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Abstract

The Internet of mobile things is a burgeoning technique that generates, stores

and processes big real-time data to render rich services for mobile users. In

order to mitigate conflicts between the resource limitation of mobile devices

and users’ demands of decreasing processing latency as well as prolonging bat-

tery life, it spurs a popular wave of offloading mobile applications for execution

to centralized and decentralized data centers, such as cloud and edge servers.

Due to the complexity and difference of mobile big data, arbitrarily offloading

the mobile applications poses a remarkable challenge to optimizing the execu-

tion time and the energy consumption for mobile devices, despite the improved

performance of Internet of Things (IoT) in cloud-edge computing. To address

this challenge, we propose a computation offloading method, named COM, for

IoT-enabled cloud-edge computing. Specificly, a system model is investigated,
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including the execution time and energy consumption for mobile devices. Then

dynamic schedules of data/control-constrained computing tasks are confirmed.

In addition, NSGA-III (non-dominated sorting genetic algorithm III) is em-

ployed to address the multi-objective optimization problem of task offloading

in cloud-edge computing. Finally, systematic experiments and comprehensive

simulations are conducted to corroborate the efficiency of our proposed method.

Keywords: IoT, big data, cloud-edge computing, computation offloading,

energy consumption

1. Introduction

1.1. Background

Internet of Things (IoT) has emerged as a popular paradigm providing in-

ternetworking of many objects and smart things, such as mobile devices and

wearable devices [1][2]. Currently, the ever-increasing mobile devices, embedded5

with radio frequency identification (RFID) and sensor technology, are connected

to IoT via wireless networks, which integrates IoT with mobile computing. Due

to the ubiquitous sensing, computing and integration, Internet of mobile things

is used in a growing number of scenarios, e.g., healthcare system and catering

business [3][4]. To render mobile users improved experiences and increase the10

service quality of mobile devices, the Internet of mobile things facilitates rich

mobile applications, including measuring noise, recording location and captur-

ing images [5].

Mobile devices in IoT sense the surroundings of mobile users and generate

real-time big data, with useful information for supporting the mobile applica-15

tions [6][7]. The big data is stored and processed to guarantee the efficiency and

effectiveness of the mobile applications. However, the finite computation capac-

ity and cache size of the mobile devices impede the wide usage of the mobile

applications and cause tremendous amount of time for storing and processing

the big data on the mobile devices [8][9]. Moreover, the energy consumption of20
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the mobile devices increases, abbreviating the life of batteries and augmenting

emissions of greenhouse gases.

To alleviate the resource limitation of the mobile devices and improve the

performance of the generated mobile applications, cloud computing (CC) is a

burgeoning computing scheme where the mobile applications are available to be25

offloaded to the centralized cloud data centers and the cloud manager provisions

elastic and on-demand resources for executing the mobile applications[10][11].

In this way, the execution time of the mobile applications and the energy con-

sumption of the mobile devices are reduced, which satisfies the mobile users’

demands of shortening processing time and increasing battery life. Neverthe-30

less, due to the cloud deployed distantly from the mobile devices, offloading the

mobile applications to the remote cloud occupies substantial bandwidth of the

core network, causing network congestion to a high extent. Furthermore, the

mobile devices are connected to the cloud via Wide Area Network (WAN), and

the bandwidth of offloading the mobile applications is low, which leads to high35

latency. Therefore, much time is depleted in the process of offloading the mobile

applications to the cloud, causing immense offloading delay, especially for the

data-intensive computing tasks [12][13].

Different from CC, edge computing (EC) pushes small data centers (such

as cloudlets) with moderate resources, base stations and access points at the40

edge of radio access network, providing resource trusteeship services for the

mobile devices under the coverage[14]. Cloudlets connect to mobile devices via

Local Area Network (LAN), which is characterized by high bandwidth and low

latency. Therefore, less time is consumed in the process of offloading mobile

applications to the cloudlets, compared with that on the cloud, and the stress45

of core network is relieved. Hence, EC reduces offloading latency and makes

network more efficient so that it provides a timesaving computing paradigm [15].

EC enables a hybrid computation offloading scheme, that is, mobile devices can

offload the mobile applications to the cloudlet or to the cloud.
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1.2. Motivation50

To improve the performance of the mobile devices in IoT, cloudlets push

cloud services to the network edge. Mobile applications are often formalized

as workflows which contain some computing tasks with data/control dependen-

cies. In cloud-edge computing, mobile devices in IoT are available to offload

the computing tasks to the cloudlet or to the cloud for reducing the processing55

latency and prolonging the battery life of the mobile devices. However, arbi-

trarily offloading the computing tasks hardly optimizes the execution time and

the energy consumption of the mobile devices, due to the moderate resources

of the cloudlet and remote distance of the cloud. Therefore, it remains a chal-

lenge to optimize the execution time and the energy consumption of the mobile60

devices in the cloud-edge computing environment. To address the challenge, a

hybrid computation offloading method for IoT-enabled cloud-edge computing is

proposed.

1.3. Paper Contributions

In this paper, we make the following contributions.65

• Analyze the execution time and the energy consumption of the mobile

devices, and the computation offloading for IoT-enabled cloud-edge com-

puting is defined as a multi-objective optimization problem.

• Confirm the dynamic schedules of the concurrent workflows in cloud-edge

computing to select the optimal schedule strategy by using SAW (simple70

additive weighting) and MCDM (multiple criteria decision making).

• Adopt NSGA-III (non-dominated sorting genetic algorithm III) to address

the multi-objective optimization problem of shortening the execution time

and saving the energy consumption for each mobile device in IoT.

• Carry out comprehensive experiments and evaluations to validate the75

efficiency and effectiveness of COM.
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The remainder of the paper is organized as follows. In Section 2, the problem

formulation and the system model are proposed. In Section 3, a computation

offloading method over big data for IoT-enabled cloud-edge computing is elab-

orated. Section 4 evaluates the proposed method. We discuss the related work80

in Section 5. Section 6 gives the conclusion and the future work.

2. System Model and Problem Fromulation

In this section, a system model in cloud-edge computing is proposed to

evaluate the execution time and the energy consumption of the mobile devices.

Key notations and descriptions are listed in Table 1.85

Table 1: Key Notations and Descriptions

Notation Descriptions

M The number of mobile devices in IoT

Vm The computing task set of the m-th workflow

EDm The dependency set of the m-th workflow

dm,i The input data of the computing task vm,i receives

wm,i The computation workload of the computing task vm,i

Xm The hybrid offloading strategies of the m-th workflow

xm,i The offloading strategy of the computing task vm,i

TL(Xm) The offloading latency of the network

T e(Xm) The computing time in executing the m-th workflow

T t(Xm) The transmission time in executing the m-th workflow

Ai The transmission strategies of two computing tasks

Tm(Xm) The execution time of the m-th workflow

EL(Xm) The offloading energy consumption in executing the m-th workflow

Ee(Xm) The computing energy consumption in executing the m-th workflow

Et(Xm) The transmission energy consumption in executing the m-th workflow

Em(Xm) The energy consumption for the m-th mobile device
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2.1. Resource Model

The cloud-edge computing paradigm has the potential to satisfy the require-

ments of the execution time and the energy consumption for the mobile devices

in IoT. Fig. 1 illustrates a system framework for IoT-enabled cloud-edge comput-

ing. In this framework, we consider a scenario where a cloudlet covers M mobile90

devices which are connected to a cloud deployed in the remote area. Each mo-

bile application is formalized as a workflow, denoted as a directed acyclic graph

(DAG). A workflow contains several data/control-constrained computing tasks.

Let DAGm(Vm, EDm)(m = {1, 2, ...,M}) be the workflow running on the m-th

mobile device, where Vm= {vm,i|1 ≤ i ≤ |Vm|} represents the set of computing95

tasks in the m-th workflow and EDm = {(vm,i, vm,j)|vm,i, vm,j ∈ Vm
∧
i 6= j}

describes the dependency between the computing tasks vm,i and vm,j . Let the

requirement-constrained data for processing of each computing task be a tuple,

denoted as (dm,i, wm,i), where dm,i and wm,i reflect the input data the comput-

ing task vm,i receives from its precursor computing tasks and the computation100

workload for processing respectively. pre(vm,i) represents the precursor comput-

ing tasks of vm,i. Only all the computing tasks in pre(vm,i) finish executions,

can vm,i be executed. For example, there are a computing task set {v1, v2, v3, v4}
and a dependency set {(v1, v2), (v2, v3), (v2, v4)}. In this example, the precursor

computing tasks of v3 are v1 and v2, i.e., pre(v3) = {v1, v2}.105

In cloud-edge computing, the computing tasks in a workflow are available to

be executed by the mobile device, the cloudlet or the cloud servers through com-

putation offloading. Xm, a |Vm|-tuple, represents hybrid computation offloading

strategies of the m-th workflow DAGm. The element xm,i stands for the com-

putation offloading strategy of the computing task vm,i, which is measured as

xm,i =





0, if vm,i is executed in mobile device,

1, if vm,i is offloaded to the cloudlet,

2, if vm,i is offloaded to the cloud.

(1)
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Figure 1: A system framework for IoT-enabled cloud-edge computing.

2.2. Execution Time Model

In the workflow execution, the latency of the network in computation of-

floading, the computing time of the computing tasks and the transmission time

among the computing tasks are considered. Therefore, the execution time of

DAGm is divided into three categories, i.e., the offloading latency TL, the com-110

puting time T e, and the transmission time T t.

For the computing task vm,i, adopting the computation offloading strategy

xm,i, the offloading latency TL(xm,i) is calculated by

TL(xm,i) =





0, xm,i = 0,

LLAN , xm,i = 1,

LWAN , xm,i = 2,

(2)

where LLAN and LWAN represent the latency of LAN and WAN respectively.

Hence, the offloading latency of all the computing tasks in the m-th workflow,115
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i.e., TL(Xm), is calculated by

TL(Xm) =
∑

xm,i∈Xm

TL(xm,i). (3)

In the execution of a computing task, the computing time is determined by

the workload of the computing task and the computing power of the execution

platform. Suppose the mobile devices in IoT transmit the offloading requests to

the cloudlet according to the number of vacant virtual machines (VMs) in the120

cloudlet. If all the VMs have been instantiated, the cloudlet rejects the offload-

ing requests. Instead of waiting for the available resources released from the

occupied computing tasks deployed on the cloudlet, the mobile devices choose

to execute these tasks or offload them to the cloud. Therefore, we neglect the

queuing time for the execution of the computing tasks on the cloudlet in this125

paper. For the computing task vm,i, the computing time T e(xm,i) is calculated

by

T e(xm,i) =





wm,i

flocal
, xm,i = 0,

wm,i

fcl
, xm,i = 1,

wm,i

fc
, xm,i = 2,

(4)

where flocal, fcl and fc denote the computing power of the mobile devices, the

cloudlet and the cloud respectively. Hence, the computing time for the execution

of the m-th workflow is calculated by130

T e(Xm) =
∑

xm,i∈Xm

T e(xm,i). (5)

The transmission time between two computing tasks with dependency relates

to the offloading strategies of this two computing tasks. Let Ai(i = 1, 2, 3) be

the transmission strategy of the two computing tasks which is measured as

Ai =





{(0, 1), (1, 0)}, i = 1,

{(0, 0), (1, 1), (2, 2)}, i = 2,

{(0, 2), (2, 0), (1, 2), (2, 1)}, i = 3,

(6)
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where (xm,i, xm,j) ∈ A1 means the data is transmitted from the mobile device

to the cloudlet, or conversely via LAN. If (xm,i, xm,j) ∈ A2, the data is trans-135

mitted in the same computing environment. (xm,i, xm,j) ∈ A3 refers to the data

transmission between the mobile device and the cloud or between the cloudlet

and the cloud via WAN. The transmission time between vm,i and vm,j , denoted

as T t(xm,i, xm,j), is calculated by

T t(xm,i, xm,j) =





dm,j

BL
, (xm,i, xm,j) ∈ A1,

0, (xm,i, xm,j) ∈ A2,

dm,i

BW
, (xm,i, xm,j) ∈ A3,

(7)

where BW and BL represent the bandwidth of WAN and LAN respectively. The140

transmission time is determined by the workload of the transmission data and

the bandwidth of the network. When the two computing tasks are executed

in the same environment, the transmission time is neglected. The transmission

time in the execution of the m-th workflow T t(Xm) is calculated by

T t(Xm) =
∑

(vm,i,vm,j)∈EDm

T t(xm,i, xm,j). (8)

Let Tm(Xm) be the execution time of the m-th workflow, which is calculated

by

Tm(Xm) = TL(Xm) + T e(Xm) + T t(Xm). (9)

2.3. Energy Consumption Model for Mobile Devices145

There is energy consumption for the mobile devices when offloading the com-

puting tasks, executing the tasks and transmitting data among two computing

tasks.

When the computing task vm,i adopts the offloading strategy xm,i, the of-

floading energy consumption of the m-th mobile device, denoted as EL(xm,i),

is calculated by

EL(xm,i) = TL(xm,i) · pI , (10)

where pI represents the idle power consumption of the mobile device. If a

computing task is executed locally, there is no offloading energy consumption.150
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Therefore, the offloading energy consumption for the m-th mobile device in the

execution of the m-th workflow is calculated by

EL(Xm) =
∑

xm,i∈Xm

EL(xm,i). (11)

For the computing task vm,i, the computing energy consumption, repre-

sented as Ee(xm,i), is calculated by

Ee(xm,i) =





wm,i

flocal
pA, xm,i = 0,

wm,i

fcl
pI , xm,i = 1,

wm,i

fc
pI , xm,i = 2,

(12)

where pA denotes the active power consumption of the mobile device. When a

computing task is implemented in the mobile device, the device becomes active.

In addition, when the computing task is executed on the cloudlet or on the

cloud, the mobile device is idle, but to maintain the successful execution of the

workflow , there is still some certain power consumption. Thus, the computing

energy consumption of the m-th mobile device in IoT is calculated by

Ee(Xm) =
∑

x
m,i
∈Xm

Ee(xm,i). (13)

Et(xm,i, xm,j) represents the transmission energy consumption between vm,i

and vm,j , which is calculated by

Et(xm,i, xm,j) = T t(xm,i, xm,j) · pt, (14)

where pt denotes the transmission power consumption of the mobile device.155

Therefore, the transmission energy consumption for executing the m-th work-

flow is calculated by

Et(Xm) =
∑

(vm,i,vm,j)∈EDm

Et(xm,i, xm,j). (15)

Suppose that each mobile device is equipped with a dynamic voltage and

frequency system, which adjusts the voltage according to the computation load.

Thus, pI and pt are lower than pA.160
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Let Em(Xm) be the energy consumption of the m-th mobile device, and we

can get:

Em(Xm) = EL(Xm) + Ee(Xm) + Et(Xm). (16)

2.4. Problem Formulation

In this paper, we intend to shorten the execution time, given in (9) and save

the energy consumption of each mobile device, presented in (16). The formalized

problem is defined as

minTm(Xm), Em(Xm), (∀m ∈ {1, 2, ...,M}). (17)

s. t.
M∑

m=1

µm ≤ C, (18)

|Vm|∑

i=1

xm,i = µm(xm,i = 1,∀m ∈ {1, 2, ...M}), (19)

Tm(pre(xm,i)) ≤ T (pre(xm,i) + xm,i)(i ≤ |Vm|,m ≤M). (20)

In this problem, C represents the maximum number of virtual machines

(VMs) the cloudlet can instantiate and µm represents the number of instantiated

VMs for executing them-th workflow. The constraint presented in (18) describes

that the aggregated computing resources of the instantiated VMs in a cloudlet165

are not over the computing capacity of the cloudlet. The constraint given in (19)

indicates that each computing task offloaded to the cloudlet occupies one VM.

The constraint elaborated in (20) ensures the precursor tasks of a computing

task are implemented before the execution of it.

3. A Computation Offloading Method for IoT-Enabled Cloud-Edge170

Computing

In this section, we first confirm the dynamic schedules of concurrent work-

flows in cloud-edge computing. Then NSGA-III is utilized to find the global

optimal solution. Finally, schedule evaluation is conducted based on SAW and

MCDM to select the optimal solutions for the computing tasks in the same175

schedule.
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3.1. Schedule Confirmation for Concurrent Workflows

In the execution of concurrent workflows, we separate the computing tasks

in the workflows into three categories: the scheduled, the ready and the un-

ready. Each time, we implement the computing tasks ready and suppose this180

process as a schedule. Consider after S schedules, the concurrent workflows fin-

ish executions. Let SKD={skds|1≤ s≤ S} represent the computing task sets

for S schedules, where skds (1≤ s ≤ S) represents the set of computing tasks

executed in the s-th schedule. We consider each computing task in the workflow

have similar computation load in this paper. It is depicted in Fig. 2 that there185

are two workflows, i.e., WF1 and WF2, for execution. In the first schedule, v1,1

along with v2,1, the root tasks of WF1 and WF2, are ready for execution. Thus,

skd1={v1,1, v1,2}, skd2={v1,2, v2,2, v2,3}, skd3={v1,3, v1,4, v2,4}. After three

schedules, the two workflows finish executions.

Algorithm 1 presents the confirmation of schedules for M concurrent work-190

flows in cloud-edge computing. We input the workflow set, denoted as wf . U

and V represent the set of scheduled computing tasks and the set of unsched-

uled computing tasks (Lines 2 and 3). If a computing task is the root of the

remaining tasks in the same workflow, then the computing task is executed and

we consider the M workflows simultaneously (Lines 5-10). Finally, the schedule195

times, and SKD are output.

scheduled

ready

unready

WF1

WF2

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,3

v2,4

WF1

WF2WFWF

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,,3

v2,4

WF1

WF2

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,4

WF1

WF2WFWF

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,4

WF1

WF2

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,4

WF1

WF2WFWF

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,4

WF1

WF2

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,4

WF1

WF2WFWF

v1,1

v2,1

v1,2

v1,3

v1,4

v2,2

v2,4

v2,3 v2,3 v2,3

Figure 2: Dynamic schedules of two workflows with four computing tasks respectively.

3.2. Computation Offloading Method Using NSGA-III

In this subsection, the computation offloading of the computing tasks in each

schedule is defined as a multi-objective optimization problem of shortening the

12



Algorithm 1 Schedule confirmation of concurrent workflows

Require: wf

Ensure: SKD, S

1: s= 1

2: U= ∅

3: V= {vm,i| 1≤ i≤ |Vm|, 1≤ i ≤ M}
4: while U 6= V do

5: for vi∈ V do

6: if pre(vi)= ∅ then

7: U= U∪{vi}
8: V= V -{vi}
9: skds= skds∪ {vi}

10: end if

11: s= s+1

12: end for

13: end while

14: S= s

15: return S, SKD

executing time and saving the energy consumption of mobile devices in IoT.200

NSGA-III is an efficient and accurate method for solving optimization problems

with multiple objectives. Hence, NSGA-III is employed to address the multi-

objective optimization problem given in (17).

We encode for the computation offloading strategies firstly. Then the fit-

ness functions as well as constraints are discussed for the problem. Moreover,205

crossover and mutation operations are employed for the creation of new schedule

solutions. Besides, the usual domination principle and the reference-point-based

selection are adopted in the selection operation.
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3.2.1. Encoding

We encode for the computation offloading strategies in this section. As210

is discussed in Section 2, each computing task has a computation offloading

strategy. In the genetic algorithm (GA), a gene represents the computation

offloading strategy of a computing task and the genes compromise a chromo-

some, reflecting a hybrid computation offloading of the computing tasks in the

same schedule. Fig. 3 illustrates an example of computation offloading strategy215

encoding for the computing tasks in the first schedule. In this example, the

chromosome is encoded in an array of integers (0, 1, 2).

x1 x2 x3 x|skd1|

Figure 3: An encoding instance for the computing tasks in the first schedule.

3.2.2. Fitness Functions and Constraints

The fitness functions are utilized to judge whether a possible solution is

optimal in GA. A chromosome is the offloading strategies of all the computing220

tasks of the same schedule and each chromosome is an individual, representing

a solution of the multi-objective optimization problem. The fitness functions

include two categories: the execution time and the energy consumption for each

mobile device, presented in (9) and (16) respectively. The goal of the method

is to find an optimal offloading strategy to minimize the two fitness functions225

for each mobile device, shown in (17). The fitness of a solution is to achieve the

trade-offs between the 2M objectives.

In this method, we seek a hybrid offloading strategy of optimizing the execu-

tion time and the energy consumption for each mobile device. The constraints

are given in (18), (19)and (20). NSGA-III performs well in addressing the opti-230

mization problem of multiple objectives with potential constraints.

The execution time is one fitness function. Algorithm 2 elaborates how we

evaluate the execution time. In this algorithm, we input SKD and the offloading

14



strategies, denoted as χ. We first calculate the offloading latency, the computing

time and the transmission time for executing a computing task in each schedule235

(Lines 3-12) and then the total time for executing a workflow (Line 13). Finally,

the time for executing each workflow is output in each schedule.

Algorithm 2 Execution time evaluation

Require: SKD, χ

Ensure: Tm(Xm)

1: for s= 1 to S do

2: for m= 1 to M do

3: for i= 1 to |Vm| do

4: Calculate TL(xm,i) by (2)

5: Calculate T e(xm,i) by (3)

6: end for

7: Calculate TL(Xm) by (4)

8: Calculate T e(Xm) by (5)

9: for (vm,i, vm,j)∈ EDm do

10: Calculate T t(xm,i, xm,j) by (7)

11: end for

12: Calculate T t(Xm) by (8)

13: Tm(Xm)= TL(Xm)+ T e(Xm)+ T t(Xm)

14: end for

15: end for

16: return Tm(Xm)

The energy consumption of the mobile device is another fitness function.

Algorithm 3 describes the process of evaluating the energy consumption. The

inputs of the algorithm are the offloading latency, the computing time, the trans-240

mission time and the offloading strategies. The offloading energy consumption,

the computing and the transmission energy consumption in executing each com-

puting task is first calculated (Lines 2-11) and then the total energy consumption

of the m-th mobile device in executing the workflow is obtained in each schedule

15



(Line 12). Finally, the outputs of the algorithm is the energy consumption for245

each mobile device in each schedule.

Algorithm 3 Energy consumption evaluation for mobile devices

Require: TL(xm,i), T
e(xm,i), T

t(xm,i, xm,j), χ

Ensure: Em(Xm)

1: for m= 1 to M do

2: for i= 1 to |Vm| do

3: EL(xm,i)= TL(xm,i)· pI
4: Calculate Ee(xm,i) by (11)

5: end for

6: Calculate EL(Xm) by (12)

7: Calculate Ee(Xm) by (13)

8: for (vm,i, vm,j)∈ EDm do

9: Et(xm,i, xm,j)= T t(xm,i, xm,j)· pt
10: end for

11: Calculate Et(Xm) by (15)

12: Em(Xm)= EL(Xm)+ Ee(Xm)+ Et(Xm)

13: end for

14: return Em(Xm)

3.2.3. Initialization

In the subsection, the parameters of GA are determined, including the pop-

ulation size POP , the maximum of iteration I, the crossover possibility Pc, and

the mutation possibility Pm.250

Each chromosome represents the computation offloading strategies of the

computing tasks in the same schedule. In addition, let the gene cs,n be the

offloading strategy of the n-th computing task in the s-th schedule. In the s-th

schedule, the chromosome is denoted as Cs,i= (cs,1, cs,2, . . . , cs,N ) (i= 1, 2, . . . ,

POP , N=|skds|).255
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3.2.4. Crossover and Mutation

In this paper, the standard single-point crossover operation is conducted to

combine two chromosomes and generate two new individuals. Fig. 4 shows an

example of crossover operation for two chromosomes in the first schedule. In

this example, a crossover point is first determined, and then swap the genes260

around this point to create two new chromosomes.
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x|skd | x|skd |

x|skd |1

1

1

1

Figure 4: An example of crossover operation.

The mutation is to modify genes of the chromosomes in the hope of gener-

ating individuals with higher fitness values. Fig. 5 illustrates an example of the

mutation operation in the first schedule. Each gene in a chromosome is changed

with equal probability.

1 2 1 ... 0

1 2 ... 02

x1

x1

x2

x2

x3

x3

...

...

x|skd |

x|skd |

1

1

Figure 5: An example of mutation operation.

265

3.2.5. Selection for the Next Generation

In this phase, we aim at selecting the chromosomes for the next population

to generate individuals with higher fitness values. Each chromosome represents

a hybrid offloading strategy of the computing tasks in the same schedule. After
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crossover and mutation, the population size becomes 2POP . Algorithms 2 and270

3 are used to evaluate the values of two fitness functions for each workflow in

a schedule. The solutions are sorted according to the 2M values to generate

several non-dominated fronts using the usual domination principle.

In primary selection, we select one randomly from the solutions in the highest

non-domination front each time to form the next generation until the number275

of the selected solutions is POP . Suppose the last added solution is in the l-th

non-domination front. If all the solutions in the l-th front are included, then

the selection finishes and the chosen solutions go into the next generation.

In further selection, consider z solutions in the l-th front are selected in

primary selection. Then exclude the z solutions and further steps are conducted280

to make sure the z solutions in the l-th front should be included in the next

generation.

We first normalize the 2M fitness values of each individual in the population.

In the 2POP individuals, we search the minimum of the execution time and en-

ergy consumption for each mobile device, denoted as T ∗m(Xm)(1 ≤ m ≤M) and

E∗m(Xm)(1 ≤ m ≤M) respectively. Then the 2M values for 2POP individuals

in the population are updated as

T ′m(Xm) = Tm(Xm)− Tm∗(Xm). (21)

E′m(Xm) = Em(Xm)− Em
∗(Xm). (22)

Let δmT and δmE represent the extreme values of the execution time and the en-

ergy consumption for the m-th mobile device respectively, which are calculated

by

δmT = max
T ′m(Xm)

WTm

. (23)

δmE = max
E′m(Xm)

WEm

, (24)

WTm
and WEm

in (23)(24) are the weight vectors of the two functions.
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We consider each fitness function as an axis. In the hyperplane compromised

by the 2M axes, the intercept of each axis is determined, denoted as αm
T and

αm
E respectively for the m-th workflow. Then the 2M fitness values of each

individual in the population are normalized as:

T ′′m(Xm) =
T ′m(Xm)

αm
T

.. (25)

E′′m(Xm) =
E′

αm
E

. (26)

After the normalization, the values of the execution time and the energy con-

sumption for each workflow are in the domain [0,1). The solutions in the pop-

ulation has compromised a 2M -dimensional hyperplane. Then the normalized

solutions are associated with reference points. A set of reference points are scat-

tered in the 2M -dimensional hyperplane. The intercept of each axis is 1 and

each of the axis is divided into g subsections. Then the number of the reference

points, represented by θ, is calculated by

θ = C2M+g−1
g . (27)

θ is approximately equal to the population size POP to make sure each

normalized solution associates with one reference point nearly [16].285

Sort the solutions in the l-th non-dominated front, according to the number

of the reference points they associate with. Each time select one randomly

from the solutions with maximum number of associated reference points. This

process is repeated until all the z solutions have been selected.

The selection step is elaborated in Algorithm 4. In this algorithm, we in-290

put the t-th generation population (parent population) denoted as PPt and

the reference point set, denoted as R. The output is the (t + 1)-th genera-

tion population (child population) PPt+1. In this algorithm, we first calculate

the execution time and the energy consumption of mobile devices by the Algo-

rithms 2 and 3 respectively (Lines 2 and 3). Non-dominant sorting is conducted295

for individuals in the population through the usual domination principle (Line

5). Furthermore, we select the solutions primarily and judge whether all the
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solutions in the l-th front are included (Line 6). If not, we conduct further

selection to determine the remaining z solutions in the l-th front for the next

generation (Lines 8-12). Based on the selection algorithm, the POP solutions300

going into the next generation are selected.

Algorithm 4 Selection for the next generation

Require: PPt, R

Ensure: PPt+1

1: for m = 1 to M do

2: Calculate Tm(Xm) by Algorithm 2

3: Calculate Em(Xm) by Algorithm 3

4: end for

5: Non-dominant sorting the POP solutions

6: Conduct Primary selection

7: if part of solutions in the l-th front are included then

8: Conduct further selection:

9: Normalize solutions for each workflow by (21-26)

10: Generate reference points under the constraints (27)

11: Associate the solutions with reference points

12: Select the remaining n solutions

13: end if

14: return PPt+1

3.3. Schedule Selection Using SAW and MCDM

The proposed method aims at achieving trade-offs between optimizing the

execution time and saving the energy consumption of mobile devices. In each

population, there are POP chromosomes and each chromosome represents a305

hybrid computation offloading strategy of the computing tasks in a schedule.

In addition, dynamic schedules of computing tasks are considered and to select

relatively optimal schedule of each workflow, SAW and MCDM are employed.
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The execution time is a negative criterion, that is, the higher the execution

time is, the worse the solution becomes. Hence, the energy consumption of

mobile devices is a negative criterion too. We normalize the execution time

value in the m-th workflow execution as

V (T j
m) =





Tm
s,max−Tm(Xs

m)

Tm
s,max−Tm

s,min , Tm
s,max − Tms,min 6= 0,

1, Tm
s,max − Tms,min = 0,

(28)

where T s,max
m and T s,min

m represent the maximum and minimum of the execution

time in the s-th schedule of the m-th workflow. Xs
m represents the offloading

strategies of computing tasks in the s-th schedule. Similarly, the energy con-

sumption of m-th mobile device is normalized as

V (Es
m) =





Em
s,max−Em(Xs

m)

Em
s,max−Em

s,min , Em
s,max − Em

s,min 6= 0,

1, Em
s,max − Em

s,min = 0,
(29)

where Es,max
m and Es,min

m represent the maximum and minimum of the energy

consumption in the s-th schedule of the m-th workflow.310

In addition, to calculate the utility value of each solution, the weight of

each objective function requires determination. In this paper, we do an overall

consideration of two objectives for each workflow. Therefore, the weights of

the objectives are both 1
2M . The utility value in the s-th schedule of the m-th

workflow is calculated by

V (Cs,i) =

M∑

m=1

1

2M
· V (T s

m) +

M∑

m=1

1

2M
· V (Es

m)(1 ≤ i ≤ POP ), (30)

where V (Cs,i) represents the utility value of the i-th chromosome in the s-th

schedule. Therefore, for each chromosome in the population, we have calcu-

lated the utility value of the same schedule. The optimal schedule solution,

represented by V (Cs,i), is calculated by

V (Cs) =
POP
max
i=1

V (Cs,i) (1 ≤ s ≤ S) (31)

We can pick the optimal schedule with the maximum utility value in the POP315

chromosomes.
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3.4. Method Overview

We aim at minimizing the execution time and the energy consumption of

mobile devices in this paper. The computation offloading problem is defined

as an optimization problem with multiple objectives and NSGA-III is adopted320

to obtain the global optimal offloading strategy. First, we confirm the dynamic

schedules of concurrrent workflows. Then, the offloading strategies of computing

tasks in each dynamic schedule are encoded as integers (0, 1, 2). In addition,

the fitness functions and constraints are presented for the multi-objective op-

timization problem. Furthermore, the crossover and mutation operations are325

conducted to generate new individuals. The usual domination principle and

reference-point-based selection in NSGA-III are adopted to pick out the indi-

viduals with best fitness for the next generation. Finally the schedule evaluation

is proposed to select the optimal strategy for each schedule.

The overview of our proposed method is shown in Algorithm 5. We input330

the maximum iteration I and the initialized population X. The algorithm

outputs the optimal computation offloading strategy in each schedule BXs (1≤
s≤ S). Firstly, we obtain the dynamic schedules of the concurrent workflows

and the schedule times (Line 1). By crossover and mutation, POP individuals

are generated the population size becomes 2POP (Line 5). Then calculate335

the fitness functions of the 2POP solutions (Lines 6-8) and select the optimal

individuals for the next generation (Line 10). For each schedule, the utility

values are evaluated and the schedule strategy with the maximum utility value

are picked out as the optimal schedule strategy (Lines 13 and 14). The process

is repeated until the schedule iteration stops and finally the optimal strategies340

are the output.

4. Experimental Evaluation

In this section, we evaluate the performance of the proposed computation

offloading method COM by comprehensive simulations and experiments.
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Algorithm 5 Computation offloading method in cloud-edge computing

Require: I, X

Ensure: BXs

1: Obtain SKD and S by Algorithm 2

2: for s=1 to S do do

3: i= 1

4: while i≤ I do

5: Crossover and mutation operation

6: for the individuals in the population do

7: Calculate the execution time by Algorithm 2

8: Calculate the device energy consumption by Algorithm 3

9: end for

10: Selection operation to ensure the child generation by Algorithm 4

11: i= i+1

12: end while

13: Evaluate utility function in by (28-30)

14: Pick out the optimal schedule strategy BXs by (31)

15: end for

16: return Xn

4.1. Simulation Setup345

In our stimulation, six mobile devices are under the coverage of the cloudlet

and each of the six mobile devices has a mobile application for implementation

respectively, i.e., WF1, WF2, WF3, WF4, WF5, WF6. The specific parameter

settings in this experiment are given in Table 2.

The execution time and the energy consumption of the mobile devices in350

IoT are used to evaluate the performance of COM. To conduct the comparative

analysis and validate whether COM is robust for computation offloading, the

comparative methods are elaborated as follows:

• Benchmark: A workflow is implemented on the corresponding mobile de-

vice and the computing tasks are executed with control constraints. When the355
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Table 2: Parameter Settings

Parameter Value

The idle power of mobile devices 0.002W

The active power of mobile devices 0.5W

The communication power of mobile devices 0.2W

The delay of LAN 0.5ms

The delay of WAN 30ms

The bandwidth of LAN 100kps

The bandwidth of WAN 50kps

The computing power of mobile devices 500MHZ

The computing power of the cloudlet 3000MHZ

The computing power of the cloud 5000MHZ

The number of VMs in the cloudlet 20

mobile device is overloaded, the computing tasks have to wait for execution un-

til the resources are available. The process is repeated until all the computing

tasks in the workflow have been executed.

• Cloudlet-oriented Computation Offloading Method (CLCOM): In this method,

all the computing tasks in a workflow are offloaded to the cloudlet with con-360

trol constraints. A VM on the cloudlet is instantiated if a computing task is

offloaded to the cloudlet. If all the VMs on the cloudlet have been instanti-

ated, the computing task has to wait for execution until the resources of the

cloudlet are available. This process is repeated until all the computing tasks in

the workflow have been executed.365

• Cloud-oriented Computation Offloading Method (CCOM): In this method,

the computing tasks in a workflow are all offloaded to the cloudlet with control

constraints. A VM on the cloud is instantiated if a computing task is offloaded

to the cloud. This process is repeated until all the computing tasks in the

workflow have been executed.370
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The methods are implemented under the widespread used CloudSim frame-

work on a personal computer with Intel Core i7-4720HQ 3.60GHz processors

and 4GB RAM.

4.2. Performance Evaluation on COM

In this section, we evaluate the utility value in each dynamic schedule as375

well as the resource utilization for mobile devices. The corresponding results

are shown in Fig. 6 and Fig. 7.

4.2.1. Evaluation of Utility values

In Section 3, SAW and MCDM are employed to select the relatively best so-

lutions. We consider the dynamic schedules of the six concurrent workflows and380

after six schedules, the workflows finish their executions. For each schedule of

workflows by COM, we calculate the utility values respectively in (25), (26) and

(27). The most balanced schedule strategy is the solution with the maximum

utility value. Six sub-figures in Fig. 6 illustrate the comparison of utility value

in different schedules after the 1000th iteration. It is explicit that the number385

of convergent solutions is 3, 4, 3, 3, 3 and 4 respectively corresponding to each

schedule. For example, in Fig. 6a, the selected schedule strategy is solution-2,

for the higher utility value than the other two. As is shown in Fig. 6f, after six

schedules, the workflows are completed and the schedule strategy generated by

solution-2 is the optimal one in the four solutions.390

4.2.2. Evaluation of Resource Utilization

Resource utilization of the cloudlet is of great importance to the execution

time and the energy consumption, and it is calculated according to the number

of the VM instances on the cloudlet. In the dynamic schedules of workflows, we

consider the resource utilization of the cloudlet changes with time instants, as395

is illustrated in Fig. 7. It is depicted that in the execution of the workflows, the

resource utilization of the cloudlet is over 80% in most cases, which guarantees

the good performance of COM. The reason why there is a sharp decrease of the
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Figure 6: Comparison of utility value in different schedules by the generated solutions of

COM.

resource utilization is that most of the computing tasks have finished execution.
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Figure 7: Resource utilization of the cloudlet at different time instants in the dynamic schedule

of workflows by COM.

400

4.3. Comparison Analysis

In this section, we evaluate the performance of our proposed method and

make comparisons with Benchmark, CLCOM and CCOM. The execution time

26



and the energy consumption of mobile devices are two main metrics to assess

the performance of the computation offloading methods. In addition, the power405

consumption of the mobile devices is used to compare the performance of the

methods and we analyze the distribution of computing tasks in different meth-

ods. The corresponding results are illustrated in Fig. 8, Fig. 9, Fig. 10, and

Fig. 11.

4.3.1. Comparison of Execution Time410
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Figure 8: Comparison of execution time with different workflows by Benchmark, CLCOM,

CCOM and COM.

The execution time consists of the offloading latency, the computing time

and the transmission time. Fig. 8 shows the comparison of the execution time

in executing six workflows by Benchmark, CLCOM, CCOM and COM. It is

illustrated that our proposed method COM has the minimum execution time

compared with the other methods.415

In the Benchmark, all the computing tasks in a workflow are executed on

the mobile device. Due to the resource limitation of the mobile device, the

computing power is low, which makes much more time than the other three

methods. In CCOM, a little more time is cost than in CLCOM, since the mobile

devices connect to the cloudlet via LAN that has higher bandwidth and lower420

latency compared with WAN. Hence, less time is consumed when the workflow
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is executed on the cloudlet than on the cloud. Furthermore, resource capacity

on the cloudlet is finite so that if VMs on the cloudlet are all instantiated,

the remaining computing tasks in workflows requesting to be executed on the

cloudlet have to wait until there are available resources in the cloudlet. However,425

in our proposed method COM, the hybrid offloading strategy is adopted, which

makes the execution time in COM less than in CLCOM.

4.3.2. Comparison of Energy Consumption in Mobile Devices

The energy consumption of the mobile devices includes the offloading energy

consumption, the computing energy consumption and the transmission energy430

consumption. Fig. 9 illustrates the comparison of the energy consumption for

the mobile devices by Benchmark, CLCOM, CCOM and COM with different

workflows. It is intuitive that the energy consumption of mobile devices by COM

is less than that by the comparitive methods. The Mobile devices provide the

processing energy and resources for the execution of workflows in Benchmark435

so that the energy consumption for the mobile devices is higher, compared with

other methods. If a computing task is not implemented in the mobile device,

the mobile device just needs to offload it to other computing platforms that

supply the resources and the power for execution in CLCOM, CCOM and COM.

Due to lower latency and higher bandwidth of LAN than those of WAN, the440

transmission energy consumption and the communication energy consumption

in CLCOM are less than in CCOM. In COM, some of the computing tasks are

executed in the mobile devices, so the offloading energy consumption is saved.

Therefore, COM has further improvement in reducing the energy consumption

for the mobile devices.445

4.3.3. Comparison of power consumption in mobile devices

We obtain the power consumption according to the energy consumption in

mobile devices and the execution time. Fig. 10 depicts the power consumption

for mobile devices with different workflows by the four methods. The power

consumption of the mobile device is an metric to measure the instant energy450
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Figure 9: Comparison of energy consumption in mobile devices with different workflows by

Benchmark, CLCOM, CCOM and COM.

consumption of mobile devices. If the power consumption is too high, there

might be extreme energy consumption of mobile devices, which contributes to

high energy consumption. From Fig. 10, the average power consumption of

COM is a little lower than CLCOM and CCOM.
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Figure 10: Comparison of power consumption with different workflows by Benchmark,

CLCOM, CCOM and COM.
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4.3.4. Comparison of Computing Task Distributions455

In the proposed method COM, we consider a hybrid computation offload-

ing strategy in cloud-edge computing, i.e., a computing task is implemented in

mobile device, on the cloudlet or on the cloud. Fig. 11 illustrates the distribu-

tion of the computing tasks by different offloading methods respectively. It is

explicit that most of the computing tasks are offloaded to the cloudlet in COM,460

due to the better performance of it in terms of reducing the execution time

and decreasing the energy consumption for the mobile devices. However, since

the moderate resource capacity of the cloudlet, if all the VMs on the cloudlet

are instantiated, the computing task is executed in other computing platforms,

instead of queuing in the cloudlet. Hence, few computing tasks are executed465

in the mobile devices or on the cloud, which guarantees the optimal execution

time and energy consumption in mobile devices.
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Figure 11: Comparison of computing task distributions in different schedules by the generated

solutions of COM.

5. Related Work

The IoT is a paradigm where everything around us can actively identify,

connect, perceive and report the system on a global scale [17][18][19][20]. It470

enables interconnected smart devices to be used, monitored or configured for
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human beings [21][22]. Furthermore, the IoT is expected to play an important

part in the construction of the next generation mobile communication services,

which promotes more attractions focused on the Internet of mobile things [23].

The mobile devices in IoT generate big data from surroundings of mobile475

users to ensure the effectiveness and accuracy of the services that mobile appli-

cations provide [24][25][26][27]. In [28], Cai et al. the big data can be divided

into four categories, i.e., Multisource High Heterogeneity Data, Huge Scale Dy-

namic Data, Low-Level with Weak Semantics Data and Inaccuracy Data. The

generated IoT big data applications (IoTBDAs) are required to be equipped480

with capability of analyzing the data streams [29].

However, due to the resource limitation of mobile devices, users’ demands of

real-time processing and prolonged battery life are not guaranteed [30][31][32][33].

As a burgeoning technique, computation offloading to data centers such as cloud

severs and cloudlets alleviates the problem. However, in spite of rich resource ca-485

pacity, traditional clouds are deployed remotely from the mobile devices, which

makes the offloading latency prolonged, especially for the computation-intensive

tasks [34][35][36]. Compared with the cloud, EC is an emerging technology that

aims at pushing applications and content close to the users to reduce latency,

improve the quality of experience and ensure highly efficient network opera-490

tion and service delivery, which has the potential to address the concerns of

response time requirement, battery life constraint and bandwidth cost saving

[37][38][39][40][41].

Considering the increasing mobile applications, to process the big data from

the mobile devices in IoT, designing an EC framework is of great significance495

[42]. In [43], Li et al. proposed a novel edge computing for IoT (ECIoT) architec-

ture, and investigated radio resource and computational resource management

in ECIoT to enhance the system performance. In [44], Amjad et al. proposed a

cognitive edge-computing based framework solution to achieve an efficient usage

of the distributed resources with the dynamic extensive computing facilities of500

the cloudlet for end-users. The EC scheme reduces the execution time and saves

the energy consumption of the mobile devices in IoT, thus improving the qual-
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ity of user experience. However, on the other hand, the computing resources

on the cloudlet are finite, which calls for the resource coordination between the

cloudlet and the cloud. In [45], Jeong et al. discussed a system of mobile cloud505

computing (MCC) based on unmanned aerial vehicles (UAVs) to reduce the mo-

bile energy consumption through computation offloading. In the system, joint

optimization of bit allocation and trajectory of cloudlet was proposed. Jin et

al. proposed an incentive-compatible mechanism (ICAM) to distribute cloudlets

based on the demand of mobile services [46].510

As momentous part of EC, computation offloading promises the decreased

execution time and energy consumption of mobile devices in IoT. In the gross,

computation offloading purports offloading the workloads to cloud servers or

cloudlets. In [47], Roy Et al. proposed an application-aware cloudlet selection

strategy to reduce the energy consumption of the mobile terminals and the ex-515

ecution latency of the mobile applications. With this strategy, the computing

tasks are offloaded to the suitable cloudlet according to the application type in

multi-cloudlet scenario. Code offloading for image processing tasks in mobile

applications was investigated to ameliorate the performance and energy con-

sumption [48]. In [49], Alasmari et al. proposed a Markov Decision Process520

(MDP) to seek a hybrid offloading strategy in mobile devices, the edge and the

cloud, while optimizing the execution time and the energy consumption. Dinh

et al. researched offloading from a mobile device to several edges. In such sce-

nario, task allocation and central process unit frequency of the mobile device

are optimized to reduce the execution latency and energy consumption of the525

mobile device [50]. Zhang et al. proposed a joint computation offloading and

resource optimization in MEC. In such scheme, computation offloading strategy

was studied to reduce the energy consumption and execution time [51].

However, to the best of our knowledge, few of the existing works have in-

vestigated the multi-objective optimization of computation offloading problems530

for IoT-enabled cloud-edge computing. With the observations above, it is still

a challenge to realize the goals of reducing the execution time and saving the

energy consumption for the mobile devices in IoT. In view of this challenge,
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a computation offloading method in cloud-edge computing environment is pro-

posed this paper.535

6. Conclusion and Future Work

Nowadays, Internet of mobile things has emerged as a popular technology

for bringing about rich mobile applications. With the development of the tech-

nology, the complexity and scales of the big data for process increase, which has

conflicts with the resource limitation of mobile devices. EC paradigm alleviates540

the problem to a great deal by offloading computing tasks to the cloud or to

the cloudlet. In a bid to realize multi-objective optimization of reducing the

execution time and saving the energy consumption for mobile devices, a com-

putation offloading method, named COM, is proposed in this paper. Firstly,

we analyzed the dynamic schedules of concurrent workflows and then NSGA-III545

is exploited to address the multi-objective optimization problem. Furthermore,

extensive experiments and evaluations are conducted to affirm the proposed

method COM performs well in solving the optimization problem.

For future work, we will adjust and extend the proposed method in a real-

world scenario of IoT. In addition, we will crystallize different time requirements550

of the workflows for execution, trying to find an offloading strategy to achieve

the maximum energy consumption savings of the mobile devices.
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1. Analyze the dynamic schedules according to the data or control dependencies of the computing 

tasks. 

2. Adopt NSGA-III to address the multi-objective optimization problem in IoT. 

3. Select the optimal schedule strategy by leveraging SAW and MCDM techniques. 

 

 


