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Abstract

Randomized algorithms have been successfully applied in modelling dynamic sys-

tem. How do random weights affect system identification and why do they sometimes

work well? In this paper, we use the convolutional neural network (CNN) as an iden-

tification model to answer these questions.

Since the convolution operation is an important property of the dynamic system

and in the frequency domain it becomes the product, the CNN model is analyzed in

the frequency domain. We first modify the CNN model, so that it can model both

the input and the output series. Then we analyze the impact of the random weights

of CNN in the frequency domain. We prove the existence of optimal weights and

analyze the modeling accuracy under optimal weights and random weights. Through

theoretical analysis, we propose a two-step training method and compare it with the

random weight algorithm. The proposed CNN model with random weights is validated

with three benchmark problems.

Keywords: convolutional neural network, random algorithms, frequency domain,

deep learning.

1 Introduction

To predict the future behavior of the dynamic system, to apply model-based control or to

understand the physical process, system identification is needed. Neural networks are black

box models, which only use input and output data. These data-based modeling methods
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still have many problems. The hyper-parameters must be defined before they are applied,

for example, how many hidden layers and hidden nodes are needed [21]. The universal

approximation theorem guarantees that the neural model can approach almost all continuous

systems with enough hidden nodes, however, the fact of increasing the hidden nodes causes

the over-fit problem [34].

The alternative method to increase the hidden nodes is to use more hidden layers. It

is a basic idea of deep neural networks. Theory and application show that deep learning

models achieve better training precision [2], and get impressive results on many difficult

tasks [14]. The convolutional neural network (CNN) is one of the most important deep

learning models [22][33]. The main difference between CNN and normal neural networks is

the convolution operation. The first successful CNN is at early 90s for the classification of

digits [23], which includes the invariances in two-dimensional forms using local connections

and weight restrictions. The training uses the maximum likelihood estimation and the mod-

ified backpropagation algorithm [26]. To give a better understanding of how convolutional

networks work, [39] proposed the de-convolutional technique to visualize the operations of

the hidden layer. By using GPU (Graphic Processing Unit), faster learning and testing are

obtained by [20]. It has been proven that CNNs have great performances in classification

tasks, such as image processing [30]. CNNs are also applied for data regression and time

series modeling. In [4], the time series is formed in the autoregressive model. In [12], CNN

is applied to classify the time series.

There are two correlated time series in dynamic systems, the input x (k) and the output

y (k). The identification of the system is to find the relationship between these two time

series. This relationship is sometimes convolution, for example, the time-invariant linear

system. The input and the output series can be joined in a time series, the normal time

series prediction method is applied in [25]. However, the convolution relation between input

and the output disappears.

To the best of our knowledge, there are few published results on the application of

CNN to the dynamic system modeling. In our previous paper [25], we gave a possible

scheme for modeling nonlinear systems with CNN. In [19], the CNNs are trained to model

uncertainties in the dynamic system. It is the extended version of classic neural control. In

[9], the identification of the nonlinear system is transferred to the time series model using

the ARMAX model. However, all the above papers do not analyze why CNN works well for

the system identification.

Random algorithms were initially proposed in [31] and were studied in depth in [17].

Their hidden weights are chosen at random and the pseudoinverse approach (or the least

squares method) is applied to calculate the output weights. They show that the optimization
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of the hidden layer parameters does not significantly improve the generalization behavior,

while the update of the output weights is more effective [29]. The importance of the scope

for the random assignment of hidden parameters is described in [24]. The neural model can

be generated by the stochastic configuration method, this stochastic configuration networks

[37] needs less human intervention and fast learning. Random algorithms have been applied

successfully to the identification of nonlinear systems in [36]. In [8], the random hidden

weights are adjusted by the statistical characteristics of the system input through restricted

Boltzmann machines. The combination of random algorithms and CNN has good results

in classification tasks. [7] shows that CNN has a significant degree of robustness in the

classification of images with random filters. For image processing, [28] explains why the

square pooling in CNN works well with random weights.

In this paper, we will study if the CNN with random weights also generates surprising re-

sults for the system identification. We take advantage of CNN and the randomized algorithm

for the modeling of nonlinear systems. The behaviors of the proposed model are analyzed in

the frequency domain. We show that there are optimal inputs (or optimal filters), and the

precision of modeling with random filters is closed to the optimal filter. These theoretical

results help us to design a two-step training method for the CNN model: pre-training for

CNN filters and fine training for the full connection layer. Three benchmark examples are

applied to show that the randomized algorithm with the CNN model is effective for the

identification of nonlinear systems.

Nomenclature

Meaning symbol

system input u(k)

system output y (k)

internal state x̄ (k)

input to NARMA model x (k)

unknown NARMA function Γ [·]
unknown nonlinear functions f, g

modelling error em, eo

Meaning symbol

weights of the last layer V

CNN operations Φ [·]
filter parameters Wij

CNN output ŷ (k)

discrete Fourier transform F
convolution operation ∗
normalization of x X

This paper is organized as follows: Section 2 explains how to use CNN for the identifi-

cation of nonlinear systems and shows why CNN is favorable for system modelling. Section

3 gives our theoretical analysis of the impact of random weights in the frequency domain.

Section 4 provides the training algorithms of the CNN model. The random filters are pre-

trained. Then we discuss the significance of random weights. Section 5 reports the results

of the simulation with three benchmark problems and shows the impact of random weights
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for the identification of nonlinear systems. Section 5 concludes the paper.

2 Convolutional neural networks for system modeling

CNN can be an extremely efficient model for the modelling of nonlinear systems, because

the convolution operation in CNN is the same as the input-output relation of the linear

time invariant system. For two integers k and i, if the input is the pulse function u (k) =

δ (k − i)1, then the output is the pulse response y (k) = h (k − i) . The relation between y (k)

and u (k) is

y (k) =
k∑

i=−∞
u (i)h (k − i) = u (k) ∗ h (k)

where ∗ is defined as the convolution operation.

Consider the following unknown discrete-time nonlinear system

x̄(k + 1) = f [x̄ (k) , u (k)] , y(k) = g [x̄ (k)] (1)

where u (k) is the input vector, x̄ (k) is the internal state vector, y (k) is the output vector.

f and g are general nonlinear smooth functions, f, g ∈ C∞. Denoting

Y (k) = [y (k) , y (k + 1) , · · · y (k + n− 1)] , U(k) = [u (k) , u (k + 1) , · · ·u (k + n− 2)]

if ∂Y
∂x̄

is non-singular at x̄ = 0, U = 0, this leads to the following nonlinear autoregressive

exogenous model (NARX) model

y(k) = Γ [x (k)] (2)

where

x (k) = [y (k − 1) , · · · y (k − ny) , u (k) , · · ·u (k − nu)]T (3)

Γ (·) is the unknown nonlinear difference equation representing the plant dynamics, u (k)

and y (k) are measurable input and output, x (k) = [x1 · · ·xl]T , l = ny +nu + 1, k = 1 · · ·N,
N is the data number.

The unknown nonlinear system (2) can be modeled by the following two types of models:

1. Simulation model,

ŷ(k) = N [u (k) , · · · , u (k − n)] (4)

where ŷ(k) is the output of the model, N [·] is the model structure, for example it is

the neural network. n is the regression order for the input u (k) . Since nu in (2) is

unknown, n 6= nu. (4) is also called nonlinear finite impulse response (FIR) model.

1δ (·) is the Dirac delta function, δ (0) =∞, δ (x) = 0 when x 6= 0, and
∫∞
−∞ δ (x) dx = 1 .

4



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

�����������
�����������

	�
��
�����
���������������	�
��
�����

�������

( )kx
1,1W

2,1W

nW ,1

����

V

( )kŷ
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Figure 1: CNN model for system identification

In general form, (4) can be written as

ŷ(k) = N [ŷ(k − 1), · · · , ŷ(k −m), u (k) , · · · , u (k − n)] (5)

where m is the regression order for the model output ŷ (k) , m 6= ny. The difference

between the simulation model (5) and the NARX model (2) is that the simulation

model can not use the actural output y (k −m) in its regression model, it can only

use its own output ŷ(k − m). In this paper, we use this model. It is the parallel

identification model of [27].

2. Prediction model,

ŷ(k) = N [y (k − 1) , · · · , y (k −m) , u (k) , · · · , u (k − n)] (6)

where m is the regression order, y (k) is the output of the plant (2), m 6= ny. The data

regression form of (6) is the same as the NARX model (2). It is the series-parallel

identification model of [27].

In many modeling applications, we have to use the simulation model (4), which has a

static input-output mapping. For example, multi-step prediction and neural control based

on offline models can not use recent actural outputs y (k − i) , i = 1, 2 · · · , to update models.
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The nonlinear system identification scheme based on CNN is shown in Figure 1. CNN

has a cascade connection structure. Each CNN cell has two layers: convolution layer and

sub-sampling layer. Each convolution layer has n convolution operators, which are called

filters, C1,1 · · ·C1,n. There are m levels. The last layer is fully connected. The output of the

CNN model is

ŷ (k) = V Φ [x (k)] (7)

where ŷ (k) is the output of the CNN model, Φ represents the operation of m−level, V ∈ <n
is the weight vector of the final layer. In each convolutional layer, there are n filters, the

convoluted output is

z = x ∗Wij, z = [zz1 · · · zzN−p] , zzq =

p∑

k=1

x [p(q − 1) + k]wij [k] (8)

where p is the filter length, N is the length of x (k) , z (k) = [zz1 · · · zzN−p] is the feature

map generated in this layer. In this paper, we let all the filters have the same length. wij

are the parameters of the filters, they are the hidden weights of CNN.

After the convolution (8), the signal z (k) goes through an activation function. In this

paper, we use the rectified linear unit (ReLU) as

Z (k) = max [0, z (k)] , z = [z1 · · · zn] (9)

We use the max-pooling method [13] in the sub-sampling layer

x2 (k) = max
p

[Z (k) , s] (10)

where s is the shrink parameter, which depends on the layer, x2 (k) is a new input for the

second convolutional layer, see Figure 1.

The following special properties of CNN are favorable to the modeling of nonlinear sys-

tems:

1) To model a complex nonlinear system, large-scale neural networks are needed. The

CNN model uses sparse connectivity and shared weight to reduce the number of model

parameters. In Figure 1, the width of the receptive field is p, the neuron in layer m only

receives p nodes from layer m− 1.

2) Each convolutional kernel scans the complete data, and the input features are mapped

to the output, no matter where the receptive fields are located. This means that the same

properties of the system have the same weights. The convolution calculation in CNN reduces

the risk of over-fitting by sharing weights. In Figure 1, the nodes of the layer m belong to the

same feature map. This means that CNN learns more meaningful features of the dynamic

system.
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3) The multiple-level pooling, such as the maximum operation in the sub-sampling layer,

generates tolerance to the noise in the data. This makes the CNN model very robust.

CNNs have the following special technical issues related to the modeling of nonlinear

systems:

1) In general, the backpropagation learning in deep networks has the gradient vanish

problem. The ReLU (rectified linear units) in CNN does not face this gradient problem.

2) The pre-training can extract properties of the dynamic system. It can learn something

intrinsic about the data. They extract the patterns from the input-output data and store

the information learned in the weights of the networks.

3) The convolution operation used by CNN facilitates the analysis of the modeling of the

system in the frequency domain.

The object of the system modeling is to update the weights Wij and V of CNN, or let

alone Wij randomly and only update V, so that the output of CNN (7) convergence to the

system output y (k) in (2)

arg min
Wij ,V

[ŷ (k)− y (k)]2

3 Frequency domain analysis of random weights

The motivations of the frequency domain analysis for CNN are: 1) The convolution operation

in CNN becomes element-wise product, the analysis becomes easy and direct; 2) The changes

of the convolution with random filters are less in the frequency domain. With these, we can

explain why random weights perform well for nonlinear system identification.

If we use discrete Fourier transform (DFT), the convolution operation in (8) can be

transformed into multiplication,

F (x ∗W ) = F (x)×F (W ) = F (x)F (W ) (11)

where F represents the DFT for the corresponding vector, ∗ represents the convolution

operation, F (x) and F (W ) are vectors in the frequency domain, × represents element-wise

product.

Since the product requires the two vectors, F (x) and F (W ) , have the same length, the

vector with smaller length is filled with zeros, that is the same elements as the larger one.

We consider the CNN model as in Figure 1, which includes (8) and (10)

x2 (s) = SxTW (12)

where x2 is the output of the maxpooling, W is the convolution matrix (filters), S is the

7
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Figure 2: The frequency spectra of x (k) ∗Wi,j. The forms are not changed by the random

filters Wi,j.

vector as [0, · · · 0, 1, 0, · · · , 0] to obtain the maximum value of the convolution operation.

Here we do not need the exact position of ”1”.

We first use an example to show that random hidden weights in CNN do not affect so

much to the convolution operation. We use the gas furnace data set, which is the benchmark

problem in [18]. The input u (k) is the flow rate of the methane gas, while the output y (k) is

the concentration of CO2 in the gas mixture under steady air supply. The data regression in

(2) is, x (k) = [y(k − 1) · · · y(k − 4) u(k) · · ·u(k − 5)] . The data set has 296 samples with the

fixed interval 9 seconds, they are added certain frequency noises. We use DFT to transform

the data to the frequency domain, then apply convolution between x(k) and filters. When

the weights of the filters are random, the spectra of the convolution are shown in Figure 2.

Compare with the input frequency spectrum in Figure 3, some filters increase the fre-

quency amplitude of x (k), some filters decrease it. However, the form of x (k) is not changed

by random filters, that is, the features of x (k) can be extracted by random weights when

the convolution operation is applied. This property can not be seen in the time domain.

From the point of view of identification, we expect the amplitude to reach the highest,

so that its features can be extracted with the greatest energy. In the time domain, we want

to find the best filter Wi,j such that

max
w

[x ∗Wi,j] (13)

8
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Figure 3: The frequency spectrum of the input x (k) . This form is similar with x (k) ∗Wi,j.

It is a difficult task. However, in the frequency domain, (13) becomes

max
w

[
x (s)T W (s)

]
(14)

where x (s) = F (x) , W (s) = F (W ) , F represents the discrete Fourier transform. Since the

input data is known, it is easier to do

max
x

[
x (s)T W (s)

]
(15)

(15) means we can find an optimal input instead of the optimal filter. The following theorem

provides the optimal input, so that (13) is maximized.

Theorem 1 The input data x (k) , k = 1 · · ·N, pass through the filter Wij = [wij (1) , · · ·wij (p)],

p < N . There is the optimal input, which maximizes the CNN cell, i.e. (13) or (15) with

the ReLU (9) and the max-pooling (10) as

x∗ (k) =

√
2

N
cos

(
2πf0

N
k + φ

)
(16)

where f0 is the optimal frequency, φ is the phase.

Proof. Each CNN cell includes the convolution operation (13), the linear operation ReLU

(9), and the max-pooling (10). The optimization problem (14) is

Smax
x

[Wx] or Smax
x

[WX] (17)
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where S is defined in (12), X is the normalization of x, ‖X‖2 = 1, W is the circulant matrix,

i.e., each row is the circular shift of the previous row [11]. Then the optimization problem

(17) can be describe as

S max
X,X 6=0

(XTW TWX)
1
2

XTX
= S max

X,X 6=0
J (18)

HereX 6= 0 is under the assumption that the zero frequency can be the maximal frequency f0.

The optimal solution must be the eigenvector associated with the maximum value of W TW .

As we saw before, the discrete Fourier transform can be used to place the eigenvalues of

W TW in the diagonal matrix, F is the matrix of the discrete Fourier transform. (18) is in a

positive semi-definite quadratic form. The optimal solutions are the eigenvectors associated

with the maximal value of W TW . We use DFT to (18),

J =
(XTW TWx)

1
2

XTX
=

(XTF TFW TWF TFX)
1
2

XTF TFX
(19)

The discrete Fourier transform matrix satisfies F TF = I. We define q = Fx, q is the discrete

Fourier transform of x. Apply F TF inside W TW ,

J =
(qTFW TF TFWF T q)

1
2

qT q
(20)

Considering that W is the circulant matrix, then FWF T = Λ. Finally the optimization

problem (17) is {
Smax q

(qT |Λ|2q) 1
2

qT q

Subject: F T q ∈ <
(21)

The constraint F T q ∈ < guarantees x (k) ∈ <. The matrix Λ is diagonal, Λii = β |FW |i , β
is the scaling factor. Then, the eigenvalues are λi = β|Λ|ii. Because x (k) must be real, the

DFT coefficients corresponding to the negative frequencies must be its complex conjugate,

i.e. q−i = q̄i and q−j = q̄j. To satisfy this, a possible way is

qj =

{
visign(j)b|j|a|j|, λj ∈ max (λ)

0 otherwise
(22)

with a and b are vectors of arbitrary coefficients, one of them is the maximal frequency f0,

‖a‖ = 1, v is the eigenvector of (21). The reality condition is

a|j|e
isign(−j)φ|j| = a|j|e

isign(j)φ|j| = q̄j (23)

So for nonzero qj and q̄j, the reality condition of x is fulfilled. Since (23) reaches the maximum

without the restriction of reality, it is also the maximum for the complete problem. If we

convert q back to the time domain, the maximum of x is (16).

10
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Remark 1 This theorem shows that there is an optimal input for random filters. The in-

dex in the frequency domain (14) shows that for any inputs (random or determined), it

corresponds to the optimal filter. The frequency of the optimum input is the frequency of

maximum magnitude in the filter. Since the phase is not specified, the architecture of the

filter is invariant in the translation. On the other hand, any random filter containing some

frequencies of moderate magnitude can generate the maximum magnitude of the best input

frequency, i.e., the optimal input places all its energy at the highest amplitude frequency in

the random filter. This is why random weights sometimes do it so well.

4 CNN training with random weights

In the previous session, we showed that the convolution operation in CNN with random filters

(random weights) can very well represent the characteristics of the nonlinear system. From

Figure 2 and Figure 3 we can see that although the optimum filter maximizes the amplitude

of the frequency spectra, the effectiveness of this optimal filter is limit. In this section, we

use the two-step training method, pre-training and fine tuning, to show the impact of the

random weights.

In the pre-training, the weights of the convolutional filters Wij are randomized first, then

we use small data set and the backpropagation to update them.

In the fine tuning, the weights of the convolutional filters are set to the values of the

pre-training, the weight V in the last layer is updated.
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4.1 Pre-training

The identification scheme with CNN is shown in Figure 4. Each ”CNN cell” has the convo-

lution operation (13), the activation function ReLU (9), and the max-pooling (10). There

are m× n CNN cells. The final block is fully connected.

The objective is to train the weights so that the error between the neural model (7) and

the plant (2) is minimized. The performance index is defined as

J =
1

2
e2
o eo = ŷ − y (24)

The last block is the classical single layer feedforward neural network, the training law is the

following gradient descent

V (k + 1) = V (k)− ηIm (k) eo (k) (25)

where Im (k) = [Im,1 · · · Im,n]T , which are the outputs of the last layer of the CNN model,

η > 0 is the learning rate.

The error is back-propagated to the layer m as

em (k) = eo (k)
∂σ

∂t
V = eo (k)V (k) (26)

where σ is the active function of the full connection layer. Here we use the linear function,
∂σ
∂t

= I.

For each CNN cell, we must update the filter weight Wij in (8) as

W
(k+1)
ij = W

(k)
ij − η

∂J

∂Wij

where J is defined in (24).

For m−th CNN cell

W
(k+1)
mj = W

(k)
mj − ηIm−1,j (k) em (k)

When the errors are back propagated from block m to block m−1, em is the backpropagation

error through the max-pooling (10), the activation function ReLU (9), and the convolution

operation (13). Because ReLU is linear, the error goes directly through ReLU.

In the max-pooling, there is no more operation than the shrink of the data, the reverse

operation is the following up-sampling

emp (k) = up [em (k)]

where the up(·) is the opposite function to the max-pooling. Only the elements that have

the greatest contribution in the next stage are applied.

12
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When the error emp goes through the convolution operation (13),

emc = emp ∗Wij

we use the following discrete-time de-convolution

emc = emp ∗ [rot180 (Wij)]

where rot180(·) rotates the matrix Wij to 180◦, it is equivalent to performing the convolution

of emp with the filter Wij,. Finally, from layer m to layer m− 1, the error becomes

em−1 = up [em (k)] ∗ [rot180 (Wij)] (27)

For any CNN cell, the training law of the filters is

W
(k+1)
ij = W

(k)
ij − ηIi−1,j (k) ei (k)

ei (k) = up [ei+1 (k)] ∗ [rot180 (Wij)]
(28)

where i = 1 · · ·m, j = 1 · · ·n. Since the interior structures of the CNN cells are the same,

we can use the same training law (28) to train the entire CNN model.

From the analysis of the frequency domain, we find that CNN with random weights

is good for the identification of the system. There are optimal inputs (or optimal filters)

in the frequency domain. The pre-training moves the random weights to obtain a good

approximation capability.

4.2 Fine tuning

After the pre-training, the weights of the filters are fixed, because moving the filters in the

fine tuning step does not improve significantly the modeling accuracy (see frequency domain

analysis). In this fine tuning step, only the weights in the final layer are updated by the

Moore-Penrose pseudoinverse.

Definition 1 [16] The matrix A+ ∈ <n×m is the Moore-Penrose generalized inverse of A ∈
<m×n if

AA+A = A, A+AA+ = A+,
(
AA+

)T
= AA+,

(
A+A

)T
= A+A (29)

In particular, when A has full column rank,

A+ =
(
ATA

)−1
AT (30)

When A has full row rank

A+ = AT
(
AAT

)−1
(31)
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Definition 2 [16] x0 ∈ <n is said to be a minimum norm least-squares solution of the linear

system y = Ax if

‖x0‖ ≤ ‖x‖ , ∀x ∈ {x : ‖Ax− y‖ ≤ ‖Az − y‖ ,∀z ∈ <n} (32)

where y ∈ <m.

For a linear system y = Ax, x0 is a least-squares solution if

‖Ax0 − y‖ = min
x
‖Ax− y‖ (33)

where ‖·‖ is a norm in Euclidean space. If By is a minimum norm least-squares solution of

the linear system y = Ax, then it is necessary and sufficient that B = A+. Here A+ is the

Moore-Penrose generalized inverse of matrix A, which is defined in (29). The object to train

the weight V is

J = min
V

∑

k

‖y(k)− ŷ(k)‖2 (34)

where ŷ (k) = V Φ [x (k)] . The training data are y (k) and Φ [k] .

Consider all data k = 1 · · ·N,

Ŷ =
[
ŷ (1) · · · ŷ (N)

]
=
[
V Φ (1) · · · V Φ (N)

]
= VΨ

Y =
[
y (1) · · · y (N)

]
=
[
V Φ (1) + eo(1) · · · V Φ (N) + eo(N)

] (35)

where eo(k) is the modeling error which defined in (24), Ψ = [Φ (1) , · · · ,Φ (N)]. (35) in

matrix form is

Y = VΨ + E (36)

where E = [eo (1) , · · · , eo (N)] . (36) is a linear-in-parameter system.

From Definition 2, when

V̂ = YΨT
(
ΨΨT

)−1
= YΨ+ (37)

where Ψ+ is the pseudoinverse of Ψ which is defined in Definition 1, (34) arrives the minimum

value when ∂J

∂V̂
= 0.

V̂ is the least square solution of (36), it reaches the smallest approximation error on the

training data set. The two-step training algorithm is as follows:

1. Construct the CNN model (7), the weights of the filters are randomly assigned in

[−λ, λ], the positive value λ represents the range of the random weights.

2. Use input and output data and (28) to pre-train the filters of the CNN.

3. Train the full connection layer V̂ in (37) with Ψ in (35).
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5 Simulations

In this section, we use three benchmark examples to show the effectiveness of CNN with

random filters for the modeling of nonlinear systems. We use the following simulation model,

ŷ(k) = CNN [x (k)]

x (k) = [u (k) , · · ·u (k − l)]T (38)

where ŷ(k) is the output of the CNN model, l is the regression order for the input u (k).

Normal neural networks work well with the prediction model (6) for the following three

examples. However, they can not predict the output with the simulation model (38).

We will use the following three cases.

Case 1: random weights in [0, 1] , without pre-training, with fine tuning;

Case 2: random weights in [−1, 1] , without pre-training, with fine tuning;

Case 3: initial weights are in [0, 1] , with pre-training, with fine tuning.

Case 1 and Case 2 have different ranges of random weights. We will also show that fine

turning with random weights has good modeling accuracy, and avoid the time-consuming

problem in the pre-training. This is the advantage of CNN in the identification of nonlinear

systems.

5.1 First order nonlinear system

This benchmark example is proposed in [27]. It is a simple nonlinear system,

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (39)

where u(k) is a periodic input, which has a different form in the training and the test-

ing processes, u(k) = A sin
(
πk
50

)
+ B sin

(
πk
20

)
. In the training stage, A = B = 1. In

the testing stage, A = 0.9, B = 1.1. This model has been used by many papers as the

benchmark problem. Most of them used the prediction model (6). If the previous output

y(k − 1), · · · is not available, it is difficult to identify the nonlinear system. Here we use

x(k) = [u(k), · · · , u(k − 5)]T . The comparison with MLP is shown in Figure 5. We can see

that the normal neural model, MLP, with two hidden layers and the hidden node numbers

are 20 and 10, cannot model the system when the previous outputs are not available in the

testing phase. While convolutional neural networks, CNN, with random weights can model

it. Testing errors can be reduced by the pre-training as in Figure 6. Here the squared error

is defined as E = 1
N

ΣN
k=1 [y(k)− ŷ(k)]2 . We see that the pre-training process in CNN can

improve the modeling accuracy for this example.
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Figure 5: Testing results of nonlinear system modelling. CNNs with random weights are

better than MLP.
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Figure 6: Squared testing errors of nonlinear system modelling. CNN with pre-training is

better than CNN with random weight.
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We change the weight distributions from [0, 1] to [−5, 5]. Table 1 shows how the modelling

accuracy is affected by random weights. We can see that different random distributions for

CNN filters have good modeling performance. The range [1, 3] of the random weights has

better results.

Table 1. The testing squared errors of nonlinear system (×10−3)

Filter distributions Random Pre-training

[−5,−3] 4.11 5.98

[−3, 0] 3.26 3.57

[0, 1] 1.42 4.64

[1, 3] 1.37 1.02

[−5, 5] 3.51 5.95

5.2 Gas furnace data

The gas furnace data set is another benchmark problem [18]. The input u (k) is the flow rate

of the methane gas, while the output y (k) is the concentration of CO2 in the gas mixture

under a steady air supply. The data set has 296 samples at the fixed interval of 9 seconds.

[18] used a time-series based approach to develop a linear model. [35] and [38] use this dataset

to evaluate their fuzzy modeling methods. In this paper, the recursive input data for the

model is x(k) = [u(k − 1), · · ·u(k − 10)]T , the output of the model is ŷ(k). 200 samples are

applied for training, the other 96 samples are used for testing. In the ”pre-training+fine

tuning” case, 100 samples are for pre-training, 100 samples are for fine tuning. The testing

errors of different CNNs are shown in Figure 7. For this example, we can see CNN with the

random weights is very good. The filters with the pre-training can not significantly improve

modeling accuracy.

Similar to the previous example, the weight distributions of the filter are changed from

[0, 1] to [−5, 5]. Table 2 shows the modelling errors with different random weights. For this

particular model, the range [0, 1] of the random weights has better results.

Table 2. The testing squared errors of gas furnace (×10−3)

Filter distributions Random Pre-training

[−5,−3] 27.6 24.1

[−3, 0] 12.7 21.1

[0, 1] 9.5 8.9

[1, 3] 11.7 9.1

[−5, 5] 24.3 31.2
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Figure 7: Testing errors of different CNNs (Gas furnace)

5.3 Wiener-Hammerstein system

The Wiener-Hammerstein system is the series connection of three parts: a linear system, a

static nonlinearity and another linear system. The data of the Wiener-Hammerstein bench-

mark are generated from the electrical circuit consisting of three cascade blocks [32]. There

is no direct measurement of static nonlinearity, since it lies between two unknown linear dy-

namic systems. The benchmark data set consists of 188, 000 input/output pairs. The data

set is divided in two parts [1]: 100, 000 samples are for the training, 88, 000 samples are for the

testing. We define the recursive input vector for the model as x(k) = [u(k), · · · , u(k − 15)] .

The comparison with MLP is shown in Figure 8, the influence of the pre-training for CNN

with random weights is shown in Figure 9. For the Wiener-Hammerstein benchmark data,

the normal MLP can not model it, when x(k) = [u(k), · · · , u(k − 15)] . The CNN with

random weights can model it very well.

We also evaluated how random weights affect modeling errors, see Table 3. We can see

that the pre-training can improve modeling accuracy a bit. The hidden weight distribution

[0, 1] is adequate for the Wiener-Hammerstein v problem.

Table 3. The testing squared errors of W-H (×10−3)

Filter distributions Random Pre-training

[−5,−3] 25.9 20.3

[−3, 0] 21.7 22.4

[0, 1] 6.6 6.2

[1, 3] 8.3 7.1

[−5, 5] 13.1 14.2
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Figure 8: Testing results of Wiener-Hammerstein modelling. CNNs with random weights

are much better than MLP.
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Figure 9: Squared testing errors of Wiener Hammerstein modelling. CNNs with random

weights have similar results with the pre-training.
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Figure 10: LSTM for nonlinear system modeling

5.4 Comparisons

We compare our algorithm with other popular black-box methods, such as the support vector

machine (SVM) [5], multilayer perceptrons with gradient learning algorithm (MLP) [27], and

the long-short term memory network (LSTM) [15]. The MLP is the same as [27]. Table 4

provides comparisons of these three examples with MLP and SVM. The SVM uses the radial

basis function kernel. For the simulation model (4), CNNs with random weights have great

advantages over MLP and SVM.

Table 4. Modelling errors of CNN and MLP (× 10−3)

Nonlinear system Gas furnace W-H

Case 1 1.4 9.5 6.6

Case 2 3.6 8.7 6.8

Case 3 4.6 8.9 6.2

MLP 158 153 19.6

SVM 21 32 27

Now we discuss LSTM for our benchmark problems. We have successfully applied this

model to nonlinear system modeling in [10], see Figure 10. The modelling results with

different p and q are shown in Table 5. We can see that LSTM has results similar to those

of CNN with random weights. However, LSTM has more training time, because it needs

backpropagation through time (BPTT). The modelling results of the Wiener-Hammerstein

system with LSTM are shown in Figure 11.
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Figure 11: Testing result of Wiener-Hammerstein modelling. LSTM has similar results as

NNs with random weights.

Table 5. Different structure of LSTM (× 10−3)

LSTM Nonlinear system Gas furnace W-H

p = 3, q = 1 3.17 8.17 7.91

p = 50, q = 1 3.15 7.15 8.48

p = 4, q = 4 2.53 9.53 8.03

p = 4, q = 20 2.53 8.53 7.31

p = 8, q = 40 6.95 8.95 7.02

Then we compare different CNN structures, i.e., how do CNN filters affect the precision

of modeling with random weights? Table 5 shows the modeling errors with different hidden

nodes m (the number of filters). For these three examples, 20 filters in each convolution

layer are sufficient.

Table 6. Modeling errors with different filters (× 10−3)

Number of filters 3 10 15 20 30

Non linear System 13 14 9.2 7.3 7.8

Gas Furnace 10.2 8.7 8.4 7.2 7.5

Wiener Hammerstein 9.5 6.2 4.7 3.1 3.6

Table 7 shows the modeling errors with different hidden layers n. For these three examples,

5− 10 hidden layers are sufficient.
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Table 7. Modeling errors with different hidden layers (× 10−3)

Number of layers 3 5 10 20

Gas Furnace 8.4 7.4 4.7 4.9

Non linear System 9.2 7.5 13 18

Wiener-Hamnerstein 17 4.7 6.1 7.3

The CNN structure affects the system identification when the number of filters and the

number of CNN structure are small. If they are large enough, for example, the number of

filters is more than 20 in Table 6, and the number of CNN structures is more than 5, the

modeling accuracies are not as affected by them.

6 Conclusion

The main contribution of the paper is that we analyze the impact of random weights in the

identification of nonlinear systems. To do this, we use convolutional neural networks and

frequency domain analysis. From the theoretical analysis and simulations, we can see that

different random distributions for CNN filters have good modeling performances. Although

there are optimal weights, we need the pre-training and the fine training to get closer to

them. The pre-training of the hidden weights (filters) needs more calculation time. Three

benchmark problems show the impact of random weights in the identification of nonlinear

systems. Further works will develop the online version of this algorithm.
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