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Abstract

Recommendation systems recommend new items to users. Because training
data contain only binary forms of implicit feedback in many cases, such as
in IoT and IoV, one-class collaborative filtering,which can be solved by using
rating-based methods to estimate the numeric scores of items or ranking-based
methods based on the preferences of each user for items, must be addressed. In
addition, because of the sparsity of such data, ranking-based methods are often
preferred over rating-based methods when only implicit feedback is available.
Social information has recently been used to improve the accuracy of rankings.
Traditional approaches simply consider the direct friends of users in a social
network, but this process fails to consider the propagation of influence along
connections in the social network and cannot reveal the complex graph struc-
ture of the social network. In this paper, a novel social distance-aware Bayesian
personalized ranking model, called SDBPR, is proposed to generate more accu-
rate recommendations. SDBPR uses a random walk to travel the social network
and then makes pairwise assumptions about the ranking order based on the dis-
tance between users along the random walk. The experimental results on two
real datasets show that the proposed approaches significantly outperform the
baseline approaches in terms of ranking prediction.

Keywords: Recommendation, Bayesian personalized ranking, Social similarity,
Random walk

1. Introduction

Recommendation systems are very popular in people’s daily life and are
widely used by many Internet services. Amazon and eBay recommend products
when users are shopping online, Netflix and YouTube recommend movies to their
customers, and the Internet of Vehicles (IoV) recommends automatic driving
routes or locations for parking. One important aspect of recommendations is
that they must be personalized, which means that the recommendation system
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must recommend different items in the context of a given user. For example,
in the path planning problem for the IoV, a path must be planned from the
beginning to the end for users. Traditional methods consider only information
about the path itself, such as the length of the path and road conditions. If
we can collect information about the historical paths selected by drivers and
some user path selection history closely related to the user and then use this
information to estimate the driver’s preference for certain paths, we can choose
the path from the set of potential paths that is most consistent with the driver’s
preference. Then, as in the automatic parking problem, we need to recommend
the best parking location for the user; we can consider not only the driving
distance but also inherent parking location attributes, such as price and services.
Furthermore, we can provide even more accurate recommendations if we can
combine this information with friends’ preferences for parking spaces to estimate
the user’s preference for a certain parking location.

Personalized recommendation systems first track user behavior, which re-
flects user preferences, then estimate the preference of a user from user feed-
back, and finally give a personalized ranking of items for the user. This task
can be performed by using rating-based methods to estimate the numeric score
of an item or by using ranking-based methods to estimate the relative prefer-
ences of items for each user. Many proposed rating-based methods, such as
k-nearest neighbor (kNN) collaborative filtering [1] and matrix factorization [2],
have achieved good performance when explicit feedback, such as rating scores
(Figure 1a), is available. However, explicit feedback may be difficult to track
in real-world scenarios. Implicit feedback (Figure 1b), such as click actions,
number of views and purchase behavior, is more easily tracked than explicit
feedback because it does not interfere with normal user actions. Many rating-
based methods often fail when only implicit feedback is available. However,
some rating methods can be adapted to utilize implicit feedback[3]. In general,
ranking-based methods are preferred over rating-based methods when only im-
plicit feedback is available. Implicit feedback often exists in binary form, using
“yes” or “no” to represent user actions. We focus on the issue of recommen-
dation using this form of implicit feedback, which is referred to as one-class
collaborative filtering [4].

With the growth of online social networks, many recommendation systems
require that users sign in to access their services. Users of a recommendation sys-
tem can also constitute a social network (Figure 2). For example, through social
relationships in IoV, it becomes possible to automatically park at the nearest
friend’s parking lot. Recent studies have also shown that social information can
be used to improve the accuracy of recommendation systems because users in a
social network often have interests that are similar to those of their friends. A
user’s preferences can be estimated both from the user’s own behavior and the
behavior of the user’s friends. When a user’s feedback is scarce, feedback from
the user’s friends can provide a large volume of information that can be used
to infer the user’s preferences. This process is especially important for a user
who has only recently joined the system. Moreover, the strength of social ties
between users is important because different friends may have different influ-
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(a) Explicit feedback (b) Implicit feedback

Figure 1: Two types of feedback. In explicit feedback, a pentagram represents the rating score
between 1 and 5 that user u gives item i. In implicit feedback, a tick represents a “yes” action
of user u, such as click actions, view times and purchase behavior, with respect to item i. The
question mark in both figures indicates that no feedback is tracked for user u with respect to
item i. Recommendation models aim to predict the missing values represented by question
marks.

Figure 2: An example of a social network in a recommendation system. Each user is repre-
sented by an ellipse. The line pointing from ui to uj indicates that ui trusts uj . The content
in the rectangle represent items consumed by the user who is connected to the rectangle by a
dotted line.

ences when a user chooses to acquire new items. In [5], Gee et al. investigated
the influence of strong ties and weak ties when users found jobs on Facebook’s
social network. Weak ties are important in recommendation tasks because the
feedback from weak ties provides slightly more novelty to users than strong ties.
Based on previous work, we extend the definition of weak ties to include weak
relations by considering information from the friends of friends. The informa-
tion from multistep social connections often has slightly weak relations with the
original user but is also useful for recommendations.

The goal of this paper is to build a ranking-based model for recommen-
dations based on the social ties between users when only implicit feedback is
available. Many rating-based methods propose to consider social connections
when estimating the rating scores of items based on the premise that any two
users who are friends in a social network should exhibit similar rating patterns.
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Since explicit feedback is not accessible in many practical applications, we do
not consider using rating-based methods that rely on explicit feedback. Rating-
based methods often fail to utilize implicit feedback because of the inherent data
sparsity, but ranking-based methods can overcome this issue. The most popu-
lar ranking-based method is the Bayesian personalized ranking (BPR) method
proposed by Steffen et al. in [6]. BPR assumes that a user prefers items that
have been consumed by the user over items that have not been consumed by
the user. In [7], Zhao et al. proposed social Bayesian personalized ranking
(SBPR), which incorporates social connections into BPR by further assuming
that a user prefers items consumed by their friends over items not consumed
by their friends. Moreover, the recommendation model should use a strategy to
compute the similarity of the user. The most common approach is mapping each
user and item into a latent vector space of fixed dimension. Each dimension of
the latent vector represents one aspect of the user and item. For instance, one
factor may represent that the user is a food lover or that the item is a type of
fruit. Then, the preference of the user for an item is represented by the user
and item vectors.

Although many approaches incorporate social information to estimate user
preferences, most consider only the direct friends of users. These approaches
fail to consider the complex underlying graph structure of the social network,
which is useful for examining the item information spread among users. The
first challenge we faced involves uncovering the complex graph structure of a
large social network. In this paper, we adopt the random walk [8] strategy to
travel the social network along social connections. This strategy mimics the
item information propagation process in a social network. Random walk has
proven to be effective at capturing the information hidden in a graph structure.
Because we use a ranking-based method to make recommendations, the second
challenge that we faced involves making a reasonable assumption about the
preference order of items for each user. We are motivated by the assumptions
used in SBPR. To incorporate weak relationships between users, we use the
distance along the random walk path between users as a metric to estimate the
user’s preference order for two items. The distance is weighted by the similarity
between two consecutive users in the path. Here, we adopt Jaccard’s coefficient
[9] to measure the similarity between users. Jaccard’s coefficient for two users is
defined as the number of common friends divided by the size of the union of the
friends. Jaccard’s coefficient is widely used in the literature and has proven to
be a useful metric for denoting the similarity between users in a social network.
We summarize the contributions of our work as follows.

• A novel social distance-aware Bayesian personalized ranking model, called
SDBPR, is proposed to generate accurate recommendations. SDBPR rec-
ognizes the importance of the graph structure of the social network, which
is useful for item information spread among users, and uses the random
walk strategy to uncover the complex graph structure of the social net-
work. The multistep distance is also used as the confidence for estimating
a user’s preference order for two items, thereby incorporating weak rela-
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tionships in the SDBPR model.

• A novel learning algorithm for learning the parameters of the ranking
model is proposed. Each user and item are mapped to a latent vector space
that represents features of the user and item, and a stochastic gradient
descent algorithm is employed to optimize the parameters. The results
from two experiments show that our model outperforms existing methods
in various metrics.

The remainder of this paper is organized as follows. Section 2 surveys the
related work. Section 3 formulates and analyzes the problem and describes our
proposed model and learning algorithm. Section 4 compares the experimental
results of our model with other baselines on two real-word datasets and verifies
the effectiveness of our method. Section 5 concludes this paper and discusses
future considerations.

2. Related Work

2.1. Recommendation Systems
Item recommendation systems, which aim to provide users with personalized

ranking lists of items, have been widely used by many internet service platforms.
Substantial amounts of work have been done in this area. The most famous
methods are collaborative filtering and content-based techniques [10]. Collabo-
rative filtering looks for users with rating patterns similar to those of the active
user and makes recommendations for the active user according to the ratings
of the most similar users. Content-based techniques proceed in an item-centric
manner. These techniques look for items that are similar to the current item and
recommend the most similar items to the user. Content-based methods have
proven to be more effective than traditional collaborative filtering. In [11, 12],
Chen et al. propose a 5G-smart diabetes system and smart personal health
advisor (SPHA) that utilize various personalized information to recommend
personalized treatment solutions for patients and provide an analysis of a user’s
health status. However, with content-based methods, it is difficult to determine
what information is useful for recommendation in some cases. Both collabora-
tive filtering and content-based methods have memory-based and model-based
implementations. Memory-based implementations, such as kNN [1], first com-
pute the similarity and then make recommendations based on the top-K most
similar users. Low-rank matrix factorization is a popular model-based imple-
mentation that factorizes the original matrix into low-rank matrices. Although
the original user-item matrix is sparse, low-rank matrix factorization can pro-
duce a dense representation of the data. Matrix factorization maps each user
and item into a common latent vector space of fixed dimension. Each dimension
describes one feature of an item and a personal interest of the user. The dot
product of the user latent vector and item latent vector is used to estimate the
preference of users for items. This idea is widely used in recommendation task
studies [13, 14]. We also adopt this method in our model.
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2.2. Implicit Feedback and One-class Collaborative Filtering
The majority of the work on recommendation systems focuses on methods of

using explicit feedback. However, explicit feedback is difficult to track in real-
world applications; therefore, recommendation systems must rely on implicit
feedback. One technique is to use implicit feedback to predict explicit feedback,
such as ratings, and then use a method that utilizes explicit feedback to rec-
ommend items. Another technique is to directly model the implicit feedback.
In [3], Hu et al. proposed a model to use preferences and confidence levels to
represent implicit feedback. The preference of a user for an item is measured at
different confidence levels. This model introduces confidence into the final loss
function and accounts for all user-item pairs, including observed and nonob-
served items. Moreover, implicit feedback often exists in a binary form. The
problem of recommendation using this binary form of implicit feedback is called
one-class collaborative filtering. In general, two types of methods can be used
to solve this problem. The point-wise method attempts to fit numeric scores of
items, and the pair-wise method [6, 7, 15] models the ranking order of items.
The point-wise method assumes that positive feedback provides a higher pref-
erence score than does negative feedback. The matrix factorizing method works
in this way. In [3], Hu et al. proposed an efficient alternating-least-squares opti-
mization algorithm for factoring the confidence-based user-item matrix in linear
time. Pairwise methods always regard implicit feedback as a flag that indicates
that users show higher preferences for certain items over others. [6] presents
a BPR model that assumes that users prefer observed items to nonobserved
items. This method samples triples containing the user, the observed item and
the nonobserved item from the data and then maximizes the probability of the
user preferring the observed item over the nonobserved item. Following this pro-
cess, other research has extended the BPR model by incorporating contextual
information.

2.3. Social Recommendation
Social networks have become popular in real-world recommendation systems.

The key point of social recommendation is to employ social information to im-
prove the accuracy of the results. A common assumption is that a user may
share interests with friends. Therefore, information about a user’s friends is
useful in estimating a user’s preferences. Many previous studies [16, 14, 17, 18]
have proved that social information can benefit recommendation tasks. In [16],
Ma et al. proposed to incorporate social regularization in a matrix factoriza-
tion framework. In [14], Jamali et al. exploited trust propagation in a social
network for recommendation tasks. In [19], a hierarchical group matrix factor-
ization (HGMF) technique was proposed to learn the user-group feature in a
social network for recommendation.

However, the aforementioned studies, with a few exceptions, consider rating-
based methods that focus on explicit feedback. In [7], Zhao et al. proposed an
SBPR model that extends the BPR model by assuming that users prefer items
consumed by their friends over other nonobserved items. In the SBPR model,
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an item consumed by more friends will have a smaller gap between this item
and another item in terms of positive feedback.

In [15], Chen et al. used Jaccard’s coefficient to distinguish between strong
ties and weak ties; they then extended the BPR model by further assuming
that a user prefers weak ties to strong ties. This model ranks items by tie type
instead of by the number of friends who consumed the item. We also recognize
the importance of assigning different weights to different social ties. In contrast
to previous work, we use the distance in the social network to measure the
strength of the relationship between any two users. Furthermore, we employ the
random walk technique to traverse the social network. The distance between
two users is computed along the random path as the summation of the Jaccard
distance of the connected users in the path. We introduce the weak relationship
between two users in ways that are more general than weak ties.

3. Design

In this section, we first present the general framework of SDBPR and per-
sonalized ranking. Next, we discuss the details of our SDBPR model, which
employs the random walk strategy to uncover the graph structure of the social
network. Finally, we incorporate weak relationships into our model by making
the rank order assumption about nodes in the random walk path.

3.1. Overview of SDBPR
Many studies extend the BPR framework by incorporating contextual in-

formation. The general framework of our model is presented in Figure 3. Our
model is an extension of BPR but differs in the sample process of the item pairs
and the assumption of the rank order. First, we use random walk to sample the
social network. Then, we make a ranking assumption for the items based on the
sampled path produced by the random walk and the user-item matrix. Next,
we map each user and item to a latent vector space and employ a stochastic
gradient learning algorithm to learn the parameters. Finally, the model can
produce personalized rankings of nonobserved items for the users.

In SDBPR, we use U to denote the total number of users and I to denote
the total number of items. The social network is denoted as G = (U,E), where
E ⊆ U × U . The feedback is denoted as F ⊆ U × I. Given M users, N items,
a social network G and feedback F , the problem of social recommendation
is to produce a personalized ranking list of items R for every user. Let xi

denote the ith item in R, and let xui denote the preference of user u for item
i. Then, for each item pair (xi, xj) in R, xui ≥ xuj if i < j. For convenience,
we also define T (u) = {v ∈ U : (u, v) ∈ E} as the friends of user u and
I(u) = {i ∈ I : (u, i) ∈ F} as the items consumed by user u.

3.2. Personalized Ranking
As mentioned above, the problem is one-class collaborate filtering. In this

setting, implicit feedback contains only the item consumed by the user. If we
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Figure 3: Framework of SDBPR.

assign 1 to observed items and 0 to nonobserved items, then most values in
the user-item matrix will be 0. Recommendation aims to rank the nonobserved
items for the user. If we consider only the observed items and ignore the nonob-
served items, the dataset will be small because the user-item matrix is sparse.
Another strategy involves first predicting the rating score of the items, includ-
ing the observed items and the nonobserved items for each user, and then using
the rating score to rank the items. Models, such as matrix factorizing, that
use this process to fit the user-item matrix will fail because, to minimize loss,
such as the mean squared error (MSE), the model attempts to predict 1 for all
observed items and 0 for all nonobserved items. Therefore, these models cannot
distinguish the differences among all nonobserved items for the users.

Based on the work in [6, 7], instead of simply ignoring the nonobserved
items or predicting the rating score of nonobserved items, we directly optimize
the rank of the items for each user. In this way, the model avoids the problem
presented by the sparsity of the dataset. For each user u in the dataset, we
sample tuples S(u) = {(u, i, j)} from the item set and assume user u prefers i
over j. Let xui denote the preference of user u for item i, and let Θ denote all
parameters in the model. Then, we attempt to optimize the following objective
function:

L(Θ) = Prob(Θ| > S)

=
Prob(Θ)Prob(> S|Θ)

Prob(> S)

=
Prob(Θ)

∏
u∈U

∏
(u,i,j)∈S(u) Prob(xui > xuj)

Prob(> S)

∝ Prob(Θ)
∏

u∈U

∏

(u,i,j)∈S(u)

Prob(xui > xuj)

(1)

where S = ∪u∈US(u) and > S represent that, for each tuple (u, i, j) in S, user u
prefers item i over item j. We assume that the rank orders of all item pairs are
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Figure 4: An example of a random walk in a social network.

independent of each other given the parameters Θ. Instead of directly maximiz-
ing the likelihood, we often minimize the log-likelihood function. Specifically,

lnL(Θ) = lnProb(Θ) +
∑

u∈U

∑

(u,i,j)∈S(u)

lnProb(xui > xuj) (2)

We have now presented the general framework of BPR. Many studies extend the
BPR framework by incorporating different contextual information. These stud-
ies differ in terms of the sample process of the item pairs and the assumptions
of the rank order.

3.3. Sampling a Social Network by Random Walk
Social networks often include an extremely large number of users; thus, we

cannot consider every user pair in the social network. However, in general, the
average number of friends per user is limited. One simple strategy is to consider
only user pairs that are composed of users and their friends. Many previous
works [7, 15] have adopted this strategy. However, this strategy fails to consider
the complex structure of the social graph. Note that information contained in
the social network is propagated through the connections between users. We
adopt the random walk strategy, seen in Figure 4, to travel the social graph in a
random manner. The users along the path are sampled to be used in our model.
For every connected user along the random walk path, we adopt the Jaccard
coefficient to measure the strength of the connection between two users.

strength(u, v) =
|Tu ∩ Tv|
|Tu ∪ Tv|

(3)

By definition, the strength of the connection between any two users is be-
tween 0 and 1. If users u and v are the same user, the strength of the connection
between u and v is 1. If users u and v have no friends in common, the strength
of the connection between u and v is 0. Because of this property, we can regard
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the strength between two users as the similarity. For two users ui and uj along
the random walk path u1, u2...ui...uj ...un−1, un, we define the strength of the
connection between ui and ui as follows:

strength(ui, uj) =

k=j∏

k=i+1

strength(uk, uk−1) (4)

Algorithm 1: Random walk algorithm for sampling
Input: user u, social graph G
Output: list of pairs (user, strength)

1 visited← ∅;
2 pairs← ∅;
3 max_allowed_hop← 6;
4 cur_hop← 0;
5 cur_user ← u;
6 cur_strength← 1;
7 while cur_hop < max_allowed_hop do
8 visited← visited ∪ (cur_user, cur_strength);
9 found← false;

10 friends = the friends of cur_user in the social graph G;
11 shuffle(friends);
12 foreach f in friends do
13 if f not in visited then
14 cur_strength← cur_strength× strength(f, u);
15 cur_user ← f ;
16 found← true;
17 break;
18 end
19 end
20 if not found then
21 break;
22 end
23 cur_hop← cur_hop+ 1

24 end

The sample strategy used in our model is the random walk. We select a
user as the initial node to randomly walk the social graph. The random walk
algorithm for sampling the social network is presented in Algorithm 1. First,
we initialize the necessary variables. For each current user, we first compute the
strength of the connection between the current user and the initial user. Next,
we sample a nonvisited user from the friends of the current user as the next
user. We terminate the algorithm if no such user exists. For each user along the
random walk path, we add the user and strength pair to the final returned set.
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3.4. Ranking Assumption on Sampled Paths
We discussed the sampling strategy in the previous section. In this section,

we focus on the rank order assumption used in our model. The work of SBPR
considered the rank order between a user and the direct friends of the user. Let
xui, xuk and xuj denote the preference of user u for items i, k and j, respectively;
the rank assumption of SBPR is as follows:

xui > xuk > xuj (5)

where i is an item consumed by u, k is an item consumed by the friends of u,
and j is an item consumed by neither u nor the friends of u.

In contrast to SBPR, which considers only the rank order between a user and
the direct friends of the user, our SDBPR model computes the strength of the
connection between an initial user and every user along the random walk path.
The rank order of items for a user is estimated according to the strength of the
connection between the users in the random walk path. Formally, we assume
that user u prefers items consumed by a user with a high-strength connection
over items consumed by a user with a low-strength connection. The rank order
assumption in SDBPR is as follows:

xui > xuj (6)

where i is a randomly chosen item in I(v), j is a randomly chosen item in I(w),
and v and w are any two directly connected users in the random walk path. We
also introduce a coefficient cuij to measure the confidence of this assumption.
We define the probability of this assumption as follows:

Prob(xui > xuj) = σ(
xui − xuj

cuij
) (7)

where σ(x) = 1
1+e−x and cuij = 1 + estrength(u,v)−strength(u,w).

3.5. Parameter Learning
We adopt the latent factor strategy in our model. Every user and item is

projected into a d-dimensional latent vector space. The dot product between
the user vector and the item vector is used to measure the preference of a user
for an item. The latent vectors of user u and item i are denoted as α(u) and
β(i). Thus, the preference of user u for item i is

xui = α(u)Tβ(i) (8)

Our aim is to find the parameters that maximize lnL(Θ). Moreover, we assume
that the prior of the parameters Θ follows a Gaussian distribution. We obtain
the following final objective function of our SDBPR model:

lnL(Θ) =
∑

u∈U

∑

(u,i,j)∈S(u)

lnσ(
xui − xuj

cuij
)− λu

∑

u∈U

α(u)Tα(u)− λi

∑

i∈I

β(i)Tβ(i)

(9)
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Algorithm 2: Learning algorithm
Input: users U , items I, feedback F , social graph G
Output: parameters Θ

1 for iteration← 1 to max_iteration do
2 foreach user u in U do
3 pairs← RandomWalk(u,G);
4 Sort(pairs); //sort pairs according to strength of user by

descending ;
5 length← the length of pair ;
6 for p← 2 to length do
7 v ← user in p position of pairs;
8 w ← user in p− 1 position of pairs;
9 i← randomly pick an item from I(v);

10 j ← randomly pick an item from I(w);
11 Compute the gradient of the parameters Θ = {alpha(u),

beta(i),beta(j)}; Θ← Θ+ ∂lnL(Θ)
∂Θ ;

12 end
13 end
14 end

We employ a stochastic gradient descent algorithm to learn the parameters
of our model. For each iteration, we first sample the training instances using
the random walk algorithm. Then, for each sampled instance, we compute the
derivative of lnL(Θ) for all parameters in the model. Finally, we adjust the
parameters based on the positive gradient of the parameter. We present the
learning algorithm in Algorithm 2.

4. Experiments

4.1. Experiment Setup
We use two datasets from two popular websites. These two datasets have

different forms, so we transform them into a uniform form for use with our
model. Both datasets contain social network information of users. The feedback
in the datasets indicates whether a user u consumed an item.

• Epinions Dataset. This dataset comes from Epinions, an online con-
sumer review website. Two files are included in this dataset. One file
contains positive trust statements: each line in the file represents a source
user who trusts another target user. The other file contains feedback:
each line in the file contains a rating between 1 and 5 given by a user
for an item. We convert the dataset into four separate files. The first
two files record all users and all items, the third file records the trust
relationships of users, and the fourth file contains binary feedback. We
treat scores higher than 3 as positive feedback, representing that a user
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consumes an item. The trust file is used to build a directed social graph,
and we randomly select 80% of the feedback data as training data and use
the remaining data as testing data.

• Ciao Dataset. Users of the ciao website can write reviews and comments
about products to help others make purchasing decisions. Customers can
read these reviews to consider the opinions of other customers about a
product. Three files are included in this dataset: we consider only two of
them. One file contains trust information: each line in the file contains a
trustor id and a trustee id. The other file contains the ratings of movies:
each line in the file contains a rating between 1 and 5 given by a cus-
tomer to a movie. We convert the dataset into four separate files. Two of
them are used to record all customers and movies, one records the trust
relationships of the customers, and the final contains the binary feedback
produced by the same rules as those used for the Epinions dataset. Simi-
lar to the Epinions dataset, we use the trust file to build a directed social
graph and split the feedback data into two parts: 80% is used to train the
model, and the rest is used to evaluate the model.

To demonstrate the effectiveness of our approach, we apply our method and
other four baseline methods to the two datasets.

• Random. Randomly sample items from the list of items the user has not
consumed to build a ranked list for each user.

• Most Popular. In this method, all items are ranked based on their preva-
lence, that is, the frequency of appearance of items in the feedback.

• BPR. The BPR method assumes that users prefer observed items over
nonobserved items.

• SBPR. The SBPR method extends the BPR method by ranking nonob-
served items behind items consumed by the user’s friends.

We use three popular metrics to evaluate the recommendation quality of our
model and make comparisons among all methods.

• Recall@K. This metric is an extension of the traditional recall metric.
For each user in the dataset, Recall@K measures the fraction of all actually
consumed items in the test set found in the list of top K items predicted
by the model. A higher value of this metric means that the model has the
power to find more nonobserved items that will be consumed by the user
in the future. The final recall value is the mean of all recall values of a
user. We define C(u) as the list of consumed items for user u in the test
set. C(K,u) represents the items in the test set already consumed by u
that appear in the list of top K ranked items produced by the model. The
formula of Recall@K is defined as follows.

Recall@K =
|C(K,u)|
|C(u)|
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• Precision@K. This metric is an extension of the traditional precision
metric. For each user in the dataset, Precision@K corresponds to the
number of actually consumed items in the list of top K predicted items
divided by the K list produced by the model. A higher value of this metric
means that the model makes more correct predictions. The final precision
value is the mean of all precision values of a user. C(K,u) has the same
meaning as in Recall@K. The formula of Precision@K is defined as follows.

Precision@K =
|C(K,u)|
|K|

• AUC (Area under the curve). This metric measures the probability
that the recommendation model will assign a higher preference to a ran-
domly chosen consumed item than to a randomly chosen nonconsumed
item. A higher value of this metric means that the model will rank more
positive items ahead of negative items. The final AUC value is the mean
of all AUC values of a user. The formula of AUC is defined as follows.

AUC =
1

|U |
∑

u∈U

1

|M(u)|
∑

(i,j)∈M(u)

I(xui > xuj)

where M(u) = {(i, j) : j ∈ C(u) and j ∈ N(u)},C(u) denotes the items
consumed by user u, N(u) denotes the nonconsumed items of user u, and
I is an indicator function that outputs 1 if item i is ranked ahead of item
j.

• NDCG (Normalized discounted cumulative gain). This metric con-
siders the weighted rankings of recommended items. Items ranked higher
have larger weights in the final result. For each user in the dataset, NDCG
is computed by accumulating the weighted rankings of items for the user.
A higher value of this metric means that more positive items are ranked
at the top of the ranking list. To define NDCG, we first define DCG as
follows.

DCG(u) =
n∑

j=1

2r(j) − 1

log2(1 + j)

where r(j) is the score of the item in the jth position of the recommenda-
tion list of user u. The value of r(j) is equal to 1 if item j is consumed
by u and is otherwise 0. The NDCG of user u is the normalized result of
DCG and is define as follows.

NDCG(u) =
DCG(u)

Z(u)

where Z(u) is the ideal value of DCG(u) for user u, which is computed as
the best possible ranking of items for the user. The final NDCG value is
the mean of all NDCG values of a user.

NDCG =
1

|U |
∑

u∈U

NDCG(u)
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Table 1: Performance evaluations on the Ciao dataset

Method Random Most Popular BPR SBPR SDBPR
Prec@10 0.0001 0.0025 0.0033 0.0046 0.006
Rec10 0.0003 0.003 0.02677 0.0354 0.06
AUC 0.4999 0.6531 0.6525 0.6720 0.6994

NDCG 0.0838 0.1158 0.1164 0.1237 0.1289

Table 2: Performance evaluations on the Epinions dataset

Method Random Most Popular BPR SBPR SDBPR
Prec@10 0.00005 0.0004 0.0035 0.00422 0.0052
Rec@10 0.00047 0.012 0.011 0.0156 0.01811

AUC 0.5068 0.6436 0.656 0.6714 0.7072
NDCG 0.07811 0.0933 0.1058 0.1091 0.1136

4.2. Results and Analysis
We implement our model and four other models with factor sizes ranging

from 2 to 20. Table 1 and Table 2 detail the recommendation performance
of the five models with a factor size of 20 on two datasets in terms of four
different metrics. From Table 1 and Table 2, we can conclude that our SDBPR
outperforms the other four models in all cases.

SDBPR vs Baselines. The performance of the Random method is gen-
erally the worst among all the methods on both datasets. The gap between
SDBPR and Random for Recall@K, Precision@K, AUC and NDCG is large.
Because the Random method randomly selects an item from the nonobserved
items, it ignores all information contained in both the feedback and the so-
cial graph. The Most Popular method selects items according to their global
popularity; this method is a strong baseline method compared to the Random
method. The smallest gap between the Most Popular method and SDBPR
is found for AUC and NDCG. Because many users show high preferences for
a small set of items, the Most Popular method assigns higher ranks to these
items. The Most Popular method is expected to achieve good performance in
terms of AUC and NDCG. However, because the Most Popular method does not
consider the personality of users, it suffers from poor performance in terms of
Recall@K and Precision@K when we restrict K to a small number. Both BPR
and SBPR achieve good performance in terms of AUC and NDCG because these
two metrics are analogous to the ranking objective. SBPR is superior to BPR
in all cases because SBPR distinguishes between social feedback and negative
feedback, whereas BPR treats them equally.

Our SDBPR model also outperforms both SBPR models in all cases. The
largest gap is in the Recall@K metric on both datasets. The main reason for
this result is that, in contrast to SBPR, our model distinguishes the influence
of different users in the social network. On the Ciao dataset, SDBPR outper-
forms SBPR by as much as 30%, 69%, 4%, and 4.2% in terms of Precision@K,
Recall@K, AUC and NDCG, respectively. On the Epinions dataset, SDBPR
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(a) Precsion (b) Recall

Figure 5: Precision and recall on Ciao.

outperforms SBPR by 23%, 16%, 5.3%, and 4.1% in terms of Precision@K,
Recall@K, AUC and NDCG, respectively. The performance of models that
consider the social network is better than the performance of those that do not
because the model can learn more about users from the social information in
the dataset to improve performance. Thus, social information is useful for item
recommendation.

Recall and Precision. In Figure 5 and Figure 6, we evaluate the Pre-
cision@K and Recall@K of three models, namely, BPR, SBPR, and SDBPR,
when varying K from 5 to 50. We exclude the Random model and the Most
Popular model because the precision and recall of these two methods do not
have meaningful trends when we vary K. In both datasets, the precision contin-
ues to decrease as K increases. The precision changes rapidly when K is small
but more slowly when K is large. The gap in precision between our model and
the other two models decreases with increasing K. When K is approximately
50, the precision of the three models on both datasets stops changing at nearly
the same value. The recall of the three models on both datasets continues to
increase at a steady rate as K increases from 5 to 50. We might expect the
recall to stop changing at some point. From Figure 5 and Figure 6, we conclude
that our SDBPR significantly improves the precision of the other two baseline
models when K is small and the recall when K is large. In real recommendation
systems, the value of K is often set to a medium number between 5 and 20;
thus, we expect our model to achieve good performance in practice.

Performance with Respect to N (Number of Latent Factors). We
evaluate three models, namely, BPR, SBPR, and SDBPR, when varying the
size of the latent vector N from 1 to 20. As shown in Figure 7a and Figure 7b,
when N is small, the gap between these models is small. The gap of AUC and
NDCG on Ciao increases as N increases. However, when N exceeds a threshold,
all models converge. We can interpret this phenomenon as follows. When N is
small, the latent vector is unable to capture information from either the user-
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(a) Precision (b) Recall

Figure 6: Precision and recall on Epinions.

item relationship or from the social network. When N becomes large, SBPR
and SDBPR are able to capture the information contained in the social network;
therefore, the gap between the social model and the nonsocial model increases.
Moreover, our SDBPR model consistently outperforms SBPR with varying N ,
and the gap between these models becomes large as N increases. The reason
for this change is that, when N is sufficiently large, SBPR learns only one-step
strength in the social network but SDBPR has enough parameters to learn the
multistep strength in the social network. Therefore, in contrast to SBPR, our
SDBPR model has the power to learn the complex social network structure.
The trends of AUC and NDCG on the Epinions dataset in Figure 8a and Figure
8b are similar to those on the Ciao dataset shown in Figure 7a and Figure 7b,
but the performance on Epinions is worse than that on Ciao. There are more
irrelevant items in the total item set on Epinions because the number of items
in the Epinions dataset is large. Both AUC and NDCG consider the rank of
all possible items in the dataset, and so the performance on Epinions is not as
good as that on Ciao. We note that, when N is increased to approximately 20,
the models show minimal improvement; thus, for many models, a small N is
sufficient.

5. Conclusion

In this paper, we studied a method of exploiting social network information
to improve the performance of recommendation systems. We designed a model
called SDBPR based on previous work. To uncover the complex graph of a social
network, we employed the random walk method to sample users in the social net-
work. We also incorporated weak relationships into the SDBPR model by mak-
ing a rank order assumption between users at multistep distances. Compared to
existing recommendation approaches, our approach achieves good performance
when applied to the one-class collaborative filtering problem. Our work creates
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(a) AUC (b) NDCG

Figure 7: Correlation of AUC and NDCG with the number of latent factors on Ciao.

(a) AUC (b) NDCG

Figure 8: Correlation of AUC and NDCG with the number of latent factors on Epinions.

opportunities for future research. First, we can consider other methods, such
as preferential attachment and Adamic-Adar, to replace Jaccard’s coefficient to
measure the strength between two users. Second, content-based methods often
show good performance; we could consider how to combine the properties of
users and items into social recommendations. Third, to process data produced
by an extremely large number of users and items in large recommendation sys-
tems in a reasonable time, we could consider scaling the SDBPR model for use
in the MapReduce framework.
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HIGHLIGHTS

We summarize our contributions as follows.
 A novel social-distance-aware Bayesian personalized ranking model, named SDBPR, is

proposed  to  generate  more  accurate  recommendations.  SDBPR  recognizes  the

importance  of  the  graph  structure  of  the  social  network,  which  is  useful  for  item

information spread among users, and it  proposes to use the random walk strategy to

uncover the complex graph structure of the social network. The multistep distance is

also  used  as  the  confidence  for  estimating  a  user's  preference  order  for  two items,

therein incorporating weak relations in SDBPR model.
 A  novel  learning  algorithm  for  learning  the  parameters  for  the  ranking  model  is

proposed.  Each  user  and  item  are  mapped  to  a  latent  vector  space  that  represents

different aspects of the user and item, and a stochastic gradient descent algorithm is

employed  to  learn  the  parameters.  Experimental  results  from  two  experiments

demonstrate  that  our  algorithm  outperforms  existing  methods  in  terms  of  various

metrics.


