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Abstract

In most metropolises, commuters spend a considerable amount of time on public

transport, and many of them entertain themselves with the content (like music

or videos) on their mobile devices to alleviate boredom. Currently, the content,

usually shared in co-located wireless networks to avoid huge monetary cost of

using cellular data, is delivered from single host (resource owner) to single re-

quest user, which brings low transmission quality, due to the uncertainty of

mobile edge networks in public transport environments.

In this paper, we present an intelligent incentive framework called GoSharing

which encourages multiple hosts to share content collaboratively to improve de-

livery quality, by taking advantage of users’ association and consideration of

network Quality of Service(QoS) requirements. The highlight of GoSharing

is the novel Association-based Intelligent incentive mechanism that consists of

three key components. First, a Fast Candidate Generation algorithm discov-

ers users’ association according to their stored content and QoS requirements

and filters the candidate groups from large host groups. Second, a Host Selec-

tion algorithm finds a near-optimal solution among candidate groups within an
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approximate factor of F (d), where d denotes the maximum size of completed

tasks when any candidate group is selected. Last but not least, a Payment De-

termination algorithm determines the payment of resource contributors while

guaranteeing the truthfulness of their bids based on the procurement auction.

Both theoretical analysis and extensive simulations demonstrate that GoSharing

not only effectively motivates hosts’ collaborative sharing, but also achieves the

properties of truthfulness, individual rationality, high computational efficiency,

low overpayment ratio, and high download ratio.

Keywords: GoSharing, Cooperative System, Users’ Association, Intelligent

Incentive Mechanism, Mobile Edge Networks

1. Introduction

In many dense crowded metropolises in Asia and Europe, as well as some

US cities like New York city and San Francisco, driving fails to be a good option

for daily commuting because of traffic jams and the unavailability of parking.

Public transport such as buses, subways and trains becomes the best choice for5

urban citizens. As a result, a considerable proportion of the people in these

metropolises tend to choose public transport for their daily commute. A study

from the Singapore Management University reported that the average one-way

commute time in Singapore is about 26 minutes [1], and other surveys show that

the average commuting time of the urban citizens is very long, e.g. 40 minutes10

for New York City [2], 66 minutes for Tokyo [3], and 97 minutes for Beijing

[4]. Entertainment, such as watching videos, becomes the first choice for the

commuters to kill the long commute time. Although the recent popularization of

cellular networks (e.g. 3G/LTE) provides mobile users with ubiquitous Internet

access, high cellular data cost and network latency prevent the cellular networks15

from being a good way for video downloading. To address this problem, a

promising solution is to utilize short-range wireless network interfaces, such as

WiFi and Bluetooth, to exchange the media content in neighboring devices.

The current research on short range communications usually focuses on data
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transmission from single host (resource owner) to single request user, called20

single-host model [5, 6, 7, 8]. However, based the single-host communication

model, thus reliability of communications cannot be guaranteed because users

randomly pop-in and pop-out. For example, mobile users usually have unpre-

dictable mobility, if one of the communication nodes moves beyond the trans-

ferring range, the content will not be delivered successfully. To address this25

problem, we envision that multiple co-located devices can share content coop-

eratively to enhance the reliability of content sharing among commuters.

In addition, sharing media content requires hosts to contribute not only their

content but also hardware, especially battery. To stimulate hosts to share their

resources, incentives like monetary rewards should be provided to the hosts.30

In the literature, various incentive mechanisms have been proposed in mobile

networks [9, 10, 11, 12, 13, 14, 15, 16].

Some mechanisms, e.g.[9, 10, 11, 12, 13], are designed for tasks that only

require a single user (host) to perform, referred to as simple tasks. In our con-

tent sharing scenario, every downloading task needs the cooperation of multiple35

users (hosts), referred to as cooperative tasks. There is no existing incentive

mechanism that is designed for rewarding the participates with multiple coop-

erative tasks, which comes up with new challenges, especially how to combine

users’ association for efficient cooperation in such complex scenario.

In this paper, we propose GoSharing, an intelligent incentive framework40

which motivates resource owners to share their stored videos cooperatively in

mobile edge networks. GoSharing is able to achieve the goals of encouraging

commuters to share their content cooperatively with the minimum incentive cost

based on users’ association and guaranteeing the Quality of Service(QoS) of the

task sharing. The main intellectual contributions of this work are summarized45

as follows:

1. In order to improve the reliability of content sharing in mobile edge net-

works, we present a multi-host communication model to allow multiple

resource owners to share their content collaboratively.
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2. We measure the factors that impact the quality of data delivery from50

hosts to the request users on public transport. Based on the experimental

results, we formalize a network QoS model to describe the tradeoff between

reliability and download time.

3. To motivate hosts to share their content collaboratively, we design an

intelligent incentive framework, GoSharing, whose highlight, Association-55

base Intelligent (AI) incentive mechanism composed of candidate genera-

tion, host selection and payment determination, which has four desirable

properties: a) truthfulness, b) individual rationality, c) computational ef-

ficiency, d) low overpayment ratio, as well as high download ratio.

The rest of this paper is organized as follows. Section 2 provides the ex-60

perimental observations and results to verify the efficiency of the multi-host

model. Section 3 presents the overview of GoSharing framework and system

model. In Section 4, we present the design of AI incentive framework and prove

its desirable properties. Section 5 evaluates the performance of our proposed

mechanism. Finally, Section 6 reviews related work and Section 7 concludes this65

paper as well as outlining future work.

2. Motivation and Preliminary Results

In this section, we first illustrate the unreliability problem of the single-host

model in mobile edge networks, then demonstrate the motivation of the GoShar-

ing system model, i.e. the multi-host model. Finally, we have the measurements70

and experiments in real scenarios to verify the motivation and analyze the fac-

tors that influence the QoS communications.

2.1. Motivation

Most content sharing applications are based on the single-host model, as

shown in Figure 1 (a). In this model, once the sender or receiver move out75

of communication range during the video sharing period, the downloading task
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will fail. Thus, the task has to be re-started from the beginning. In order

to mitigate this unreliability problem of the single-host model, we propose the

multi-host model, shown in Figure 1 (b) in which multiple hosts are sharing

the downloading file simultaneously. Furthermore, if any provider (host) moves80

out of communication range, the rest of the hosts can continuously provide

the required sources until the completion of the task. To confirm the above

assumption, we made some real world measurements for both single-host model

and multi-host model in §2.2 and §2.3.

(a) a single-host model (b) a multi-host model

Figure 1: A motivating scenario of GoSharing

2.2. The Unreliability of the Single-host Model85

In this section, a number of real world experiments are conducted for de-

tecting the download ratio in mobile opportunistic networks and capturing the

factors which influence transmission rates.

Taking wifi-P2P (wifi-direct) as an example, the IEEE standard claims its

theoretic maximum transmission rate is 250 Mbps, and the maximum trans-90

mission range is 200m [17]. However, in practical environments, such an upper

bound can not be reached. Hence, we conduct the experiments to detect the

real transmission rates of wifi-direct in a real environment. Two Samsung Note3

smartphones with 3G RAM are used on buses and subways to measure the trans-

mission rate of wifi-direct with various peer distances (the distance from single95

host to single requester) in three different conditions, i.e., crowded, normal and

almost empty.
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(a) Empty (b) Normal (c) Crowded

Figure 2: Three statuses on the subway

Figure 3: The transmission rate on the subway when the carriage is almost empty

On the subway, we monitor the transmission rates under three statuses:

empty, normal and crowded. Figure 2 shows the status of the circumstances

throughout conducting the experiments. From Figure 3, the transmission rate100

changes dramatically at different peer distances when the subway is almost

empty. This illustrates that the transmission rate is relatively stable at the

range of 4 to 6.5MBps when the peer distance is less than the length of one

carriage, about 17m. However, when the peer distance increases to 30m, the

transmission rate is vastly reduced, whereas the connection is broken when the105

peer distance extends to the length of two carriages, about 40m.

Figure 4 shows that the transmission rate fluctuates dramatically with the

same peer distance when the carriage status is normal. This implies that the

maximum transmission range is limited to one carriage when the status is

crowded. The experimental results indicate that the transmission rate depends110

on not only the peer distance and crowdedness of the carriage, but also some

unexpected factors, such as users’ behaviors and wireless interference. Hence,
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Figure 4: The transmission rates on the subway when the carriage is normal or crowded.
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Figure 5: Impact on download time

the single-host model is not applicable for sharing video among devices on pubic

transport.

2.3. The Performance of the Multi-host Model115

Since the single-host model fails to provide a reliable network to share video

among the commuters an alternative multi-host model can reduce the chance

of the failures caused by the unavailability of hosts. This subsection shows the

performance of the multi-host model. BitTorrent Sync1, a BT protocol based

file sharing tool is used to create a multi-host network.120

We have conducted the experiments on Android testbeds which contain one

Galaxy Note3, two Sony and two HuaWei running Andriod 5.0. We evaluate

the relationship between the number of hosts and download time in the multi-

host mode. The Sony smartphone is a receiver, and we record the download

time of a media file with 350M under different numbers of hosts with the tool125

of BitTorrent Sync, as shown in Figure 5. The observations show that the

download time reaches the lowest point when there are two hosts, and then

1https://www.getsync.com/
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ascends with the increase of hosts’ size. This is because in the BT protocol

each pair of receiver and sender has to create a channel, and a new channel

will cost some bandwidth. Therefore, when the total transmission rate (sum of130

the transmission rate of created channels) is higher than the throughput of the

device (receiver), the transmission rate of each channel will reduce. As shown

Figure 5, when there are three hosts, the throughput of the receiver is lower

than the counterpart in the case of one host.

As the measurement results show the multi-host model can efficiently im-135

prove the communication reliability in mobile edge networks. However, the

multi-host model requires hosts for cooperative sharing, which needs to select

host groups for multiple tasks completion. In order to encourage hosts to share

content with efficient cooperation, it is vital to find hosts’ association based on

their stored content and condition of link quality, such that we can obtain the140

filtered host groups for further host selection within the design of the new incen-

tive mechanism. In this paper, we propose the intelligent incentive framework,

GoSharing which can be adapted to the multi-host model with the benefit of

hosts’ association for efficient cooperation, the goal of minimizing incentive cost,

as well as ensuring the QoS.145

3. System Model and Problem Formulation

In this section, we give an overview of the GoSharing framework, QoS model,

system model and problem formulation.

3.1. Framework

The GoSharing framework supports cooperative systems with multiple tasks,150

and can be applied to scenarios where many people gather for a transient pe-

riod, such as public transport, conference, supermarket checkout and hospital

queuing, etc. GoSharing consists of a set of hosts and request users, also a

local-based server, such as the near base station. To solve the time-consuming

problem of neighbor discovery in co-located networks [1], a local-based server155
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Figure 6: One realistic scenario of GoSharing

uses cellular networks to collect hosts’ information in the covered area, such as

content list, host’s location and behavior histories, which generates little or even

negligible data traffic and cellular cost. Figure 6 illustrates one of the realistic

scenarios of using our GoSharing framework, i.e. the commuters want to share

content with neighbors on the subway. The server acts as the buyer who offers160

the monetary payment to the hosts who are willing to share their content. The

host plays the role of seller who is encouraged to submit a list, listing the con-

tent that s/he is willing to share; and make a bid for the cost of sharing their

content.
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3.2. Network QoS Model under Hosts’ Mobility165

From the measured results in section 2, the dynamic connection between two

mobile devices significantly influences data transmission in terms of download

time and download ratios, defined as follows.

• Download time: The download time is recorded as the average time start-

ing from the local network being established to the media files being down-170

loaded.

• Download ratio: The download ratio of media files is computed as the

number of downloaded tasks to allocated tasks.

Firstly, we develop a link quality (LQ) model that represents the probability

of a request user i successfully downloading files from a single host, defined as

LQ(i) = α(disi) ∗ β(timi) ∗ γ, (0 ≤ α, β, γ ≤ 1) (1)

where α is a parameter linked to the peer distance from host i to the request user,

denoted as disi, and β is determined by the host’s mobile behavior, which can be175

predicted by historical information, such as his commute behavior (the simple

way is to record a host’s entry time timi which can be known from collected

historical information and we can predict the probability of users’ departure),

and γ is a factor to depict the unexpected wireless interference. Note that the

functions of α, β and γ can be defined specifically under various scenarios, which180

is beyond the scope of this paper.

Since the reliability of media download depends on how many links work,

the download ratio can be calculated by

ρdownload = 1−
∏

i∈Gtj

(1− LQ(i)), (2)

where Gtj is the candidate groups (Definition 1) for task tj .

Next, we record the download time under both models, in which LQs are

assumed to obey the Poisson distribution with λ = 2. Based on the measured

results of wifi-direct transmission in Figure 4 and sync BT in Figure 5 (a), the185
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Figure 7: single-host model vs. multi-host model (when any host interrupts during the file

download, single host model adopts the rule of retransmission from the beginning, while the

remaining host(s) will continue to keep transmitting the remaining data in multi-host model)

transmission rates are set to be 1.46 MBps and 1.3 MBps for the single-host

model and the multi-host model, respectively. Since the link quality dynamically

changes, the communication may be interrupted during the file download. The

rule of retransmission is adopted from the beginning in the single host model,

while in the multi-host model, when any host interrupts their transmission, the190

remaining host(s) will continue to keep transmitting the remaining data. From

Figure 7, it could be deduced that the download time has been reduced signifi-

cantly with the media file in larger size in the multi-host model, compared with

the case in the single-host model. Therefore, the multi-host model is an effi-

cient method to improve communication reliability under network uncertainty,195

especially in the case of sharing large files.

From the above analysis, we can draw up the rule that the download ratio is

increased by the number of hosts, while the download time decreases as the num-

ber of hosts increase until the total transmission rate (sum of the transmission

rate of created channels) exceeds the wireless capacity. To solve the tradeoff,200

we assume that the candidate groups are the ones with two constraints: 1)

satisfying the requirement of the download ratio; 2)minimizing download time,

defined as follows.

Definition 1 (Candidate Group). Combined with the QoS requirements of
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download task tj, the definition of candidate group is the host group with two205

constraints: 1) whose link qualities satisfy ρdownload ≥ ρth, where ρth is the

threshold of download ratio; 2) with the minimum number of hosts.

Therefore, the problem of discovering all candidate groups can be decom-

posed into two subproblems:

1. Find all host groups that can satisfy QoS requirements, i.e. the first210

constraint in Definition 1.

2. Prune the large set of host groups with the second constraint in Definition

1, and generate the candidate groups.

3.3. System Model

Users first send their download requests to server s, and each requested215

media file represents a task. This set of tasks is denoted as T = {t1, t2, . . . , tM},
thus M is the total number of tasks, i.e., |T | = M . According to the host

information (locations and resource lists) collected by cellular networks, the

server can detect request users’ neighboring hosts and corresponding available

resources.220

All detected hosts are symbolized as U = {1, . . . , N}, where N is the size of

U . If the request user launches the download task tj , and downloads successfully

from local neighbors, the server can therefore obtain a revenue rtj , which de-

pends on the popularity of tj . Each host i has stored a set of media files (music

or videos). When request users launch a set of download tasks Ti, Ti ⊂ T , the225

hosts can share their content with them. Accordingly, host i has an associated

cost ci, which is private and only known to itself. Traditionally, ci is related to

the number of request users that hosts support [12]. However, in our scenario,

a host cannot detect how many users he can provide resource to, thus each host

bids its cost based on its available time period, stored content and remaining230

energy. Although the local-based edge server can require the information about

how many users access its resource, it does not know the real-time wireless link

qualities between the host and request users. Actually, the link qualities can be
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very dynamic because of the frequent user movements. As a result, the number

of users that actually access the host is also dynamic in real-time and unknown235

to both the edge server and the host. In addition, each host announces the

content-bid pair (Ti, bi) as well as the location information to the server, where

bi is the reserve price that host i wants to charge for sharing its content.

Table 1 lists the frequently used notations.

Table 1: Notation List

Notation Description

T the set of all allocated tasks

M the total number of tasks

N the total number of hosts

Ti the tasks host i has capacity to participate in

S the host winners

Scurr the current selected hosts

Sk the selected hosts in the k-th iteration

Λ the set of current completed tasks

Λk the set of new completed task in the k-th iteration

SubUtj users able to perform task tj

Stj the hosts with the capacity to perform task tj

Gtj for task tj , the candidate groups

G for all tasks, the candidate groups

rtj the revenue that the server obtained by finishing task tj

pi the payment for each host i

g one candidate group

3.4. Utility Functions240

Based on the content-bid pairs received from each host, the server selects a

subset of hosts Swinner ⊂ U as winners and computes the payment pi for each

host i. How to select hosts and determinate the payment will be discussed in
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§4. The utility of each winner i can be defined as:

ui = pi − ci (3)

The revenue is related to various customers’ information, including their

preference of watching videos, behavior histories etc., which is hard to measure.

Since each task completion helps the server to collect more efficient customer

information, the revenue R is defined as the sum of revenues obtained by com-

pleting tasks. Similarly, the total payment P is the accumulation of the payment245

for each winner. Hence, we have the equations as follows.





R(Λ) =
∑

tj∈Λ

rtj

P (Swinner) =
∑

i∈Swinner

pi
(4)

where Λ is a set of completed tasks, and tj is one of completed tasks. In addition,

pi is the payment for each host i and rtj is the revenue that the server obtained

by finishing task tj .

3.5. Payment Minimization Problem250

From a practical business perspective, the server needs to obtain a lower

bounded revenue such that its basic operating costs can be covered. Mean-

while, corporations want to reduce the incentive cost to the minimum for their

benefit. Hence, we give the definition of the payment minimization problem in

the following.255

Definition 2. Payment Minimization (PM) problem: Given a set of hosts U ,

the server selects a subset of hosts Swinner as providers to share their content

with local neighbors such that the server’s total payment is minimized, subject

to a given revenue target of the server.

It is easy to deduce that the total payment of the server is minimized with260

pi = ci. The PM problem can be formalized as an optimization problem in the

following.
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Objective: Minimize
∑

i∈Swinner
ci

s.t. R(Λ) ≥ Rth (5)

where Rth is the minimal revenue that a server has to obtain.

3.6. Association-based Intelligent Auction Method265

Auction is a good way to determine the value of a commodity or service that

has an imponderable and dynamic price, which has been applied to many fields

[18]. The ordinary auctions are the forward auction which involves multiple

buyers and a single seller, where the buyers send bids to compete for the offered

commodity or service; the one with the highest bid will win the competition.270

However, our GoSharing has multiple hosts to share their content and the server

has no idea about the exact cost of each user, which inspires use of a procurement

auction, namely reverse auction. In other words, multiple hosts tell the server

their required reward for sharing their content. After that the buyer selects a

group of sellers with the minimum incentive cost.275

In this paper, the AI incentive mechanism is common knowledge among

hosts, and contains three steps. In the first step, Candidate Generation, we

present a fast generation candidate algorithm to discover hosts’ association

based on their stored content and QoS requirements, which makes it possible for

hosts to cooperate efficiently. In the second step, Host Selection, the server de-280

cides which host groups among filtered candidate groups to share their content

with request users. Since hosts have selfishness, they have the intention to lie a

higher bid price for their content to obtain a higher utility. In the third step,

Payment Determination, the pricing algorithm is presented to avoid cheating

behaviors. The server computes the actual payment for each winner. Next, the285

server returns to the hosts the auction outcome which contains the matches of

hosts and the request users as well as the payment of each host. Finally, hosts

share their designated content to request users via the local wireless network.

The details of the proposed auction mechanism will be illustrated in §4.1.

The incentive mechanism aims to satisfy the following properties:290
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• Computational Efficiency : the solution can be computed in polynomial

time.

• Individual Rationality (IR): each sharing host will have a non-negative

utility.

• Incentive compatibility (IC): also called truthfulness; each host prefers to295

report his private information truthfully to the server rather than make

any potential lie, i.e. the host will get the maximum utility when he bids

his cost truthfully.

4. Main Design of GoSharing

In this section, we illustrate the details of the AI incentive mechanism that300

can be applied for general cooperative systems.

4.1. Association-based Intelligent Incentive Mechanism

The main challenge of the host selection process is that the exhaustive search

by checking all possible combinations of hosts makes it impossible for the server

to match host groups with tasks effectively. Fortunately, there is a stable asso-305

ciation among hosts based on their stored content lists and QoS requirements,

which can largely compact the search space. Therefore, before the auction mech-

anism is presented, it is critical to design smart data filtering method to discover

hosts’ association and filter candidate groups from host groups.

AI incentive mechanism consists of three parts: candidate generation, host310

selection and payment determination. First, it exploits hosts’ association to

filter candidate groups from host groups. Second, with searching among the

candidate groups, we present a greedy host selection method with a feasible ap-

proximate ratio. Last but not least, we design a corresponding pricing algorithm

to make sure AI mechanism has the property of truthfulness.315

The AI auction mechanism relies on Myerson’s well-known characterization

[19], illustrated in theorem 1.
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Theorem 1. Based on the theorem in [20][21], an auction mechanism is truthful

if and only if:

1. The Host Selection (HS) algorithm is monotone: If host i wins the auction320

by bidding bi, it also wins by bidding b′i ≤ bi.

2. Given the HS algorithm, there is a unique truthful mechanism associated

with this selection algorithm. The pricing algorithm pays each winner the

critical value: the highest bid the host could claim and still win under the

condition of all other hosts’ bids being fixed.325

4.1.1. Candidate Generation

We propose a Fast Candidate Generation (FCG) algorithm, illustrated in

Algorithm 1, which can filter candidate groups efficiently in coordinating hosts’

association that can be induced by the content stored in hosts’ devices and QoS

constraints. In terms of collected hosts’ information, the server can calculate330

the link quality of each host who belongs to SubUtj . For simple description, we

call the number of hosts in a host group its size, and call a host group of size k

a k-host group, noted as Hk. Hosts within a host group are kept in decreasing

order by their LQ values for each task. The notation H1[1], H1[2], ...,H1[ηtj ] is

used to represent the 1-host groups for task tj , where ηtj is the number of hosts335

able to perform task tj and LQ(H1[1]) ≥ LQ(H1[2]) ≥ ... ≥ LQ(H1[ηtj ]).

The algorithm contains three steps: in the first join step, we join host groups

of a particular size k. In general, k = 1 and orders H1 decreasingly by their LQ

values. Next in the filter step, QoS function filters Hk with QoS constraints

and the filtered groups are namely the candidate groups with size k, Gk. Gk340

found in the k-th round are used to generate the host groups Hk+1. In the prune

step, we delete all the superset of Gk with size k + 1 from the original Hk+1.

The principle of prune rule is that the cpr (an important metric defined in the

process of host selection) of Gk is always larger than the counterpart of all the

superset of Gk, which is proved in Lemma 1. Note that G is the combination of345

Gtj for all task tj ∈ T , which provides the choice candidate groups as the input
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Algorithm 1 Fast Candidate Generation (U , B, V , Rth)

Input: Hosts set (U), request task (T ), user’s association(L).

Output: Candidate groups (G).

1: Hk: Set of k-host groups; Gk: Set of k-candidate groups.

L ⇐ {SubUtj |
∣∣SubUtj

∣∣ = ηtj}
2: for all task tj ∈ T do

3: H1 = {1-host groups |LQ(H1[1]) ≥ LQ(H1[2]) ≥ ... ≥ LQ(H1[ηtj ])}
4: for (k = 1;Hk 6= ∅; k + +) do

5: Gk =QoS(Hk)

6: Hk+1 = Hk+1\ superset(Gk)

7: Gtj =
⋃

kGk

8: G← combination of Gtj for all tj ∈ T .

for the following host selection algorithm.

In the following, a walk-through example of the FCG algorithm is illustrated

in Figure 8. Assume that host A, B, C and D store the content that task

tj requested and they have the relations that LQ(A) ≥ LQ(B) ≥ LQ(C) ≥350

LQ(D). After the join step, H1 = {(A), (B), (C), (D)}. In the next filter step, it

is found G1, the 1-candidate groups that satisfy QoS constraints. Let G1 = ∅,

then in the prune step H2 = H2 \ superset(G1) = H2, since superset(∅) =

∅. In the next iteration, let G2 = {(AB), (BC)}, noted as real line circles

in Figure 8, then H3 = H3 \ superset(G2) = {ACD}, where superset(G2) =355

{(ABC), (ABD), (BCD)}. In the final iteration, assume G3 = QoS(H3) =

{(ACD)}, namely host group (ACD) satisfies QoS constraints, then H4 = H4 \
superset(G4) = ∅ and the iteration terminals.

Note that there is no necessary to search the 1-host group (B), (C), (D) when

it is found 1-host group (A) can not satisfy QoS constraint. Because LQ(A) ≥360

LQ(B) ≥ LQ(C) ≥ LQ(D), if host (A) can not satisfy QoS constraints, let

alone other 1-host group. The same as the 2-host groups {(AD), (CD)}, shown

as the green dotted circles in Figure 8. Therefore, the search speed can actually
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Figure 8: Fast Candidates Generation Algorithm

be further improved.

Lemma 1. For each task tj, any given different host groups GA and GB satis-365

fying ρdownload ≥ ρth, if GB ∈ superset(GA), then cpr(GA) ≤ cpr(GB).

Proof. Since GA and GB satisfy ρdownload ≥ ρth, the server can obtain the

revenue rtj , no matter GA or GB is chosen. Since GA ⊆ GB ,
∑

i∈GA

ci ≤
∑

i∈GB

ci,

cpr(GA) ≤ cpr(GB).

4.1.2. Host Selection370

The objective is to design an incentive mechanism that selects hosts to min-

imize the server’s payment under the condition that the server can earn the

targeted revenue, i.e. the targeted sharing tasks. In § 3.5, the Payment Min-

imization (PM) problem is formalized as an optimization problem, which can

be reduced to a Weighted Multiple Set Cover (WMSC) problem, proved to be375

NP-hard in [22]. The reduction process is similar to our previous work [23].

Therefore, we put forward Theorem 2 below.
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Theorem 2. The PM problem is an NP hard problem.

Unfortunately, the PM problem fails to be solved by exploiting the well-

known Vickrey-Clarke-Groves (VCG) mechanism that ensures each host reveals380

its cost truthfully. The reason is that VCG requires the selected set of users

with the lowest cost all the time. However, when the scale of the problem

is increased, it is hard to find a solution in polynomial time regarding the PM

problem is NP-hard. Moreover, [20] also proves that a non-optimal user selection

algorithm with the VCG mechanism could not guarantee truthfulness. Hence,385

an alternative non-VCG auction mechanism is desired to ensure the truthfulness

of hosts while minimizing the payment subject to a server’s revenue target.

To solve the PM problem, we propose a host-selection greedy algorithm

summarized in Algorithm 2. The basic idea is to select the most cost-efficient

host group which has the smallest total bid but makes the server obtain the

most revenue, by iterating the selection until the given revenue target has been

reached. To this end, we combine these two criteria into the single metric as

follows: ∑
i∈Skbi∑

tj∈Λk

rtj
. (6)

The metric represents the ”cost per revenue” (cpr), where Λk means the

task(s) that can be completed by selecting the host group Sk. The total bid

of Sk is
∑
i∈Sk

bi, where bi is host i’s bid. It is assumed that selected hosts will

not accept unallocated download requests. Thus, we maintain the set Scurr
of the current selected hosts and the set Tuncom for the remaining unallocated

download tasks. The host set Sk is the candidate group with the minimum

marginal cpr in the k-th iteration, defined as

cpr(Sk) =

∑
i∈Sk\Scurr

bi

∑
tj∈Λk∩Tuncom

rtj
. (7)

In each while-loop, the server selects the host set Sk with the minimum marginal

cpr from G in the k-th iteration.
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Algorithm 2 Host Selection (U , B, V , Rth)

Input: Candidate groups (G), hosts’ bids (B), request task (T ), revenue from

task completion (R) and server’s revenue target (Rth).

Output: Host winners (Swinner) and social cost (C).

1: Initialization: Tuncom = T , Scurr = ∅, iteration round k = 0 and revenue

r = 0

2: while r < Rth do

3: Select the set Sk = arg min cpr(g), where g ∈ G.

4: Scurr = Scurr ∪ Sk, G = G \ Sk
5: r = r +

∑
tj∈Λk∩Tuncom

rtj

6: Tuncom = Tuncom \ Λk

7: k = k + 1

8: Swinner = Scurr
9: C =

∑
i∈Swinner

bi

4.1.3. Payment Determination390

After host winners are selected, combined with the HS algorithm, we develop

the PD algorithm summarized in Algorithm 3 to encourage hosts to bid honestly,

which follows Theorem 2.

In Algorithm 3, the outsider for-loop (Lines 2−11) is to compute the critical

bid for each winner i ∈ S. Each while-loop aims to calculate host i’s maximum395

bid that can still be selected in this iteration. Given the current selected hosts

Scurr and remaining download tasks Tuncom, we first select the set Sk and Sk\{i}

with the minimum cpr from the group set G and G\{i}, respectively (Lines 4

and 6), where G\{i} the set of candidate groups that do not contain i. The

maximum bid in each iteration is the sum of host i’s bid and the cpr difference400

between Sk and Sk\{i}. In the end, the maximum of these bids among the while

loops is set to be critical bid pi, which can promise that host i will be selected

in at least one iteration.
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Algorithm 3 Payment Determination

Input: Host winners (S), candidate groups (G) and hosts’ bids (B)

Output: Critical payments (P)

1: pi = 0 for all hosts i ∈ U , Tuncom = T , Scurr = ∅ and r = 0

2: for all host i ∈ Swinner do

3: while r < Rth do

4: Select the set Sk = arg min cpr(g), where g ∈ G
5: G\{i} = {g′ ∈ G|i /∈ g′}
6: Select the set Sk\{i} = arg min cpr(g\{i}), where g\{i} ∈ G\{i}.
7: Scurr = Scurr ∪ Sk\{i}

8: r = r +
∑

tj∈Λk\{i}∩Tuncom

rtj

9: Tuncom \ Tk\{i}
10: pi = max{cpr(Sk\{i})×

∑
tj∈Λk∩Tuncom

rtj −B(Sk \ Scurr) + bi, pi}

11: k=k+1

12: P.add(pi)

13: Return P
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4.2. Properties of AI Incentive Mechanism

How good is the AI auction mechanism? In the following we will analyze405

the above mechanism according to the four desirable properties as performance

metrics.

4.2.1. Individual Rationality

In Algorithm 2, Line 4 aims to find the subset Sk including host i with the

minimum cpr, while Line 6 tries to find a subset Sk\{i} with the minimum cpr

exclusive of host i. If and only if cpr(Sk) ≤ cpr(Sk\{i}) is true, host i will

be selected in the host selection period. Thus, we can have B(Sk\Scurr)∑
tj∈Λk∩Tuncom

rtj
≤

cpr(Sk\{i}). Based on this inequality, we therefore have the payment pi of host

i:

pi = max{cpr(Sk\{i})×
∑

tj∈Λk∩Tuncom

rtj −B(Sk \ Scurr) + bi, pi} ≥ bi (8)

Hence, GoSharing can guarantee that all hosts’ utility is non-negative.

4.2.2. Truthfulness410

As long as the conditions listed in Theorem 2 are satisfied, it can promise

that GoSharing can make truth-telling a weakly dominant strategy for each

host, such that each host reports its bid honestly. For the first condition, the

monotonicity of the HS algorithm is easy to prove since host i bidding a smaller

value could increase the cpr value of the subset with host i. Thus, host i must415

win in the current or an earlier iteration.

For the second condition, we should prove that pi is the critical value for

host i, i.e. bidding higher pi could prevent host i from winning the auction

otherwise host i must become a winner. Suppose that host i is selected in

the k-th iteration. On the one hand, if bi > pi, i cannot be selected in this

iteration, because there exists another subset without i having smaller cpr value

or r ≥ Rth, i.e. the loop meets the termination condition. On the other hand,

if bi < pi, host i must be selected in the k-th iteration, because cpr value of the

subset with host i is lower than that with critical value pi:

cpr(Sk) = bi +B(Sk\(Scurr ∪ {i}))∑
tj∈Λk∩Tuncom

rtj
<

pi +B(Sk\(Scurr ∪ {i}))∑
tj∈Λk∩Tuncom

rtj
(9)
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4.2.3. Computational Efficiency

First, we analyze the complexity of Algorithm 1. Set η = max |SubUtj |, tj ∈ T ,

and we can get k ≤ η. The time complexity of sorting SubUtj in descending420

order of LQ values is O(η log η). The for-loop is at most η, since k ≤ η. There-

fore, by searching candidate groups for M tasks, the FCG algorithm runs in

O(Mη log η).

Next, given the candidate groups G, the time complexity of finding the group

with minimum cpr in each iteration is |G|. Since there are M download tasks425

and each while-loop will contribute at least one download task, the number of

while-loop is at most M . Hence, the HS algorithm runs in O(M |G|) time.

After the set of host winners Swinner is selected, we compute the running

time of the PD algorithm. In each round of finding the minimum cpr group

(Lines 4 and 6), the process similar to Line 6 of Algorithm 1 is realized. Thus,430

the time complexity of finding Sk with minimum cpr is O(|G|). Moreover,

the number of while-loop is at most M since each while-loop will complete at

least one task. Therefore, the PD algorithm takes O(|Swinner| · |G| ·M), which

dominates the whole auction. It is obtained that the running time of the Go-

Sharing auction mechanism is bounded by O(|Swinner||G|M).435

Realistic scenario: Generally speaking, the capacity of a bus is set as 100.

It is assumed that 50% of commuters are GoSharing users, and the number of

simultaneous launched hosts is less than 25% of total users. Thus, |Swinner| < 50

and M ≤ 12.5. Since at most 10% hosts have stored the same common content,

p ≤ 5. Figure 5 shows when a device has more than four connections, download440

time will rise to quite long. Thus, the time complexity is O(|Swinner||G|M) <

50 · 25 · 12.5 = 2× 104, which is feasible in our real scenario.

Specifically, when the bus is moving between two cell towers with request

calling, the soft hand-off technology is applied. That is a cell phone simultane-

ously connected to two or more cells during a request, such that server switch445

will not influence the normal operation of our GoSharing for content sharing.
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4.2.4. Approximate Ratio Analysis

It is supposed to analyze the approximation ratio achieved by the proposed

algorithm 1.

Theorem 3. The HS algorithm can obtain the approximate solution with a450

factor of F(d), where F (d) =
d∑

p=1
( 1

d∑
j=p

rtj

× rtp), d = max |Λk| denotes the max-

imum size of completed tasks when any candidate group Sk is selected.

Proof. We assume that S is the selected hosts by HS algorithm then

∑

Sk∈S

∑

i∈Sk∩Scurr

bi =
∑

tj∈Λ

cprtj × vtj . (10)

where cprtj is the cpr value when tj is completed, and Λ is a set of completed

tasks.

The key of the analysis is to find out the upper bound of
∑

i∈Sk∩Scurr

bi with the455

corresponding obtained value
∑

tj∈Λk∩Tuncom

cpr(Sk)× rtj , when candidate group

Sk is selected.

Thus, we need to give an upper bound on the ratio
∑

tj∈Λk∩Tuncom

cpr(Sk)× rtj
∑

i∈Sk∩Scurr

bi
.

To simplify the notation, we assume that the set of tasks Λk can be completed

when the candidate group Sk is selected, that is Λk = {t1, . . . , td}, where d =

|Λk|. Furthermore, it is assumed that these tasks are labeled in the order of

cprtj computed by GoSharing, i.e. {cprt1 ≤ cprt2 ≤ . . . ≤ cprtd}. In the p-th

iteration, tp will be labeled completed, and where p ≤ d. Before tp is labeled as

completed, there are at least tp, tp+1, . . . , td tasks that are uncompleted, noting

{tp, tp+1, . . . , td} ⊆ Tuncom, i.e.

∑

tj∈Λk∩Tuncom

rtj ≥
d∑

j=p

rtj .

So we can have: ∑
i∈Sk∩Scurr

bi

∑
tj∈Λk∩Tuncom

rtj
≤

∑
i∈Sk∩Scurr

bi

d∑
j=p

rtj

.
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In this iteration, HS selects a candidate group Sp with the minimum cpr, and

so we have

cprtp =

∑
i∈Sp∩Scurr

bi

∑
tj∈Λp∩Tuncom

rtj
≤

∑
i∈Sk∩Scurr

bi

∑
tj∈Λk∩Tuncom

rtj
≤

∑
i∈Sk∩Scurr

bi

d∑
j=p

rtj

.

Here we add up these inequalities for all tasks ∈ Λk.

∑

tj∈Λk∩Tuncom

cpr(Sk)× rtj =
d∑

p=1

cprtp × rtp ≤

d∑

p=1

∑
i∈Sk∩Scurr

bi

d∑
j=p

vtj

× rtp =
∑

i∈Sk∩Scurr

bi ·
d∑

p=1

(
1

d∑
j=p

rtj

× rtp).

(11)

With the replacement of F (d) =
d∑

p=1
( 1

d∑
j=p

rtj

× rtp), we can obtain the

∑

i∈Sk∩Scurr

bi ≥
1

F (d)

∑

tj∈Λk∩Tuncom

cpr(Sk) · rtj .

Let S∗ denote the optimum selected winners, so that
∑

i∈S∗
bi =

∑

Sk∈S∗

∑

i∈Sk∩Scurr

bi

≥
∑

Sk∈S∗

1

F (d)

∑

tj∈Λk∩Tuncom

cpr(Sk) · rtj

=
1

F (d)

∑

Sk∈S∗

∑

tj∈Λk∩Tuncom

cpr(Sk) · rtj .

(12)

Because in every iteration, HS always selects the candidate group with the

minimum cpr, we have

∑

Sk∈S∗

∑

tj∈Λk∩Tuncom

cpr(Sk) · vtj ≥
∑

tj∈Λ

cprtj · vtj .

Finally, combined with equations (10) and (12), we get the desired bound,
∑

i∈S∗
bi ≥ 1

F (d)

∑

Sk∈S∗

∑

tj∈Λk∩Tuncom

cpr(Sk) · vtj

≥ 1

F (d)

∑

tj∈Λ

cprtj · vtj =
1

F (d)

∑

Sk∈S

∑

i∈Sk∩Scurr

bi

=
1

F (d)

∑

i∈S
bi.

(13)
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5. Performance Evaluation460

To evaluate the performance of the AI incentive mechanism, we exploit the

following metrics through the simulation experiments.

1. Social cost (C): The total cost of selected hosts. In the host selection

period, we aim to choose the hosts to minimize a server’s total payment,

subject to the given server’s revenue target. Note that social cost is the465

minimum payment by a non-truthful mechanism [12].

2. Approximation ratio (R): This is the main metric demonstrating the per-

formance of the HS algorithm. It illustrates how the HS greedy algorithm

approaches the optimal solution (denoted by OPT). R = CM
OPT where CM

is the obtained social cost by using mechanism M.470

3. Overpayment ratio: It is computed as γ = P−C
C , where P denotes the

total payment by applying our truthful mechanism. Hence, the overpay-

ment ratio characterizes the cost that the server overpays to guarantee

truthfulness.

4. Utility of all hosts: We record the utility of all hosts to show the property475

of Individual Rationality (defined in §3.6).

5. Execution time: The total time of auction execution is the time cost to

find hosts plus the time cost of determining the payment to each host

winner.

5.1. Simulation Setup480

It is assumed that 50% of users on the bus or subway have launched the Go-

Sharing application. Let δ denote the average fraction of hosts who can share

the same media content in each auction period. Since only a small portion of

hosts have the same media content, δ is expected to be relatively small and set

to be δ = 0.2 in the following simulations. All simulations ran on a PC with485

2.9GHZ CPU and 4GB memory. Each simulation is repeated 100 times, and

the average values are reported as statistical results.
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5.2. Case Study:

To evaluate the performance of GoSharing in the bus case, the revenue of

each task completion (rtj ) and the sharing cost of each host (ci) are uniformly490

distributed over [5, 10] and [1, 5], respectively. If the capacity of one bus is 100,

the maximum number of hosts is 50. When the bus is in normal status, N

follows the uniform distribution over [20,30]. When the number of passengers

is over 50, it is considered as a crowded state. Therefore, it is set N distributed

among [40, 50] uniformly when the bus is crowded. LQs of hosts to request495

users are followed by Poisson distribution with λ = 2.

5.2.1. Evaluation of Approximation Ratio

We first evaluate the performance of the HS algorithm of AI incentive mech-

anism. Since the HS problem is NP-hard, it is time consuming to obtain the

optimal solution with the general approach, i.e. brute force search. Hence, the500

approximate ratio of GoSharing is only evaluated in settings with a small scale,

i.e. the bus is in normal status. Specifically, the total number of hosts N is less

than 25, while the number of tasks M increases from 6 to 12 with a step of 2.

Moreover, we set δ = 0.2 to define the average fraction of hosts who can involve

the same media sharing, and the target revenue Rth is set as the total revenue505

of all task completion minus 5.

Figure 9(a) shows the approximate ratios of AI mechanism in various set-

tings. The numbers located over bars inside black boxes mean its upper bound,

calculated by F (d) function, while the numbers without black boxes represent

the practical approximate ratio. It is clear that the social costs of the Go-510

Sharing method are very close to its corresponding optimal solutions. With the

expanded scale of hosts, the social cost has a declining trend. The reason is

that the augment of hosts resource can make the server have better choices.

With the augment of M , the social cost increases dramatically, shown in 9(b).

This is because the server needs to recruit more hosts to share more media files.515

From Figure 9(b), it is also observed that the upper bound of AI mechanism

approximate ratio increases along with the expanded size of download tasks.
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Figure 9: Approximate ratio under various conditions. (a) and (b) The impact of N and M

on approximate ratio; (c) Approximate ratio when the bus is crowded .

This is due to the fact that the candidate group can complete more tasks, d is

therefore increased.

When the bus is crowded, the upper bound of approximate ratio for AI520

mechanism is calculated by the function f(d), as plotted in Figure 9(c). The

social cost tends to keep stable when the number of download tasks is over 20,

the same with the upper bound of approximate ratio of AI mechanism. The

reason is that there are not enough hosts to complete the given tasks when the

number reaches 20.525
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Figure 10: The impact of N and M on overpayment ratio and social cost

5.2.2. Evaluation of Overpayment Ratio

We investigate the impact of the number of hosts (N) on the overpayment

ratio. N is varied from 20 to 50 with the increment of 10, and M from 5 to

15 with the step of 5. As shown in Figure 10(a), the overpayment ratio of the

AI auction keeps below 0.5 under different M and N , indicating the AI auction530

with low overpayment cost for the truthful property. With the increase of N ,

the overpayment ratio is descending. The reason is that the difference of the

cost of the candidate groups with the minimum cost and second minimum cost

is suppressed with the expanding number of candidate groups. In addition, with

the increase of M , the overpayment ratio rises accordingly. That is because the535

number of host winners increases for sharing more media files.

Figure 10(b) shows that the social cost decreases with the rising number of

hosts but increases along with the increasing number of tasks. Also, the social

cost is not significantly impacted by the host numbers when M is in small scale.

5.2.3. Evaluation of Individual Rationality540

In order to show all users have non-negative utility, we depict the empirical

CDF (Cumulative Distribution Function) of the utility for all hosts under vari-

ous settings. From Figure 11(a), it is observed that the proportion of hosts with

negative utility is zero. The utility with zero is corresponding to the proportion
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Figure 11: Individual rationality and computational efficiency of GoSharing mechanism

of unselected hosts in y-axis in Figure 11(a). All hosts have non-negative utility,545

and the AI auction mechanism achieves the property of individual rationality

(see §3.6).

5.2.4. Evaluation of Computational Efficiency

Figure 11(b) demonstrates the computational efficiency of the AI mechanism

with different settings, and shows the execution time of all cases is under 10550

seconds. The study in [24] shows that users will keep their patience when

the response time in man-computer conversational transactions is less than 10

seconds. Therefore, the AI auction mechanism has high computational efficiency

in the bus scenario.

6. Related work555

The contribution of our work lies in the intersection of two important cutting-

edge research topics. (1) Cooperative mobile opportunistic systems; (2) Incen-

tive mechanisms. Combining the above cases, a fundamentally new incentive

mechanism is proposed to solve the cooperative allocation of multiple tasks in

this paper.560
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6.1. Cooperative Mobile Opportunistic Systems

Mobile users usually have temporal and spatial correlations, which can be

exploited for task allocation to improve communication quality. Taking the ge-

ographical proximity into account, [12] presents a collaborative sensing system

for mobile crowdsourcing. Based on the virtual opportunistic community as-565

sociated with an event, [25] presents several event detection methods toward

real-time and cooperative mobile visual sensing and sharing. In order to handle

the contradiction between dynamic user traffic and fixed data plans, [26] builds a

collaborative sharing system of data plans to make users help neighbors for data

download. Authors of [6] consider a scenario in which a group of smartphone570

users in proximity are interested in the same video and propose a MicroCast

system to use the resource on groups of smartphones in a cooperative way for

a better streaming experience. Under the assumption of packets being spatial-

temporal correlated, [27] presents a cooperative sensing and data forwarding

framework to tradeoff delivery delay and transmission overhead. Although the575

above applications make use of the spatial information for data offloading or me-

dia sharing, they are not suitable for the scenario of transient get-together, such

as urban transport for its special requirements. While some works have shared

similar scenarios as this paper [5, 1], none of them consider the cooperative

approach to improve the download quality of media content.580

Furthermore, there are many cooperation strategies among mobile devices

for content dissemination or resource sharing in delay tolerant and opportunistic

networks, based on social ties [28, 7]. However, they use the single-host delivery

model, which can not solve the download problem of poor quality. More impor-

tantly, we exploit a multi-host model, as opposed to the single-host model, to585

improve the reliability of the GoSharing system.

6.2. Incentive Mechanisms

[9] presents incentive mechanisms for both platform-centric and user-centric

models. However, on the one hand, in its platform-centric model, it assumes that

users and the platform have knowledge of users’ costs, which is neither practical590
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in most mobile sensing systems nor feasible for the cooperative wireless system.

On the other hand, in its user-centric model, it designs an auction mechanism

for tasks without taking users’ cooperation into consideration. Authors of [29,

30] design feasible recruitment models for piggyback crowdsensing under the

constraints of coverage quality. Introducing a novel metric, users’ quality of595

information (QoI) into mobile crowdsensing systems, both the single-minded

and multi-minded combinatorial auction models are proposed to incentivize user

participation [31]. Some research pays attention to the incentive mechanisms

based on social networks or social cloud systems [8, 32], which fails to be applied

directly for our cooperative content sharing system. The authors of [10] consider600

the cooperative task individually, thus it can not be directly extended to the

cooperative system with multiple correlated tasks.

In addition, [33] and [34] study the online incentive mechanisms for multiple

opportunistic users and the real-time requirement, which can not handle the

uncertainty of public transport environments. [35] presents a bargaining game605

theoretic method for virtual resource allocation in cellular networks, which ig-

nores the mobile edge networks.

To the best of our knowledge, this is the first paper to undertake compre-

hensive research on the truthful incentive mechanism for cooperative systems

to share content in mobile edge networks. In this paper, we propose a novel610

GoSharing framework which uses the stored resources on mobile devices within

proximity to share popular content cooperatively. Furthermore, a corresponding

AI auction mechanism is proposed for motivating media hosts to share their re-

sources based on QoS requirements, while minimizing the payment of the server

as well as keeping users giving their truthful bids.615

7. Conclusion

The edge storage of mobile devices and costly charge of cellular network leads

to the necessity of content exchange among neighboring commuters. Moreover,

the short-range wireless network interface provides the technical support. In this
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paper, we propose GoSharing to encourage a group of hosts within proximity620

to share content cooperatively. Our GoSharing is objective to find the effective

solution which can minimize incentive cost, subject to the target revenues.

To this end, we first develop a network QoS model based on real measure-

ments to solve the tradeoff between download time and download ratio. To

handle the tradeoff and exploit users’ association, a smart data filter method,625

namely a Fast Candidate Generation algorithm is presented. After the candi-

date groups filtered, a new Host Selection algorithm, which is to find a set of

candidate groups with minimum social cost to share content. Furthermore, a

novel Payment Determination algorithm is developed to guarantee the truth-

fulness of each host. Eventually, both theoretical analysis and extensive simu-630

lations demonstrate that the GoSharing incentive framework achieves not only

truthfulness, individual rationality, high computational efficiency in real scenar-

ios and low overpayment ratio, but also high download delivery and acceptable

download time.

An interesting further extension of this work is to consider both the strategies635

of hosts and request users, such that we can obtain a better match for content

sharing. The online scenario and the impact of users’ mobility will be deeply

analyzed for the future.
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In this paper, we propose GoSharing, an intelligent incentive framework which 
motivates resource owners to share their stored videos cooperatively in mobile edge 
networks. GoSharing is able to achieve the goals of encouraging commuters to share 
their content cooperatively with the minimum incentive cost based on users' 
association and guaranteeing the Quality of Service (QoS) of the task sharing. 
The highlights of this work are summarized as follows: 
1) In order to improve the reliability of content sharing in mobile edge networks, we 
present a multi-host communication model to allow multiple resource owners to share 
their content collaboratively. 
2) We measure the factors that impact the quality of data delivery from hosts to the 
request users on public transport. 
Based on the experimental results, we formalize a network QoS model to describe the 
tradeoff between reliability and download time. 
3) To motivate hosts to share their content collaboratively, we design an intelligent 
incentive framework, GoSharing, composed of candidate generation, host selection 
and payment determination, which has four desirable properties: a) truthfulness, b) 
individual rationality, c) computational efficiency, d) low overpayment ratio, as well 
as high download ratio. 
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