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School of Computer Science and Technology, Huazhong U .wersit~ of Science and
Technology, China

Abstract

Recommendation systems recommend ney. 'tems to users. Because training
data contain only binary forms of implicit tec "hack in many cases, such as
in IoT and IoV, one-class collaborativ ... ‘=~ which can be solved by using
rating-based methods to estimate the nu. ‘er ¢ scores of items or ranking-based
methods based on the preferences ¢ ~ach u. v for items, must be addressed. In
addition, because of the sparsity of su h . ~ta, ranking-based methods are often
preferred over rating-based methods w. =n only implicit feedback is available.
Social information has recently .. "n usc. ¢o improve the accuracy of rankings.
Traditional approaches simply consia - the direct friends of users in a social
network, but this process fails to consider the propagation of influence along
connections in the social - etwor. and cannot reveal the complex graph struc-
ture of the social networ’ In this ) aper, a novel social distance-aware Bayesian
personalized ranking n-odel, ~llee SDBPR, is proposed to generate more accu-
rate recommendation . SD3PR uses a random walk to travel the social network
and then makes pai- “ise .ssur ptions about the ranking order based on the dis-
tance between use s alc. ~ t} 2 random walk. The experimental results on two
real datasets shr v that the proposed approaches significantly outperform the
baseline appro ches . terms of ranking prediction.

Keywords: " .ec. nmendation, Bayesian personalized ranking, Social similarity,
Random w .tk

1. In’ rody ctior

™ commn, - ation systems are very popular in people’s daily life and are
w dely usc ! by many Internet services. Amazon and eBay recommend products
w en users wre shopping online, Netflix and YouTube recommend movies to their
cusiwe =~ , and the Internet of Vehicles (IoV) recommends automatic driving
rout’ s or locations for parking. One important aspect of recommendations is
that t ey must be personalized, which means that the recommendation system
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must recommend different items in the context of a given user. For exe “nle,
in the path planning problem for the IoV, a path must be pla .nea f~om the
beginning to the end for users. Traditional methods consider ¢ 'ly i* formation
about the path itself, such as the length of the path and road c. ditions. If
we can collect information about the historical paths seler .eca by drivers and
some user path selection history closely related to the us r and th n use this
information to estimate the driver’s preference for certain p. *hs, we can choose
the path from the set of potential paths that is most co” .._cent wivn the driver’s
preference. Then, as in the automatic parking proble: 1, we .ec ' to recommend
the best parking location for the user; we can consi. not / aly the driving
distance but also inherent parking location attributes, "ich . price and services.
Furthermore, we can provide even more accurate recon. endations if we can
combine this information with friends’ preference. “or park’ 1g spaces to estimate
the user’s preference for a certain parking loc.. ‘on.

Personalized recommendation systems first tre. '~ user behavior, which re-
flects user preferences, then estimate the  C.cicuce of a user from user feed-
back, and finally give a personalized ranking . © items for the user. This task
can be performed by using rating-basec ~~*thads tu estimate the numeric score
of an item or by using ranking-based m thc s to estimate the relative prefer-
ences of items for each user. Man - prop. 'ed rating-based methods, such as
k-nearest neighbor (kNN) collaborat. ¢ "'ter1..g [1] and matrix factorization [2],
have achieved good performance when ~xpucit feedback, such as rating scores
(Figure 1a), is available. Howe. . .. " 't feedback may be difficult to track
in real-world scenarios. Implicit tec "hack (Figure 1b), such as click actions,
number of views and purchase behavior, is more easily tracked than explicit
feedback because it does r suv 1. *fere with normal user actions. Many rating-
based methods often fai’ when o'y implicit feedback is available. However,
some rating methods can L. ~dap od to utilize implicit feedback[3]. In general,
ranking-based methor s are prewc red over rating-based methods when only im-
plicit feedback is av' Jdabl . Im licit feedback often exists in binary form, using
“yes” or “no” to repre at u er actions. We focus on the issue of recommen-
dation using thi- form ot . aplicit feedback, which is referred to as one-class
collaborative i’ er.. - [4].

With the growth ot . aline social networks, many recommendation systems
require that .ser. sign in to access their services. Users of a recommendation sys-
tem can al » cor .titute a social network (Figure 2). For example, through social
relationships .. ToV, it becomes possible to automatically park at the nearest
friend’s parking lov. Recent studies have also shown that social information can
be usr t to ".npre /e the accuracy of recommendation systems because users in a
social ne. rk ,ften have interests that are similar to those of their friends. A
us . s preferei.ces can be estimated both from the user’s own behavior and the
b havior o the user’s friends. When a user’s feedback is scarce, feedback from
the user’s riends can provide a large volume of information that can be used
.0 inter vne user’s preferences. This process is especially important for a user
who . as only recently joined the system. Moreover, the strength of social ties
betwe n users is important because different friends may have different influ-
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(a) Explicit feedback ) Impucit feedback

Figure 1: Two types of feedback. In explicit feedback, a , ntagram r« rresents the rating score
between 1 and 5 that user u gives item 4. In implicit feedbac.. ~ tic! represents a “yes” action
of user u, such as click actions, view times and purchase . havior, with respect to item . The
question mark in both figures indicates that no feedback is v. -ked for user u with respect to
item ¢. Recommendation models aim to predict . ...oouug values represented by question
marks.

iz

Figure 2: An example of # sociax ~tw .k in a recommendation system. Each user is repre-
sented by an ellipse. The ine printing from u; to u; indicates that w; trusts ;. The content
in the rectangle represe . iter s cons imed by the user who is connected to the rectangle by a
dotted line.

ences when a tser cu. ~ses to acquire new items. In [5], Gee et al. investigated
the influence  strong ties and weak ties when users found jobs on Facebook’s
social netw’ ck. " ’eak ties are important in recommendation tasks because the
feedback fic ~ v cak ties provides slightly more novelty to users than strong ties.
Based o previo. » work, we extend the definition of weak ties to include weak
relatio” 3 by considering information from the friends of friends. The informa-
tion fi. » - wltis .ep social connections often has slightly weak relations with the
original usc. * 4t is also useful for recommendations.

The g al of this paper is to build a ranking-based model for recommen-
d. tions ba: >d on the social ties between users when only implicit feedback is
ava. ~hle  Many rating-based methods propose to consider social connections
wher estimating the rating scores of items based on the premise that any two
users 'ho are friends in a social network should exhibit similar rating patterns.




Since explicit feedback is not accessible in many practical applications, . ~ do
not consider using rating-based methods that rely on explicit feer nacr = Rating-
based methods often fail to utilize implicit feedback because of t* « in} srent data
sparsity, but ranking-based methods can overcome this issue. The “ost popu-
lar ranking-based method is the Bayesian personalized ran! .ag (BPR) method
proposed by Steffen et al. in [6]. BPR assumes that a us v prefers ‘tems that
have been consumed by the user over items that have not “een cc isumed by
the user. In [7], Zhao et al. proposed social Bayesij- .. persouanzed ranking
(SBPR), which incorporates social connections into 7 PR 'y 1 rther assuming
that a user prefers items consumed by their friends ¢ . iterr, not consumed
by their friends. Moreover, the recommendation mo.. ' shc.” . use a strategy to
compute the similarity of the user. The most common apy. »ach is mapping each
user and item into a latent vector space of fixea ““mensio . Each dimension of
the latent vector represents one aspect of the ~er a..’ ".em. For instance, one
factor may represent that the user is a food lover « - that the item is a type of
fruit. Then, the preference of the user fo . o 15 represented by the user
and item vectors.

Although many approaches incorpc ‘-~ encial information to estimate user
preferences, most consider only the dire t f.enas of users. These approaches
fail to consider the complex underl-ing gi. Hh structure of the social network,
which is useful for examining the it.*u —for..ation spread among users. The
first challenge we faced involves uncov ring the complex graph structure of a
large social network. In this pa, =1, .. = 'opt the random walk [8] strategy to
travel the social network along soc..' connections. This strategy mimics the
item information propagation process in a social network. Random walk has
proven to be effective at c¢# soui.. ~ the information hidden in a graph structure.
Because we use a rankin -based m thod to make recommendations, the second
challenge that we faced 1. ~lves naking a reasonable assumption about the
preference order of it ms for eac 1+ user. We are motivated by the assumptions
used in SBPR. To "acor oratr weak relationships between users, we use the
distance along the ran. m w* .k path between users as a metric to estimate the
user’s preference rder for v o items. The distance is weighted by the similarity
between two ce .sec ‘ive users in the path. Here, we adopt Jaccard’s coefficient
[9] to measure the simila. ity between users. Jaccard’s coefficient for two users is
defined as t} : nu nber of common friends divided by the size of the union of the
friends. Je card s coefficient is widely used in the literature and has proven to
be a usef1l me ic for denoting the similarity between users in a social network.
We sur marize the contributions of our work as follows.

o A . vels cial distance-aware Bayesian personalized ranking model, called
oDBP1., is proposed to generate accurate recommendations. SDBPR rec-
ognt. s the importance of the graph structure of the social network, which
is us' [l for item information spread among users, and uses the random
..—a strategy to uncover the complex graph structure of the social net-
work. The multistep distance is also used as the confidence for estimating

, user’s preference order for two items, thereby incorporating weak rela-




tionships in the SDBPR model.

e A novel learning algorithm for learning the parameters of t} : ra. king
model is proposed. Each user and item are mapped to a late.. - ector space
that represents features of the user and item, and a < _ ‘hastic sradient
descent algorithm is employed to optimize the para aeters. The results
from two experiments show that our model outperfor. ‘s existir g methods
in various metrics.

The remainder of this paper is organized as follo s. “ectic 1 2 surveys the
related work. Section 3 formulates and analyzes th > broblem - .ad describes our
proposed model and learning algorithm. Section 4 co.. ~ares the experimental
results of our model with other baselines on twe real-wora datasets and verifies
the effectiveness of our method. Section 5 concluc < thi paper and discusses
future considerations.

2. Related Work

2.1. Recommendation Systems

Item recommendation systems, v-hich a. 1 to provide users with personalized
ranking lists of items, have been wide. 7 . "2d L many internet service platforms.
Substantial amounts of work have bee ' doae in this area. The most famous
methods are collaborative filter.. » a..” ~ tent-based techniques [10]. Collabo-
rative filtering looks for users with r.. ‘ng patterns similar to those of the active
user and makes recommendations for the active user according to the ratings
of the most similar users. “omnuv. t-based techniques proceed in an item-centric
manner. These technique , look for tems that are similar to the current item and
recommend the most simu. ° iter 5 to the user. Content-based methods have
proven to be more eff ctive tha.. traditional collaborative filtering. In [11, 12],
Chen et al. propos. a F s .t diabetes system and smart personal health
advisor (SPHA) that ilize various personalized information to recommend
personalized tree ment solw. .ons for patients and provide an analysis of a user’s
health status. ¥ ow. =r, with content-based methods, it is difficult to determine
what information is use. J for recommendation in some cases. Both collabora-
tive filtering anc. content-based methods have memory-based and model-based
implement tions Memory-based implementations, such as kNN [1], first com-
pute the simn. “ty and then make recommendations based on the top-K most
similar isers Low-rank matrix factorization is a popular model-based imple-
ments ion aat f .ctorizes the original matrix into low-rank matrices. Although
the orign. ' us' ,-item matrix is sparse, low-rank matrix factorization can pro-
dv ¢ a dense .epresentation of the data. Matrix factorization maps each user
a ditem i1 ‘0 a common latent vector space of fixed dimension. Each dimension
de. ~ribes ¢ ae feature of an item and a personal interest of the user. The dot
L roducy of the user latent vector and item latent vector is used to estimate the
prefe. »nce of users for items. This idea is widely used in recommendation task
studic , [13, 14]. We also adopt this method in our model.




2.2. Implicit Feedback and One-class Collaborative Filtering

The majority of the work on recommendation systems focuses on o "nds of
using explicit feedback. However, explicit feedback is difficult .~ tr ck in real-
world applications; therefore, recommendation systems must rely ~ implicit
feedback. One technique is to use implicit feedback to predi .¢c expli~it feedback,
such as ratings, and then use a method that utilizes expi -it feedb ck to rec-
ommend items. Another technique is to directly model the mplic ¢ feedback.
In [3], Hu et al. proposed a model to use preferences und contidence levels to
represent implicit feedback. The preference of a user : w ar iter, is measured at
different confidence levels. This model introduces contiuence i to the final loss
function and accounts for all user-item pairs, inclua. "o ouserved and nonob-
served items. Moreover, implicit feedback often exists i1, a binary form. The
problem of recommendation using this binary fori. ~f imp’ cit feedback is called
one-class collaborative filtering. In general, tw. *vpes o1 methods can be used
to solve this problem. The point-wise method atten. *s to fit numeric scores of
items, and the pair-wise method [6, 7, 15, odels the ranking order of items.
The point-wise method assumes that positive 1. “dback provides a higher pref-
erence score than does negative feedbac . =7 - matrix factorizing method works
in this way. In [3], Hu et al. proposed an . G .ent alternating-least-squares opti-
mization algorithm for factoring the -nfide. ~e-based user-item matrix in linear
time. Pairwise methods always regarc w._licic feedback as a flag that indicates
that users show higher preferences for ertain items over others. [6] presents
a BPR model that assumes tha. 1seis . efer observed items to nonobserved
items. This method samples triples cc *aining the user, the observed item and
the nonobserved item from the data and then maximizes the probability of the
user preferring the observe «item ver the nonobserved item. Following this pro-
cess, other research has vtended he BPR model by incorporating contextual
information.

2.8. Social Recomm mda .on

Social network , have . ~c ne popular in real-world recommendation systems.
The key point ¢ ~cial recommendation is to employ social information to im-
prove the accu. acy o. ‘he results. A common assumption is that a user may
share interes* ~ith friends. Therefore, information about a user’s friends is
useful in es’.mat 1g a user’s preferences. Many previous studies [16, 14, 17, 18]
have prove. "hr  social information can benefit recommendation tasks. In [16],
Ma et 2". propc. 1 to incorporate social regularization in a matrix factoriza-
tion fr .mev ork. In [14], Jamali et al. exploited trust propagation in a social
networ. f  recr mmendation tasks. In [19], a hierarchical group matrix factor-
izati-= (HU" T ) technique was proposed to learn the user-group feature in a
sc :ial net ork for recommendation.

Howeve , the aforementioned studies, with a few exceptions, consider rating-
basc ' ™~ 10ds that focus on explicit feedback. In [7], Zhao et al. proposed an
SBPR model that extends the BPR model by assuming that users prefer items
consu 1ed by their friends over other nonobserved items. In the SBPR model,




an item consumed by more friends will have a smaller gap between thi. ‘*tem
and another item in terms of positive feedback.

In [15], Chen et al. used Jaccard’s coefficient to distinguist netv -en surong
ties and weak ties; they then extended the BPR model by furti. - assuming
that a user prefers weak ties to strong ties. This model ran’ > 1iems by e type
instead of by the number of friends who consumed the iter . We als recognize
the importance of assigning different weights to different soc -1 ties. .n contrast
to previous work, we use the distance in the social » _.sork v measure the
strength of the relationship between any two users. Fuv ther .01 we employ the
random walk technique to traverse the social networn (he ¢ stance between
two users is computed along the random path as the 'mn.. .on of the Jaccard
distance of the connected users in the path. We introduce “he weak relationship
between two users in ways that are more genera. “han we: < ties.

3. Design

In this section, we first present the generar . ~mework of SDBPR and per-
sonalized ranking. Next, we discuss t - . ‘-1« of our SDBPR model, which
employs the random walk strategy to un. w ¢ the graph structure of the social
network. Finally, we incorporate w '~ rela. onships into our model by making
the rank order assumption about no«. s . the random walk path.

3.1. Overview of SDBPR

Many studies extend the BPR fra.. ework by incorporating contextual in-
formation. The general frar -—ork of our model is presented in Figure 3. Our
model is an extension of F »R buu liffers in the sample process of the item pairs
and the assumption of tl.. »ank orc ar. First, we use random walk to sample the
social network. Then, /e man. = anking assumption for the items based on the
sampled path produ :d b~ the random walk and the user-item matrix. Next,
we map each user «. 17 em t, a latent vector space and employ a stochastic
gradient learning algori.. m .o learn the parameters. Finally, the model can
produce persons . ~d rankings of nonobserved items for the users.

In SDBPR, we us. 77 to denote the total number of users and I to denote
the total nur™ - of items. The social network is denoted as G = (U, E), where
E CU x U The feedback is denoted as FF C U x I. Given M users, N items,
a social ne. v ¢ G and feedback F, the problem of social recommendation
is to pr duce a _ ~rsonalized ranking list of items R for every user. Let x;
denote che “.h item in R, and let x,; denote the preference of user u for item
i. The. f rear.item pair (z;,x;) in R, x4 > x; if ¢ < j. For convenience,
we o dew « T(u) = {v € U : (u,v) € E} as the friends of user v and
I'4)={i ~I:(u,i) € F} as the items consumed by user .

3.2, Per nalized Ranking

/ ~ mentioned above, the problem is one-class collaborate filtering. In this
settin , implicit feedback contains only the item consumed by the user. If we
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Figure 3: Framework of "MBPr.

assign 1 to observed items and 0 to nonow. “rved items, then most values in
the user-item matrix will be 0. Recommendation. ‘ms to rank the nonobserved
items for the user. If we consider only t. ~ ou- . 1 items and ignore the nonob-
served items, the dataset will be small be = ise the user-item matrix is sparse.
Another strategy involves first prec .. mg tL. rating score of the items, includ-
ing the observed items and the nonobs rve ' items for each user, and then using
the rating score to rank the it ~< Mc els, such as matrix factorizing, that
use this process to fit the user-ite. matrix will fail because, to minimize loss,
such as the mean squared error (MSE), the model attempts to predict 1 for all
observed items and 0 for all = ~abserved items. Therefore, these models cannot
distinguish the differences among 1l nonobserved items for the users.

Based on the work .. 6, 7], istead of simply ignoring the nonobserved
items or predicting th: rating -c e of nonobserved items, we directly optimize
the rank of the item< for - ach user. In this way, the model avoids the problem
presented by the sp. «it, of “.ae dataset. For each user w in the dataset, we
sample tuples S(» ) = {(. * ,)} from the item set and assume user u prefers ¢
over j. Let z,; .. ~ote the preference of user u for item i, and let © denote all
parameters in vne mo. ' Then, we attempt to optimize the following objective
function:

L(F )= Prob(©| > S)
_ Prob(©)Prob(> S|0)
B Prob(> S)
B Prob(©) [[,cv H(u,i,j)es(u) Prob(zyi > ®u;) (1)
N Prob(> S)
x Prob(©) H H Prob(zy; > ;)

w€eU (u,i,7)€S(u)

wher. S = UyepS(u) and > S represent that, for each tuple (u,i,5) in S, user u
prefer  item ¢ over item j. We assume that the rank orders of all item pairs are




Step?2

Figure 4: An example of a random walk in « ~cia’ aetwork.

independent of each other given the parame ~rs ©. Instead of directly maximiz-
ing the likelihood, we often minimize the log-lis. *hood function. Specifically,

InL(©) = InProb(©) + Y . N InProb(xy > u;) @)

wC  uig)e (u)

‘We have now presented the general fran. ~woik of BPR. Many studies extend the
BPR framework by incorporatin, ‘uuc. ™ contextual information. These stud-
ies differ in terms of the sample proc -s of the item pairs and the assumptions
of the rank order.

8.8. Sampling a Social I twork by Random Walk

Social networks oft n inc. de .n extremely large number of users; thus, we
cannot consider everr user pair 1a the social network. However, in general, the
average number of f end per - ser is limited. One simple strategy is to consider
only user pairs th «t aic ~or posed of users and their friends. Many previous
works [7, 15] hav adopted tuis strategy. However, this strategy fails to consider
the complex st uctu. of the social graph. Note that information contained in
the social net--rk is propagated through the connections between users. We
adopt the r- ador walk strategy, seen in Figure 4, to travel the social graph in a
random m« ner The users along the path are sampled to be used in our model.
For ever conne “ed user along the random walk path, we adopt the Jaccard
coeffici nt t- measure the strength of the connection between two users.

T N T

strength(u,v) = 7w O
u v

©))

By defi .ition, the strength of the connection between any two users is be-
“ween o wud 1. If users v and v are the same user, the strength of the connection
betw =n w and v is 1. If users u and v have no friends in common, the strength
of the connection between u and v is 0. Because of this property, we can regard




the strength between two users as the similarity. For two users u; »nd u; 'ong
the random walk path wq,us...0;...05...Up—1, Uy, we define the s reny t™ of the
connection between wu; and u; as follows:

k=3
strength(u;, uj) = H strength(ug, uk- 1) (4)
k=i+1

Algorithm 1: Random walk algorithm for samplin_

Input: user u, social graph G
Output: list of pairs (user, strength)

1 visited « {);

2 pairs < 0;

3 max_ allowed__hop < 6;

4 cur__hop < 0;

5 CUT__UuSer < u;

6 cur_strength < 1;

7 while cur__hop < max__allowed__ho, do

8 visited <— visited U (cur__user, cur_ trength);
9 found «+ false;
10 friends = the friends of cur__u. er .. the social graph G;
11 shuffle(friends);
12 foreach f in friends do

13 if f not in visited then

14 cur__strengt’ «  nr__strength x strength(f,u);
15 cur_user ¢ - f;

16 found < tr. -

17 break;

18 end

19 end
20 if not fou .d then
21 ‘ brea' ,
22 end
23 cur_ .op -cur_hop+1
24 end

Th sap ple strategy used in our model is the random walk. We select a
user as> “h init’ J node to randomly walk the social graph. The random walk
alge"*hm 1. ampling the social network is presented in Algorithm 1. First,
w  initiali = the necessary variables. For each current user, we first compute the
st ength of the connection between the current user and the initial user. Next,
we . ™' a nonvisited user from the friends of the current user as the next
user We terminate the algorithm if no such user exists. For each user along the

rando 1 walk path, we add the user and strength pair to the final returned set.
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8.4. Ranking Assumption on Sampled Paths

We discussed the sampling strategy in the previous section. "a th - ~ction,
we focus on the rank order assumption used in our model. Th wor . of SBPR
considered the rank order between a user and the direct friends of v.. user. Let
Tuis Tuk and z,; denote the preference of user u for items 7, ¥ and j, »espectively;
the rank assumption of SBPR is as follows:

Ty > Tyl > Loyj (5)

where 4 is an item consumed by u, k is an item cons. ™+ . by " ae friends of wu,
and j is an item consumed by neither v nor the fri ~ds of =

In contrast to SBPR, which considers only the rank ¢ Jer between a user and
the direct friends of the user, our SDBPR mod ! compute : the strength of the
connection between an initial user and every 1ser a. ng t'.e random walk path.
The rank order of items for a user is estimated ac ~rding to the strength of the
connection between the users in the randem ==~ = h. Formally, we assume
that user u prefers items consumed by a usc with a high-strength connection
over items consumed by a user with a low-streng.. connection. The rank order
assumption in SDBPR is as follows:

L a, (6)

where 7 is a randomly chosen item in I( *), 7 1s a randomly chosen item in I(w),
and v and w are any two directi, ~ou... ** 1 users in the random walk path. We
also introduce a coeflicient c,;; to 1. ~sure the confidence of this assumption.
We define the probability of this assumption as follows:
Tyi — Tuyj

(7)

F 0b(xyi > wuj) = o -
uij

where O'(L') _ 1+<13*w nd =1+ estrength(u,v)—strength(u,w)'

3.5. Parameter L arnin,

We adopt tF . 'atent factor strategy in our model. Every user and item is
projected into a d-di. "msional latent vector space. The dot product between
the user vect . nd the item vector is used to measure the preference of a user
for an iter Thr latent vectors of user u and item 4 are denoted as «(u) and
B(i). Thus, e preference of user u for item 74 is

zui = a(u)"B(i) (8)

Our aim . *o f id the parameters that maximize InL(0©). Moreover, we assume
th' v tae prior of the parameters © follows a Gaussian distribution. We obtain
t] = follow1. g final objective function of our SDBPR model:

Loy =Y 3 no(PETTY 0 S a(w)Talw) — xS B()TB()

U (u,i,j C'u,z] U il
u€ J)ES (u) u€ 1€
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Algorithm 2: Learning algorithm

Input: users U, items I, feedback F', social graph G
Output: parameters ©

1 for iteration < 1 to max__iteration do

2 foreach user u in U do

3 pairs < RandomWalk(u,G);

4 Sort(pairs); //sort pairs according to strength of . ~ar b

descending ;

5 length < the length of pair ;

6 for p + 2 to length do

7 v < user in p position of pairs;

8 w 4 user in p — 1 position of pairs;

9 i < randomly pick an item from I(c,
10 j < randomly pick an item from . ‘w);
11 Compute the gradient of the paramete - © = {alpha(u),

beta(i),beta(j)}; © « © + Lo’;((i);
12 end
13 end
14 end
We employ a stochastic grau. my «. > 1t algorithm to learn the parameters

of our model. For each iteration, we Srst sample the training instances using
the random walk algorithm. Then, for each sampled instance, we compute the
derivative of InL(©) for # . pa. meters in the model. Finally, we adjust the
parameters based on thr positive sradient of the parameter. We present the
learning algorithm in Algoi. "m 2

4. Experiments

4.1. Ezxperiment ~etup

We use twc data. ‘s from two popular websites. These two datasets have
different forr- so we transform them into a uniform form for use with our
model. Bot". dat sets contain social network information of users. The feedback
in the data. *s adicates whether a user u consumed an item.

e F inirns Lataset. This dataset comes from Epinions, an online con-
ame  revi w website. Two files are included in this dataset. One file
con. ‘ns - ositive trust statements: each line in the file represents a source
user who trusts another target user. The other file contains feedback:
each ine in the file contains a rating between 1 and 5 given by a user
for 2 . item. We convert the dataset into four separate files. The first
uwou files record all users and all items, the third file records the trust
-elationships of users, and the fourth file contains binary feedback. We
reat scores higher than 3 as positive feedback, representing that a user
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consumes an item. The trust file is used to build a directed <ncial g ~vh,
and we randomly select 80% of the feedback data as trainir | dai» ~nd use
the remaining data as testing data.

o Ciao Dataset. Users of the ciao website can write revi- 5 and « mments
about products to help others make purchasing decis ons. Cu ‘omers can
read these reviews to consider the opinions of other custome s about a
product. Three files are included in this dataset: v co.. "'~ only two of
them. One file contains trust information: each ine ir “e file contains a
trustor id and a trustee id. The other file conta s .e ra ings of movies:
each line in the file contains a rating betwe = 1 and * given by a cus-
tomer to a movie. We convert the dataset into to. - separate files. Two of
them are used to record all customers an ' movies, - ne records the trust
relationships of the customers, and the final ¢ ~tair ; the binary feedback
produced by the same rules as those used i - the Epinions dataset. Simi-
lar to the Epinions dataset, we use the tx=a+ £ (g build a directed social
graph and split the feedback data into . "o parts: 80% is used to train the
model, and the rest is used to evaluate the . odel.

To demonstrate the effectiveness of ou - a- proach, we apply our method and
other four baseline methods to the * o dat. sets.

¢ Random. Randomly sample ite. s 1. n the list of items the user has not
consumed to build a rank: "ot foi =ach user.

e Most Popular. In this methoa, 'litems are ranked based on their preva-
lence, that is, the frequency of appearance of items in the feedback.

¢ BPR. The BPR r :thod as umes that users prefer observed items over
nonobserved items.

e« SBPR. The S” PR " aethod extends the BPR method by ranking nonob-
served items L “in . iter s consumed by the user’s friends.

We use three ,opular n.. .rics to evaluate the recommendation quality of our
model and mal . co. “narisons among all methods.

e Recal’ ..~ This metric is an extension of the traditional recall metric.
For e’ ch us rin the dataset, Recall@K measures the fraction of all actually
consun. - items in the test set found in the list of top K items predicted
by che moac” A higher value of this metric means that the model has the
» ower ¢o find more nonobserved items that will be consumed by the user
in 'e fut re. The final recall value is the mean of all recall values of a
wser. »  define C'(u) as the list of consumed items for user u in the test
set. 7(K,u) represents the items in the test set already consumed by u
that - ppear in the list of top K ranked items produced by the model. The

.ula of Recall@K is defined as follows.
|C(K, u)|

RecallOK = —————
|C(u)|

13




¢ Precision@K. This metric is an extension of the traditioral pre "<ion
metric. For each user in the dataset, Precision@K corre ,pon 1= to the
number of actually consumed items in the list of top K »red’ ted 1.ems
divided by the K list produced by the model. A higher value « +his metric
means that the model makes more correct predictions 1 ue final recision
value is the mean of all precision values of a user. C K, u) he ' the same
meaning as in Recall QK. The formula of Precision@K . defines as follows.

‘C(K7 U\i

PrecisionQK =
|K|

e« AUC (Area under the curve). This metric ~easures the probability
that the recommendation model will assign a highe. preference to a ran-
domly chosen consumed item than to a ra. 'omly _hosen nonconsumed
item. A higher value of this metric mean. “hat v..c model will rank more
positive items ahead of negative items. The 1. ~1 AUC value is the mean
of all AUC values of a user. The forw.. "ta ot AUC is defined as follows.

1 1
AUC = — — T(xy; wj
U] UZQU M S : (Zui > Tuj)
J)EM (u)

where M(u) = {(i,7) : j € C . and /€ N(u)},C(u) denotes the items
consumed by user u, N(u) deno. s v. ~ nonconsumed items of user u, and
I is an indicator function **“~t out, 1ts 1 if item ¢ is ranked ahead of item
7.

o« NDCG (Normalized discounted cumulative gain). This metric con-
siders the weighted r .uki._~ of recommended items. Items ranked higher
have larger weights n the fin. ! result. For each user in the dataset, NDCG
is computed by accun. 'atin | the weighted rankings of items for the user.
A higher value [ this me..ic means that more positive items are ranked
at the top of *1e r7 akine list. To define NDCG, we first define DCG as

follows. n

or() —1
DCG(u) = _—
(®) ; loga(1 + )
where - ;, ‘s the score of the item in the jth position of the recommenda-
tion ! st of aser u. The value of r(j) is equal to 1 if item j is consumed
by w a..' s otherwise 0. The NDCG of user u is the normalized result of
D7 G and 15 lefine as follows.
DCG(u)
NDCG(u) = ———
(1) Z(u)
whe. » Z(u) is the ideal value of DCG(u) for user u, which is computed as
the b st possible ranking of items for the user. The final NDCG value is
tho pean of all NDCG values of a user.

1
NDCG = il > NDCG(u)
uelU

14




Table 1: Performance evaluations on the Ciao dataset

Method | Random | Most Popular | BPR | SBPR | sDB n |
Prec@10 | 0.0001 0.0025 0.0033 [ 0.0046 | 7706 |
Recl0 0.0003 0.003 0.02677 | 0.0357 T 0.._
AUC 0.4999 0.6531 0.6525 | 0.6720 | 0. 994
NDCG | 0.0838 0.1158 0.1164 | 0.1.37 | 0.1 89 |

Table 2: Performance evaluations on the Epin’ns dat~<et

Method | Random | Most Popular | BPR ._PR ' SDBPR

Prec@10 | 0.00005 0.0004 0.0035 1 2 002-- [ 0.0052
Rec@10 | 0.00047 0.012 0.011 ‘ 0.u 56 | 0.01811
AUC 0.5068 0.6436 0.0.” [ 0.6 14 | 0.7072
NDCG | 0.07811 0.0933 0..758 | 7..091 0.1136

4.2. Results and Analysis

We implement our model and four '*“~r moaels with factor sizes ranging
from 2 to 20. Table 1 and Table 2 de ~il .he recommendation performance
of the five models with a factor si-e of » on two datasets in terms of four
different metrics. From Table 1 and 4.~ 2, ve can conclude that our SDBPR
outperforms the other four models in a.' cases.

SDBPR vs Baselines. Ti.. .. = wnce of the Random method is gen-
erally the worst among all the mev. ~ds on both datasets. The gap between
SDBPR and Random for Recall@K, Precision@K, AUC and NDCG is large.
Because the Random met' va 1. ~domly selects an item from the nonobserved
items, it ignores all infc mation « »ntained in both the feedback and the so-
cial graph. The Most Pop.'»t m c¢hod selects items according to their global
popularity; this metbh d is a sti..ag baseline method compared to the Random
method. The smal’:st ¢ «p b’ tween the Most Popular method and SDBPR
is found for AUC anu " DC( . Because many users show high preferences for
a small set of it/ .ns, the . ost Popular method assigns higher ranks to these
items. The Mc ¢ 1 ~ular method is expected to achieve good performance in
terms of AUC and NDUC_'. However, because the Most Popular method does not
consider the per, »nality of users, it suffers from poor performance in terms of
Recall@K  nd F ecision@K when we restrict K to a small number. Both BPR
and SBPR aci.. ve good performance in terms of AUC and NDCG because these
two me rics ~re aunalogous to the ranking objective. SBPR is superior to BPR
in all ases pece se SBPR distinguishes between social feedback and negative
feedback, ~her as BPR treats them equally.

our SDB1 R model also outperforms both SBPR models in all cases. The
le ‘gest gay is in the Recall@K metric on both datasets. The main reason for
th. result .s that, in contrast to SBPR, our model distinguishes the influence
.f dincient users in the social network. On the Ciao dataset, SDBPR outper-
form. SBPR by as much as 30%, 69%, 4%, and 4.2% in terms of Precision@QK,
Recal 3K, AUC and NDCG, respectively. On the Epinions dataset, SDBPR

a)
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Figure 5: Precision and recall ou ao.

outperforms SBPR by 23%, 16%, 5.3 and 4..0 in terms of Precision@QK,
Recall@K, AUC and NDCG, respectiv.'y. 1uo performance of models that
consider the social network is better than " ¢ performance of those that do not
because the model can learn more . *t us s from the social information in
the dataset to improve performance. 'L us, ocial information is useful for item
recommendation.

Recall and Precision. In k. re 5 and Figure 6, we evaluate the Pre-
cision@K and Recall@K of three mode.s, namely, BPR, SBPR, and SDBPR,
when varying K from 5 te .. We exclude the Random model and the Most
Popular model because t ie precis on and recall of these two methods do not
have meaningful trends w.. » we v ry K. In both datasets, the precision contin-
ues to decrease as K i .creases. 7 ne precision changes rapidly when K is small
but more slowly whr 1 K 7, larre. The gap in precision between our model and
the other two modei. 7 creas :s with increasing K. When K is approximately
50, the precision f the tu.  models on both datasets stops changing at nearly
the same value .° = recall of the three models on both datasets continues to
increase at a sceady 1. ~ as K increases from 5 to 50. We might expect the
recall to stor cu. 1ging at some point. From Figure 5 and Figure 6, we conclude
that our ST/BPF significantly improves the precision of the other two baseline
models when 7 s small and the recall when K is large. In real recommendation
systems the valu. of K is often set to a medium number between 5 and 20;
thus, - e ex ,ect «ur model to achieve good performance in practice.

Per.. mar e with Respect to N (Number of Latent Factors). We
evs uwte thre models, namely, BPR, SBPR, and SDBPR, when varying the
si e of the ‘atent vector N from 1 to 20. As shown in Figure 7a and Figure 7b,
w. »n N is small, the gap between these models is small. The gap of AUC and
NDOC . Ciao increases as N increases. However, when N exceeds a threshold,
all i ~dels converge. We can interpret this phenomenon as follows. When N is
small. the latent vector is unable to capture information from either the user-
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Figure 6: Precision and recall o.. ™oinions.

item relationship or from the social network. "hen N becomes large, SBPR
and SDBPR are able to capture the infc w.. = ~ ~ontained in the social network;
therefore, the gap between the social mo. 2l .nd the nonsocial model increases.
Moreover, our SDBPR model consi -ntly « ‘tperforms SBPR with varying N,
and the gap between these models b ~0. ~s .arge as N increases. The reason
for this change is that, when N is suffic. ntly large, SBPR learns only one-step
strength in the social network bu S, _. has enough parameters to learn the
multistep strength in the social netwe . Therefore, in contrast to SBPR, our
SDBPR model has the power to learn the complex social network structure.
The trends of AUC and N7,CG o. the Epinions dataset in Figure 8a and Figure
8b are similar to those ¢ = the Cia« dataset shown in Figure 7a and Figure 7b,
but the performance o Ep.. ‘~us s worse than that on Ciao. There are more
irrelevant items in tb . tot- ! item set on Epinions because the number of items
in the Epinions dat set "5 lar- 2. Both AUC and NDCG consider the rank of
all possible items a the 'ats et, and so the performance on Epinions is not as
good as that on ‘iao. We note that, when N is increased to approximately 20,
the models she # m.. "mal improvement; thus, for many models, a small N is
sufficient.

5. Conclus.. -

In 7 ais y .per. we studied a method of exploiting social network information
to imp. * the - erformance of recommendation systems. We designed a model
call~? SDb. ™ vased on previous work. To uncover the complex graph of a social
n swork, + = employed the random walk method to sample users in the social net-
w tk. We ¢ so incorporated weak relationships into the SDBPR model by mak-
ing . “~»' order assumption between users at multistep distances. Compared to
exist 'ng recommendation approaches, our approach achieves good performance
when pplied to the one-class collaborative filtering problem. Our work creates
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opportunities fc  “ture research. First, we can consider other methods, such
as preferential uttach.. “nt and Adamic-Adar, to replace Jaccard’s coefficient to
measure the .. ngth between two users. Second, content-based methods often
show good perfc mance; we could consider how to combine the properties of
users and 1. ~¢ mmto social recommendations. Third, to process data produced
by an er .remely . ~ge number of users and items in large recommendation sys-
tems i a re «sonable time, we could consider scaling the SDBPR model for use
in the ..~ Red’ ce framework.
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HIGHLIGHTS

We summarize our contributions as follows.

A novel social-distance-aware Bayesian personalized ranking model, n-med . "BPR, is
proposed to generate more accurate recommendations. SDBPR recu _mizes the
importance of the graph structure of the social network, whict is = ..%1 for item
information spread among users, and it proposes to use the rana. ~ walk strategy to
uncover the complex graph structure of the social network. 7..c multis.cp distance is
also used as the confidence for estimating a user's prefere ce orde for two items,
therein incorporating weak relations in SDBPR model.

A novel learning algorithm for learning the paramet rs f~. e ranking model is
proposed. Each user and item are mapped to a latent .cctor ,pace that represents
different aspects of the user and item, and a stochastic _-adient descent algorithm is
employed to learn the parameters. Experimer ~! resultt from two experiments
demonstrate that our algorithm outperforms e ~ting . _chods in terms of various
metrics.




