤ right”, 1 comparison for equality of key with median). For 2 values

of j (for a median of left part and right part), we have to do 5 comparisons (1

comparison for the base case, 1 comparisons for equality key, 1 comparison

for passing to left or right and plus previous comparisons.) For 4 values of j,

similarly, we have to add 3 comparisons. Therefore, exactly for 2i−1 values of j

we have to do 3i− 1 comparisons. Hence we have the following formula for the
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average number of comparisons:

f(n) =
k∑

i=1

(3i− 1)2i−1

n
(1)

Let

Sk =

k∑

i=1

i2i−1 (2)

By multiplying by 2

2Sk = 2
k∑

i=1

i2i−1 =
k∑

i=1

i2i (3)

By subtracting (2) from (3) we obtain

Sk = −1−
k−1∑

i=1

2i + k2k = −2k + 1 + k2k (4)

Hence,

Sk = (k − 1)2k + 1 (5)

From the formula (5) for the average number of comparisons we have

f(n) =
3

n

k∑

i=1

i2i−1− 1

n

k∑

i=1

2i−1 =
3

n
Sk−

1

n
(2k−1) =

3

n
[k2k−2k+1]− 1

n
2k+

1

n
=

3(n+ 1)

n
log2(n+1)−4

(6)

Therefore,

f(n) = 3 log2(n+ 1) +
3 log2(n+ 1)

n
− 4 (7)

2.2. Binary Search Correct Implementation Analysis (Average Case)

In this subsection, we calculate the average number of comparisons for cor-

rect binary search algorithm precisely. As in subsection 2.1, we suppose that

n = 2k − 1. We define also the functions C[j] and f(n) such as in subsection

2.1.

According to the algorithm for one value of j (for median) C[j] is equal to

3. For one value of j (for a median of the left half) C[j] is equal to 5. For one

value of j(for a median of right half) C[j]is equal to 6. The values of C[j] we
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Figure 4.8 Correct binary search comparisons tree 

Figure 2: Comparison tree of binary search for the correct implementation.

show by the binary tree in Figure 2 for the value n = 31. We will call this tree

by binary comparison tree (BCT).

According to correct BS algorithm initially, each iteration consumes one

comparison by “while” statement. Then it may execute one or two comparisons

in both “if ” statements. If the first one is true, the algorithm goes to the left

child node in the tree (Figure 2) and consumes two comparisons for the current

iteration in total. However, if the second condition gets true, the algorithm

goes to the right child node consuming three comparisons during the current

iteration. Otherwise, the current node is equal to the required key, while this

case also adds three comparisons to the total number of comparisons.

Briefly, as explained in Figure 2, walking to the left adds only two com-

parisons while walking to the right adds three comparisons. Moreover, we add

three comparisons if we find the desired key in the current node. The number

at each node represents the total number of comparisons when the algorithm

terminated at this node.

We can observe that the values at i level change from 2i+ 3 to 3i+ 3 in the

BCT.

Theorem 1. For any 0 ≤ m ≤ i, number of values 2i+ 3 +m at i level in the
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BCT is equal to


 i

m




.

Proof. We will prove by induction. For i = 1 it is true. Assume that it

is true for all k < i. Let us calculate the number of 2i + 3 + m at i level for

0 ≤ m ≤ i. For m = 0 we get the value 2i+3 by adding 2 to the value 2(i−1)+3

at i−1 level. By other words, we have only one value 2i+3 at i level. Similarly,

for the m = i we get the value 3i+ 3 from the value 3(i− 1) + 3 at (i− 1) by

adding 3. If 0 < m < i we obtain the value 2i+ 3 +m at i level from the value

2(i− 1) + 3 +m at i− 1 level by adding 2 or from the value 2(i− 1) + 3 +m− 1

at i− 1 level by adding 3.

By induction, the number of the values 2(i−1)+3+m at i−1 level is equal

to


 i− 1

m


 and the number of the values 2(i− 1) + 3 +m− 1 at i− 1 level is

equal to


 i− 1

m− 1


. Therefore, by the property of binomial coefficients, the

number of the values 2i+ 3 +m at i level is equal to

 i− 1

m− 1


+


 i− 1

m


 =


 i

m


 .

Now we can calculate an average number of comparisons for correct binary

search algorithm. We have for the average number of comparisons f(n) the

following formula comparisons

f(n) =
n∑

j=1

C[j]

n
=

1

n

k−1∑

i=0

i∑

m=0


 i

m


 (2i+ 3 +m)

Hence,

f(n) =
1

n

k−1∑

i=0


(2i+ 3)

i∑

m=0


 i

m


+

i∑

m=0

m


 i

m






Proposition 1.
i∑

m=0

m


 i

m


 = i2i−1
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Proof. We have the formula


 i

m


 = i!

m!(i−m)!

Therefore, for all 0 < m < i,

 i

m


m =

i!m

m!(i−m)!
=

i!

(m− 1)!(i−m)!
=

i(i− 1)!

(m− 1)!((i− 1)− (m− 1))!
= i


 i− 1

m− 1




For m = 0 and m = i we have 0


 i

0


 = 0 and i


 i

i


 = i

i∑

m=0

m


 i

m


 = 0


 i

0


+

i−1∑

m=1

m


 i

m


+i


 i

i


 = i

i−1∑

m=1


 i− 1

m− 1


+i = i

i−1∑

m=0


 i− 1

m


 = i2i−1.

Thus, we proved Proposition 1. Now we have

f(n) =
1

n

k−1∑

i=0

[
(2i+ 3)2i + i2i−1

]
=

1

n

k−1∑

i=0

[
5i2i−1 + 3.2i

]
=

5

n

k−1∑

i=0

i2i−1+
3

n

k−1∑

i=0

2i

By the formula (5) we have

Sk−1 = (k − 2)2k−1 + 1

Therefore we obtain

f(n) =
5

n

[
(k − 2)2k−1 + 1

]
+

3

n
(2k − 1)

Since 2k = n+ 1, k = log2(n+ 1) and 2k−1 = n+1
2 , so

f(n) =
5

n

[
(log2(n+ 1)− 2)

n+ 1

2
+ 1

]
+

3

n
.n

Finally, we have the formula

f(n) =
5

2
log2(n+ 1) +

5 log2(n+ 1)

2n
− 2 (8)

By comparing equation (7) and (8), we find that the average comparison num-

ber of weak implementation is greater than the number of correct binary search.

Approximately, the average number of comparisons of weak implementation is

equal to the worst-case comparison number of correct binary search. Conse-

quently, binary search performance declined within this weak implementation.
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Experimentally, the performance of weak implementation becomes slower

when the cost of a single comparison operation increased. It happens for instance

when the algorithm searches a list with long string keys. Let us discuss why

the difference between correct and weak implementation occurs. If we look at

the binary search again, we will find the issue occurs when the position of “if ”

statements have been altered. While nested “if ” statements are widely used in

most computer application, we will discuss the case of using the nested ”if ”

statements and the influence of their occurrence probability on the performance

of the whole program.

Let us examine the following two pseudo-code examples. Assume the loop

repeats a nested “if ” block for n times. We will examine how the position of

“if ” statement impacts the average number of comparisons. However, to get the

best performance, the “if ” statement with the highest probability of occurrence

(the specified condition is true) must come first. Then it should be followed by

the second highest probability “if ” statement and so forth.
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Example 1

1: for i=1 to n do

2: if condition1 then . 1 comparison

3: statement 1 . Execution probability = 80%

4: else if condition2 then . 2 comparisons till here

5: statement 2 . Execution probability = 15%

6: else . 2 comparisons till here

7: statement 3 . Execution probability = 5%

8: end if

9: end for

Average Number of comparisons= (1 ∗ 0.8 + 2 ∗ 0.15 + 2 ∗ 0.05)n = 1.2n.

Example 2

1: for i=1 to n do

2: if condition3 then . 1 comparison till here

3: statement 3 . Execution probability = 5%

4: else if condition2 then . 2 comparisons till here

5: statement 2 . Execution probability = 15%

6: else . 2 comparisons till here

7: statement 1 . Execution probability = 80%

8: end if

9: end for

Average Number of comparisons= (1 ∗ 0.05 + 2 ∗ 0.15 + 2 ∗ 0.8)n = 1.95n.

Example 1 represents the best performance which consumes 1.2n comparisons

in average. Correspondingly, example 2 represents the weak performance which

consumes 1.95n comparisons in average. The weak performance occurs as a

result of the bad distribution of “if ” statements.
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3. The Ternary Search Algorithm

The ternary search is presented as an alternative to the binary search. This

algorithm provides less number of iterations compared to binary search however

it has a higher number of comparisons per a single iteration. In this section we

explain this circumstance in detailed.

In literature, there are several studies presented for ternary search such as

the analysis study in [23], the following pseudo-code (Algorithm 1) which is

presented in [38] as a ternary search. In regard, there is a similar approach

presented in [27].
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Algorithm 1 The Ternary Search Algorithm

1: procedure TS( array, left, right, X)

2: array is the array that required to search

3: left is the index of left most element in array

4: right is the index of right most element in array

5: X is the element that we search for

6: while left < right do

7: Lci← b 2∗left+right
3 c

8: Rci← b left+2∗right
3 c

9: if X = array[Lci] then

10: return Lci

11: end if

12: if X = array[Rci] then

13: return Rci

14: end if

15: if X ≤ array[Lci] then

16: right← Lci

17: else if X ≥ array[Rci] then

18: left← Rci

19: else

20: left← Lci+ 1

21: right← Rci− 1

22: end if

23: end while

24: return −1 . not found

25: end procedure

Total comparisons are 5 per iteration. Therefore, the maximum number of

comparisons consumed by the ternary search is 5 log3 n, while it is 3 log2 n in the

binary search. Consequently, the comparison number in the ternary search is

always higher than the comparison number in binary search algorithm because

14



5 log3 n > 3 log2 n.

4. Proposed Improved Ternary Search (ITS) Algorithm

The following pseudo-code (Algorithm 2) is the improved ternary search.

This algorithm divides the length of the given array by three. Then it cal-

culates the left cut index (Lci) and the right cut index(Rci). This method

approximately divides the array into three equal parts. If the required key X is

less than the key which is located at the Lci, the left third of the array will be

contained X. Correspondingly, If X is greater than the key located at Rci, the

right third of the array will be held X. Otherwise, the middle third holds the

required key X. These operations repeated iteratively or recursively until the

length of the scanned part of the array becomes less than or equal to 3. Then

the algorithm uses a linear search to find X among remained keys to decide

whether the search will finish successfully or unsuccessfully.

4.1. Improved Ternary Search Analysis(Average Case)

Improved ternary search decreases the average number of comparisons. This

occurs because the algorithm continuously divides the array without searching

for the required key until the length becomes less than or equal to 3.

Assume j is the position of the required element, C[j] is the number of

comparisons required to retrieve the element at j position. In each division

process (iteration) there is only two possible states, if j at the left third, the

algorithm consumes 2 comparisons to go to left part (1 comparison in “While”

or base case, plus 1 comparison in the first “if” statement), so we have to add

2 to C[j] in this case. If j residents at right or middle third, the algorithm

requires 3 comparisons to go to the corresponding part (previous comparisons

plus 1 for the second “if” statement), so we have to add 3 to C[j] in this case.

The comparisons tree of the improved ternary search algorithm is shown in

Figure 3. Walking to the left child node consumes two comparisons. Whereas

walking to the middle or right child consumes three comparisons. However, the

15



Algorithm 2 Improved Ternary Search

1: procedure ITS( array, left, right, X)

2: array is the array that required to search

3: left is the index of left most element in array

4: right is the index of right most element in array

5: X is the element that we search for

6: while right− left > 2 do

7: third← b right−left
3 c

8: Lci← left+ third

9: Rci← right− third
10: if X ≤ array[Lci] then

11: right← Lci

12: else if X ≥ array[Rci] then

13: left← Rci

14: else

15: left← Lci+ 1

16: right← Rci− 1

17: end if

18: end while . start linear search for remained items

19: if X = array[left] then

20: return left

21: else if X = array[right] then

22: return right

23: else if X = array[left+ 1] then

24: return left+ 1

25: else

26: return −1 . not found

27: end if

28: end procedure

16



improved ternary search uses a linear search (in last three “if ” statements) to

find X, if n or the remained number of elements is less than or equal to 3.

 

C[4]=5 C[5]=7 C[6] =6 

1,2,3,4,5,6,7,8,9 

1,2,3 
4,5,6 4,5,6 

C[1]=4 C[2]=6 C[3]=5 C[7]=5 C[8] =7 C[9] =6 

+2 +3 

+3 

+2 +4 +3 +2 +4 +3 +2 +3 +4 

Figure 3: ITS Comparisons Tree

After the division process ends, the algorithm consumes 1 comparison to

end the loop (“while” statement). Considering this comparison, linear search

adds 2, 4 or 3 comparisons for the total number of comparisons that consumed

in the division process before the algorithm terminated. Let n = 3k. The

minimum number of comparisons in the level i (2 ≤ i ≤ k) of the comparison

tree for the ITS algorithm is equal to 2i. Therefore, in the best case the number

of comparisons is equal to 2 log3 n . The maximum number of comparisons at

level i(2 ≤ i ≤ k) is equal to 3i + 1. Hence, in the worst case the number of

comparisons is equal to 3 log3 n+ 1. To calculate the average case comparisons

number, we have to calculate the total number of comparisons consumed by

improved ternary search. From the comparison tree we can observe that we

have the following recurrence for the ITS algorithm:

C[3k] = 3C[3k−1] + 8.3k−1, k ≥ 2

C[3] = 9.
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From here ,

C[3k] = 3C[3k−1] + 8.3k−1 = 3(3C[3k−2] + 8.3k−2) + 8.3k−1

= 32C[3k−2] + 2.8.3k−1 = 32(3C[3k−3] + 8.3k−3) + 2.8.3k−1

= 33C[3k−3] + 3.8.3k−1 = ...

= 3k−1C[3] + 8(k − 1)3k−1

= (8k + 1)3k−1

Since k = log3 n we obtain C[n] = (8 log3 n+1)n
3 . Therefore, average number of

comparisons f(n) is equal to 8
3 log3 n + 1

3 . Since 315 > 216, so 15 log2 3 > 16.

From here we have the inequality 5
2 >

8
3 log2 3 .

Average number of comparisons for correct BS and ITS are f(n) = 5
2 log2(n +

1) + 5 log2(n+1)
2n − 2 and g(n) = 8

3 log3 n + 1
3 correspondingly. Let us compare

these functions.

f(n) >
5

2
log2(n+ 1)− 2 >

5

2
log2 n− 2

g(n) <
8

3
log3 n+ 1 =

8 log2 n

3 log2 3
+ 1

Thus, improved ternary search algorithm makes comparisons less than the cor-

rect implementation of binary search algorithm in average case for sufficiently

large n.

Table 2 briefly compares the complexity of binary search and ternary search

in term of comparisons number for the best, worst and average cases.

5. The Proposed Binary-Quaternary Search Algorithm

The proposed Binary-Quaternary search (BQS) is similar to ITS regarding

the implementation. The main difference that BQS divides the length of the

given array over four instead of three in ITS. Consequently, the behavior of the

algorithm changed. Figure 4 shows the behavior of dividing technique in BQS.

When the required key X residents in the left quarter (X ≤ array[Lci]),

BQS sets (right=Lci) which excludes 75% of the length of the array for the next

iteration. Likewise, when X residents in the right quarter, BQS sets (left=Rci).
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Table 2: Complexity of Binary Search and Improved Ternary Search

Comparisons No. Correct Binary Search Improved Ternary Search

Best Case 3 2 log3 n = 1.82 ln(n)

Worst Case 3 log2(n+ 1) + 3 = 4.32 ln(n+ 1) + 3 3 log3 n+ 1 = 2.73 ln(n) + 1

Average Case
5
2 log2(n+ 1) + 5 log2(n+1)

2n − 2 =

3.6 ln(n+ 1) + 7.21 ln(n+1)
2n − 2

8
3 log3 n+ 1

3 = 2.42 ln(n) + 0.3

In the case of X residents in the middle half (between Lci and Rci), BQS works

like ordinary binary search by dividing the length over 2 . However, the main

benefit of BQS is in each iteration, there is a chance of 50% to divide the given

length over four consuming the same comparisons number in binary search. This

approach is reducing the iterations number remarkably. In turn, it increases the

performance of BQS.

Figure 4.11 BQ search dividing technique Figure 4: The Dividing technique of BQS

Algorithm 3 illustrates the pseudo-code of BQS. Initially, BQS calculates Lci

which it indicates the end of the left quarter of the array and Rci denotes the

beginning of the right quarter of the array.
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Algorithm 3 Binary-Quaternary Search

1: procedure BQS( array, left, right, X)

2: array is the array that required to search

3: left is the index of left most element in array

4: right is the index of right most element in array

5: X is the element that we search for

6: while right− left > 3 do

7: Quarter ← b right−left
4 c

8: Lci← left+Quarter

9: Rci← right−Quarter
10: if X ≤ array[Lci] then

11: right← Lci

12: else if X ≥ array[Rci] then

13: left← Rci

14: else

15: left← Lci+ 1

16: right← Rci− 1

17: end if

18: end while

19: if X = array[left] then . start linear search for remained items

20: return left

21: else if X = array[right] then

22: return right

23: else if X = array[left+ 1] then

24: return left+ 1

25: else if X = array[right− 1] then

26: return right− 1

27: else

28: return −1 . not found

29: end if

30: end procedure
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5.1. The Binary-Quaternary Search Algorithm Analysis (Average Case)

Let n = 2k. Total number of comparisons for n = 2, 4, 8, 16, 32 is 5, 14, 46, 118, 298

respectively. Let C(n) be total number of comparisons. We observe that

C(24) = 2C(22) + C(23) + 22.11 = 2.14 + 46 + 44 = 118

C(25) = 2C(23) + C(24) + 23.11 = 2.46 + 118 + 88 = 298

Now we will prove by induction that for all k ≥ 4 we have the following recur-

rence.

C(2k) = 2C(2k−2) + C(2k−1) + 2k−2.11 (9)

We have seen that the formula (9) is true for k = 4. Let the formula be true for

all 4 ≤ m < k.

By BQS algorithm we have the following division for n = 2k :

It means that we have the formula

C(2k) = 2C(2k−2) + C(2k−1) + f(k)

By induction we have

C(2k−1) = 2C(2k−3) + C(2k−2) + 2k−3.11

C(2k−2) = 2C(2k−4) + C(2k−3) + 2k−4.11

Then

f(k) = 2.2k−4.11 + 2k−3.11 = 2k−2.11

The last formula proves (9).
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Now we will express C(2k) by C(4) and C(8). Let us define the following

sequences:

xk+2 = xk+1 + 2xk, k ≥ 4

x4 = 2,

x5 = 2.





(10)

yk+2 = yk+1 + 2yk, k ≥ 4

y4 = 1,

y5 = 3.





(11)

zk+2 = zk+1 + 2zk + 2k−2, k ≥ 4

z4 = 1,

z5 = 3.





(12)

Theorem 2. For all k ≥ 2 the formula

C(2k+2) = xk+2C(4) + yk+2C(8) + 44zk+2 (13)

holds.

Proof.

Since

C(24) = 2C(4) + C(8) + 44

So the formula is true for k = 2. Let the formula (13) be true for all 2 ≤ m < k.

Then we have

C(2k+1) = xk+1C(4) + yk+1C(8) + 44zk+1

C(2k) = xkC(4) + ykC(8) + 44zk

By the formula (9)

C(2k+2) = 2C(2k) + C(2k+1) + 2k.11

= 2xkC(4) + 2ykC(8) + 2.44zk + xk+1C(4) + yk+1C(8) + 44zk+1 + 2k.11

= (2xk + xk+1)C(4) + (2yk + yk+1)C(8) + 44(2zk + zk+1 + 2k−2)

= xk+2C(4) + yk+2C(8) + 44zk+2
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It means that the formula (13) is true.

Now we will solve recurrences (10),(11) and (12).Characteristic equation for

all tree recurrences is the following quadratic equation.

r2 − r − 2 = 0

From here we find r1 = 2 and r2 = −1. Therefore we have

xk = c12k + c2(−1)k

and

yk = d12k + d2(−1)k

From the initial value conditions for all k ≥ 4 we find the formulas

xk =
2k

12
+

2

3
(−1)k (14)

and

yk =
2k

12
− 1

3
(−1)k (15)

Now we will seek a particular solution of the inhomogeneous equation (12) in

the form

zk = a(k − 2)2k−2

Then

zk+1 = a(k − 1)2k−1

zk+2 = ak2k

If we substitute these values in the equation we find a = 1
6 . Then we find zk in

the form

zk = e12k + e2(−1)k +
(k − 2)2k−2

6

From the initial value conditions for all k ≥ 4 we obtain finally

zk =
−2k

36
+

(−1)k

9
+

(k − 2)2k−2

6
(16)
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From the formulas (14), (15), (16) for all k ≥ 4 we find

C(2k) = xkC(4) + ykC(8) + 44zk

=
(

2k

12 + 2
3 (−1)k

)
C(4)

+
(

2k

12 −
(−1)k

3

)
C(8)

+44




−2k

36 +
(−1)k

9 + (k−2)2k−2

6




Since C(4) = 14, C(8) = 46 so we find total number of comparisons for the

following formula:

C(2k) =
11k2k

6
+

2k

9
− 10

9
(−1)k

Therefore, the average number of comparisons is calculated by the formula:

C(2k)

2k
=

11k

6
+

1

9
− 10

9

(−1)k

2k

Since k = log2 n we see that the average number of comparisons for BQS algo-

rithm is very close to the number 11 log2 n
6 .

By comparing BQS average comparisons number with the average case of

correct BS and ITS (Table 2), we can see that BQS consumes fewer comparisons

operations compared with BS, and slightly greater than ITS.

6. Implementation of ITS and BQS algorithms

The compiler used in the experimental work was configured to optimize

the source code by default. However, most compilers optimize the division

operation into a multiplication operation since the CPU consumes less time

compared to the division operation. Furthermore, compilers optimize division

or multiplication into shift operations when possible because the shift operation

is much faster than the division and multiplication operations.

The C++ line in the ternary search ”Third = (right-left)/3;” and the line

”Quar = (right-left)/4;” in the BQS were compiled into assembly language by
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the compiler, as in Table 3 . In the ternary search, the compiler optimized the

division over 3 by converting it into multiplication. Correspondingly, the com-

piler optimized the division over 4 into a shift operation in the BQS. Moreover,

the assembly code in the BQS was smaller than that in the ITS. In another

word, division over 4 is faster than division over 3. In turn, this increases the

performance of the BQS compared to the ITS. In brief, the BQS showed better

performance compared to the ITS when the cost of a comparison operation is

less than the cost of division operation.

In this context, BS uses division over 2, so that compiler optimize this oper-

ation into a shift operation likewise BQS. While BQS has less average compar-

isons number compared to BS , so that BQS runs faster than BS for any type

of data key.

7. Experimental Results and Comparisons

The experimental environment of this study is the same software and hard-

ware configuration those were used in [30]. The experimental test has been done

on empirical data that generated randomly using a C++ library [8]. Two types

of generated data are used, a numeric array of 8-byte number (double) and text

array of 100 characters’ key length. The cost of a comparison process obviously

effects on the performance of the algorithms under check. This cost is influ-

enced by data type and hardware considerations. For instance, the computer

needs more time to compare two strings of 100 bytes than two numbers of 8

bytes. Furthermore, the cost of any comparison increased when time to access

the main memory increased. The other case that increases the cost of the com-

parison process is the external search. External search is the search when the

array size is greater than the main physical memory or available memory. Cer-

tainly, access to secondary storage devices increases the time of the comparison

process.

In previous sections, we calculated the average comparisons number for cor-

rect and weak BS, ITS and BQS algorithms precisely. To validate these results
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Table 3: ITS and BQS implementation differences in assembly languages

Ternary Search assembly code of C++ line: -

Third= (right-left)/3;

BQ Search assembly code of C++ line: -

Quar=(right-left)/4;

BaseAdd= s t a r t i n g address o f

Ternary Search func t i on

BaseAdd+26: mov 0xc(%ebp ) ,%eax

BaseAdd+29: mov 0x10(%ebp ) ,%edx

BaseAdd+32: mov %edx ,%ecx

BaseAdd+34: sub %eax ,%ecx

BaseAdd+36: mov $0x55555556 ,%edx

BaseAdd+41: mov %ecx ,%eax

BaseAdd+43: imul %edx

BaseAdd+45: mov %ecx ,%eax

BaseAdd+47: sa r $0x1f ,%eax

BaseAdd+50: sub %eax ,%edx

BaseAdd+52: mov %edx ,%eax

BaseAdd+54: mov %eax ,%ebx

BaseAdd = s t a r t i n g address o f

BQ Search func t i on

BaseAdd+26: mov 0xc(%ebp ) ,%eax

BaseAdd+29: mov 0x10(%ebp ) ,%edx

BaseAdd+32: sub %eax ,%edx

BaseAdd+34: mov %edx ,%eax

BaseAdd+36: l e a 0x3(%eax ) ,%edx

BaseAdd+39: t e s t %eax ,%eax

BaseAdd+41: cmovs %edx ,%eax

BaseAdd+44: sa r $0x2 ,%eax

BaseAdd+47: mov %eax ,%ebx

experimentally, we measured the execution time of running each algorithm N

times on N elements. In other words, we search for the all items of the tested list

randomly then we record elapsed time. For figures (5,6 and 7), execution-time

recorded in Y-axis, after each probe N increases by N = N ∗ 1.5 until reaches

the final array size (X-axis).

Experimental results show that the difference between weak and correct

implementation is not detected in our test environment when the 8-byte key

used. Figure 5 explains the experimental execution time for the weak and the

correct implementation of binary search for 100-byte key length. The figure

shows that there is a small gain in execution time for small size array and the
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gain increases when the array size increases.

Array Size
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7

T
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e
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s)
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4

5

6

Correct Binary Search

Weak Binary Search

Figure 5: Binary search weak and correct implementation execution time.

Our presented algorithms (ITS and BQS) have less number of comparisons

compared with the binary search. However, the drawback is they have more

primitive operations compared to the binary search. One of the advantages is

that the cost of the calculation of these variables does not depend on the data

type or internal/external memory access operations. The other advantage is a

limited number of variables involved in this computation, so the cache memory

or CPU registers could hold these variables to reduce the access time to these

variables, due to the frequent access to these variables.
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Figure 6: Execution time of BS, ITS and BQS for 8-byte key (double).
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Figure 7: Execution time of BS, ITS and BQS for 100-byte key (string).

Figure 6 shows the experimental execution time of BS, ITS and BQS with

a key of 8-byte double data type. We see the ITS execution time is less than

the time consumed by the BS for moderate size array. The gain in the time

increased when the size of the searched array increased. However, BQS offered

better performance than ITS and correct BS in all array sizes.

Figure 7 shows the execution time for the same three algorithms runned with

a key of 100-byte string data type. We see the ITS search execution time is less

than the time consumed by the BS and BQS.

8. Conclusion

We examined the binary search algorithm in terms of comparisons. For BS

we identified two implementations: weak and correct implementations. Our

study explained that the correct implementation is faster than the weak imple-

mentation of BS.
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We presented a new efficient improved ternary search algorithm (ITS). ITS

has been analyzed and compared theoretically and experimentally with correct

binary search. Comparison results showed that the improved algorithm is faster

than the correct binary search. Our improvement on ternary search is obtained

by reducing the number of comparisons per iteration.

Additionally, we proposed a new Binary-Quaternary search algorithm. The

proposed algorithm is used to search ordered lists. The BQS is a divide-and-

conquer algorithm and uses a new dividing technique, where it divides the given

array length by 2 or 4 randomly. Theoretical analysis has shown that BQS has

lower average comparison numbers than BS and slightly higher than ITS. On

other hand, our experimental results showed that the BQS is faster than the

ITS when the cost of a comparison operation is lower than the cost of a division

operation.
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[41] M. Woźniak, Z. Marszálek, M. Gabryel, R. K. Nowicki, Preprocessing

Large Data Sets by the Use of Quick Sort Algorithm. In: Skulimowski A.,

Kacprzyk J. (eds) Knowledge, Information and Creativity Support Sys-

tems: Recent Trends, Advances and Solutions. Advances in Intelligent Sys-

tems and Computing, vol 364. Springer, Cham, 2016.
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We propose improved ternary search (ITS) algorithm  

We also propose a new Binary‐Quaternary Search (BQS) algorithm 

We discuss weak and correct implementations of the binary search (BS) algorithm 

We calculate average number of comparisons for weak and correct implementations of the BS algorithm 

precisely 

We calculate average number of comparisons for the ITS and BQS algorithms precisely 


