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Abstract

In most metropolises, commuters spend co: ... rable amount of time on public
transport, and many of them entert ™ the. ‘selves with the content (like music
or videos) on their mobile devices to al *ia.e boredom. Currently, the content,
usually shared in co-located wirele. * networks to avoid huge monetary cost of
using cellular data, is delivered from single host (resource owner) to single re-
quest user, which brings 'ow tran mission quality, due to the uncertainty of
mobile edge networks ir public “* .nsport environments.

In this paper, we p =ser . an "atelligent incentive framework called GoSharing
which encourages 1 altiple 1. sts to share content collaboratively to improve de-
livery quality, by takin. advantage of users’ association and consideration of
network Quali y o Service(QoS) requirements. The highlight of GoSharing
is the novel Assc 'ation-based Intelligent incentive mechanism that consists of
three key com ,onents. First, a Fast Candidate Generation algorithm discov-
ers users’ ass. “ie jlon according to their stored content and QoS requirements
and f ters the candidate groups from large host groups. Second, a Host Selec-

tion alg. “** a finds a near-optimal solution among candidate groups within an
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approximate factor of F'(d), where d denotes the maximum size ¢ cor pleted
tasks when any candidate group is selected. Last but not least, a .">vme.. De-
termination algorithm determines the payment of resource cr atr,»tors while
guaranteeing the truthfulness of their bids based on the proc. =« nent auction.
Both theoretical analysis and extensive simulations demor crate that GoSharing
not only effectively motivates hosts’ collaborative sharing, but als » achieves the
properties of truthfulness, individual rationality, hig’, comr tational efficiency,
low overpayment ratio, and high download ratio.

Keywords: GoSharing, Cooperative System, Users’ As. ociation, Intelligent

Incentive Mechanism, Mobile Edge Networks

1. Introduction

In many dense crowded metropolises - Asia and Europe, as well as some
US cities like New York city and San 1™ a.. ~isco, driving fails to be a good option
for daily commuting because of ..~ i=ms and the unavailability of parking.
Public transport such as buses, subway. and trains becomes the best choice for
urban citizens. As a resul’, a cc 'siderable proportion of the people in these
metropolises tend to choose | iblic cransport for their daily commute. A study
from the Singapore M- aagr.nent University reported that the average one-way
commute time in Sir zapo. ~is .bout 26 minutes [1], and other surveys show that
the average comn ut.. ~ time of the urban citizens is very long, e.g. 40 minutes
for New York .. - [2], 66 minutes for Tokyo [3], and 97 minutes for Beijing
[4]. Entertaii. ner ., such as watching videos, becomes the first choice for the
commuters c¢o kill the long commute time. Although the recent popularization of
cellular ne. ~ cks /:.g. 3G/LTE) provides mobile users with ubiquitous Internet
access , high cellular data cost and network latency prevent the cellular networks
from . ~ing a good way for video downloading. To address this problem, a
[ -omisir = solution is to utilize short-range wireless network interfaces, such as
V.%Fi an Bluetooth, to exchange the media content in neighboring devices.

Tha current research on short range communications usually focuses on data
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transmission from single host (resource owner) to single request ‘ser called
single-host model [5, 6, 7, 8]. However, based the single-host co.. mumc tion
model, thus reliability of communications cannot be guarante .d 1 ecause users
randomly pop-in and pop-out. For example, mobile users us. "y have unpre-
dictable mobility, if one of the communication nodes mec es beyona the trans-
ferring range, the content will not be delivered successi lly. T address this
problem, we envision that multiple co-located devic s car “hare content coop-
eratively to enhance the reliability of content sharing «mone commuters.

In addition, sharing media content requires hosts to . "ntribute not only their
content but also hardware, especially battery To .“muv’ate hosts to share their
resources, incentives like monetary rewards shouw..' be provided to the hosts.
In the literature, various incentive mechanis.. < have been proposed in mobile
networks [9, 10, 11, 12, 13, 14, 15, 16].

Some mechanisms, e.g.[9, 10, 17 12 1.1, are designed for tasks that only
require a single user (host) to perform, reic.red to as simple tasks. In our con-
tent sharing scenario, every downlo. ling vask needs the cooperation of multiple
users (hosts), referred to as conoperative tasks. There is no existing incentive
mechanism that is designe « for re\ arding the participates with multiple coop-
erative tasks, which cor ¢s up -t 1 new challenges, especially how to combine
users’ association for ici at ¢ operation in such complex scenario.

In this paper, -/e propc : GoSharing, an intelligent incentive framework
which motivates .esoui. > owners to share their stored videos cooperatively in
mobile edge n ¢wo ks. GoSharing is able to achieve the goals of encouraging
commuters to su. e their content cooperatively with the minimum incentive cost
based on - sers” association and guaranteeing the Quality of Service(QoS) of the
task sharing. ™h main intellectual contributions of this work are summarized

as fol ows:

1. In order to improve the reliability of content sharing in mobile edge net-
wor s, we present a multi-host communication model to allow multiple

resource owners to share their content collaboratively.
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2. We measure the factors that impact the quality of data d ‘iver, from
hosts to the request users on public transport. Based on the « mern.. ntal
results, we formalize a network QoS model to describe the .rac enff between

reliability and download time.

3. To motivate hosts to share their content collabo: atively, we design an
intelligent incentive framework, GoSharing, who=~ hig. “~'.¢, Association-
base Intelligent (AI) incentive mechanism com »os” 1 ot candidate genera-
tion, host selection and payment determinat.. ». wi.'_a has four desirable
properties: a) truthfulness, b) individual ~ationalit -, ¢) computational ef-

ficiency, d) low overpayment ratio, as we.' as lugu download ratio.

The rest of this paper is organized as to.'~ws. Section 2 provides the ex-
perimental observations and results to ver. , e efficiency of the multi-host
model. Section 3 presents the over ‘ew o. GoSharing framework and system
model. In Section 4, we present the des on i Al incentive framework and prove
its desirable properties. Section o “valuates the performance of our proposed
mechanism. Finally, Section 6 reviews related work and Section 7 concludes this

paper as well as outlining “ature w rk.

2. Motivation and Prr.imj iary Results

In this section w first illustrate the unreliability problem of the single-host
model in mobile = oe networks, then demonstrate the motivation of the GoShar-
ing system m’ del, ".e. the multi-host model. Finally, we have the measurements
and experi’ ients in . »al scenarios to verify the motivation and analyze the fac-

tors that . " ence che QoS communications.

2.1. Aotivatu n

wniost content sharing applications are based on the single-host model, as
srown in Figure 1 (a). In this model, once the sender or receiver move out

of communication range during the video sharing period, the downloading task
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will fail. Thus, the task has to be re-started from the beginnin_ I order
to mitigate this unreliability problem of the single-host model, we ~ropo. the
multi-host model, shown in Figure 1 (b) in which multiple } ost:. are snaring
the downloading file simultaneously. Furthermore, if any prov. = (host) moves
out of communication range, the rest of the hosts can continously provide
the required sources until the completion of the task. ™ conf m the above
assumption, we made some real world measurementg .or b~ " single-host model

and multi-host model in §2.2 and §2.3.

5 o *

zﬁl- < E{ if\‘_\
= u‘?:/ a o

LY % jjo

(a) a single-host model (b) a multi-host model
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Figure 1: Am . *no . enario of GoSharing

2.2. The Unreliability of t} 2 Sing. -host Model

In this section, a nv aber .° r al world experiments are conducted for de-
tecting the download atic i 1 obile opportunistic networks and capturing the
factors which influe ice trau. iission rates.

Taking wifi-P_P (w.” direct) as an example, the IEEE standard claims its
theoretic maxi aun transmission rate is 250 Mbps, and the maximum trans-
mission range 15 ~ 10m [17]. However, in practical environments, such an upper
bound car not be reached. Hence, we conduct the experiments to detect the
real transmis.~n ates of wifi-direct in a real environment. Two Samsung Note3
smar’ bhones -ith 3G RAM are used on buses and subways to measure the trans-
mission ~t~ of wifi-direct with various peer distances (the distance from single
1 ost to s 1gle requester) in three different conditions, i.e., crowded, normal and

alu. ~+ mpty.
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(a) Empty (b) Normal (¢) G vded

Figure 2: Three statuses on the su way

file size(M) time(s) rate(M/s) file size(M)  tini. ) rate(M/s)
123 1.96 6.28 39.8 52 0.77
39.8 8.35 4.77 123 109 1.23
Less than one carriage (17m) One and « " ~If carriages (30m)
file size(M) timel(., umeZ(s) —
39.8 26 A5
123 . fail

Two carriage / Om)

Figure 3: The transmission rate on the s bwa, when the carriage is almost empty

On the subway, we monitor the *ransmission rates under three statuses:
empty, normal and crowded Tioure 2 shows the status of the circumstances
throughout conducting th experin ents. From Figure 3, the transmission rate
changes dramatically e differe.. peer distances when the subway is almost
empty. This illustrai. = t'.at t 1e transmission rate is relatively stable at the
range of 4 to 6.5/ Bps wheu the peer distance is less than the length of one
carriage, about 17m. Hc -ever, when the peer distance increases to 30m, the
transmission 1 «te ic vastly reduced, whereas the connection is broken when the
peer distan 2 exte. s to the length of two carriages, about 40m.

Figur: 4 s’ ows .hat the transmission rate fluctuates dramatically with the
same 1~ - disw. * ce when the carriage status is normal. This implies that the
maxi: wum tre 1smission range is limited to one carriage when the status is
cr- led. ..e experimental results indicate that the transmission rate depends
1 not o1 ly the peer distance and crowdedness of the carriage, but also some

unexpccted factors, such as users’ behaviors and wireless interference. Hence,
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file size(M) timel(s) time2(s) rate(M/s) file size(M) time(s)

39.8 52 26.1 1.02 39.8 350
123 60 108 1.46 123 fail
Normal + One carriage (20m) Crowded + One carriage (20" ,

Figure 4: The transmission rates on the subway when the carriage is noi. ~1 or crowded.
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the single-host model is not applical. . ‘or si. ‘ring video among devices on pubic

transport.

2.3. The Performance of the Multi-host Model

Since the single-host m .del fail: to provide a reliable network to share video
among the commuters 7. alte. = 1ve multi-host model can reduce the chance
of the failures caused w t’.e ur ivailability of hosts. This subsection shows the
performance of the multi-he . model. BitTorrent Sync!, a BT protocol based
file sharing tool i, usea ~ create a multi-host network.

We have cc 1due sed the experiments on Android testbeds which contain one
Galaxy Note3, v » Sony and two HuaWei running Andriod 5.0. We evaluate
the relatir ashi , between the number of hosts and download time in the multi-
host mode. e sony smartphone is a receiver, and we record the download
time f a med ‘a file with 350M under different numbers of hosts with the tool
of Rit'te =, Sync, as shown in Figure 5. The observations show that the

cownloac time reaches the lowest point when there are two hosts, and then

oo ps://www.getsync.com/
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ascends with the increase of hosts’ size. This is because in the 7 T p otocol
each pair of receiver and sender has to create a channel, and a . ~w cu. nnel
will cost some bandwidth. Therefore, when the total transmis ion rate (sum of
the transmission rate of created channels) is higher than the .. =~ aghput of the
device (receiver), the transmission rate of each channel v il redce. As shown
Figure 5, when there are three hosts, the throughput o. the re 2iver is lower
than the counterpart in the case of one host.

As the measurement results show the multi-host .u0del can efficiently im-
prove the communication reliability in mobile edge .. tworks. However, the
multi-host model requires hosts for cooperative s. ~rinc, which needs to select
host groups for multiple tasks completion. In orde. *o encourage hosts to share
content with efficient cooperation, it is vital . find hosts’ association based on
their stored content and condition of . ¥ 4. .."" 7, such that we can obtain the
filtered host groups for further host ¢ 'ectio. within the design of the new incen-
tive mechanism. In this paper, we proy ose .he intelligent incentive framework,
GoSharing which can be adapted .~ the multi-host model with the benefit of
hosts’ association for efficient cooperation, the goal of minimizing incentive cost,

as well as ensuring the Qo’,.

3. System Model # '\d T rob em Formulation

In this section. ~. ~ive an overview of the GoSharing framework, QoS model,

1

system model ar ' nroblem formulation.

3.1. Frame ork

The C ~Sh' ring .ramework supports cooperative systems with multiple tasks,
and ce . ve app. ed to scenarios where many people gather for a transient pe-
riod, 'uch as jublic transport, conference, supermarket checkout and hospital
g’ cung. evc. GoSharing consists of a set of hosts and request users, also a
1 cal-basi 1 server, such as the near base station. To solve the time-consuming

nroblem of neighbor discovery in co-located networks [1], a local-based server
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Figur~ 6: . - re .istic scenario of GoSharing

uses cellular networks o ¢)llec’ hosts’ information in the covered area, such as
content list, host’s ! )cation a. d behavior histories, which generates little or even
negligible data traffic a.. ' cellular cost. Figure 6 illustrates one of the realistic
scenarios of us ng ¢ ir GoSharing framework, i.e. the commuters want to share
content with neig “hors on the subway. The server acts as the buyer who offers
the mone’ ary “,ayment to the hosts who are willing to share their content. The
host plave the =o'¢ of seller who is encouraged to submit a list, listing the con-
tent -~ nat s/hu is willing to share; and make a bid for the cost of sharing their

cortont.
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3.2. Network QoS Model under Hosts’ Mobility

From the measured results in section 2, the dynamic connection . *weei. two
mobile devices significantly influences data transmission in tr.ms ~“ download

time and download ratios, defined as follows.

e Download time: The download time is recorded as he averz ze time start-
ing from the local network being established to t* . med... ..ies being down-

loaded.

e Download ratio: The download ratio of media . 'es is computed as the

number of downloaded tasks to allocated ta. <.

Firstly, we develop a link quality (LQ) <ucs wuav represents the probability

of a request user i successfully downloading files "om a single host, defined as
LQ(1) = a(dis;) « B m;)» v, (0< a, B,y < 1) (1)

where « is a parameter linked to? . [ ~er Jistance from host i to the request user,
denoted as dis;, and (3 is determined by "he host’s mobile behavior, which can be
predicted by historical infor.nat. 7, such as his commute behavior (the simple
way is to record a host’s €. v tir e tim; which can be known from collected
historical information .nd - e can predict the probability of users’ departure),
and « is a factor to dep.. the unexpected wireless interference. Note that the
functions of a, 8 2 ..  can be defined specifically under various scenarios, which
is beyond the sr _ = of this paper.

Since the -lia’ ility of media download depends on how many links work,

the downlc .d ratio « «n be calculated by
Pdownload = 1- H (]- - LQ(Z))a (2)
iGth

where (i~ .he candidate groups (Definition 1) for task ¢;.
Next, we record the download time under both models, in which LQs are
ass.. ™~ . to obey the Poisson distribution with A = 2. Based on the measured

re ulvs of wifi-direct transmission in Figure 4 and sync BT in Figure 5 (a), the

10
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Figure 7: single-host model vs. multi-host model (when any hc. * interrupts during the file
download, single host model adopts the rule of retransm.. ‘on frc a the beginning, while the
remaining host(s) will continue to keep transmitting the . maining data in multi-host model)
transmission rates are set to be 1.46 MBps ~nd 1.3 MBps for the single-host
model and the multi-host model, respec. ve.,. ““nce the link quality dynamically
changes, the communication may be inter1 oted during the file download. The
rule of retransmission is adopted from the Heginning in the single host model,
while in the multi-host model, whe ~ any ..ost interrupts their transmission, the
remaining host(s) will continue to keep transmitting the remaining data. From
Figure 7, it could be dedur :d that “he download time has been reduced signifi-
cantly with the media fil> in 1. ve size in the multi-host model, compared with
the case in the single aost moc2l. Therefore, the multi-host model is an effi-
cient method to im" rove cu ~ nunication reliability under network uncertainty,
especially in the ase ¢ ~haring large files.

From the a' ove analysis, we can draw up the rule that the download ratio is
increased by the ~ anber of hosts, while the download time decreases as the num-
ber of hos 3 in‘ rease until the total transmission rate (sum of the transmission
rate of creav. 1 ¢! annels) exceeds the wireless capacity. To solve the tradeoff,
we assume t. at the candidate groups are the ones with two constraints: 1)
satisfy.. = th- requirement of the download ratio; 2)minimizing download time,

¢ efined < follows.

Definition 1 (Candidate Group). Combined with the QoS requirements of

11
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download task t;, the definition of candidate group is the host grc n w th two
constraints: 1) whose link qualities satisfy paownioad > Pth, Whe. ™ ogn . the

threshold of download ratio; 2) with the minimum number of } oste

Therefore, the problem of discovering all candidate gronps ¢ n be decom-

posed into two subproblems:

1. Find all host groups that can satisfy QoS re  uirements, i.e. the first

constraint in Definition 1.

2. Prune the large set of host groups with the second onstraint in Definition

1, and generate the candidate groups.

3.3. System Model

Users first send their download re  wesv. . server s, and each requested
media file represents a task. This set ~f tas. - is denoted as T = {t1,t2,...,tm},
thus M is the total number of tasks, ‘.e., |[T| = M. According to the host
information (locations and resourc - lists) collected by cellular networks, the
server can detect request users’ neighboring hosts and corresponding available
resources.

All detected hosts ar - syme Y ed ast = {1,..., N}, where N is the size of
U. If the request user " 'uns aes t 1e download task ¢, and downloads successfully
from local neighbor s, the sc /er can therefore obtain a revenue r;, which de-
pends on the popularity ~f ¢;. Each host ¢ has stored a set of media files (music
or videos). W' en 1 quest users launch a set of download tasks T;, T; C T, the
hosts can share .” «ir content with them. Accordingly, host 7 has an associated
cost ¢;, w'ach "5 private and only known to itself. Traditionally, ¢; is related to
the number o e juest users that hosts support [12]. However, in our scenario,
a hos cannot letect how many users he can provide resource to, thus each host
bids its ~<* pased on its available time period, stored content and remaining
caergy. + lthough the local-based edge server can require the information about
how. ~- .1y users access its resource, it does not know the real-time wireless link

Qv alines between the host and request users. Actually, the link qualities can be

12




very dynamic because of the frequent user movements. As a result, he * amber

25 of users that actually access the host is also dynamic in real-time «. 1 uns. own
to both the edge server and the host. In addition, each hos. a. nounces the
content-bid pair (73, ;) as well as the location information to . server, where
b; is the reserve price that host ¢ wants to charge for sha .ng its content.

Table 1 lists the frequently used notations.

Table 1: Notation List

Notation| Description

T the set of all allocated tasks

M the total number of tasks

N the total number of hosts

T; the tasks host ¢ has ca, aciv. . participate in
S the host winners

Scurr the current selected hc “ts

Sk the selected hosts .~ the x-th iteration
A the set of current completed tasks
Ay the set of ew con »leted task in the k-th iteration

SubU;; | users atlie to . ~firm task ¢;

St; the b sts 'vith .he capacity to perform task ¢;
Gy, for cask t;, ".e candidate groups
G {or all © <ks, the candidate groups
Tt ‘ th revenue that the server obtained by finishing task ¢;
i e payment for each host 4
|« ome candidate group

w0 3.4. Jtility r nctions

Maseu _.. the content-bid pairs received from each host, the server selects a
s 1bset ot hosts Syinner C U as winners and computes the payment p; for each

hosy .. dow to select hosts and determinate the payment will be discussed in

13
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84. The utility of each winner i can be defined as:
Ui = Pi — G (3)

The revenue is related to various customers’ information,  «cluding their
preference of watching videos, behavior histories etc., whi h is he -d to measure.
Since each task completion helps the server to collect mu e effi-.ent customer
information, the revenue R is defined as the sum of ever _ obtained by com-
pleting tasks. Similarly, the total payment P is the accumula’.on of the payment

for each winner. Hence, we have the equations as follow .

R(A)= X m,
t;EA (4)
P(Swinner) = . L; Di
where A is a set of completed tasks, and ¢; .= one of completed tasks. In addition,
p; is the payment for each host i and . -, - the revenue that the server obtained

by finishing task ;.

3.5. Payment Minimization . hlem

From a practical busin. s pers jective, the server needs to obtain a lower
bounded revenue such chat its pasic operating costs can be covered. Mean-
while, corporations wan. o re .uce the incentive cost to the minimum for their
benefit. Hence, we _'ve the definition of the payment minimization problem in

the following.

Definition 2. ” yment Minimization (PM) problem: Given a set of hosts U,
the server sele ¢s a subset of hosts Syinner as providers to share their content
with local ne ~hbr s such that the server’s total payment is minimized, subject

to a ( wen re. *nue target of the server.

1 is easy to deduce that the total payment of the server is minimized with
1 =c¢;. " he PM problem can be formalized as an optimization problem in the

following.

14
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Objective: Minimize

1€8winner Ci

s.t. R(A) > Ry, (5)

where R;j, is the minimal revenue that a server has to obtain.

3.6. Association-based Intelligent Auction Method

Auction is a good way to determine the value of a comr~dity or service that
has an imponderable and dynamic price, which has beca apr ied to many fields
[18]. The ordinary auctions are the forward auction -~hich involves multiple
buyers and a single seller, where the buyers send " s to compete for the offered
commodity or service; the one with the highest .'1 will win the competition.
However, our GoSharing has multiple hosts tv ~hare their content and the server
has no idea about the exact cost of each . ser, ' *~h inspires use of a procurement
auction, namely reverse auction. In ~ther -ords, multiple hosts tell the server
their required reward for sharing their <own. 2nt. After that the buyer selects a
group of sellers with the minimun. mceuuwve cost.

In this paper, the AI incentive mechanism is common knowledge among
hosts, and contains three teps. .1 the first step, Candidate Generation, we
present a fast generatica cawn.*d te algorithm to discover hosts’ association
based on their stored r mte t ar 1 QoS requirements, which makes it possible for
hosts to cooperate - dicient,, I[n the second step, Host Selection, the server de-
cides which host .roup. ~mong filtered candidate groups to share their content
with request u- ors. Since hosts have selfishness, they have the intention to lie a
higher bid price “r their content to obtain a higher utility. In the third step,
Payment Jete mination, the pricing algorithm is presented to avoid cheating
behaviors. 1. ~ sr sver computes the actual payment for each winner. Next, the
serve return. to the hosts the auction outcome which contains the matches of
hosts a. 1 tF | request users as well as the payment of each host. Finally, hosts
s1are tho 't designated content to request users via the local wireless network.
T 4o+ als of the proposed auction mechanism will be illustrated in §4.1.

1Lue incentive mechanism aims to satisfy the following properties:

15
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e Computational Efficiency: the solution can be computed irn noly i1omial

time.

e Individual Rationality (IR): each sharing host will ha e a 10. .egative

utility.

o Incentive compatibility (IC): also called truthfulnes. - each } ost prefers to
report his private information truthfully to th . server rather than make
any potential lie, i.e. the host will get the max.. .am v ity when he bids

his cost truthfully.

4. Main Design of GoSharing

In this section, we illustrate the details of ti. Al incentive mechanism that

can be applied for general cooperative sy te as.

4.1. Association-based Intelligent Incer. *ive Mechanism

The main challenge of the host se.. ~tion process is that the exhaustive search
by checking all possible comh* -+ions of hosts makes it impossible for the server
to match host groups witl tasks ef >ctively. Fortunately, there is a stable asso-
ciation among hosts ba' ed on ti. .r stored content lists and QoS requirements,
which can largely comy. -t che ¢ :arch space. Therefore, before the auction mech-
anism is presented t is critical to design smart data filtering method to discover
hosts’ association and fii,  candidate groups from host groups.

AT incentir ¢ mr hanism consists of three parts: candidate generation, host
selection ar 1 pay.-ent determination. First, it exploits hosts’ association to
filter can idat: grr aps from host groups. Second, with searching among the
candid~’ grou, -, we present a greedy host selection method with a feasible ap-
proxi 1ate rat ». Last but not least, we design a corresponding pricing algorithm
to _ake su.e Al mechanism has the property of truthfulness.

The £ I auction mechanism relies on Myerson’s well-known characterization

19|, wuustrated in theorem 1.
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Theorem 1. Based on the theorem in [20][21], an auction mechanis - is  uthful

if and only if:

1. The Host Selection (HS) algorithm is monotone: If host . wir > u. auction
by bidding b;, it also wins by bidding b; < b;.

2. Given the HS algorithm, there is a unique truthful mechan sm associated
with this selection algorithm. The pricing algor .chm mays each winner the
critical value: the highest bid the host could cla. . and ;till win under the

condition of all other hosts’ bids being fized.

4.1.1. Candidate Generation

We propose a Fast Candidate Genera. " (rFCG) algorithm, illustrated in
Algorithm 1, which can filter candidate ~=~1ns en.ciently in coordinating hosts’
association that can be induced by the co. * nt stored in hosts’ devices and QoS
constraints. In terms of collected ho. ts ‘nformation, the server can calculate
the link quality of each host whe l.~~< "o SubUy,. For simple description, we
call the number of hosts in a host grou, its size, and call a host group of size k
a k-host group, noted as H . Ho.'s within a host group are kept in decreasing
order by their LQ values fo. ~ach *ask. The notation Hy[1], H1[2], ..., Hi[n:,] is
used to represent the ] nost groups for task ¢;, where 7;; is the number of hosts
able to perform task t; a. 1 L J(Hy[1]) > LQ(H1[2]) > ... > LQ(H1[ny,]).

The algorithm 0. "ains three steps: in the first join step, we join host groups
of a particular "__ k. In general, k = 1 and orders H; decreasingly by their LQ
values. Next -~ tr:a filter step, QoS function filters Hy with QoS constraints
and the fil ered groups are namely the candidate groups with size k, Gi. Gy
found in ti. 7 -th r yund are used to generate the host groups Hy4 1. In the prune
step, " ve delete all the superset of G with size k + 1 from the original Hy1.
The p ‘uciple of prune rule is that the cpr (an important metric defined in the
I ocess ~ host selection) of Gy, is always larger than the counterpart of all the
s.nerset of G, which is proved in Lemma 1. Note that G is the combination of

far all task ¢; € T, which provides the choice candidate groups as the input
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Algorithm 1 Fast Candidate Generation (U, B, V, Ri)
Input: Hosts set (U), request task (7), user’s association(L).

Output: Candidate groups (G).
1: Hj: Set of k-host groups; G: Set of k-candidate groups.
L < {Subly, | |SubUy, | = m, }
2: for all task t; € 7 do
3 Hy = {1-host groups [LQ(H1[l]) = LQ(H:1[2]) = ... > LQ(Hi[m,])}
4. for (k=1;H # @;k++) do
5: G, =QoS(Hy)
6: Hyi1 = Hy11)\ superset(Gy)
7. Gy = U, G

8: G < combination of Gy, for all t; € T.

for the following host selection algo: “hm.

In the following, a walk-through exa mpic of the FCG algorithm is illustrated
in Figure 8. Assume that host A, B, ¢ and D store the content that task
t; requested and they have the relations that LQ(A) > LQ(B) > LQ(C) >
LQ(D). After the join ster . H; = 1 A), (B), (C), (D)}. In the next filter step, it
is found G, the 1-cand’ late g. s that satisfy QoS constraints. Let G; = &,
then in the prune stc ~ H, = I \ superset(G1) = Ha, since superset(&) =
@. In the next itr.ation, ... Go = {(AB),(BC)}, noted as real line circles
in Figure 8, then Hs = Y3\ superset(Gs) = {ACD}, where superset(Gs) =
{(ABC),(AB7),(.’CD)}. In the final iteration, assume G5 = QoS(H3) =
{(ACD)}, rame. host group (ACD) satisfies QoS constraints, then Hy = Hy '\
superset( 14) - - @ ~nd the iteration terminals.

Note thav e 2 is no necessary to search the 1-host group (B), (C), (D) when
it is {Hund 1-, ost group (A) can not satisfy QoS constraint. Because LQ(A) >
LO/B) _ T Y(C) > LQ(D), if host (A) can not satisfy QoS constraints, let
¢ lone otk r 1-host group. The same as the 2-host groups {(AD), (CD)}, shown

as v. = _.een dotted circles in Figure 8. Therefore, the search speed can actually
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Figure 8: Fast Cand = *es G. ~eration Algorithm

be further improved.

Lemma 1. For each task t. . - given different host groups G4 and Gpg satis-

fying pdowntoad = pth, if C_~ € supe "set(Ga), then cpr(Ga) < cpr(Gg).

Proof. Since G4 and Ap atis’y pagownioad = Pth, the server can obtain the

revenue r¢,, no mat’ or G, ~rv 4 is chosen. Since G4 C Gp, >, ¢ < Y. ¢,
i€Ga i€Gp
epr(Ga) < epr(G ;). O

4.1.2. Host £ lect’

The ob’ :«ctive is . > design an incentive mechanism that selects hosts to min-
imize the -r er’s payment under the condition that the server can earn the
target .d revenue, i.e. the targeted sharing tasks. In § 3.5, the Payment Min-
imiza on (P} ) problem is formalized as an optimization problem, which can
b reduced to a Weighted Multiple Set Cover (WMSC) problem, proved to be
! ®-hard m [22]. The reduction process is similar to our previous work [23].

Tharefore, we put forward Theorem 2 below.
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Theorem 2. The PM problem is an NP hard problem.

Unfortunately, the PM problem fails to be solved by exploiting he well-
known Vickrey-Clarke-Groves (VCG) mechanism that ensure: eac! nc. ' reveals
its cost truthfully. The reason is that VCG requires the selecte ' set of users
with the lowest cost all the time. However, when the scale o the problem
is increased, it is hard to find a solution in polynomia! tim. ~~_arding the PM
problem is NP-hard. Moreover, [20] also proves that ¢ no” -opt mal user selection
algorithm with the VCG mechanism could not gu. ante. .ruthfulness. Hence,
an alternative non-VCG auction mechanism is ' ~sired to msure the truthfulness
of hosts while minimizing the payment subjecv ‘o a sccver’s revenue target.

To solve the PM problem, we propor . w.usu-selection greedy algorithm
summarized in Algorithm 2. The basic idea is v. select the most cost-efficient
host group which has the smallest totar bi « but makes the server obtain the
most revenue, by iterating the select, ‘w mti the given revenue target has been
reached. To this end, we combi - +hese two criteria into the single metric as

follows:
Zz’ €Sk b7’
Z T't;

JENL

(6)

The metric represe’ ¢s the “cost per revenue” (cpr), where A; means the
task(s) that can be co. v eted by selecting the host group Si. The total bid
of S is > b;, whk ve b; is host i’s bid. It is assumed that selected hosts will
not acce;is%nallncated a.wnload requests. Thus, we maintain the set Sy
of the current seler .ed hosts and the set Tyncom for the remaining unallocated

download t sks. e host set Si is the candidate group with the minimum

marginal or ‘1 th. k-th iteration, defined as
> b
€Sk \Scurr

th
ti EANTuncom

cpr(Sk) = (7)

1 each u wile-loop, the server selects the host set S with the minimum marginal

~nr trom G in the k-th iteration.
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Algorithm 2 Host Selection (U, B, V', Ryp,)

Input: Candidate groups (G), hosts’ bids (B), request task (7), »ven. from
task completion (R) and server’s revenue target (R:n).

Output: Host winners (Syinner) and social cost (C).

1: Initialization: Tyneom = T, Seurr = @, iteration rour a £ = 0 and revenue
r=20

2: while r < Ry, do

3:  Select the set Sy, = argmin cpr(g), where g € G.

4 Seurr = Seurr USk, G =G\ Sy,

5  r=r+ > e,

t; €A NTuncom

6: Tuncom = Tuncom \ Ak

7 k=k+1

8: Swinner = Scurr

9: C = Z b;

1€Swinner

4.1.3. Payment Determination

After host winners are sr.ecteu, combined with the HS algorithm, we develop
the PD algorithm summarize ' in A’ gorithm 3 to encourage hosts to bid honestly,
which follows Theoren 2.

In Algorithm 3, t'ie ou ~ids o for-loop (Lines 2—11) is to compute the critical
bid for each winn’ ¢« = S. Each while-loop aims to calculate host i’'s maximum
bid that can sti’. . = selected in this iteration. Given the current selected hosts
Securr and ren.. ni» g download tasks Tyncom, we first select the set Sy, and Spy 14}
with the v minum cpr from the group set G and G\ 3, respectively (Lines 4
and 6), w.. v G\ ;) the set of candidate groups that do not contain i. The
maxir .am bi? in each iteration is the sum of host i’s bid and the cpr difference
betwe. 1 Sk av d Sp\ (5y- In the end, the maximum of these bids among the while
- ops is et to be critical bid p;, which can promise that host ¢ will be selected

iL. at leac . one iteration.

21




Algorithm 3 Payment Determination

Input: Host winners (S), candidate groups (G) and he ts’ bids (B)

Output: Critical payments (P)

1: p; =0 for all hosts i € U, Tyncom =T.S  — “andr=0

2: for all host 7 € Syinner do

3:  while r < Ry, do
4: Select the set S, = argmin . *(g), ‘here g € G
5 Guy=1{deCligg}
6: Select the set Si\ ;3 = arg."ncpr(g\s}), where g\ iy € G\ (i}
T Scurr = Scurr U Sk\ "
8: r=r+ > e,
ti €EAR\ iy N Tun.
9: Tuncom \ Tk\{z
10: pi = max{cpril gy) - > e, — B(Sk \ Seurr) + bispi}
t; EANTuncom
11: k=k+1
12: P.add(p;)
13: Return P

22




405

410

4.2. Properties of Al Incentive Mechanism
How good is the AI auction mechanism? In the following we -ill awn. lyze
the above mechanism according to the four desirable propertie , as rerformance

metrics.

4.2.1. Individual Rationality
In Algorithm 2, Line 4 aims to find the subset S * clua..., nost ¢ with the
minimum cpr, while Line 6 tries to find a subset S, ;3 vith the minimum cpr

exclusive of host 7. If and only if epr(Sy) < ep. “Sing,, ) s true, host i will
B(Si\Seurr)

Tt
tj €A NTuncom

cpr(Sp\(iy)- Based on this inequality, we there.. e have the payment p; of host

be selected in the host selection period. Thus we can ave

i
pi = max{cpr(Sp\ i) ¥ Z = — B(Sk \ Scurr) + bi,pi} > b (8)
t; €A NTuncon

Hence, GoSharing can guarantee tl. . all L sts’ utility is non-negative.

4.2.2. Truthfulness

As long as the conditions listed in 1'heorem 2 are satisfied, it can promise
that GoSharing can make cruth-. °lling a weakly dominant strategy for each
host, such that each host re. ~ts s bid honestly. For the first condition, the
monotonicity of the H alg rithm is easy to prove since host ¢ bidding a smaller
value could increase che ¢, ~ v ilue of the subset with host ¢. Thus, host ¢ must
win in the curren’ or . ~ earlier iteration.

For the secr ... condition, we should prove that p; is the critical value for
host i, i.e. L dir g higher p; could prevent host ¢ from winning the auction
otherwise ' ost ¢ ni 3t become a winner. Suppose that host i is selected in
the k-th _“=r7.ion On the one hand, if b; > p;, ¢ cannot be selected in this
iteratis .., becau. : there exists another subset without ¢ having smaller cpr value
or r . Ry, i. . the loop meets the termination condition. On the other hand,
if », < p;, ~.ost @ must be selected in the k-th iteration, because cpr value of the
< 1bset w, h host ¢ is lower than that with critical value p;:
bi + B(Sk\(Seurr U{i})) _ pi + B(Sk\(Seurr U {i}))

Tt Tt

J J
t; EALNTuncom t; €EALNTuncom

epr(Se) = 9)
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4.2.8. Computational Efficiency

First, we analyze the complexity of Algorithm 1. Set n = . ~x [ ubUy,|,t; € T,
and we can get k < 7. The time complexity of sorting ..U, 1. descending
order of LQ values is O(nlogn). The for-loop is at most 1, since : <. There-
fore, by searching candidate groups for M tasks, tb . .'CG aigorithm runs in
O(Mnlogn).

Next, given the candidate groups G, the time com, '~xity of finding the group
with minimum cpr in each iteration is |G|. Sin. - there wre M download tasks
and each while-loop will contribute at least one ~wnload task, the number of
while-loop is at most M. Hence, the HS a1y rithm runs in O(M|G|) time.

After the set of host winners Syin: ., ~ <elecied, we compute the running
time of the PD algorithm. In each roun. of finding the minimum cpr group
(Lines 4 and 6), the process similar t¢ Li. ~ 6 of Algorithm 1 is realized. Thus,
the time complexity of finding . wI!™ minimum cpr is O(]G|). Moreover,
the number of while-loop is at most M since each while-loop will complete at
least one task. Therefore, t'1e PL -lgorithm takes O(|Swinner| - |G|+ M), which
dominates the whole auction.. Tt i° obtained that the running time of the Go-
Sharing auction mechs aisp is bounded by O(|Swinner||G|M).

Realistic scens -io: v cally speaking, the capacity of a bus is set as 100.
It is assumed tha 5u.” of commuters are GoSharing users, and the number of
simultaneous le .uved hosts is less than 25% of total users. Thus, |Syinner| < 50
and M < 12.5. St ce at most 10% hosts have stored the same common content,
p < 5. Fig .re ¥ shows when a device has more than four connections, download
time will ..~ to ¢ iite long. Thus, the time complexity is O(|Syinner||GIM) <
50-27-12.5 -2 x 10*, which is feasible in our real scenario.

Sp. -ifical’,;, when the bus is moving between two cell towers with request
c Jling, e soft hand-off technology is applied. That is a cell phone simultane-
ou v co nected to two or more cells during a request, such that server switch

w. - ~t influence the normal operation of our GoSharing for content sharing.
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4.2.4. Approzimate Ratio Analysis
It is supposed to analyze the approximation ratio achieved by v. ~ pro, osed

algorithm 1.

Theorem 3. The HS algorithm can obtain the approximate . ~lution with a

d
factor of F(d), where F(d) = Y. (—+— xry,), d = max Ay| de. otes the maz-
p=1 2 Tt;

imum size of completed tasks when ;my candidate gre . Sy 15 selected.

Proof. We assume that S is the selected hosts by HS ..gorit im then

Z Z b; = Z ey X vy, (10)

SLeSIESKNScurr tjeN

where cpry; is the cpr value when t; is completec and A is a set of completed

tasks.
The key of the analysis is to find out ... —~mer bound of > b; with the
1€SKNScurr
corresponding obtained value > or(Sk) X r¢;, when candidate group

tjEAkﬂ,'nL .
Sk is selected.

Thus, we need to give an uppe. “ounu on the ratio
> pr(Sk) x

ti g ncom

: =

i€ SENScurr

To simplify the note 1on we assume that the set of tasks Ay can be completed
when the candidate sro. - Sy s selected, that is Ay = {t1,...,tq}, where d =

L

|Ag|. Furthermors, '* is assumed that these tasks are labeled in the order of
cpry; computed "=+ GoSharing, i.e. {cpry, < cpry, < ... < cpry,}. In the p-th
iteration, ¢, v Il b’ labeled completed, and where p < d. Before ¢, is labeled as
completed. .here ai. at least ¢, ¢p41,...,tq tasks that are uncompleted, noting
{tpitp+1,- + a} € Tuncom, i-e.

d
§ : Tty 2 § :th'
Jj=p

t;€EALNTuncom

>, b > b

S, we csn have:

1€5uSeurr - 1€SKNSeurr
> (ST d
J
t; €Ak Tuncom 2Tt
J=p
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In this iteration, HS selects a candidate group S, with the minim' m ¢ r, and

so we have
b; b >
iespmsc'uT'r~ 1€SENScurr 1€ESKT Seurr
cpry, = < < Peurgf
> Tt; > T't; -
t;€EApNTuncom t; €EALNTuncom s T't;
ot

Here we add up these inequalities for all tasks € Ay.

d
Z cpr(Sk) % Ty = Zcprtp X Ty, <
p=1

t;€EALNTuncom

7’€Skn‘sc1nr 1
SESer o S b3 (k).
p=1 Z Ut 1€ESKNScr v —1 L v,

Jj=p (ke

d
With the replacement of F((d) = > (—— X 7¢,), we can obtain the

p=1 3T 1y,

> bz S (i),
2 ya J
€SENSeurr Fd), o S

Let S* denote the optimum . -=..-7 + inners, so that

Su- 3

i€ES* “SkNScurr
1
PR B SR GC RS (12)
SkEu t; €EARNTuncom

= F(d‘ Z Z cpr(Sk) - 75 -

SkeS* tjeANTuncom

Because in every . -~ration, HS always selects the candidate group with the
minimum cpr, w~ have

V; Z cpr(Sy) - ve; > Z cpry; - Vg, -

SkEc 15 EANTuncom tj EA

Finall - cc nbir :d with equations (10) and (12), we get the desired bound,

L bz 2 F d) Z Z cpr(Sk) ~'Utj

c€S* SRES* t; EAkﬂTuncom

= F(d) Z CPTej ~ Uty = F(d Z Z bs (13)

tjEA SpES €S NScurr

- F(d) Zb
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5. Performance Evaluation

To evaluate the performance of the Al incentive mechanism. we c. ~loit the

following metrics through the simulation experiments.

1.

Social cost (C): The total cost of selected hosts. .. the hc .t selection
period, we aim to choose the hosts to minimize a s rver’s t tal payment,
subject to the given server’s revenue target. N ,uc that social cost is the

minimum payment by a non-truthful mechanis ~ '(2].

Approximation ratio (R): This is the main metric lemonstrating the per-
formance of the HS algorithm. It illustr-tes .. = *.e HS greedy algorithm
approaches the optimal solution (denoted hv ."PT) R = OQI% where C'yq

is the obtained social cost by using meci. nism M.

Overpayment ratio: It is computec <5 v = %7 where P denotes the
total payment by applying our “r. hfu. mechanism. Hence, the overpay-
ment ratio characterizes t' . ~<t \hat the server overpays to guarantee

truthfulness.

Utility of all hosts: V e recorc the utility of all hosts to show the property
of Individual Ratic aality ‘dr.ined in §3.6).

-

Execution time: % : tot .l time of auction execution is the time cost to
find hosts p! -~ the time cost of determining the payment to each host

winner.

5.1. Simulation € -tup

It is as ;um’ d that 50% of users on the bus or subway have launched the Go-

Sharing appun ~ti,n. Let § denote the average fraction of hosts who can share

the s me mec ‘a content in each auction period. Since only a small portion of

hosts ho = *'.¢ same media content, § is expected to be relatively small and set

1> be d = 0.2 in the following simulations. All simulations ran on a PC with

2.7 CPU and 4GB memory. Each simulation is repeated 100 times, and

th : average values are reported as statistical results.
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5.2. Case Study:

To evaluate the performance of GoSharing in the bus case, the -evenue of
each task completion (r¢,) and the sharing cost of each host / ;) &~ *miformly
distributed over [5,10] and [1, 5], respectively. If the capacity o. me bus is 100,
the maximum number of hosts is 50. When the bus is in no: mal status, N
follows the uniform distribution over [20,30]. When the . ‘mbe~ of passengers
is over 50, it is considered as a crowded state. There ore. ". . set N distributed
among [40, 50] uniformly when the bus is crowd~d. LOs .f hosts to request

users are followed by Poisson distribution with A = 2.

5.2.1. FEwvaluation of Approxzimation Ratio

We first evaluate the performance of the .”S algorithm of Al incentive mech-
anism. Since the HS problem is NP-h. 'u, I* i~ time consuming to obtain the
optimal solution with the general ar~roac. i.e. brute force search. Hence, the
approximate ratio of GoSharing is only ev.'1ated in settings with a small scale,
i.e. the bus is in normal status. S, *~ifica.y, the total number of hosts N is less
than 25, while the number of tasks M increases from 6 to 12 with a step of 2.
Moreover, we set § = 0.2 t¢ define he average fraction of hosts who can involve
the same media sharing and ."e *arget revenue Ry, is set as the total revenue
of all task completion nin’ 3 5.

Figure 9(a) shor s the > roximate ratios of Al mechanism in various set-
tings. The numbr s loc “ed over bars inside black boxes mean its upper bound,
calculated by 7 (@, function, while the numbers without black boxes represent
the practical a, ~ oximate ratio. It is clear that the social costs of the Go-
Sharing v :tho . are very close to its corresponding optimal solutions. With the
expanded sc. ' ¢ hosts, the social cost has a declining trend. The reason is
that he aug.1ent of hosts resource can make the server have better choices.
With 1. ~ an- ment of M, the social cost increases dramatically, shown in 9(b).
" hisis L cause the server needs to recruit more hosts to share more media files.
Fre » ¥ zure 9(b), it is also observed that the upper bound of AI mechanism

ay piuaimate ratio increases along with the expanded size of download tasks.
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Figure 9: Approximate ratio . er vario s conditions. (a) and (b) The impact of N and M

on approximate ratio; (¢) A- proxime -~ atio when the bus is crowded .

This is due to the f ct tha. *'.e candidate group can complete more tasks, d is
therefore increase i.

When the "us ‘s crowded, the upper bound of approximate ratio for Al
mechanism is « ' alated by the function f(d), as plotted in Figure 9(c). The
social cost tenc s to keep stable when the number of download tasks is over 20,
the same w. ~ tb : upper bound of approximate ratio of AI mechanism. The
reaso . is tha. there are not enough hosts to complete the given tasks when the

numbe. react s 20.
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Figure 10: The impact of N and M on overpay. =nt rat o and social cost

5.2.2. FEvaluation of Overpayment Ratio

We investigate the impact of the m—~her of Losts (N) on the overpayment
ratio. N is varied from 20 to 50 with ti.> .ncrement of 10, and M from 5 to
15 with the step of 5. As shown in } 9. » lu(a), the overpayment ratio of the
AT auction keeps below 0.5 unde. - .7~ve1." M and N, indicating the Al auction
with low overpayment cost for the tru.iful property. With the increase of IV,
the overpayment ratio is dscenu'mg. The reason is that the difference of the
cost of the candidate group. ~ith * 1e minimum cost and second minimum cost
is suppressed with the - xpa- ding number of candidate groups. In addition, with
the increase of M, t! e ov. may ment ratio rises accordingly. That is because the
number of host w’ 11.. "< increases for sharing more media files.

Figure 10(b* _" ows that the social cost decreases with the rising number of
hosts but inc. ase along with the increasing number of tasks. Also, the social

cost is not ignifican.ly impacted by the host numbers when M is in small scale.

5.2.8. 7 aluar.. . of Individual Rationality

In order tc show all users have non-negative utility, we depict the empirical
C”. (Cuwulative Distribution Function) of the utility for all hosts under vari-
¢ 18 settir zs. From Figure 11(a), it is observed that the proportion of hosts with

negative utility is zero. The utility with zero is corresponding to the proportion
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Figure 11: Individual rationality and computational ei.. ‘ency of GoSharing mechanism
of unselected hosts in y-axis in Figure 11(a,. All hosts have non-negative utility,

1

and the AI auction mechanism achievr .

(see §3.6).

-~ nroperty of individual rationality

5.2.4. Fvaluation of Computatio~~! Effi iency

Figure 11(b) demonstrates the con., tational efficiency of the AT mechanism
with different settings, and Luo. = the execution time of all cases is under 10
seconds. The study in [~ ‘! show that users will keep their patience when
the response time in 1 .n-c- mpuwer conversational transactions is less than 10
seconds. Therefore, the .' " auc on mechanism has high computational efficiency

in the bus scenarir .

6. Related - rork

The cc itrit ation of our work lies in the intersection of two important cutting-
edge researc.. *or cs. (1) Cooperative mobile opportunistic systems; (2) Incen-
tive 1 iechani. ms. Combining the above cases, a fundamentally new incentive
mechai. ~m * proposed to solve the cooperative allocation of multiple tasks in

1 1is pape .
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6.1. Cooperative Mobile Opportunistic Systems

Mobile users usually have temporal and spatial correlations, w. ~h can be
exploited for task allocation to improve communication qualit,. T: ' ng the ge-
ographical proximity into account, [12] presents a collaborative -nsing system
for mobile crowdsourcing. Based on the virtual opport™ nistic >mmunity as-
sociated with an event, [25] presents several event detec.’ n 1 thods toward
real-time and cooperative mobile visual sensing and hari* .. Tn order to handle
the contradiction between dynamic user traffic and fixed dats plans, [26] builds a
collaborative sharing system of data plans to make users "elp neighbors for data
download. Authors of [6] consider a scenaric in w. =+ a group of smartphone
users in proximity are interested in the same vide and propose a MicroCast
system to use the resource on groups of smai., hones in a cooperative way for
a better streaming experience. Under t. » as,uu.ption of packets being spatial-
temporal correlated, [27] presents «  ~ope. tive sensing and data forwarding
framework to tradeoff delivery delay an ! transmission overhead. Although the
above applications make use of the sy ~tial information for data offloading or me-
dia sharing, they are not suit~"'= for the scenario of transient get-together, such
as urban transport for its pecial r« quirements. While some works have shared
similar scenarios as thi. paper ", 1], none of them consider the cooperative
approach to improve . » Fown’sad quality of media content.

Furthermore, t! are are n.any cooperation strategies among mobile devices
for content dissemination “r resource sharing in delay tolerant and opportunistic
networks, base 1 on social ties [28, 7]. However, they use the single-host delivery
model, which can "2t solve the download problem of poor quality. More impor-
tantly, wr exy oit + multi-host model, as opposed to the single-host model, to

improve “he rol' - )ility of the GoSharing system.

6.2. Ii.entir. Mechanisms

[9] pr sents incentive mechanisms for both platform-centric and user-centric
mod ' dowever, on the one hand, in its platform-centric model, it assumes that

us ors and the platform have knowledge of users’ costs, which is neither practical
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in most mobile sensing systems nor feasible for the cooperative wirc =ss < ystem.
On the other hand, in its user-centric model, it designs an auctio.. mechc 1ism
for tasks without taking users’ cooperation into consideration A thors of [29,
30] design feasible recruitment models for piggyback crowds. *< ng under the
constraints of coverage quality. Introducing a novel me ric, users’ quality of
information (Qol) into mobile crowdsensing systems, b h the ingle-minded
and multi-minded combinatorial auction models are y ;opos 7 to incentivize user
participation [31]. Some research pays attention to wue inc .ntive mechanisms
based on social networks or social cloud systems [8, 32|, -hich fails to be applied
directly for our cooperative content sharing systen.. The authors of [10] consider
the cooperative task individually, thus it can nov “e directly extended to the
cooperative system with multiple correlated . <ks.

In addition, [33] and [34] study the ¢ “le . >ntive mechanisms for multiple
opportunistic users and the real-tir ~ requ rement, which can not handle the
uncertainty of public transport environ. mew.s. [35] presents a bargaining game
theoretic method for virtual resou. ~ allocation in cellular networks, which ig-
nores the mobile edge networks.

To the best of our knc vledge, his is the first paper to undertake compre-
hensive research on the cruth..' “.1centive mechanism for cooperative systems
to share content in 1 “bil edg . networks. In this paper, we propose a novel
GoSharing framewc -k whici. .ses the stored resources on mobile devices within
proximity to sharc popu. r content cooperatively. Furthermore, a corresponding
AT auction me' aan sm is proposed for motivating media hosts to share their re-
sources based ow.  '0S requirements, while minimizing the payment of the server

as well as <eer ng vsers giving their truthful bids.

7. Coinclusy: n

‘L'he ~dge storage of mobile devices and costly charge of cellular network leads
t. the ne .essity of content exchange among neighboring commuters. Moreover,

‘=~ cshort-range wireless network interface provides the technical support. In this
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paper, we propose GoSharing to encourage a group of hosts with? - prr ximity
to share content cooperatively. Our GoSharing is objective to fina he en. stive
solution which can minimize incentive cost, subject to the tar: et . >venues.

To this end, we first develop a network QoS model basea = real measure-
ments to solve the tradeoff between download time ancd down’oaa ratio. To
handle the tradeoff and exploit users’ association, a sma.* data ilter method,
namely a Fast Candidate Generation algorithm is p esent 1. After the candi-
date groups filtered, a new Host Selection algorithm, whick is to find a set of
candidate groups with minimum social cost to share ¢ utent. Furthermore, a
novel Payment Determination algorithm is devew ~ed ‘o guarantee the truth-
fulness of each host. Eventually, both theoretical . ~alysis and extensive simu-
lations demonstrate that the GoSharing ince. “ive framework achieves not only
truthfulness, individual rationality, higl. ~ou. . tional efficiency in real scenar-
ios and low overpayment ratio, but =0 hig » download delivery and acceptable
download time.

An interesting further extension f this work is to consider both the strategies
of hosts and request users, such that we can obtain a better match for content
sharing. The online scena 10 and *he impact of users’ mobility will be deeply

analyzed for the future.
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In this paper, we propose GoSharing, an intelligent incentive framework which
motivates resource owners to share their stored videos cooperatively in mobile edge
networks. GoSharing is able to achieve the goals of encouraging commuters to share
their content cooperatively with the minimum incentive cost based on users'
association and guaranteeing the Quality of Service (QoS) of the task shar’. .

The highlights of this work are summarized as follows:

1) In order to improve the reliability of content sharing in mobile edr 2 ne .works, we
present a multi-host communication model to allow multiple resource . 1ers to share
their content collaboratively.

2) We measure the factors that impact the quality of data deliv'.ry »~m hosts to the
request users on public transport.

Based on the experimental results, we formalize a network CJ> made, to describe the
tradeoff between reliability and download time.

3) To motivate hosts to share their content collaborativ:,, we uesign an intelligent
incentive framework, GoSharing, composed of candid 'te y4ent ration, host selection
and payment determination, which has four desirabl. nrog~-ues: a) truthfulness, b)
individual rationality, c) computational efficiency, d) low « verpayment ratio, as well
as high download ratio.
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