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Abstract

The Internet of mobile things is a burg oning technique that generates, stores
and processes big real-time data t¢ “ender rich services for mobile users. In
order to mitigate conflicts F-*-7een the resource limitation of mobile devices
and users’ demands of der easing | -ocessing latency as well as prolonging bat-
tery life, it spurs a popr .ar wave f offloading mobile applications for execution
to centralized and dec vt alize « data centers, such as cloud and edge servers.
Due to the comple ity and wifference of mobile big data, arbitrarily offloading
the mobile applications |. “ses a remarkable challenge to optimizing the execu-
tion time and .he € 1ergy consumption for mobile devices, despite the improved
performanc: of 1. ~rnet of Things (IoT) in cloud-edge computing. To address
this chall nge we * ropose a computation offloading method, named COM, for

ToT-en~"'ed ci. ~ 1-edge computing. Specificly, a system model is investigated,
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including the execution time and energy consumption for mobile d¢ rices Then
dynamic schedules of data/control-constrained computing tasks a. conu. ned.
In addition, NSGA-IIT (non-dominated sorting genetic algor chr, TII) 1s em-
ployed to address the multi-objective optimization problem . * sk offloading
in cloud-edge computing. Finally, systematic experimenr s and ~omprehensive
simulations are conducted to corroborate the efficiency of . ir pro’ osed method.
Keywords: 10T, big data, cloud-edge computing, cc nput "‘on offloading,

energy consumption

1. Introduction

1.1. Background

Internet of Things (IoT) has emerg . - ~ nopular paradigm providing in-
ternetworking of many objects and smar. shings, such as mobile devices and
wearable devices [1][2]. Currently, the \ ve. ‘ncreasing mobile devices, embedded
with radio frequency identificatio.. ‘ nu i, and sensor technology, are connected
to IoT via wireless networks, which integrates IoT with mobile computing. Due
to the ubiquitous sensing,  omput. g and integration, Internet of mobile things
is used in a growing number ¢ sc narios, e.g., healthcare system and catering
business [3][4]. To rer der ~aobi'e users improved experiences and increase the
service quality of mbile « " es, the Internet of mobile things facilitates rich
mobile applicatio .s, 1.. luding measuring noise, recording location and captur-
ing images [5].

Mobile dev. =< in IoT sense the surroundings of mobile users and generate
real-time ' g d ta, with useful information for supporting the mobile applica-
tions [6][7]. 7 ne I g data is stored and processed to guarantee the efficiency and
effect’ veness f the mobile applications. However, the finite computation capac-
ity anc cachr size of the mobile devices impede the wide usage of the mobile
¢ oplicat. \ns and cause tremendous amount of time for storing and processing

th bhig ~ata on the mobile devices [8][9]. Moreover, the energy consumption of
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the mobile devices increases, abbreviating the life of batteries and ‘ugr enting
emissions of greenhouse gases.

To alleviate the resource limitation of the mobile devices .na improve the
performance of the generated mobile applications, cloud con., g (CC) is a
burgeoning computing scheme where the mobile applicati ns are available to be
offloaded to the centralized cloud data centers and the clow 1 mans zer provisions
elastic and on-demand resources for executing the 1 .obile -nplications[10][11].
In this way, the execution time of the mobile applicav.ons a'.d the energy con-
sumption of the mobile devices are reduced, which s *sfies the mobile users’
demands of shortening processing time and incre. "ing oattery life. Neverthe-
less, due to the cloud deployed distantly from the 1. ~bile devices, offloading the
mobile applications to the remote cloud occu, ‘es substantial bandwidth of the
core network, causing network congest. n v . 'igh extent. Furthermore, the
mobile devices are connected to the 'oud \ a Wide Area Network (WAN), and
the bandwidth of offloading the mobile apy. ications is low, which leads to high
latency. Therefore, much time is de, '2tea i the process of offloading the mobile
applications to the cloud, causing immense offloading delay, especially for the
data-intensive computing  asks [12 '13].

Different from CC, + Jdge cc -7 ating (EC) pushes small data centers (such
as cloudlets) with mc fere e re ources, base stations and access points at the
edge of radio access netwo.’, providing resource trusteeship services for the
mobile devices urder tu. coverage[14]. Cloudlets connect to mobile devices via
Local Area Ne wor (LAN), which is characterized by high bandwidth and low
latency. Thereic -. less time is consumed in the process of offloading mobile
applicatic s tc the cloudlets, compared with that on the cloud, and the stress
of core netwe ' 7, relieved. Hence, EC reduces offloading latency and makes
netwe ck more >fficient so that it provides a timesaving computing paradigm [15].
EC ena. '~ - nybrid computation offloading scheme, that is, mobile devices can

( Hoad t1 » mobile applications to the cloudlet or to the cloud.
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1.2. Motivation

To improve the performance of the mobile devices in IoT, clo. Vlets push
cloud services to the network edge. Mobile applications are ofte > “~rmalized
as workflows which contain some computing tasks with data/co. rol dependen-
cies. In cloud-edge computing, mobile devices in IoT a e avail ble to offload
the computing tasks to the cloudlet or to the cloud for rec *cing  he processing
latency and prolonging the battery life of the mob’ e de .. s. However, arbi-
trarily offloading the computing tasks hardly optiizes the _xecution time and
the energy consumption of the mobile devices. due to e moderate resources
of the cloudlet and remote distance of the clcd. e~ _fore, it remains a chal-
lenge to optimize the execution time and the enerer sonsumption of the mobile
devices in the cloud-edge computing environn. ~t. To address the challenge, a
hybrid computation offloading method 1 = lo'. -cuabled cloud-edge computing is

proposed.

1.3. Paper Contributions

In this paper, we make the following contributions.

e Analyze the executic. time and the energy consumption of the mobile
devices, and the omr atation offloading for IoT-enabled cloud-edge com-

puting is defin d a. ~ m (ti-objective optimization problem.

e Confirm the dyne. ~ic schedules of the concurrent workflows in cloud-edge
computir g t¢ select the optimal schedule strategy by using SAW (simple
additive w." rhting) and MCDM (multiple criteria decision making).

e At 7SG -III (non-dominated sorting genetic algorithm I1T) to address
+.1e multi-uojective optimization problem of shortening the execution time

'nd savi 1g the energy consumption for each mobile device in IoT.

e (. rry out comprehensive experiments and evaluations to validate the

ot sency and effectiveness of COM.
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The remainder of the paper is organized as follows. In Section 2, hep oblem

formulation and the system model are proposed. In Section 3, a . ~mpu. tion

offloading method over big data for IoT-enabled cloud-edge cr .np. ting 1s elab-

orated. Section 4 evaluates the proposed method. We discuss b . related work

in Section 5. Section 6 gives the conclusion and the futur : work

2. System Model and Problem Fromulation

In this section, a system model in cloud-edge ~om, ..ng is proposed to

evaluate the execution time and the energy cor umptior of the mobile devices.

Key notations and descriptions are listed in 1a 'e 1.

Table 1: Key Notations a.. ' Descriptions

Notation

Descriptions

M
Vin
ED,,
dim,i

Wi, 4

s

The number of mobile dei ices in IoT

The computing task s.* ot vue m-th workflow

The dependency set of the m-th workflow

The input da’a of the computing task vy, ; receives

The compv .ation = kload of the computing task vy, ;

The hyb d of 10ad ng strategies of the m-th workflow

The of 10ading . rategy of the computing task vy, ;

The offloa. g latency of the network

T e ¢ mputing time in executing the m-th workflow

T ransmission time in executing the m-th workflow

T (e transmission strategies of two computing tasks

“he oxecution time of the m-th workflow

"he offloading energy consumption in executing the m-th workflow
rhe computing energy consumption in executing the m-th workflow
The transmission energy consumption in executing the m-th workflow

The energy consumption for the m-th mobile device
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2.1. Resource Model

The cloud-edge computing paradigm has the potential to satisfy .o requaire-
ments of the execution time and the energy consumption for t".e m ~' le devices
in IoT. Fig. 1 illustrates a system framework for IoT-enabled clo. "-edge comput-
ing. In this framework, we consider a scenario where a clc «dlet cc 7ers M mobile
devices which are connected to a cloud deployed in the re. ~ote » ea. Each mo-
bile application is formalized as a workflow, denoted as a ".. <ted acyclic graph
(DAG). A workflow contains several data/control-~onstrain 1 computing tasks.
Let DAG,(Vin, EDy,)(m = {1,2,..., M}) be the workh« v running on the m-th
mobile device, where V,= {vp, ;|1 <@ < |Vi,!)! rep. ~= s the set of computing
tasks in the m-th workflow and ED,, = {(v - o Nug ;,0m; € Voo Ni # j}
describes the dependency between the compu.. ~ tasks v, ; and vy, ;. Let the
requirement-constrained data for proces. ‘ng 1 cach computing task be a tuple,
denoted as (dim.s, Wim,i), where dp, ; ¢ ! Wy, teflect the input data the comput-
ing task v, ; receives from its precurso. computing tasks and the computation
workload for processing respectively. ~re(v,, ;) represents the precursor comput-
ing tasks of vy, ;. Only all th~ ~omputing tasks in pre(v,, ;) finish executions,
can vy, ; be executed. For/ <ample, here are a computing task set {vy,ve, v3,v4}
and a dependency set {/J1,v2),\. .,v3), (v2,v4)}. In this example, the precursor
computing tasks of vy “ve v ar d v, i.e., pre(vs) = {v1, v}

In cloud-edge ¢ mputing, che computing tasks in a workflow are available to
be executed by the mobu. device, the cloudlet or the cloud servers through com-
putation offlos ting X, a |V,,|-tuple, represents hybrid computation offloading
strategies o the .. th workflow DAG,,. The element z,,; stands for the com-

putation fHor ding strategy of the computing task vy, ;, which is measured as

0, if vy, is executed in mobile device,
Lmyi =94 1, if vy, is offloaded to the cloudlet, (1)
2, if vy, is offloaded to the cloud.
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Figure 1: A system framework for 1 T-e’ aviwcd cloud-edge computing.

2.2. Execution Time Model

In the workflow execution, the .. ‘ency of the network in computation of-
floading, the computing time “*he computing tasks and the transmission time
among the computing tas s are cc 1sidered. Therefore, the execution time of
DAG,, is divided into t.ree cate,_ories, i.e., the offloading latency T, the com-
puting time 7¢, and 1.~ t ansr .ission time T*.

For the comput ng task v, ;, adopting the computation offloading strategy

Tyn.i, the offloading laten. - T (z,,,;) is calculated by

0, T, =0,
T"(#mi) =9 Lpan, Ty = 1, (2)
Lwan, Tm,i=2,
wherc Lpany nd Ly an represent the latency of LAN and WAN respectively.

Herce, o~ .doading latency of all the computing tasks in the m-th workflow,
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ie., TF(X,,), is calculated by

THXm) = > TH@m). (3)

Tm,i€Xm

In the execution of a computing task, the computing ti~ = is a"~rmined by
the workload of the computing task and the computing | ower of she execution
platform. Suppose the mobile devices in IoT transmit ‘I & otucwuing requests to
the cloudlet according to the number of vacant virt al aacl nes (VMs) in the
cloudlet. If all the VMs have been instantiated, the ('~ua.cc rejects the offload-
ing requests. Instead of waiting for the avail.’ 'e resov -ces released from the
occupied computing tasks deployed on the clou'et, the mobile devices choose
to execute these tasks or offload them to . - cioud. Therefore, we neglect the
queuing time for the execution of the - ~mnuting tasks on the cloudlet in this
paper. For the computing task vy, ;, the ¢ v aputing time T°(z,, ;) is calculated

by

m i .
J o Tmi =0,
e N w i
(ATC S Y @)
o
| -, Tm,i = 27

c

where fiocal, for and f. denr te the computing power of the mobile devices, the
cloudlet and the cloud rc. - ecti- ely. Hence, the computing time for the execution

of the m-th workf! ,. - is calculated by

T Xm) = > Twm) (5)

T, i €EXm
The tr .nsm .ssion time between two computing tasks with dependency relates
to the offloaw. ~o strategies of this two computing tasks. Let A;(i = 1,2,3) be

the t: ansmiss »n strategy of the two computing tasks which is measured as

{(071)’(1:0)}: 7 =
Ai =4 {(0,0),(1,1),(2,2)}, i =

{(0,2),(2,0),(1,2),(2,1)},i =

w N =
—
D
=
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where (2, 4, Zm,;) € A1 means the data is transmitted from the n: “bile device
to the cloudlet, or conversely via LAN. If (2, i, Zm, j) € Az, the w *ais . ans-
mitted in the same computing environment. (Zp, i, Tm, ;) € As etess to the data
transmission between the mobile device and the cloud or bev, ~ 1 the cloudlet
and the cloud via WAN. The transmission time between 7 ,, ; anc vy, ;, denoted

as T (@ i, Tm,j), is calculated by

dgizj» (xm,iy Tm,, } S A]
Tt(xm,“xm,J) = 07 <xm,i7mm,.,,\ € A27 (7)
dm,i

ey (@ma mmyg) - As,
where By and By, represent the bandwidth of W." N and LAN respectively. The
transmission time is determined by the wo. -load of the transmission data and
the bandwidth of the network. When ' ~ two computing tasks are executed
in the same environment, the transmissio. .ime is neglected. The transmission

time in the execution of the m-th woihe = 1%(X,,) is calculated by

THX,,) = > T (Tmis T j)- (8)

(Un. Vm,j)EEDp,
Let Ty, (X ) be the ex: ‘ution ti 1e of the m-th workflow, which is calculated

by
T\~ =77 (Xm) +T°(Xm) + Tt(Xm)- (9)

2.8. Energy Cons umyp. »n Model for Mobile Devices

There is ene gy onsumption for the mobile devices when offloading the com-
puting tasks, c. ~ iting the tasks and transmitting data among two computing
tasks.

When .. cor puting task v, ; adopts the offloading strategy ., ;, the of-
floadi 1g enei v consumption of the m-th mobile device, denoted as EL(z,,.),
is calc. 'ated Ty

E*(@ma) =T (@m,) - pr, (10)
whe -~ represents the idle power consumption of the mobile device. If a

cc nputing task is executed locally, there is no offloading energy consumption.
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Therefore, the offloading energy consumption for the m-th mobile ¢ »vicr in the

execution of the m-th workflow is calculated by

EY(Xm) = > E"wm.). (11)

T, i €EXm

For the computing task v, ;, the computing energ, consur ption, repre-

sented as E¢(z, ), is calculated by

Wm,i

floc:llpA’ LTma — 07

Ee(‘rmyi) = waZlyipI7 Tomg = 1, (12)

Wm,i o

LoPn Tea =

where p4 denotes the active power consur-~*:~~ ' he mobile device. When a
computing task is implemented in the mobile ac “ce, the device becomes active.
In addition, when the computing task .~ e .ecuted on the cloudlet or on the
cloud, the mobile device is idle, but -, main ain the successful execution of the
workflow , there is still some certain pos er consumption. Thus, the computing
energy consumption of the m-th mow."= device in IoT is calculated by

ECXm) = Y E(xm). (13)

. EXm,

Et(xmﬂ-, Zm,;) reprs sent the transmission energy consumption between vy, ;

and vy, j, which is ¢’ lcuw od "y

L

£ iy T ) = T (Tmiy Ty j) * D (14)

where p; der tes ne transmission power consumption of the mobile device.
Therefore, ne traiw. mission energy consumption for executing the m-th work-

flow is ca. mlred Vy

EY(Xp) = Z E"(@m,is Tmj)- (15)
(Vm,i1Vm,;)EEDy,

Supp. se that each mobile device is equipped with a dynamic voltage and
fre, - .y system, which adjusts the voltage according to the computation load.

T".us, p; and p; are lower than p,.

10
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Let E,,(X,,) be the energy consumption of the m-th mobile de 'ce, .nd we
can get:

Epn(Xm) = E¥ (X)) + B9(X,n) + EY(X,). (16)

2.4. Problem Formulation

In this paper, we intend to shorten the execution time given 1 (9) and save

1

the energy consumption of each mobile device, presentr ' in (1<,. Che formalized

problem is defined as

min T (X)), Bm(Xm), (Vm € {1,2,.. M}). (17)
M
s. t. Z i < C, (18)
m=1
[Vin |
Z Tm,i = ,Ufm(a:m,i = 17\ - 9‘7 M})7 (19)
i=1
T (pre(zm,i)) < T(precin, )+ Tm) (@ < |Vip|,m < M). (20)

In this problem, C' represen.. tuc . ximum number of virtual machines
(VMs) the cloudlet can instantiate and g, represents the number of instantiated
VMs for executing the m-tb workh . The constraint presented in (18) describes
that the aggregated comnuti. - res burces of the instantiated VMs in a cloudlet
are not over the compr .ing _apa-ity of the cloudlet. The constraint given in (19)
indicates that each ompu ‘n task offloaded to the cloudlet occupies one VM.
The constraint e! .boi. “ed in (20) ensures the precursor tasks of a computing

task are impler eun >d before the execution of it.

3. A Cor .putatio.. Offloading Method for IoT-Enabled Cloud-Edge
Comp. “‘ag

Ir this sec ion, we first confirm the dynamic schedules of concurrent work-
flows in -'~ u-edge computing. Then NSGA-III is utilized to find the global
¢ ptimal : Hlution. Finally, schedule evaluation is conducted based on SAW and
MM o select the optimal solutions for the computing tasks in the same

sc.eaule.

11
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3.1. Schedule Confirmation for Concurrent Workflows

In the execution of concurrent workflows, we separate the comy +*ing .asks
in the workflows into three categories: the scheduled, the rc ady ~—d the un-
ready. Each time, we implement the computing tasks ready «. - suppose this
process as a schedule. Consider after S schedules, the cor curren! workflows fin-
ish executions. Let SKD={skd,|1< s< S} represent the ~omp cing task sets
for S schedules, where skds (1< s < S) represents he . f computing tasks
executed in the s-th schedule. We consider each ccmputing t .sk in the workflow
have similar computation load in this paper. It is depic =d in Fig. 2 that there
are two workflows, i.e., WF; and W F;, for ex~cutic ~ " the first schedule, v1 3
along with v 1, the root tasks of WF; and W F~ 2. -eady for execution. Thus,
skdi={v11, v1,2}, skdo={v1 2, v2,2, vo 3}, sku.={v1,3, V1,4, v24}. After three
schedules, the two workflows finish exec. tior s.

Algorithm 1 presents the confirn. .“on ¢~ schedules for M concurrent work-
flows in cloud-edge computing. We inp, 't tne workflow set, denoted as wf. U
and V represent the set of schedule' computing tasks and the set of unsched-
uled computing tasks (Lines ® and 3). If a computing task is the root of the
remaining tasks in the sar > workfle w, then the computing task is executed and
we consider the M worl tows su. -~ itaneously (Lines 5-10). Finally, the schedule

times, and SK D are « “tp .t.

Vi3 Vi3 Vi3
O scheduled WF, WF, WF, WF,
v 2 Vi1 Via Vi Vip vig V2
O ready Via Vig Via Via
- O O O
Q) uready W, Vi WF, ‘¢. WF, .”‘ WF» .“‘
v V24 Va1 V24 V2,1 ‘ Vag Va1 . Va4
» 3 ),

Figr ¢ 2: Dvnauaic schedules of two workflows with four computing tasks respectively.

.2, Coi vutation Offloading Method Using NSGA-IIT

-

7~ *'.s subsection, the computation offloading of the computing tasks in each

sc’.eaule is defined as a multi-objective optimization problem of shortening the

12
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Algorithm 1 Schedule confirmation of concurrent workflows

Require: wf
Ensure: SKD, S

1: s=1

2: U=

3: V= {om| 1<4< [V, 1< 4 < M}
4: while U# V do

5: for v;€ V do

6: if pre(v;)= @ then
7: U= UU{v;}

8: V=V-{v}

9: skds= skdsU {v;}
10: end if

11: s= s+1

12: end for

13: end while
14: S= s
15: return S, SKD

executing time and ss ving the °nergy consumption of mobile devices in IoT.
NSGA-III is an effic ent aul = scurate method for solving optimization problems
with multiple ob’ zctiv. © Hence, NSGA-III is employed to address the multi-
objective optir «za. on problem given in (17).

We encode "> the computation offloading strategies firstly. Then the fit-
ness funct'ons s well as constraints are discussed for the problem. Moreover,
crossover an. mu' ation operations are employed for the creation of new schedule
solutins. Be ides, the usual domination principle and the reference-point-based

selectic > are .dopted in the selection operation.

13
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3.2.1. Encoding

We encode for the computation offloading strategies in this . ~tion. As
is discussed in Section 2, each computing task has a comprt .ati r offloading
strategy. In the genetic algorithm (GA), a gene represents . computation
offloading strategy of a computing task and the genes ¢ ,mpror-ise a chromo-
some, reflecting a hybrid computation offloading of the cc mputir 2 tasks in the
same schedule. Fig. 3 illustrates an example of comy itati- offloading strategy
encoding for the computing tasks in the first schedwe. Ir this example, the
chromosome is encoded in an array of integers (0, 1, 2,.

X X2 X3 s X|skd,

1 2 0 !

Figure 3: An encoding instance for the c< » puting tasks in the first schedule.

3.2.2. Fitness Functions and Con. ~anis

The fitness functions are ntilized to judge whether a possible solution is
optimal in GA. A chromos yme is 1 e offloading strategies of all the computing
tasks of the same sched’ ie anu ~» .h chromosome is an individual, representing
a solution of the mul -ob ectir 2 optimization problem. The fitness functions
include two categor es: the ¢ zcution time and the energy consumption for each
mobile device, piesente in (9) and (16) respectively. The goal of the method
is to find an ¢ s,tim 1 offloading strategy to minimize the two fitness functions
for each mobhile  vice, shown in (17). The fitness of a solution is to achieve the
trade-offs vetv zen the 2M objectives.

In this me 2o | we seek a hybrid offloading strategy of optimizing the execu-
tion 1 me ana the energy consumption for each mobile device. The constraints
are oive. = 18), (19)and (20). NSGA-III performs well in addressing the opti-
11ization »roblem of multiple objectives with potential constraints.

- execution time is one fitness function. Algorithm 2 elaborates how we

ev luate the execution time. In this algorithm, we input SK D and the offloading

14
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strategies, denoted as y. We first calculate the offloading latency, th cor puting
time and the transmission time for executing a computing task in . ~h sci. dule
(Lines 3-12) and then the total time for executing a workflow (".ine 12). Finally,

the time for executing each workflow is output in each schedu. "

Algorithm 2 Execution time evaluation

Require: SKD, x
Ensure: T,,(X,,)

1: for s=1to S do

2: for m=1to M do

3: for i= 1 to |V,,,| do

4: Calculate T*(x,, ;) by (2)

5: Calculate T¢(zy, ;) by (3)

6: end for

7 Calculate TX(X,,) by (4)

8: Calculate T¢(X,,) by (5)

9: for (v, i, Vm,j)€ EDy, w

10: Calculate T*(x - x,, ;) by (7)
11: end for

12: Calculate Tt X,,) by >)

13: Ton(Xo)= "E(im)- T X))+ TH X m)
14: end for

15: end for

16: return T, (X, )

The e ergy consumption of the mobile device is another fitness function.

'ag ribes the process of evaluating the energy consumption. The

Algorithm o
input . of the « 'gorithm are the offloading latency, the computing time, the trans-
mission - and the offloading strategies. The offloading energy consumption,
1 1e comp wting and the transmission energy consumption in executing each com-

puv. ~’usk is first calculated (Lines 2-11) and then the total energy consumption

of che m-th mobile device in executing the workflow is obtained in each schedule

15




25 (Line 12). Finally, the outputs of the algorithm is the energy cons mp*.on for

each mobile device in each schedule.

Algorithm 3 Energy consumption evaluation for mobile dev ces

Require: T5(2p:), T¢(2m,i), T (Tmis Tmj)s X
Ensure: E,,(X,,)

1: for m=1to M do

2: for i=1 to |V,,| do

3: EL(Im,i): TL(xm,i)' pr
4: Calculate E¢(z,,,;) by (11)
5: end for

6: Calculate E*(X,,) by (12)

7: Calculate E¢(X,,) by (13)

8: for (v i, vm,;)€ ED,, do

o: EY @i, T )= T (Tmis o 4) 1

10: end for

11: Calculate E*(X,,) by (15)

122 En(X)= EX X))+ T4 X))+ BY(X,,)
13: end for

14: return E,,(X,,)

3.2.8. Initializati m

In the subs' ctic 1, the parameters of GA are determined, including the pop-

ulation size PC . the maximum of iteration I, the crossover possibility P,., and
0 the mutat on 7 ossibility P,.

Each chi. mos ome represents the computation offloading strategies of the
comp tting te ks in the same schedule. In addition, let the gene c,, be the
offload.. ~ st~ utegy of the n-th computing task in the s-th schedule. In the s-th
¢ *hedule, the chromosome is denoted as Cs ;= (¢s.1,¢s,2,...,¢s,n) (i=1,2, ...,

m PUP N =|skd,)).
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3.2.4. Crossover and Mutation
In this paper, the standard single-point crossover operation is ¢. "duc..d to
combine two chromosomes and generate two new individuals Fig 4 shows an
example of crossover operation for two chromosomes in the .. ~ schedule. In
%0 this example, a crossover point is first determined, and chen swvap the genes

around this point to create two new chromosomes.

X X X3 veo Xiska| X1 A X3 e Xiskd)|
T

a0 22 ~To] G172 [24wl]

X X X3 X|skd)| X X3 e Xiskd|

SN 0 P B R e e R I

Figure 4: An example ~f crossove. operation.

The mutation is to modify genes .. +he (romosomes in the hope of gener-
ating individuals with higher fitr~es valu~s. Fig. 5 illustrates an example of the
mutation operation in the first schedw’~ Each gene in a chromosome is changed

with equal probability.

X1 X X3 X|skdy|
ol laf2]~]o]
X1 X3 X3 Xskd)|
Gl 1 [2]1).]0]

Figure 5: An example of mutation operation.

3.2.5. Selectic n for the Next Generation
1 this phase, we aim at selecting the chromosomes for the next population
t genere e individuals with higher fitness values. Each chromosome represents

~ hvbrid offloading strategy of the computing tasks in the same schedule. After

17




a0 crossover and mutation, the population size becomes 2POP. Algor: hms 2 and
3 are used to evaluate the values of two fitness functions for eact. ~orkn.w in
a schedule. The solutions are sorted according to the 2M v-ue: to generate
several non-dominated fronts using the usual domination pri.. = e.
In primary selection, we select one randomly from the s ,iution~ in the highest
s non-domination front each time to form the next genera.’on unt | the number
of the selected solutions is POP. Suppose the last a .ded - "ation is in the [-th
non-domination front. If all the solutions in the I-tn iront are included, then
the selection finishes and the chosen solutions go into .” e next generation.
In further selection, consider z solutions in .. » [-*.a front are selected in
20 primary selection. Then exclude the z solutions an. “urther steps are conducted
to make sure the z solutions in the [-th fro..’ should be included in the next
generation.
We first normalize the 2M fitness -lues ~f each individual in the population.
In the 2POP individuals, we search the mi..mum of the execution time and en-
ergy consumption for each mobile « vice, denoted as T)%, (X, )(1 < m < M) and
E’ (Xn)(1 <m < M) respectively. Then the 2M values for 2POP individuals

in the population are upd: .ed as

m( (m) - Tm(Xm) - Tm*(Xm) (21)

B (X)) = Epn(Xm) — En® (Xpm). (22)

Let 07" an® 07 - epresent the extreme values of the execution time and the en-
ergy consu’ (ption 1. - the m-th mobile device respectively, which are calculated

by
T (Xom)

o = 23
E'(Xm)
m = max — o 24
% = max Wa , (24)

m

Wr,

m

—od Wg_ in (23)(24) are the weight vectors of the two functions.

m
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We consider each fitness function as an axis. In the hyperplane ¢ mpr ymised
by the 2M axes, the intercept of each axis is determined, denote. as o; and
o'y respectively for the m-th workflow. Then the 2M fitne s vcInes of each

individual in the population are normalized as:

/
T”m(Xm) — L;i(m) (25)
Qp
/
B (X) = 2o (26)
aF

After the normalization, the values of the execution ti. e and the energy con-
sumption for each workflow are in the domai~ [0,., T .e solutions in the pop-
ulation has compromised a 2M-dimensional hvner. "ane. Then the normalized
solutions are associated with reference points. . set of reference points are scat-
tered in the 2M-dimensional hyperplan. ) uc .ntercept of each axis is 1 and
each of the axis is divided into g suk . -~tion. Then the number of the reference

points, represented by 0, is calculated v~

-~

M+g—1
6=c, Mot (27)

0 is approximately eq' al to ti > population size POP to make sure each
normalized solution assc :iates -t . one reference point nearly [16].

Sort the solutions 1 tb . [-t} non-dominated front, according to the number
of the reference pec nts the, associate with. Each time select one randomly
from the solutions witn “aximum number of associated reference points. This
process is repe .ted intil all the z solutions have been selected.

The selectio.. ‘tep is elaborated in Algorithm 4. In this algorithm, we in-
put the ¢ ¢h ¢ neration population (parent population) denoted as PP, and
the reference ~oi it set, denoted as R. The output is the (¢ 4+ 1)-th genera-
tion | opulatn 1 (child population) PP,11. In this algorithm, we first calculate
the exec *i~ . time and the energy consumption of mobile devices by the Algo-
1 thms 2 nd 3 respectively (Lines 2 and 3). Non-dominant sorting is conducted
for .- iduals in the population through the usual domination principle (Line

5)  rurthermore, we select the solutions primarily and judge whether all the
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solutions in the I-th front are included (Line 6). If not, we con ct arther
selection to determine the remaining z solutions in the I-th fromy “~r the next
generation (Lines 8-12). Based on the selection algorithm, th . £ P soiutions

going into the next generation are selected.

Algorithm 4 Selection for the next generation

Require: PP, R
Ensure: PP,
1: for m=1to M do
2: Calculate T,,(X,,) by Algorithm 2
3: Calculate E,,(X,,) by Algorithm 3
4: end for
5: Non-dominant sorting the POP solutions
6: Conduct Primary selection

7. if part of solutions in the I-th fi .+ are ncluded then

8: Conduct further selection:

9: Normalize solutions for eacti -orktlow by (21-26)

10: Generate reference pei~*< under the constraints (27)
11: Associate the solut nns witl reference points

12: Select the remaj .ang n s ' tions

13: end if

14: return PP,y

3.8. Schedule -l :tion Using SAW and MCDM

The pr opos :d method aims at achieving trade-offs between optimizing the
execution tu. ~ a’ d saving the energy consumption of mobile devices. In each
popu’ ation, v ere are POP chromosomes and each chromosome represents a
hybrid ~mr station offloading strategy of the computing tasks in a schedule.
T addit: n, dynamic schedules of computing tasks are considered and to select

rew. “ve' - optimal schedule of each workflow, SAW and MCDM are employed.
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The execution time is a negative criterion, that is, the higher t! ~ ex cution
time is, the worse the solution becomes. Hence, the energy cow. "mpu. n of
mobile devices is a negative criterion too. We normalize th ex rution time
value in the m-th workflow execution as

Tms’max*Tm(Xf_n) T smax _ ,min 7& \
V(T”-?n) _ Ty, $ Max_T s,min ) m m - (28)

]‘7 Th/LS,mRX _ T?nc min = 4,
where 775 and T5;™™ represent the maximum anc m* amu n of the execution
time in the s-th schedule of the m-th workflow. A vep.csents the offloading
strategies of computing tasks in the s-th schel "le. Sin larly, the energy con-

sumption of m-th mobile device is normalized «.

En ™ —En (X)) p, Smax s, min ;é 0
V(E:n) _ E,,smax_ [, smin > Tie ) m . ) (29)
.max s,min __
1, P -FE, =0,

where E5™% and E$;™™ represent . ma. mum and minimum of the energy
consumption in the s-th schedule of the m-th workflow.

In addition, to calculate the utu v value of each solution, the weight of
each objective function requ’ .. Jetermination. In this paper, we do an overall
consideration of two obje ‘“ives for each workflow. Therefore, the weights of
the objectives are both ﬁ The utility value in the s-th schedule of the m-th
workflow is calculatea . -

Y 1

M
¥ o 1
V(Cai) = 20 53, VT + Y 5y VIERA i< POP),  (30)
e 1 m=1

where V(Cs i, e .esents the utility value of the i-th chromosome in the s-th
schedule. her=fore, for each chromosome in the population, we have calcu-
lated the « * ty ~alue of the same schedule. The optimal schedule solution,
repres :nted ! v V'(Cs ;), is calculated by

V(Cy) = &E?V (Co) (1< s<8) (31)

We  ~ pick the optimal schedule with the maximum utility value in the POP

ct _oniosomes.
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3.4. Method Overview

We aim at minimizing the execution time and the energy cons mption of
mobile devices in this paper. The computation offloading p-oble > is defined
as an optimization problem with multiple objectives and NSG." (II is adopted
to obtain the global optimal offloading strategy. First, w confir. » the dynamic
schedules of concurrrent workflows. Then, the offloading st. ~tegie of computing
tasks in each dynamic schedule are encoded as inte jers /,, ', 2). In addition,
the fitness functions and constraints are presente for the aulti-objective op-
timization problem. Furthermore, the crossover and 1. 1tation operations are
conducted to generate new individuals. Th wusu.’” 4 mination principle and
reference-point-based selection in NSGA-ITT are 2. sted to pick out the indi-
viduals with best fitness for the next generatio.. Finally the schedule evaluation
is proposed to select the optimal strateg - fo- cach schedule.

The overview of our proposed n. . “od . shown in Algorithm 5. We input
the maximum iteration I and the ini‘alized population X. The algorithm
outputs the optimal computation oi.. ading strategy in each schedule BX* (1<
s< S). Firstly, we obtain th~ dvnamic schedules of the concurrent workflows
and the schedule times (I "1e 1). B - crossover and mutation, POP individuals
are generated the popr .ation s. : becomes 2POP (Line 5). Then calculate
the fitness functions <. th = 2P’/ P solutions (Lines 6-8) and select the optimal
individuals for the next geucration (Line 10). For each schedule, the utility
values are evaluated anua “he schedule strategy with the maximum utility value
are picked out as t! e optimal schedule strategy (Lines 13 and 14). The process
is repeated ntil ."“e schedule iteration stops and finally the optimal strategies

are the o’ cpu’.

4. E 'perim« ntal Evaluation

In tl ‘s section, we evaluate the performance of the proposed computation

0. 'noadin , method COM by comprehensive simulations and experiments.
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Algorithm 5 Computation offloading method in cloud-edge comp ting.

Require: I, X

Ensure: BX?
1: Obtain SK D and S by Algorithm 2
2: for s=1to S do do

3: =1

4: while i< I do

5: Crossover and mutation operation

6: for the individuals in the population do

7: Calculate the execution time by A. orithr 1 2

8: Calculate the device energy consun. ~tion by Algorithm 3
9: end for

10: Selection operation to ensur ... “ild generation by Algorithm 4
11: i=i+1

12: end while

13: Evaluate utility function 1. by (2C-30)

14: Pick out the optimal schedule strategy BX* by (31)

15: end for

16: return X"

4.1. Simulation Set jp

and each of thr six mobile devices has a mobile application for implementation

respectively. i.c., "V Fy, WFy, WF3, WFy, WF5, WFg. The specific parameter

In our stimule Jion, . '~ mobile devices are under the coverage of the cloudlet

settings ir this experiment are given in Table 2.

IoT & e used » evaluate the performance of COM. To conduct the comparative

analysi. °nd validate whether COM is robust for computation offloading, the

The exec. “ior time and the energy consumption of the mobile devices in

¢ O mpara ‘ve methods are elaborated as follows:

V1’ ¢ aild the computing tasks are executed with control constraints. When the

» Ro ,chmark: A workflow is implemented on the corresponding mobile de-
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Table 2: Parameter Settings

Parameter Valr : N\
The idle power of mobile devices 0.00."* N
The active power of mobile devices J.bW
The communication power of mobile devices | * 2W

The delay of LAN |~ ms

The delay of WAN ‘ 30 as
The bandwidth of LAN | 100kps
The bandwidth of WAN 50kps
The computing power of mobile devices 500MHZ
The computing power of the cloua..* 3000MHZ
The computing power of the lour 5000MHZ
The number of VMs in t! = <louc’=t 20

mobile device is overloaded, the compu..ng tasks have to wait for execution un-
til the resources are availal .e. 'L~ process is repeated until all the computing

tasks in the workflow have . ~u ey :cuted.

e Cloudlet-oriented Jou putation Offloading Method (CLCOM): In this method,

all the computing t sks . a vorkflow are offloaded to the cloudlet with con-
trol constraints. .« ™ on the cloudlet is instantiated if a computing task is
offloaded to thr . ~udlet. If all the VMs on the cloudlet have been instanti-
ated, the con. nti g task has to wait for execution until the resources of the
cloudlet ar . aveilabic. This process is repeated until all the computing tasks in
the workhc - nave peen executed.

e (1oud-criented Computation Offloading Method (CCOM): In this method,
the co 'putin | tasks in a workflow are all offloaded to the cloudlet with control
¢ mstrai~ts. A VM on the cloud is instantiated if a computing task is offloaded
tu the ¢’bud. This process is repeated until all the computing tasks in the

.. "fow have been executed.
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The methods are implemented under the widespread used Clou Sim .rame-
work on a personal computer with Intel Core i7-4720HQ 3.60G1. nroc. ssors

and 4GB RAM.

4.2. Performance Evaluation on COM

In this section, we evaluate the utility value in each dynam : schedule as
well as the resource utilization for mobile devices. " ne corresponding results

are shown in Fig. 6 and Fig. 7.

4.2.1. Ewvaluation of Utility values

In Section 3, SAW and MCDM are employed. *o seiect the relatively best so-
lutions. We consider the dynamic schedule. - vne six concurrent workflows and
after six schedules, the workflows finisl their excutions. For each schedule of
workflows by COM, we calculate the utili. - salues respectively in (25), (26) and
(27). The most balanced schedule st. av. ~v 13 the solution with the maximum
utility value. Six sub-figures in I . < ill. strate the comparison of utility value
in different schedules after the 1000%" . eration. It is explicit that the number
of convergent solutions is 3 4, 5, ?. 3 and 4 respectively corresponding to each
schedule. For example, in . "~ 6a. che selected schedule strategy is solution-2,
for the higher utility v- iue “han the other two. As is shown in Fig. 6f, after six
schedules, the workf ows re ¢ mpleted and the schedule strategy generated by

solution-2 is the ¢ »u.. ~al one in the four solutions.

4.2.2. Evalua’.on ¢ f Resource Utilization

Resourc  utiliz. “ion of the cloudlet is of great importance to the execution
time and he - aerg  consumption, and it is calculated according to the number
of the *2 ] inst.. ces on the cloudlet. In the dynamic schedules of workflows, we
consi. er the 1 source utilization of the cloudlet changes with time instants, as
is Lustraveu in Fig. 7. It is depicted that in the execution of the workflows, the
1 source tilization of the cloudlet is over 80% in most cases, which guarantees

the goud performance of COM. The reason why there is a sharp decrease of the
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Figure 6: Comparison of utility value in differen. ~chedules by the generated solutions of

COM.

resource utilization is that most of thL > « ~ap. Ying tasks have finished execution.

100 e R [ - i

90 - v J [ I

Resource utilization (%)

0 25 50 75 100 125 150 175 200 225 250
Time instant (ms)

Figure 7: B sour 2 util*zation of the cloudlet at different time instants in the dynamic schedule

of workflows v, CO! ..

4 . Comparison Analysis

In th's section, we evaluate the performance of our proposed method and

_ "= comparisons with Benchmark, CLCOM and CCOM. The execution time
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and the energy consumption of mobile devices are two main metr s tc assess
the performance of the computation offloading methods. In additic. the , >wer
consumption of the mobile devices is used to compare the pe ror.1ance of the
methods and we analyze the distribution of computing tasks .. < .fferent meth-
ods. The corresponding results are illustrated in Fig. & Fig. & Fig. 10, and
Fig. 11.

4.8.1. Comparison of Execution Time

0.6
Benchmark
COCL
cocC
uCOM

A\ I |
L] WFa WF's WFs

Figure 8: Comparison of exec' .ion time with different workflows by Benchmark, CLCOM,
CCOM and COM.

o
[}

~

<
o

Time consumption (s)
e

(=1

WEy WF»

The execution time . nsis 5 of the offloading latency, the computing time
and the transmiss'u.. *ime. Fig. 8 shows the comparison of the execution time
in executing siv orkflows by Benchmark, CLCOM, CCOM and COM. It is
illustrated th * ov. proposed method COM has the minimum execution time
compared - ith the . ther methods.

In the Re .chy ark, all the computing tasks in a workflow are executed on
the m ,oue device. Due to the resource limitation of the mobile device, the
comp. ting pc ver is low, which makes much more time than the other three
r cthods In CCOM, a little more time is cost than in CLCOM, since the mobile
a vices ¢ nnect to the cloudlet via LAN that has higher bandwidth and lower

*+oncy compared with WAN. Hence, less time is consumed when the workflow
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is executed on the cloudlet than on the cloud. Furthermore, resou ~e ¢ pacity
on the cloudlet is finite so that if VMs on the cloudlet are all . <stanu. ted,
the remaining computing tasks in workflows requesting to be exc mted on the
cloudlet have to wait until there are available resources in the ¢. ' .let. However,
in our proposed method COM, the hybrid offloading strat :gy is ~dopted, which
makes the execution time in COM less than in CLCOM.

4.8.2. Comparison of Energy Consumption in Mobi.~ T cvice .

The energy consumption of the mobile devices inc. “des the ofloading energy
consumption, the computing energy consumpti. ° and t .e transmission energy
consumption. Fig. 9 illustrates the comparison .« © the energy consumption for
the mobile devices by Benchmark, CLCO." CCOM and COM with different
workflows. It is intuitive that the energy _ ~~mption of mobile devices by COM
is less than that by the comparitive meth s. The Mobile devices provide the
processing energy and resources for t.e « ~ecution of workflows in Benchmark
so that the energy consumption i = vue = bile devices is higher, compared with
other methods. If a computing task is not implemented in the mobile device,
the mobile device just nee .s to «Hoad it to other computing platforms that
supply the resources and the , ~wer or execution in CLCOM, CCOM and COM.
Due to lower latency .nd "agher bandwidth of LAN than those of WAN, the
transmission energy consw. ~v ion and the communication energy consumption
in CLCOM are le s t.. m in CCOM. In COM, some of the computing tasks are
executed in the ... bile devices, so the offloading energy consumption is saved.
Therefore, CL™" 1} as further improvement in reducing the energy consumption

for the mcile ‘evices.

4.8.8. vmpari. om of power consumption in mobile devices

W obtain the power consumption according to the energy consumption in
v uoile devices and the execution time. Fig. 10 depicts the power consumption
f.* mobi' : devices with different workflows by the four methods. The power

~~nsumption of the mobile device is an metric to measure the instant energy
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Figure 9: Comparison of energy consumption in mc: ‘le dev = with different workflows by

Benchmark, CLCOM, CCOM and COM.

consumption of mobile devices. If the ue.. - ~onsumption is too high, there
might be extreme energy consumpti~n of . ‘obile devices, which contributes to
high energy consumption. From Fig. 1u, *he average power consumption of

COM is a little lower than CLCO. " anu JCOM.

1000 Benchr .rk “COM ©CCOM mCOM

100

10

Power consumption (W)

»F WF: WFs WFs WF's WFs

Figure .u: Compdarison of power consumption with different workflows by Benchmark,
CLCC 1, CCON and COM.
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4.8.4. Comparison of Computing Task Distributions

In the proposed method COM, we consider a hybrid computa. ~n owu oad-
ing strategy in cloud-edge computing, i.e., a computing task i im »»mented in
mobile device, on the cloudlet or on the cloud. Fig. 11 illustr..’~, the distribu-
tion of the computing tasks by different offloading meth ,ds res ~ectively. It is
explicit that most of the computing tasks are offloaded to he clo’ dlet in COM,
due to the better performance of it in terms of re .ucir- “he execution time
and decreasing the energy consumption for the mobiic devir :s. However, since
the moderate resource capacity of the cloudlet, if all v. = VMs on the cloudlet
are instantiated, the computing task is execu*ed 1.. ~th” . computing platforms,
instead of queuing in the cloudlet. Hence, few co. *puting tasks are executed
in the mobile devices or on the cloud, which . 'arantees the optimal execution

time and energy consumption in mobile dev: .

Offload

Number of i s Number of tasks Number of tasks

)W 4 (&) WFs (f) WFg

Figure 11: Compari.  of computing task distributions in different schedules by the generated

solutions of JOM

5. Ri'ated " Vork

The T is a paradigm where everything around us can actively identify,
con. ~~*, perceive and report the system on a global scale [17][18][19][20]. It

er ubies interconnected smart devices to be used, monitored or configured for
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human beings [21][22]. Furthermore, the IoT is expected to play a im’ ortant
part in the construction of the next generation mobile communica. ~n se. ices,
which promotes more attractions focused on the Internet of w ,bu  things [23].

The mobile devices in IoT generate big data from surrou. 1 ags of mobile
users to ensure the effectiveness and accuracy of the servi es tha* mobile appli-
cations provide [24][25][26][27]. In [28], Cai et al. the biy data ¢ be divided
into four categories, i.e., Multisource High Heteroger ity ™ *a, Huge Scale Dy-
namic Data, Low-Level with Weak Semantics Data a.ua Ina curacy Data. The
generated IoT big data applications (IecTBDAs) are . quired to be equipped
with capability of analyzing the data streams [2Y.

However, due to the resource limitation of mob.. ~ devices, users’ demands of
real-time processing and prolonged battery lite ~re not guaranteed [30][31][32][33].
As a burgeoning technique, computatior. o .0 g to data centers such as cloud
severs and cloudlets alleviates the pr- ~lem. Towever, in spite of rich resource ca-
pacity, traditional clouds are deployed . ~mc.ely from the mobile devices, which
makes the offloading latency proloi, ~d, especially for the computation-intensive
tasks [34][35][36]. Compared with the cloud, EC is an emerging technology that
aims at pushing applicatic 1s and « ontent close to the users to reduce latency,
improve the quality of xperic. ~ and ensure highly efficient network opera-
tion and service deliv 'ry, whic'. has the potential to address the concerns of
response time requ cement, ~ attery life constraint and bandwidth cost saving
[37][38][39][40][41,.

Considerin’, the increasing mobile applications, to process the big data from
the mobile devic : in IoT, designing an EC framework is of great significance
[42]. In [47|, Li et al proposed a novel edge computing for IoT (ECIoT) architec-
ture, and inv. *ic ated radio resource and computational resource management
in EC (0T to « 1hance the system performance. In [44], Amjad et al. proposed a
cognitiv. 7 s-computing based framework solution to achieve an efficient usage
[ the du ‘ributed resources with the dynamic extensive computing facilities of
the '~ ulet for end-users. The EC scheme reduces the execution time and saves

th : energy consumption of the mobile devices in IoT, thus improving the qual-
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ity of user experience. However, on the other hand, the computi: ~ re ources
on the cloudlet are finite, which calls for the resource coordination ~ etwec. . the
cloudlet and the cloud. In [45], Jeong et al. discussed a syster ot nobile cloud
computing (MCC) based on unmanned aerial vehicles (UAVs) . ~ * :duce the mo-
bile energy consumption through computation offloading In th~ system, joint
optimization of bit allocation and trajectory of cloudlet —as precposed. Jin et
al. proposed an incentive-compatible mechanism (IC (M) +- distribute cloudlets
based on the demand of mobile services [46].

As momentous part of EC, computation offloading ~romises the decreased
execution time and energy consumption of mobiic Yevi-cs in IoT. In the gross,
computation offloading purports offloading the w. “kloads to cloud servers or
cloudlets. In [47], Roy Et al. proposed an ap lication-aware cloudlet selection
strategy to reduce the energy consump. on « 2 mobile terminals and the ex-
ecution latency of the mobile applic +ions. With this strategy, the computing
tasks are offloaded to the suitable clouJ'let ..ccording to the application type in
multi-cloudlet scenario. Code oftic ding for image processing tasks in mobile
applications was investigated to ameliorate the performance and energy con-
sumption [48]. In [49], A’asmari 4 al. proposed a Markov Decision Process
(MDP) to seek a hybrid offloac’ ~« strategy in mobile devices, the edge and the
cloud, while optimizir = th . exe ution time and the energy consumption. Dinh
et al. researched of.oading | om a mobile device to several edges. In such sce-
nario, task allocacion a. 1 central process unit frequency of the mobile device
are optimized .o r¢ luce the execution latency and energy consumption of the
mobile devire |" Zhang et al. proposed a joint computation offloading and
resource ¢ ytinr zation in MEC. In such scheme, computation offloading strategy
was studied . re wuce the energy consumption and execution time [51].

H wever, o the best of our knowledge, few of the existing works have in-
vestigay. 1 +' ¢ multi-objective optimization of computation offloading problems
{or IoT-¢ rabled cloud-edge computing. With the observations above, it is still
a (. ''".ge to realize the goals of reducing the execution time and saving the

er :rgy consumption for the mobile devices in IoT. In view of this challenge,
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a computation offloading method in cloud-edge computing environ rent .s pro-

posed this paper.

6. Conclusion and Future Work

Nowadays, Internet of mobile things has emerged as a popu r technology
for bringing about rich mobile applications. With the “~veic, _cnt of the tech-
nology, the complexity and scales of the big data for »ro- ss1 crease, which has
conflicts with the resource limitation of mobile dev.. ~s. EZ paradigm alleviates
the problem to a great deal by offloading con ~uting te sks to the cloud or to
the cloudlet. In a bid to realize multi-object.. > opuunization of reducing the
execution time and saving the energy cor. .upuon for mobile devices, a com-
putation offloading method, named COM. is pi.posed in this paper. Firstly,
we analyzed the dynamic schedules of cow v rent workflows and then NSGA-III
is exploited to address the multi-obje 1. ~ oy cimization problem. Furthermore,
extensive experiments and eval' ..*~ns (e conducted to affirm the proposed
method COM performs well in solving “he optimization problem.

For future work, we wil' aqju * and extend the proposed method in a real-
world scenario of IoT. In au.**ion, v e will crystallize different time requirements
of the workflows for e¥ :cut’on, trying to find an offloading strategy to achieve

the maximum energ' co. mr jion savings of the mobile devices.
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1. Analyze the dynamic schedules according to the data or control dependencies of the computing
tasks.

2. Adopt NSGA-II1I to address the multi-objective optimization problem in loT.

3. Select the optimal schedule strategy by leveraging SAW and MCDM techniques.



