Accepted Manuscript o

FIGICIS:
Dynamic evaluation of drilling leakage risk based on fuzzy theory and S Rt T

PSO-SVR algorithm

e

Haibo Liang, Jialing Zou, Zhiling Li, Muhammad Junaid Khan, o

Yanjun Lu RS2
PII: S0167-739X(18)32114-9

DOI: https://doi.org/10.1016/j.future.2018.12.068

Reference: FUTURE 4689

To appear in:  Future Generation Computer Systems

Received date: 2 September 2018
Revised date: 18 November 2018
Accepted date: 29 December 2018

Please cite this article as: H. Liang, J. Zou, Z. Li et al., Dynamic evaluation of drilling leakage risk
based on fuzzy theory and PSO-SVR algorithm, Future Generation Computer Systems (2019),
https://doi.org/10.1016/j.future.2018.12.068

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.


https://doi.org/10.1016/j.future.2018.12.068

Dynamic Evaluation of Drilling Leakage Risk Based On Fuzzy

Theory and PSO-SVR Algorithm

"Haibo Liang, 2Jialing Zou, 3Zhiling Li, “Muhammad Junaid Khan, >Yanjun L.
"Mechanic and Electronic Engineering, Southwest Petroleum Unive sity Chengdu
610500, China

’Mechanic and Electronic Engineering, Southwest Petroleum Urivers. -7 Chengdu
610500, China

3CNPC chuanging drilling engineering company limited, 61830y, China

“Mechanic and Electronic Engineering, Southwest Petroler m Un ' versity, Chengdu
610500, China

SDepartment of Geology, Moscow Lomonosov State "Jniv~-sity

Abstract: In recent years, artificial intelligence has gi. uall" penetrated into various
fields, and has become a research hotspot. The m.Yern industrial upgrades and
transformation of the petroleum industry, ma.~s it :loser to the direction of
intelligence. For the research of drilling risk evai.~tion, choosing the right evaluation
model to achieve real-time risk dynamic = .iuauun which is important for risk
judgement and response time. However. drill..» system never considered as a
complex system in the research of drilling ris'. assessment. When the sensor of the
well site collects the relevant parameter. the 1 ‘mote monitoring system carries on the
real-time data analysis, because of the insi.un.2nt or transmission process, the drilling
parameters appear fuzziness and ranac "ess. To realize real time dynamic evaluation
of drilling risk this paper proposed a fuzzy multilevel algorithm based on Particle
swarm optimization (PSO) to or umiz. Support vector regression machine(SVR), and
takes drilling leakage risk as an ¢.-amp ¢. And two main objectives has been achieved.
The first is to establish a fv zy mulu-level drilling leak risk evaluation system. The
second is to use the PSO-_"7Q a’gorithm to study the risk evaluation results and
realize the real-time d namic 11sk evaluation. This paper first summarizes the
characterization phenomena .<d laws of the occurrence of acquisition and loss
parameters, and uses thi as an indicator to establish a multi-level index system for
risk assessment. Seco. t, combined with fuzzy theory, a risk assessment model is
established. And .n f aal, the parameters C and g of the SVR model are optimized by
using the SVR a: orit".m improved by PSO, which solves the problem that the
parameters s’ ch as nenalty factor c, kernel function k and sensitivity coefficient €
are difficult » sele.t in the traditional SVR model, improves the accuracy of the
model, ar . realizes more accurate real-time dynamic evaluation of risk. The algorithm
proposea in this paper achieves two goals. Taking the XX oilfield as an engineering
examnle. the . csults show that the accuracy of the PSO-SVR model can reach 99.99%,
with h,7b convergence degree, which is obviously higher than that of the multilayer
perceptro. neural network model.

Keywords: Leakage Risk; Artificial Intelligence; PSO-SVR; Fuzzy Multilevel;
Dynamic Evaluation; Heuristic Algorithm



1. Introduction

1.1 Background

Drilling operation safety is a key technical issue in oil and gas »xplorau.on, and
drilling engineering is full of challenges due to its professionalisir. co’ cealment and
high investment characteristics [1, 2]. As petroleum exploration c ntin. =s to extend to
deeper and more complex areas, the probability of drilling s>ty « ~idents due to
increased uncertainty and complexity of geological conditicas 7, 1. -reasing. In all
drilling safety incidents, leakage is one of the biggest threats .. drilling operations.
The leakage may not only cause damage to drilling t ols, 1. vge consumption of
drilling fluids and plugging materials, unbalance of bottc.» hol s pressure, but also
the collapse of well walls and scrap of wellbores [3]1 For ‘sstance, in 2010, serious
blowouts occurred on the Deepwater Horizon drilling 1. i tF ¢ Gulf of Mexico [4, 5].
The accident caused heavy casualties and serious oil 5,ills and polluted the offshore
environment. In order to avoid such catastrophic a. ~ident , it is of great importance to
predict and analyze the risks during drilling opera..~ns. in 2005, the tragedy happened
at BP's Texas City Oil Refinery resulted in <.ivus casualties and severe economic
losses due to inaccurate technical judgment of the ~ccident [6].In order to avoid such
catastrophic accidents, it is especially imp. rt7at o extract the real-time monitoring
data of the drilling based on data m. . =g 1 chnology and analyze the risk early
warning [7].In this process, the qualitative anu quantitative analysis of the risk of loss
is beneficial to the timely follow-up contror of the risk [8]. It is important to ensure
the possibility of accidents and to ensure continuous and safe operation of the drilling.
1.2 Research motivation

Alessandro et al. believe u.t a strong risk assessment procedure of offshore
petroleum and natural gas ¢ sere .ion 1s a major factor in assessing potential feedback
between planned activities - t th> environment [9]. But it failed to consider that
drilling engineering is 2 ~omplex system and ignore the characteristics of the input
sensor's parameters collectea vith ambiguity and uncertainty. If the risk of leakage
occurs during the ac’aal Irilling process, the driller should be responsible for taking
countermeasures to co.. ol risk. Therefore the response time of the drillers and correct
judgment of the icciient are crucial. Lagging, erroneous, and inaccurate judgments
not only affect the . *fet” of operations but also the loss of life and property. Therefore,
the main purr ose 0” this paper is to propose a real-time dynamic risk assessment, and
use the PSCG heuri dc algorithm to optimize the SVR model. It can achieve an
accurate -.a ranid assessment of the risk of drilling leakage, which can improve the
response time ¢ f the on-site drillers and the judgment rate of risks, avoid false
positives ana missed judgments, and lead to continuous expansion of risks, and finally
becomu rserious accidents. This paper proposes a solution for the application of
leakage r1.°k assessment, which can effectively and accurately evaluate the risk in
real-time. It can effectively and accurately evaluate the risk in real time. The proposed
solution is based on fuzzy multi-level analysis method. The PSO heuristic algorithm
is used to optimize the SVR model parameters ¢ and g. It solves the shortcomings of



traditional SVR for difficult parameter selection and realizes the mapping relationship
between missing parameters and risk, and form a "black box" model. Finally, the
established model has been applied to the XX oilfield and comparzd with the
multilayer perceptron neural network model to verify the feasibility o “he proposed
scheme.
1.3 Main contributions

Three main contributions of the present paper are as follows:
(1) The influencing factors of the risk of leakage have summ-~rize. and the fuzzy
multi-level evaluation method can used to establish the evalua’ion a2l of the risk of
loss and realize the safety evaluation of risk.
(2) This paper collects 50 sets of data from XX oilfield for n achine training. The
PSO-SVR machine learning algorithm has used to minc the riapping relationship
between the missing risk data and the risk of drillirg lo=~ and real-time dynamic
security evaluation of risk is realized.
(3) Two different machine learning algorithms are usc ' to study the model accuracy
of dynamic security evaluation, and the analys.. and cmparison of the results of
different methods has been completed, resulti,. the PSO-SVR machine learning
algorithm proposed in this paper has been mec . couvuicing.

The section 2 defines the structure of this pap >~ and the related work. The section
3 explains a fuzzy multi-level evaluation .mor.e1 for risk of leakage. The section 4
establishes the loss risk model of the PS SV, algorithm. The section 5 simulates the
results. The section 6 summarizes the full v>x1.

2. Related work

2.1 Introduction to risk asr :ssr «ent

Research data shov's .‘at here are many methods for risk assessment.
Muhammad Zubair pres. ts a computer based living probabilistic safety assessment
(LPSA) method named as onlu.2 risk monitor system (ORMS), The essential features
and functions of JR}MIS have been described[10]. J.Wang et al. proposed
Fault-tree-based insta.. “neous risk computing core in nuclear power plant risk
monitor [10], anc me 1y other risk assessment methods [11,12].

The drilling 1.. - a< sessment mainly includes the following studies. Wu S, Zhang
L et al. propc sed a .nethod based on risk dynamics, Dynamic Bayes theory (DBN) by
taking into acoun’ the real-time information of changing model parameters for
predictior. and iagnosis of dynamic risk [13]. Abimbola et al. proposed a real-time
predictive mode . which was on the basis of Bow-tie and real-time obstacle failure
proba*ilities and switch obstacle failure probability for dynamic risk evaluation of
drilling o perations. And its method can be transferred to real-time risk monitoring
equipmen. on the sites [14]. Zhang L et al. pointed out a dynamic Bayesian networks
(DBNs) to analyze the situation of a managed accidental accident (MPD) safety
accident and perform a dynamic quantitative risk evaluation. Probability parameters
are added to study on effects of uncertain risk factors [15]. Siotani M et al. first used



bow-tie models to draw safety challenges and operating pressure conditions of shaft
bottom pressure drilling technology. Then the model was mapped to the Bayesian
network to evaluate key factors of constant shaft bottom pressure and saf>ty operating
pressure conditions [16]. Meng X presented an integrated methor ~f Dynamic
Quantitative Risk Assessment (DQRA)—using the Decision Making 1..al and
Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)—for eve uation of the
system vulnerabilities and prediction of the occurrence probahiliu.~ of accidents
induced by leakage[17], and other petroleum industry quantitative . ~k assessments
[18~22].

2.2 Fuzzy —AHP (Analytic Hierarchy Process)

The following is the application of Fuzzy-AHP. R "Josac ghi et al used two
quantitative techniques (analytic hierarchy process ana fuzz* analytic hierarchy
process) to compare urban spatial use comparison “slanr g spatial multi-decision
models [23]. HR Wang et al. proposed a risk assc. .nen’ method that based on
Fuzzy-AHP model, and established the LNG station 1.k assessment method [24]. K
Bian proposed a method of Fuzzy-AHP to se..~t opt mal dry ports construction
projects, which provides scientific reference oun *he reasonable distribution of dry
ports, saves cost of logistics and ports .cuouuction, avoids reduplicate port
construction [25]. JK Hamidi et al. discussed the 'se of a fuzzy analytical hierarchy
process as an efficient means of decision meaug. It is applied to rock TBM risk
assessment under adverse geological co: .“tior. [26].

2.3 Algorithm introduction

Support Vector Regression (S+v'?) 1> gaining popularity in regression and
classification due to its excellent generalization performance. The SVR method has
been successfully applied to se' eral ifferent applications, such as face recognition,
object detection, handwriting ..~ogp tion, text detection, speech recognition and
prediction, etc. [27]. When SV opimizes the mapping relationship of the "black
box" model, the optimizatic~ for aula implicitly matches the appropriate structure
with some complexity to the available small size samples. Therefore, its
generalization ability is stro.;, and the dimension independent of the problem is
realized to control t'is 1 pe of structure, which makes it superior to the traditional
machine learning tecl ology. In regression applications, to extend to nonlinear
regression, the S* R '.ernel function has been used to project the input space into the
feature space, piv acirg a linear or nearly linear regression hypersurface in the
feature space I'her~fore, the selection of the SVR penalty parameter ¢ and the kernel
function para.neter ¢ has an important influence on the SVR regression performance.

For ~.u henristic algorithms [28~30], genetic algorithm has strong local search
ability[3.1, but here are disadvantages such as non-standard coding and premature
solvent convuigence. Artificial bee colony algorithm and ant colony algorithm are
charac. i _ed by slow convergence rate and local optimum [32~34]. The PSO
algorithm ‘s simpler compared with rules of the genetic algorithm [35]. Therefore, in
this article, the Particle Swarm Optimization (PSO) method is used to optimize the
SVR model. Through the machine learning to construct the mapping relationship
between the missing impact factor and the missed risk, the dynamic evaluation of the



risk of drilling loss is realized. In the subsequent chapters, the XX oilfield specific
data was applied to study the results, and the validity and accuracy of the PSO-SVR
model are verified.

3. Establishment of Risk Assessment Model for Leakay> Based on

Fuzzy Multi-Level Evaluation Method

3.1 Evaluation index parameter selection
Monitoring data often vary with the occurrence of the cisk o1 'eakage, therefore, it

is of great significance to select appropriate monitoring ~arar .eters and carry out

feature extraction and early warning analysis of moni‘orin-, ~arameters based on data

mining technology in order to realize timely and accu.ate ¢arly warning of leakage

risk [36].

® Standpipe pressure and casing pressure: Stand,ine p essure is generated by mud
entering the riser through a mud pump, it reflec“< the pressure loss of drilling fluid
in drill string, bit water hole and ann. us, wnich is approximately equal to
circulating pump pressure; casing pressure can -eflect the annulus condition in the
wellbore, and if the risk occurs, the casi.~ * ressure may change accordingly.

® Flow of entrance and exit: Flow .. ~nti.nce and exit can directly reflect the
leakage, wellbore and other accidents. Wnen leakage occurs, the drilling fluid in
the wellbore flows into the formatic ~ and the mud return rate is obviously smaller
than the entrance flow rate. The entrance flow rate affects the flow velocity of
drilling fluid and ultimately ae bo."om hole pressure balance.

® Density of entrance and exit: "he ‘.ensity of the drilling fluid can reflect the solid
particle content of the .rill’ag fluid, which may affect the hydrostatic column
pressure of the drilling flu. - an . then the bottom hole pressure.

® Temperature of entrs..~e and exit: During the normal drilling operation, when the
bit meets the deep tormau.n, the formation temperature and pressure are higher.
Under this envire ame at, the rtheology and density of drilling fluid may be affected,
and the bottom hoic ~ressure system might be unbalanced.

® Rotational sy.ed: While drilling, if the rotational speed is too fast, it may lead to
the increase o1 . “nv.us cuttings concentration and the increase of cycle equivalent
density, v nich 1."ight affect the bottom holes pressure.

3.2 Leakage . sk ev aluation multilevel index system

Conoined with affecting factors causing leakage and its phenomena, a
multi-lev 'l indic ator system for risk evaluation of well leakage is established, which
is sho—~m in rig.1.
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Fig.1. Leakage risk assessment multi-level indicatr r syst. m diagram.
3.3 Determination of leakage risk fuzzy membership fu. ~tion

According to

the relevant

industry

stands.ds,

axpert experience and

above-mentioned evaluation index system, historical s. .aple data of the XX Oilfield
XX well is applied to establish a membership function “abie for various factors of the
XX well in the XX Oilfield. As shown in Table 1.

Table 1 Membersh,,” function

indicators quantization method
(0.1; 0.00 < x < 0.05
0.3; 0.05<x<0.10
. . _J0.5;010<x<0.15
porosity () 7 ) =107} 015 <x <020
0.9; 0.20 <x<0.25
1;025<«x
Engineering (0.7; 16.00 < x < 16.15
factors Fra ture 0.5; 16.15 <x < 16.30
(Ul) y B @,(x) =140.3;16.30 < x < 16.45
pres.r (B) Lo.z; 16.45 < x < 16.50
0.1;1650<x
0.3;28 <x<30
Be tom  hole _)0.5;30 £x<32
p.ossure (W) ¢3(X) =108 32 < x < 34
09 ;34 < x
0.7; x <80
olume of mud pit (x) = 0.5;80 <x <85
‘ (0) $70%)=303; 85 < x <90
Lo ,s.ng 0.1;90 <x
Tat
. fl.\ Flow difference
(v-, 09;x<0
of entrance and
) pg(x)30.3; x=0
extt 0.1; x>0

(F)




( 01;x<0.2

Conductivity I
difference of 0.3;020<x<0.4
) Po(x) = 40.5; 040<x< 0.6
entrance and exit 0.7:060<x -08
© L&%OBSx<Lu
(09; 10: x 112
Standpipe 10.7; 12<x - 14
pressure P10(x) = 4 05;1"7<. 716
(S) LO.S 16 ~ - <18
01;..<x<20
Density difference
 diff 0.3, —0.0! <x<0.00
of entrance and s P
y @11(x) =3 2.5; v.uv < x <0.05
ext 07;1.05<x<0.10
(4)
temperature 3.0.0<x <20
. 1.3;00<x :
difference of 01.(x) (0.5 120 < x < 4.0
entrance and exit (0 7. 40<x < 6.0
(D
Drilling fluid 03; 1=x<11
. 05;11<x<1.2
density 1) =107 12<x <13
(D) 09;13<x
Drilli .
”lh,n 8 plastic viscosity of (0.1;10 = x <12
Fluid fluid den ()_<O.2;12Sx<14
property " [fn ‘@ ?s)=303; 14 <x < 16
(U3) ") 05;16<x

yield po..-t )f f 1id
density
(!

(01;0<x<5
Jo2;5<x<10
?6()=103.10 < x < 15
05;15<x

3.4 Comprehensive fac’or evaluation set for leakage and establishment of weight
matrix
According o ‘ae '.derarchical structure of multilevel index system for risk
evaluation of v~!l le.'~.ge, judgment matrix can be constructed. Degree of importance
is assigned ¢ >cordir 7 to the 1-9 scale method. According to expert opinion, a V-U
judgement ma.. v i~ set up. As shown in Table 2.
Table 2 Judgement matrix

\Y/ Ul U2 U3
Ul 1 3 5
U2 1/3 1 3
U3 1/5 1/3 1

In order to attain the relative weights of each factor under each indicator level of
leakage risk, in this paper, the author uses the root-finding method to solve the nth
root of the product of each row of the judgment matrix:



_(;)7 = n\/“?:l aij(i = 1'2'3' "t Tl) (l)
w, is normalized to acquire:
w; = 0/ Yi=q w; (2)
o = T -
That is, ® = (wl, W, W, 0, wn) is the appro.mite value of
eigenvector of judgement matrix A
Find the largest eigenvalue corresponding to eigenvector:
1 (Aw);
Amax = ;21 ( a(: ) 3)
The random consistency indicator can be obtained by ceferr. g to Table 3.
Table 3 RI Table of Random Consistency "ndicr .ors
Matrix 2 3 4 ; 6 78
order
RI 0 0 0.52 0.89 1.1 1.26 136 141
Malix 9 40 11 12 2 14 15
order
RI 1.46 1.49 1.52 1.54 1.56 1.58 1.59
Table 4 Fuzzy ev *) iation table
i CR Consis.ane ! | ) CR Consistency
A - A
Symbol | Symbol | Weight max | = CI/RI ek Symbol | Weight max | = CI/RI check
0.637 W9 3.06 0.056<<0.1
Ul 0 B 0188 5 0.0559 (Yes)
P 0.081
0 0.211
0.033< F 0.516
v 0.204 | 39| 5.0s3 01 C | 0045 | 654 0.087<0.1
U2 o 0.0868
7 (Yes) S 0127 | 7 (Yes)
! A | 0.075
| T | 0.027
0.2538 & 292 {300 0.003<0.1
u3 i v 0309 |7 ]00032| " '
3 4 (Yes)
M 0.109

Rel: tive wi ights of risk factors comment layer in the leakage risk factor layer is
calculatea. Thi". paper applies layer-by-layer calculation to perform hierarchical total
order, "nu ....sistency check for the total order results.

Ass.me that the weight of n elements of k — 1 layer relative to the comment
layer is listed as follows:

- k-1 k-1 k-1
0® D = (@, w7, L )T (4)



The relative weight vector of n elements of k layer to each element of k —
1layer is as follows:

p® = (pf,p5, L,p)" (5)
A composite weight expression formula can be attained:

w®) = pplk-1)... @) (6)

3.5 Leakage risk evaluation model based on fuzzy multi-level fvai. “tion method
[37,38].
A leakage risk evaluation model is established accor .ng « risk factors of

leakage. The membership function of each index is Cbi(";, the .>west level index

corresponds to the highest level weight ® (x) , so the <;stew.”- .1sk evaluation model

is:
P =31 0i(x)(x) %)
In light of formula above, the final value oi “sk ev .luation of well leakage can
be obtained. Based on the calculated value, expec:~d probability value for occurrence
of leakage can be determined.

4. Dynamic evaluation of leakage ris," based on PSO-SVR algorithm

As shown in Fig.2, this paper pi.noses a loss risk model based on PSO-SVR
algorithm. Firstly, the fuzzy-AHP method is used to obtain the historical data of
drilling risk assessment. Then *.1e PS) optimized SVR algorithm is trained through
the risk evaluation historical da.~ to obtain the optimal missing risk data mining
model. Finally, the optimal .noc¢l and real-time logging data are used to realize the
real-time dynamic evaluaton . < ler cage risk.

4.1 Introduction to SV’ model

Support Vector Machines (SVM) is a kind of algorithm in machine learning. [fis
based on statistical ] .arn ag theory and statistical learning theory VC. Support vector
machines include two ‘des: one is Support Vector Classification (SVC), which is
mainly used to solve classification problems; the other is SVR (Support Vector
Regression), whic.. is .nainly used for prediction. In this paper, SVR is used to
intelligently “redict the risk of leakage. The idea is to find an optimal classification
surface so as .» mir mize the error of the missed training sample set from the optimal
classifica’on sirface. Set the given sample data as follow:

T ={(x,y1), .., (xp,n)},i=12,..,n,..

> & X = R™— input vector, y; € Y = R— output vector.

Fi. 9'ng a function f(x) on R", using f(x) to infer the value of the output y
correspon.'ing to any x, is a regression problem.

Assume that the linear regression function for f(x) established in the
high-dimensional feature space is shown in (8):

fX)=w=*D(x)+b (8)



where @ (x) denotes a nonlinear mapping function.

Defining ¢ linear insensitive loss function:

0, |y_f(X)| =

)
ly—f)—¢| ly—f()|> =

L(f(x),y, €)= {

The slack variables & ; and §& j are introduced, and the pr. hlem of finding w,
b is expressed mathematically:
( minZ|Iwl? + CZRL (8, + &)
|{ yi—wxP(x)-b<e+ &,

. 1=12..,n (10)
S.té—yi+W* CD(XJ'FbSS"‘ éi

\ L £ >0, £,0
l l

If the penalty factor is larger, it is proved tu.* the training error is large and the
sample penalty of ¢ is larger; if € is smaller .. coior of the regression function is
smaller.

Introduce Lagrange function, convert v d a1 1orm, as follows:

1 * * o, 7 * *
max[— >3, By (@ — ) (@ — af ) () = Zika(a + ade + Xy (@ — a)yi]
—n o, *)
=) =0
S. t; < a; < C
0<a;<C

(11)
K(x;,x;) = @ (x;) ® (%)~ <er.zel “anction.

Assume that the cpti. ~l solution of (12) isa = [aq, ay, ... ay],[a1, @3, ..., An],

and then:

w* = Yiti(a; —ap) * O (x) (12)
* 1 i O * *
b* = N }: |vi — Z‘(ai — a))K (x;, %)) — S] + i — Z(“i — a))K(x;, x;) + €]
0<a, °C
(13)
The regress on function is as follows:

fCr— 7O +b" =Y (a;—a))P(x)+b =Y (a; — af)K(xi,xj) +b
(14)

SVR structure is as shown below Fig.2.



Tf(X)

i
F(x)=3 (a,—a)K(x, x)+b

Fig.2. SVR structure.
4.2 Data processing
This paper selects the parameters that can “est re'.ect the leakage during the
drilling as input for SVR. Output item y is leakage valuc. As shown in Table 5.
Table 5 Input and out; .. ..c.uu ustablishment

Input parameter Lonaing 0.2 Unit
TIAN
X1 Inlet ane Cit’at Tiow L/s
L faren e
Inlet and ¢ 1tlet density 3
X2 «frerence kg/ m
X3 Standpipe pressure MPa
X4 Mu 1 pool volume m3
<5 Inie: anr qutlet temperature ‘c
difference
Al -
X6 et and o_utlet conductivity s/m
difference
X7 Drilling fluid density kg/m?
Ny Drllllng f|UIF| Plastic MPa. s
viscosity
<9 Drilling fluid dynamic shear Pa
force
X10 Downhole pressure MPa
X11 Pore pressure MPa
t2 Porosity MPa

7. *ke risk prediction process for drilling loss, since each input item has a
differen shysical meaning and different dimensions, if the data is directly processed
with the criginal data, the data error may be greatly increased during calculation.
Therefore, it is necessary to perform data preprocessing on the collected data.
Through a certain scale transformation, the input amount of the network is changed
within the range of [0,1] or [-1,1] so that each input parameter has the same state. In




order to make the prediction model have faster training speed, better performance, and
accurate analysis results, this paper uses a linear normalization method to process the
leakage risk data, making the data between [0,1]. The method is as follows:

Xi — Xiin
X

X = (15)

max — Xmin
X; — Initial sample data, Z — Normalized data, X ;,— the mn./mumn value of the

initial sample data, X ,,— the maximum value of the initial ¢ *mr.e data.

4.3 Design of Data Mining Model for PSO-SVR Missin‘, Risk

Particle swarm optimization (PSO) is a nature-inspii *d op*.mization algorithm.
Because PSO has few parameters [39], and only for parti~'= position and speed the
operation is simple, and easy to carry out mathematic. ana’ysis and draw out other
advantages. It has been widely used in most moa.= scientific and engineering
optimization problems to help and solve the prob..m of r pid convergence and global
solutions. PSO is inspired by common social ben. riors present on different groups of
animals such as birds’ flock. At present, the c..auuvuly used PSO algorithm is with
inertia weights. We can look the iterative formula ~f velocity from the perspective of
sociology. The first part shows the influet.~e 1 wne current velocity of the particle,
indicating the inertia of the particle t¢ ‘he ¢ wrent motion state. The parameter ®
shows the inertia weight. The second part ('2pcads on the distance between the current
position of the particle and its optima. rosiuon as the “cognitive” part, indicating that
the particle's motion is derived from the particle's own memory. The third part
depends on the distance betwee « the ~urrent position of the particle and the optimal
position of the group, which is v..» “sc .ial” part, indicating the influence between the
particle groups. So the para-aete: c2 1s called the social learning factor. During each
iteration, the particle groun's ~ toc’.y formula has updated to:

v (t+1) = wv; (&, “cqryj(t) (Pij - xij(t)) + cp13(0) (pgi - xij(t)) (16)

x; (E+1) =x;(t) + v+ 1) (17)
Where t is the currc. ¢ iteration of the algorithm; x;;(t) is the current position of
P;;;v;5(t + 1) is vele city vector that applied to P;; attime t;c; and c, are random
values that represc.” the exploration and diversity component of the algorithm, c; is a
cognitive lear.ung factor, ¢, is a social learning factor. They usually follow a uniform
distribution v-ithin fie range [0, 1]; P;;(t)is the local best of particle;Py;(t) is the
global ber. uf parucle.
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As acquisition of measurement data for predicti.> leakage risk has features of
complexity and diversity, application for a single .[~ature ¢ xtraction method to analyze
the risk of drilling leakage is not very timely anu ~ccurate. Therefore, it is necessary
to find a suitable method to evaluate leaka_. ...n ctfectively and dynamically. At
present, there have been many methods for dyna..ic evaluation of drilling risk, such
as the neural network method [40]. Howev.~, f us method has the disadvantages such
as being vulnerable to local optimiza "~n, pror model generalization. The expert
system [41] combines various characteriza‘ion. phenomena and rules of risk caused by
drilling accidents with expert knowled e aud experience. Once there might be a risk
involved in the process of safe drilling, the system may find out types and causes of
risks, in accordance with the ex erts | oblem solving thinking. However, the method
is strongly subjective. The me.nd [ 2] for fault tree analysis requires statistical
analysis for much drilling b’story dawa to determine the probability of all basic time,
which ensures the accuracy « © cesv.ts of risk analysis. The analysis method is greatly
affected by probability *atistics. Considering that the SVR model can well solve
problems of small sample lea. “ing and nonlinear, high-latitude pattern recognition of
drilling acquisition d-.ta, he author uses SVR model to learn risk data.

However, this mc ”*1 meets some difficulty when selecting parameters of penalty
function, kernel unc.ion, and sensitivity coefficient. And the biggest advantage of
PSO is that it doc~ nof need to make adjustments to the parameters, it has a faster
convergence ,peed, and the operation is simple. Therefore, this paper combines PSO
and SVR tc comr .ement each other to form a dynamic evaluation model of
PSO-SVP.

Finc'ly, opt mized SVR model is used for risk data in the drilling process, and a
corresnonding dynamic evaluation model of leakage risk is acquired. PSO algorithm
paramc er update process is shown in Fig.4. The dynamic risk assessment process
based on .>SO optimized SVR is shown in Fig.5 below.
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Firs the P /O-SVR is trained by using the sample factors selected from the data
of the neighuuring wells in the same block. Optimal parameters ¢ and g are achieved
by max‘n‘, use of optimization seeking characteristics of the PSO. The achieved effect
has been . °rved as model preservation based on the fact whether the generated model
achieves expected effect. It means to realize the mapping relationship between risk
factors and risk values. Second, the input constiting real-time data is fed into the
preservation model to realize the dynamic evaluation of leakage risk in the block



drilling.

5. Analysis of case results

5.1 leakage risk probability result analysis

In this paper, the data of XX oilfield is used, and the fuzzy mui.. level leakage
risk assessment model established in Section 3 is used to obtai~ *he 1.~zy evaluation
result of leakage risk. The results are shown in Table 6 belo v. T e ..sk value of the
evaluation result is taken as the abscissa, and the depth of the  >rresponding part is
taken as the ordinate to obtain the result shown in fig.5.
Table 6 Sample Leakage of Wells Ris - Val* es

Well depth (m) P B w O S A - M \ Risk value
2501 05 05 05 03 01 05 0, 02 03 0.486
2502 05 05 05 03 01 05 05 02 03 0.454
2503 05 05 05 05 01 05 05 02 03 0.459
2504 05 05 03 05 01 05 05 02 03 0.365
2505 05 05 05 05 01 5K 05 02 03 0.459
2546 07 03 08 03 "5 13 05 02 03 0.584
2547 07 03 08 03 07 95 05 02 03 0.621
2548 07 03 05 03 ol 05 05 02 03 0.435
2549 07 03 05 03 0. 05 05 02 03 0.4813
2550 07 03 05 Jso 07 05 05 02 03 0.448

The original input data in .~ 7.6 is derived from the fuzzy risk assessment results
of the XX oilfield. The X"\ o'lfiewu reservoir consists of a series of sandstones,
siltstones and shale with g. s of "imestone, coal and varying amounts of iron ore.
Fig.6 shows the cross p! 't of the fuzzy evaluation values of well depth and leakage
risk. The data shows a rougu. ‘rend between the well depth and the fuzzy evaluation
value of the risk of le 1ka e; however, it can be seen from the distribution map that the
discretization of the 1.1 value is significant, indicating a high degree of heterogeneity
in the reservoir.
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Fig.6. Cross plot of well depth versus risk assessment value.

5.2 Analysis of PSO-SVR Dynamic Simulation Results
Since the selection of the kernel function of the SVR model may hae an impact

on the risk prediction results, this paper firstly analyzes the kernel f.. ~tion of the
SVR model for optimal drilling risk dynamic regression prediction.

In order to analyze the results, the SVR (SVR-Linear) based on ]"'aear function, the
SVR (SVR-Polynomial) based on polynomial, the SVR (RRR-1.?F) based on
Gaussian and the SVR (SVR-Sigmoid) model based on S-type kave v ~en drawn first.
The simulation results are compared with the graph, and the r.sul‘, > shown in Fig.
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Fig.7. Comparat’ /e 3 1alysis of prediction results of different kernel functions.

According to Fig " . it can be known that when the sigmoid kernel function is
selected, the effe ¢ is .he worst, and the predicted value is larger than the actual value.
When the polyno.. "al k_rnel function and the linear kernel function are selected, the
effect is bettr ¢, anc it can be seen that the predicted value and the actual value are
closer. Howe ver, th: effect of choosing the RBF kernel function is the best, the
predicted ,awe and the actual value are basically the same, and the prediction result is
the most stable The comparison of error results for different kernel functions is

shownr in Fig.o below.
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In o der to compare the pros and cons of the model, the paper further
quantitat1 <ly compares and analyzes the box plot of the mean square error of the
model as shown in Fig.9. A box diagram is an exploratory data analysis tool that
provides a statistical summary of the underlying prediction error distribution. The top
and bottom of the box represent the 25% and 75% percentiles of the mean square

SVR-Sigmoid




error, respectively. The black line in each box is the median of the mean square error.
The whisker extends 1.5 times from each end of the box to the quartile range (the
range of upper and lower quartile values extending above and belov each box,
including 50% distribution). Fig 8 also provides information about t'. data, which
exceeds the end of the whisker (outliers) and is marked with a red circle symoul. Fig.7
uses 50 test data (sampled from the full data set) to present ¢ sur imary of the
prediction errors obtained from each regression model. The resulws <how that the
SVR-RBF model has the smallest interquartile range IR™ w.“ a value of
0.000000058, indicating that there are very many predicted vab > *2 a very small
error range. It in turn means an error distribution with a t.. mer peak, a higher
kurtosis.
The results of the specific performance indicators at. shov n in Table 7 below.
The kernel function is selected as a linear kernel f.ncti~~, a D-order polynomial
kernel function, an RBF kernel function, and a sigmoic '.¢rne’ function.
Table 7 Indicator Performance  ~sults
Kernel function linear poly..~mial RBF sigmoid
type/Indicator function function function function

Bestc 0.7071068  0.c<25000  8.0000000 4.0000000

Opt:r:(;f;“o” Besty  0.06250°0 6568542  0.0625000 0.0625000
Bestmse  0.004.=53  0.0118913 0.0003576 0.0339880
MSE  r.00LC450  0.0007200  0.0000027 0.0314500
Forecast
error Correlatior
indicator  coefficier:  9996%  99.89%  100.00%  55.86%

RZ

Convergence time(s) 2.02911 1.963788 2.032369 2.156163

Combined with .= above analysis, it can be concluded that for the intelligent
dynamic evaluatio’. mode: of drilling leakage risk in this paper, when the sigmoid
kernel function is <e.ectrd, the result of mean square error is the largest, reaching
0.0314500, wit'. wae lov.est correlation between the input parameters of the prediction
results and th. risk ¢ saluation value, the correlation coefficient R? is 55.86%. This
model repre=>nts ¢ lowest correlation between the input parameters and the risk
evaluation value. On the contrary, when RBF kernel function is chosen, the result of
mean squarc ~ ¢ is the smallest, which is 0.0003576, and the correlation between data
is the h.2he ., indicating that the hyperplane obtained by the kernel function can well
map the .igh dimensional nonlinear risk data in the complex system of drilling
engineering.




The Iterative Convergence Diagram of SVR with Different Kernel Functions
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Fig.10 shows a comparative diagram of the -voluticn process of fitness values
when PSO is used to optimize the SVM model . hen different kernel functions are
selected. In the Fig.10, the red curve is the ev’ "..uu process of the fitness of the RBF
kernel function, the purple curve is the evolution rrocess of the fitness value of the
sigmoid kernel function, the blue curve is th. ev oiwution process of the fitness value of
the linear kernel function, and the greet ~urve is the evolution process of fitness of
polynomial kernel function. From Fig.10, ‘t cun be inferred that the optimal kernel
function in the dynamic evaluation moJ' =1 ui teakage risk based on PSO optimization
SVR algorithm is the RBF kernel function, which corresponds to the fastest
convergence speed and higher ¢ _cura.v of the model. The PSO optimization SVR
algorithm proposed in this pave:. “or t'.e dynamic evaluation model of leakage risk
considers the optimization of diffzrem kernel functions, a the same time, as a swarm
optimization algorithm, each | - .tic': represents a possible solution in the process of
particle swarm optimizat ~n (PSuv). The optimal position of each particle in the
population in the iterative prov.ss is the optimal solution found by the particle itself,
that is, the individue. e tremum, the optimal position experienced by the whole
population, and the glo. - optimal solution. The iterative process of the optimization of
PSO algorithm in “ais paper is shown in Fig 11. The particle converges to the optimal
position and the 1.."2ss of the objective function increases gradually. As shown in
Fig.11 below, ae bext parameters obtained from the optimization of the RBF kernel
function in the SVR p odel are obtained by using the PSO algorithm.
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In Fig.11 all the - ticles in the PSO algorithm are optimized, and finally all the
particles tend to solve the coordinates in the space of x=39.409, y=138.744 and z=200.
The size of the pa.’ cle .n the graph represents the appropriate value of the objective
function, and the ftness of the objective function reaches the optimum value. The
optimized pa.mete’ 5 of the SVR are arec=8 and g=0. 0625, so the error reaches the
minimunr o1 0.00v4.

In ¢ der to show that the proposed model is more accurate than the Multilayer
percentron uvural network, 50 groups of sample data are selected in this paper, where
40 gro.»s ot data are selected as training set and 10 groups of data as test set. The
following Multilayer perceptron neural network prediction results are analyzed as
follows:
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In view of the comparative analysis of the abc /e re-lts, it is found that the
average absolute error of MLP neural network is © 5343 5, and the stability of
prediction results is inferior, while the accuracy ot J’SO-SVR prediction model is
significantly higher than that of MLP neural netw ~vk. W'!.en the RBF kernel function
is selected, the parameters of the SVR model «~n pbe optimized by PSO, and the
performance of the SVR model can be opt’ ..., and the generalization ability is
better, and good results can also be obtained for *he dynamic evaluation of drilling
risk in small samples.
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Fig.13 ¢SO ~otimization SVR-RBF and multilayer perceptron neural network
error comparison analysis box diagram.

The .verage absolute error of the multilayer perceptron neural network is 0.0543
through he cor parison and analysis of the above results, and the stability of the
prediction resuits is poor. An interesting result is that the SVR-RBF model is equally
stable .~ “ae risk prediction value, through the PSO optimization of SVR-RBF and
multi-layc - perceptron neural network error analysis box diagram. This powerful
characteristic of SVR may be attributed to the potential SRM induction theory. On the
other hand, the multilayer perceptron neural network MLP is highly sensitive to
samples, which can explain that the classical model using the ERM principle



converges to real risk only under asymptotic conditions where the sample size is large
enough. However, the regression accuracy of the PSO-SVR-RBF model is
significantly higher than that of the multilayer perceptron neural network. When the
RBF kernel function is selected, the parameters of the SVR model car e optimized
by PSO to optimize its performance and generalization ability. For the sm.ll-scale
drilling risk dynamic evaluation problem, good results can also be o'stair ed.

6. Conclusion

In the process of drilling risk control, the risk asse;smen. is usually based on
drilling parameters. However, drilling engineering is a ¢ mpl-x nonlinear system,
drilling parameters often exist fuzzy, randomness ancd oth-. ncertain characteristics.
Aiming at the uncertainty of drilling parameters w.at is not considered in the
traditional drilling risk rating process, resulting in inac. 'rate judgments on risks and
large errors, this paper first analyzes the factors ini. *encir g the risk of drilling leakage,
and summarizes the evaluation index system o1 'eakage risk, then establishes the
model of leakage risk evaluation by fuzzy -uuwuevel evaluation method, finally,
proposes a fuzzy dynamic evaluation mndel o1 ‘cakage risk based on PSO-SVR
algorithm to explore the mapping relations.'ir between drilling monitoring data and
leakage risk. As the performance of the ..~dit. \nal SVR model is greatly affected by
the penalty function and kernel function 0. the model, in order to analyze the leakage
risk accurately and quickly, this paper « ~timizes the parameters of ¢ and g in the SVR
model by using the optimization characteristics of PSO, and selects the optimal kernel
function as RBF to train the mode. Through the field data validation and the
comparative analysis of the resun. of “.ae two models, it can be seen that the dynamic
evaluation data mining mr del of leakage risk established in this paper is more
effective and accurate, whicu an - calize accurate dynamic evaluation of leakage risk
and provide reasonable s . ~ntific basis for drilling risk control in this block.
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