

Accepted Manuscript

GMiner: A Fast GPU-based Frequent Itemset Mining Method for
Large-scale Data

Kang-Wook Chon, Sang-Hyun Hwang, Min-Soo Kim

PII: S0020-0255(18)30069-0
DOI: 10.1016/j.ins.2018.01.046
Reference: INS 13400

To appear in: Information Sciences

Received date: 19 March 2017
Revised date: 16 January 2018
Accepted date: 25 January 2018

Please cite this article as: Kang-Wook Chon, Sang-Hyun Hwang, Min-Soo Kim, GMiner: A Fast GPU-
based Frequent Itemset Mining Method for Large-scale Data, Information Sciences (2018), doi:
10.1016/j.ins.2018.01.046

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ins.2018.01.046
https://doi.org/10.1016/j.ins.2018.01.046

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

GMiner: A Fast GPU-based Frequent Itemset Mining
Method for Large-scale Data

Kang-Wook Chona, Sang-Hyun Hwanga, Min-Soo Kim∗,a

aDGIST (Daegu Gyeongbuk Institute of Science and Technology), Daegu, Republic of Korea

Abstract

Frequent itemset mining is widely used as a fundamental data mining technique. How-

ever, as the data size increases, the relatively slow performances of the existing methods

hinder its applicability. Although many sequential frequent itemset mining methods

have been proposed, there is a clear limit to the performance that can be achieved using

a single thread. To overcome this limitation, various parallel methods using multi-

core CPU, multiple machine, or many-core graphic processing unit (GPU) approaches

have been proposed. However, these methods still have drawbacks, including rela-

tively slow performance, data size limitations, and poor scalability due to workload

skewness. In this paper, we propose a fast GPU-based frequent itemset mining method

called GMiner for large-scale data. GMiner achieves very fast performance by fully

exploiting the computational power of GPUs and is suitable for large-scale data. The

method performs mining tasks in a counterintuitive way: it mines the patterns from the

first level of the enumeration tree rather than storing and utilizing the patterns at the

intermediate levels of the tree. This approach is quite effective in terms of both perfor-

mance and memory use in the GPU architecture. In addition, GMiner solves the work-

load skewness problem from which the existing parallel methods suffer; as a result,

its performance increases almost linearly as the number of GPUs increases. Through

extensive experiments, we demonstrate that GMiner significantly outperforms other

representative sequential and parallel methods in most cases, by orders of magnitude

IFully documented templates are available in the elsarticle package on CTAN.
∗Corresponding author

Email addresses: kw.chon@dgist.ac.kr (Kang-Wook Chon), sanghyun@dgist.ac.kr
(Sang-Hyun Hwang), mskim@dgist.ac.kr (Min-Soo Kim∗,)

Preprint submitted to Information Sciences January 29, 2018

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

on the tested benchmarks.

Key words: frequent itemset mining, graphics processing unit, parallel algorithm,

workload skewness

1. Introduction

As a fundamental data mining technique, frequent itemset mining is widely used in

a wide range of disciplines such as market basket analysis, web usage mining, social

network analysis, intrusion detection, bioinformatics, and recommendation systems.

However, the deluge of data generated by automated systems for diagnostic or analysis

purposes makes it difficult or even impossible to apply mining techniques in many real-

world applications. The existing methods often fail to find frequent itemsets in such

big data within a reasonable amount of time. Thus, in terms of computational time,

itemset mining is still a challenging problem that has not yet been completely solved.

Many sequential frequent itemset mining methods such as Apriori [2], Eclat [35],

FP-Growth [14], and LCM [30] use a single CPU thread. However, these single-

threaded applications all have a fundamental mining performance limit because CPU

clock speed is generally no longer increasing. To overcome the single-thread perfor-

mance limit, multiple parallel frequent itemset mining methods have been proposed.

These methods can be categorized into three main groups: (1) (CPU-based) multi-

threaded methods, (2) distributed methods, and (3) graphic processing unit (GPU)-

based methods. We omit the term ”multi-thread” from the GPU-based methods be-

cause they are obviously multi-threaded. The first group focuses on accelerating the

performance of the single-threaded methods by exploiting multi-core CPUs [20, 24,

26, 27, 29], while the second group tries to accelerate the performance by exploiting

multiple machines [12, 17, 19]. Details about these methods are available in recent

survey studies [9, 31].

The third group, namely, the GPU-based methods, focuses on accelerating the per-

formance by exploiting many-core GPUs [7, 15, 18, 28, 37–39]. Due to the higher

theoretical computing performance of GPUs for certain types of tasks compared with

CPUs, it has become increasingly important to exploit the capabilities of GPUs in a

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

wide range of problems, including frequent pattern mining. However, existing GPU-

based methods all suffer from data size limitations due to limited GPU memory. GPU

memory tends to be much smaller than main memory. Most of the methods can only

find frequent patterns in data loaded into GPU memory, which includes the input trans-

action data and intermediate data generated at the intermediate levels of the pattern

space. To the best of our knowledge, Frontier Expansion [38] is the only method in this

group that can handle larger input transaction data than GPU memory while simulta-

neously exploiting multiple GPUs. However, it still cannot address the same data sizes

as CPU-based methods, because it cannot store sufficiently large amounts of data at

intermediate levels of the pattern space in GPU memory.

Most existing parallel methods of the above three groups also suffer from the prob-

lem of workload skewness. Workload skewness is extremely common and significantly

affects parallel computing performance. The existing parallel methods usually divide

the search space of the patterns to be explored into multiple chunks (e.g., equivalence

classes) and assign each chunk to a processor (or machine). Each subtree of the enu-

meration tree tends to have a different workload size. As a result, these methods are not

particularly scalable in terms of the number of CPUs, machines, or GPUs. That is, their

performance does not increase proportionally as the number of processors increases.

In this paper, we propose a fast GPU-based frequent itemset mining method called

GMiner for large-scale data. Our GMiner method achieves high speed by fully ex-

ploiting the computational power of GPUs. It can also address the same data sizes as

CPU-based methods-that is, it solves the main drawback of the existing GPU-based

methods. GMiner achieves this by mining the patterns from the first level of the enu-

meration tree rather than storing and utilizing the patterns at intermediate levels of

the tree. This strategy might look simple, but it is quite effective in terms of perfor-

mance and memory usage for GPU-based methods. We call this strategy the Traversal

from the First Level (TFL) strategy. The TFL strategy does not store any projected

database or frequent itemsets from the intermediate levels of the enumeration tree in

GPU memory; instead, it finds all the frequent itemsets using only the frequent item-

sets from the first level, denoted as F1. This strategy reduces the amount of GPU

memory used and simultaneously and paradoxically improves the performance. This

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

result seems somewhat counterintuitive but makes sense in a GPU architecture, where

the gap between processor speed and memory speed is quite large. In most cases, min-

ing the frequent n-itemsets by performing a large amount of computation based on a

small F1 set is faster than mining the same result by performing a smaller amount of

computation based on a large set of frequent (n-1)-itemsets under the GPU architec-

ture. Using the TFL strategy, GMiner improves the performances of the representative

parallel methods, including multi-threaded, distributed, and GPU-based methods, by

orders of magnitude. In addition to the TFL strategy, we also propose a strategy called

Hopping from the Intermediate Level (HIL), to further improve the performance on

datasets that contain long patterns. Intuitively, the HIL strategy reduces the required

computation by utilizing more GPU memory, thereby improving the performance for

long patterns. In addition to fast mining with efficient memory usage, GMiner solves

the workload skewness problem of the existing parallel methods. As a result, GMiner’s

performance increases almost linearly as the number of GPUs increases. To solve the

workload skewness problem, we propose the concepts of a transaction block and a

relative memory address. The former is a fixed-size chunk of bitwise representations

for transactions, while the latter is an array representation for candidate itemsets. For

parallel processing, GMiner does not divide the search space of the enumeration tree

into sub-trees; instead, it divides an array of relative memory addresses into multiple

subarrays, all of which have the same size. Then, GMiner stores a subarray in each

GPU and performs mining by streaming transaction blocks to all the GPUs so that each

GPU is assigned almost the same workload. The main contributions of this paper are

as follows:

• We propose a new, fast GPU-based frequent itemset mining method named GMiner

that fully exploits the GPU architecture by performing a large amount of com-

putation on a small amount of data (i.e., frequent 1-itemsets).

• We propose a strategy called HIL that can further improve the performance on

datasets that contain long patterns by performing a moderate amount of compu-

tation based on a moderate amount of data.

• We propose a method to solve the workload skewness problem by splitting an

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

array of relative memory addresses for candidate itemsets among GPUs and

streaming transaction blocks to all GPUs.

• Through experiments, we demonstrate that GMiner significantly outperforms

most of the state-of-the-art methods that have been addressed in recent studies [4,

9, 25, 31, 33] on two kinds of benchmarks.

The source code for GMiner is available at https://infolab.dgist.ac.kr/GMiner.

The remainder of this paper is organized as follows. Section 2 discusses the related

work. We propose the TFL strategy in Section 3, and in Section 4, we propose the

HIL strategy. In Section 5 we present a method that exploits multiple GPUs and the

cost model of GMiner. Section 6 presents the results of experimental evaluations, and

Section 7 summarizes and concludes this paper.

2. Related Work

The frequent itemset mining problem is usually defined as the problem of deter-

mining all itemsets F that occur as a subset of at least a pre-defined fraction minsup

of the transactions in a given transaction database D = {t1, t2, ..., tn}, where each

transaction ti is a subset of items from I [1, 13]. In this paper, we mainly use the num-

ber of occurrences, instead of a fraction, as the support of an itemset. Many sequential

and parallel frequent itemset mining methods have been proposed. We categorize the

parallel methods into three groups: (1) (CPU-based) multi-threaded methods, (2) dis-

tributed methods, and (3) GPU-based methods. Their characteristics and representative

methods are summarized in Table 1 and are explained in detail in Sections 2.1-2.4.

2.1. Sequential Methods

Many sequential methods have been proposed for frequent pattern mining. The rep-

resentative methods include Apriori [2], Eclat [35], LCM [30], and FP-Growth [14].

Apriori is based on the anti-monotone property: if a k-itemset is not frequent, then

its supersets can never become frequent. Apriori repeatedly generates candidate (k+1)-

itemsetsCk+1 from the frequent k-itemsets Fk (where k≥ 1) and computes the support

of Ck+1 over the database D for testing. Borgelt [6] is a well-known implementation

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Categorization of the existing frequent itemset mining methods.

sequential

(CPU)

parallel

CPU
GPU

multi-threaded distributed

relative computational power low medium high high

difficulty of workload balancing N/A medium high high

network communication overhead X X O X

processor memory limit X X X O

representative methods

(used in experimental study)

Apriori (Borgelt) [6],

Eclat (Borgelt) [6],

Eclat (Goethals) [10],

LCM [30],

FP-Growth* [11]

FP-Aray [20],

ShaFEM [32],

MC-Eclat [26]

MLlib [3]

TBI [7],

GPApriori [37],

Frontier Expansion [38]

of Apriori that exploits a prefix tree to represent the transaction database and finds fre-

quent itemsets directly with the prefix tree to calculate support efficiently. Eclat [35]

uses the equivalence class concept to partition the search space into multiple indepen-

dent subspaces (i.e., subproblems). Its vertical data format makes it possible to perform

support counting efficiently by set intersection. Goethals et al. [10] and Borgelt [6] are

well-known implementations of Eclat that optimize it using the diffset [34] representa-

tion for candidate itemsets and transactions. The superiority of both methods to other

vertical methods has been demonstrated on the Frequent Itemset Mining Implemen-

tations (FIMI) competitions (i.e., FIMI03 and FIMI04) [8]. LCM is a variation of

Eclat that combines various techniques such as a bitmapped database, prefix tree, and

the occurrence deliver technique. As a result, LCM achieved the overall best perfor-

mance among sequential methods in the FIMI04 competition. FP-Growth [14] builds

an FP-Tree from the database and recursively finds frequent itemsets by traversing the

FP-Tree without explicit candidate generation. It outperforms the Apriori-based meth-

ods in many cases. FP-Growth* is a well-known implementation of FP-Growth that

reduces the number of tree traversals by exploiting additional array data structures.

FP-Growth*’s superiority was demonstrated in the FIMI03 competition.

2.2. Multi-threaded Methods

Many efforts have been made to parallelize sequential methods using multiple

threads to improve the performance [20, 26, 32]. FP-Array [20], based on FP-Growth,

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

utilizes a cache-conscious FP-Array built from a compact FP-Tree and a lock-free tree

construction algorithm. In an experimental study, FP-Array improved the performance

by up to six times on eight CPU cores. MC-Eclat [26] is a parallel method based

on Eclat. MC-Eclat utilizes three parallel mining approaches, namely, independent,

shared, and hybrid mining, and it greatly improves the performance on relatively small

datasets. ShaFEM [32] is a parallel method that dynamically chooses mining strategies

based on dataset density. In detail, it switches between FP-Growth and Eclat based on

dataset characteristics. In many cases, multi-threaded methods greatly improve the per-

formance compared to sequential methods. However, they fail in pattern mining due to

out-of-memory failures on some datasets that sequential methods handle successfully

and tend to require more memory than the sequential methods due to the large amounts

of memory used by the independent threads.

2.3. Distributed Methods

In theory, distributed methods that exploit many machines can address large-scale

data. Several distributed methods [3, 19, 22] have been proposed, all of which are based

on a shared-nothing framework such as Hadoop or Spark. Lin et al. [19] proposed par-

allel methods based on Hadoop for the Apriori approach. Moens et al. [22] proposed

Dist-Eclat and BigFIM. Dist-Eclat is based on the Eclat approach and BigFIM is a

hybrid approach between Apriori and Eclat. MLlib of Spark [3] includes a parallel

version of FP-growth called PFP. PFP is an in-memory distributed method that runs on

a cluster of machines. It builds independent FP-Trees and then performs frequent item-

set mining independently on each FP-Tree in each machine. Although the distributed

methods should be able to handle larger data, or greatly improve the performance by

adding more machines, they do not show such results in many cases due to workload

skewness. According to the experimental results (which will be presented in Section

6), distributed methods can result in even worse performance than do multi-threaded

methods that use a single machine due to the large amount of network communication

overhead.

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2.4. GPU-based Methods

Modern GPUs have many computing cores that allow multiple simultaneous ex-

ecutions of a kernel, which is a user-defined function. In addition, using GPUs in a

single machine does not involve network communication overhead. GPUs have rad-

ically different characteristics than CPUs, including the Single Instruction, Multiple

Threads (SIMT) model and the importance of coalesced memory access. These dif-

ferences make it difficult to apply most parallel methods using complex data structures

(e.g., FP-Array) to GPUs directly and efficiently. Thus, most GPU-based methods have

been proposed based on Apriori [7, 15, 18, 28, 31, 37].

Fang et al. [7] presented two GPU-based methods: Pure Bitmap Implementation

(PBI) and Trie-Based Implementation (TBI). These methods represent a transaction

database as a n x m binary matrix, where n is the number of itemsets and m is the

number of transactions, thereby making it suitable for the GPU architecture. These

methods perform intersection operations on rows of the binary matrix using a GPU to

count support. PBI and TBI outperform the existing sequential Apriori methods, such

as the Apriori implementation written by Borgelt [6], by factors of 2-10. However,

according to Fang et al. [7], these methods are outperformed by the existing parallel

FP-Growth methods by factors of 4-16 on the PARSEC benchmark [5]. TBI is superior

to PBI in terms of the number of candidate itemsets that can be handled simultaneously;

therefore, we compare TBI with our method in Section 6.

Zhang et al. [37] presented GPApriori, which generates a so-called static bitmap

that represents all the distinct 1-itemsets and their tidsets. Similar to other GPU-based

Apriori methods, GPApriori uses a GPU only to parallelize the support counting step.

The candidate generation step is performed using CPUs. GPApriori adopts multiple

optimizations, such as pre-loading candidate itemsets into the shared GPU memory and

using hand-tuned GPU block sizes. Consequently, it shows a speed-up of up to 80 times

on a small dataset that can fit into GPU memory compared with some sequential Apriori

methods (e.g., that of Borgelt [6]). However, according to Zhang et al. [37], GPApriori

could not outperform state-of-the-art sequential methods such as FP-Growth* [11],

Eclat [6], and LCM [30].

In [28], the authors proposed a parallel version of the Dynamic Counting Itemset al-

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

gorithm (DCI) [23], a variation of Apriori in which two major DCI operations, namely,

intersection and computation, are parallelized using a GPU. They proposed two strate-

gies: a transaction-wise approach (called tw) and a candidate-wise approach (called

cw). The tw strategy uses all GPU cores for the same candidate simultaneously, and

each thread oversees a part of the data, while the cw strategy handles many candidate

itemsets simultaneously. We omit these methods in Table 1 and in our experiments,

because the tw strategy is almost the same as TBI, and the cw strategy works for only

very-small datasets [28].

The above three Apriori-based methods, which use GPUs, have a common serious

drawback: they cannot handle datasets larger than GPU memory. Therefore, using

them for real large-scale datasets is difficult because GPU memory is quite limited (e.g.,

to a few GB). In addition, the above methods did not outperform the representative

sequential methods (e.g., LCM) as well as the representative multi-threaded methods

(e.g., FP-Array) [7, 28, 37].

According to the recent survey papers on frequent itemset mining [9, 31], Fron-

tier Expansion [38] is the only GPU-based method that can handle datasets larger than

GPU memory. Frontier Expansion is based on Eclat rather than Apriori, and it utilizes

multiple GPUs. The authors showed that it outperforms the sequential Eclat and FP-

Growth methods [38], which were previously known to be the fastest methods in their

categories. However, it fails to outperform some state-of-the-art multi-threaded meth-

ods such as FP-Array (as shown by our experimental results in Section 6). We found

that Frontier Expansion’s failure is due to three major drawbacks: (1) it stores a large

amount of intermediate-level data in GPU memory (wasting GPU clock cycles); (2) it

has a large data transfer overhead between main memory and GPU memory; and (3)

it is not scalable in terms of the number of GPUs. We will explain how the proposed

GMiner method solves these drawbacks in Sections 3-5.

3. TFL Strategy

For fast frequent itemset mining, even for large-scale data, GMiner uses the Traver-

sal from the First Level (TFL) strategy of mining the patterns from the first level, i.e.,

F1, of the enumeration tree. The TFL strategy does not store any projected database or

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

frequent itemsets from the intermediate levels of the enumeration tree in GPU mem-

ory; instead, it finds the entire frequent itemsets using only F1. This approach sig-

nificantly reduces GPU memory usage; thus, it can address large-scale data without

encountering out-of-memory problems. In addition, to eliminate the data transfer over-

head between main memory and GPU memory, GMiner performs pattern mining while

streaming transaction databases from main memory to GPU memory. Here, GMiner

splits the transaction database into blocks and streams them to GPUs. This block-based

streaming approach allows us to solve the workload skewness problem, as explained

in Section 5. Sections 3.1 and 3.2 explain the transaction blocks and the block-based

streaming approach, respectively. Section 3.3 presents the algorithm that implements

the TFL strategy.

3.1. Transaction Blocks

It is important that the data structures are simple and use a regular memory access

pattern to fully exploit the computational power of GPUs in terms of workload balance

among thousands of GPU cores and coalesced memory access. In general, compared

with CPUs, the arithmetic and logic units (ALUs) and memory scheme of GPUs are

not efficient for handling complex or variable-sized data structures, including sets, lists,

maps, and their combinations. Furthermore, GPUs have only limited memory, which is

a major obstacle for frequent itemset mining on large-scale and/or dense datasets using

GPUs.

For computational efficiency, GMiner adopts a vertical bitmap layout for data rep-

resentation. The horizontal layout and vertical tidset layout are too complex and ir-

regular to maximize GPU computational efficiency. Frequent itemset mining using

the vertical bitmap layout relies heavily on bitwise AND operations among large-scale

bitmaps, where GPUs have an overwhelming advantage over CPUs.

Moreover, the vertical bitmap layout allows us to easily partition the input database

vertically into subdatabases, each of which can fit in main memory or GPU memory.

Hereafter, we denote an input database D in the vertical bitmap layout as a transaction

bitmap. We define the vertical partitioning of a transaction bitmap in Definition 1.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Definition 1. (Transaction bitmap partition) We vertically divide the transaction bitmap

TB into R non-overlapping partitions of the same width and denote them by TB1:R,

where TBk denotes the k-th transaction bitmap partition (1 ≤ k ≤ R).

As in other frequent itemset mining methods, GMiner begins by mining the fre-

quent 1-itemsets |F1|; therefore, the size of TB is |F1| x |D| in bits, where |D| is the

total number of transactions. When we denote the width of a single partition of the

transaction bitmap asW , the size of TBk becomes |F1| xW . If the number of transac-

tions of the last partition TBR is less than W , GMiner pads the partition with 0 values

to guarantee the width of W .

The parameter W should be set to a sufficiently small value to fit each TBk into

GPU memory. For instance, we typically set W to 262,144 transactions in our experi-

mental evaluation, which equals to 262,144/8=32 KB for each 1-itemset. We consider

each TBk of size |F1| x W as a transaction block. The transaction blocks are allocated

consecutively in main memory (or stored as chunks in secondary storage similar to a

disk page).

A frequent 1-itemset x (x ∈ F1) has a bit vector of length |D| in TB, which

is subdivided into R bit vectors of length W . We denote a bit vector of x within

TBk as TBk(x). As mentioned above, TB contains only the bit vectors for fre-

quent 1-itemsets. Thus, if x is a frequent n-itemset, x has n bit vectors in TBk, i.e.,

{TBk(i)|i ∈ x}. We define a set of physical pointers to the bit vectors for a frequent

itemset x in the transaction bitmap in Definition 2.

Definition 2. (Relative memory address) We define a relative memory address of an

item i, denoted as RA(i), as the distance in bytes from the starting memory address of

TBk to that of TBk(i), for a transaction block TBk. Then, we define a set of relative

memory addresses of a frequent itemset x, denoted as RA(x), as {RA(i)|i ∈ x}.

This concept facilitates the fast access to a memory location of an itemset (or mem-

ory locations of itemsets) within a single transaction block in main memory or GPU

memory. RA(x) is used as an identifier for an itemset x in GMiner. We denote the

number of items in x as |x| and the number of distinct memory addresses of RA(x)

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as |RA(x)|. Then, |x| = |RA(x)|, because each item i ∈ x has its own unique mem-

ory address in TBk. We note that RA(x) for a frequent itemset x does not change

across all TBk (1 ≤ k ≤ R); that is, it always has the same relative memory addresses

because the size of TBk is fixed.

3.2. Nested-Loop Streaming

GMiner finds frequent itemsets using the candidate generation and testing approach

with breadth-first search (BFS), as in Apriori, which repeats two major steps, namely,

candidate generation and testing (support counting), at each level of an itemset lattice.

Generally, the testing step is more computationally intensive than the candidate gener-

ation step. Thus, GMiner focuses on accelerating the testing step by exploiting GPUs.

The candidate generation step is performed using CPUs.

GMiner uses BFS traversal rather than DFS traversal (e.g., equivalence classes) to

fully exploit the massive parallelism of GPUs and achieve better workload balance.

When using BFS traversal, the number of frequent itemsets at a certain level could

become too large to be stored in the limited GPU memory and used for support counting

of the candidate itemsets of the next level. The increase in the number of transactions

makes the problem more difficult. Therefore, existing GPU-based methods for mining

large-scale datasets (such as Frontier Expansion [38]) use a DFS approach that tests

only the frequent and candidate itemsets of an equivalence class within GPU memory.

However, the use of this DFS approach on GPUs could degrade the performance of

itemset mining due to lack of parallelism and workload skewness, which will be shown

in Section 6.

Our proposed TFL strategy solves the issue of mining frequent itemsets in large-

scale datasets without degrading the performance within limited GPU memory. We

call an entire set of frequent 1-itemsets the first level in the itemset lattice and call

other levels in the itemset lattice intermediate levels. Most of the existing frequent

itemset mining methods materialize frequent itemsets in intermediate levels to reduce

computational overhead, but this approach greatly increases the space overhead. For

example, AprioriTid materializes n-itemsets when finding n + 1-itemsets, and Eclat

materializes the itemsets that have the same prefix. However, this approach can suffer

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

from a lack of main memory due to the large amount of intermediate data. Moreover,

this tendency is more marked when exploiting GPUs, because GPU memory is limited

compared to main memory. The proposed TFL strategy tests all the candidate itemsets

of intermediate levels using only the first level, i.e., F1. This feature is based on the

observation that GPUs have high computational power, especially for massive bitwise

operations, but relatively small device memory. Our observation indicates that, in the

GPU architecture, testing the candidate n + 1-itemsets using frequent 1-itemsets tends

to be much faster than testing the candidate n + 1-itemsets using frequent n-itemsets

(i.e., Fn). This speed difference occurs because copying Fn to GPU memory incurs

a much larger data transfer overhead than does copying only F1, and simultaneously,

accessing Fn in GPU memory incurs more non-coalesced memory access than does

accessing F1.

For mining large-scale databases, we also propose a new itemset mining technique

on GPUs called nested-loop streaming. Here, a single series of candidate generation

and testing steps constitutes an iteration. GMiner performs nested-loop streaming

at each iteration. This technique copies the candidate itemsets to GPUs as the outer

operand. Specifically, it copies only the relative memory addresses of the itemsets to

the GPUs rather than the itemsets themselves. We denote the candidate itemsets at

level L as CL. The proposed technique copies RA(CL) = {RA(x)|x ∈ CL} to the

GPUs (hereafter, when there is no ambiguity, we simply denote RA(CL) as RA). The

technique also copies transaction blocks of the first level (i.e., TB1:R) to GPUs as the

inner operand. We note that the outer operand, RA, or the inner operand, TB1:R, or

both, might not fit in GPU memory. Thus, the proposed technique partitions the outer

operand RA into RA1:Q and copies each RAj to the GPUs individually (1 ≤ j ≤ Q).

Then, for each RAj , it streams each piece of the inner operand, i.e., transaction block,

TBk to the GPUs (1 ≤ k ≤ R). In most intermediate levels, the outer operand, RA,

is much smaller than the inner operand, TB. In particular, when the entire RA can

be kept in GPU memory (i.e., Q = 1), streaming TBk to the GPUs becomes a major

operation of this technique.

For each pair 〈RAj , TBk〉, GMiner calculates the partial supports of x ∈ RAj

within TBk. We denote the partial supports for 〈RAj , TBk〉 as PSj,k. We formally

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

define the partial support of itemset x in Definition 3.

Definition 3. (Partial support) We define σx(TBk) as the partial support of an itemset

x within a given transaction block TBk. The full support of x on the entire transaction

bitmap TB1:R becomes σ(x) =
∑R

k=1 σx(TBk).

To calculate the partial support σx(TBk) for an itemset x = {i1, . . . , in}, GMiner

simply performs bitwise AND operation n− 1 times among bit vectors of {TBk(i)|i ∈
x} and counts the number of 1s in the resultant bit vector. GMiner can efficiently

access to the locations of the bit vectors TBk(x) because RA(x) contains the relative

memory addresses of x in TBk in GPU memory. We denote the function to apply

a series of n − 1 bitwise AND operations for the itemset x as
⋂{TBk(x)}. We also

denote the function that counts the number of 1s in a given bit vector by count(·).
Then, σx(TBk) = count(

⋂{TBk(x)}).
Figure 1 shows the basic data flow of GMiner with the nested-loop streaming tech-

nique. In Figure 1, the outer operand RA1:Q and inner operand TB1:R are stored in

main memory (Q = 1). The buffer for RAj , called RABuf , and the buffer for TBk,

called TBBuf , are stored in GPU memory. Here, we allocate RABuf and TBBuf

to GPU global memory. GMiner copies each TBk to TBBuf in a streaming fashion

via the PCI-E bus, after copying RAj to RABuf . To store the partial support values

for all candidate itemsets in RA in each transaction block TBk, GMiner maintains a

two-dimensional array of size |RA| xR in main memory, denoted as PSArray, where

|RA| is the number of candidate itemsets. GMiner also allocates the buffer for partial

support in GPU global memory, denoted as PSBuf . The partial support values cal-

culated on the GPU cores are first stored in PSBuf in GPU global memory, and then

copied back to the PSArray in main memory.

3.3. TFL Algorithm

In this section, we present the algorithm that implements the TFL strategy. We first

explain the overall procedure of the algorithm using the example shown in Figure 1.

The TFL strategy performs a total of seven steps. We denote the set of candidate

itemsets at the current level in the itemset lattice as CL. In Step 1, the TFL strategy

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

PCI-Ebus

01101101

TB1
…

TBR
11111000 …

11001010 …

11000001 …

Main memory

bitV
{ 0,1,2 }{A,B,C}

{ 0,1,3 }{A,B,D}

{ 0,2,3 }{A,C,D}

RA
2 0

PSArray…
1 1…
1 1…

σσσσ PSBufCL GPU memory

2

3
56

0

1

2

3

A

B

C

D

F1
1

7
10101101

10010000

00111010

10011101

dict
{ 0,1,2 }{ 0,1,3 }{ 0,2,3 }
RABuf

01101101

TBBuf
11111000

11001010

11000001

01001000

01000000

01000000

2

1

1

12

11

14

4
Figure 1: Example of the TFL strategy.

converts CL to RA by mapping each itemset x in CL to its relative memory address

RA(x) using dict. Here, dict is a dictionary that maps a frequent 1-itemset x ∈ F1 to

RA(x) within a transaction block TBk. If the size ofRA is larger than that ofRABuf

in GPU memory, then RA is logically divided into Q partitions, i.e., RA1:Q, such that

each partition can fit in RABuf . In Step 2, it copies a partition RAj to RABuf in

GPU memory. In Step 3, it copies each transaction block TBk to TBBuf in GPU

memory in a streaming fashion. In Steps 4-5, the GPU kernel function for the bitwise

AND operations, denoted asKTFL, calculates the partial supports of candidate itemsets

in RABuf and stores the values in PSBuf . In Step 6, the TFL strategy copies the

partial supports in PSBuf back to PSArray in main memory. Here, it copies the

values of TBk to the k-th column of PSArray. In Step 7, it aggregates the partial

supports of each itemset x in PSArray to obtain σ(x). After Step 7, GMiner finds

the frequent L-itemsets FL for which the support values are greater than or equal to a

given threshold minsup, as in the existing frequent itemset mining methods.

Algorithm 1 shows the pseudo code for the algorithm. During initialization, the al-

gorithm loads a transaction databaseD into main memory (MM) and allocatesPSArray

to MM. Then, it allocates three buffers, namely, TBBuf , RABuf , and PSBuf , to

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

GPU global memory (DM) (Lines 1-3). Next, it converts D to a set of transaction

blocks TB1:R using F1 such that each transaction block can fit in TBBuf (Lines 4-5).

After the dictionary dict used to map x to RA(x) has been constructed (Line 6), it

remains fixed during itemset mining because the TFL strategy uses only TB1:R for F1

as input data. The main loop consists of a generating step (Lines 10-11) and a testing

step (Lines 12-20), as in the Apriori algorithm; however, compared to the Apriori algo-

rithm, our algorithm significantly improves the testing step performance by streaming

the transaction blocks of F1 to overcome the limitations imposed by GPU memory,

while simultaneously exploiting GPU computing for fast and massively parallel calcu-

lation of partial supports (Lines 12-18).

We note that the kernel function KTFL is usually called multiple times instead of

a single time (Line 16). This is due to a limit on the number of GPU blocks, which we

can specify when calling KTFL. The KTFL function can calculate a partial support

of a single itemset using a single GPU block. If we set the maximum number of

GPU blocks, denoted as maxBlk, to 16 K, a single call to KTFL can simultaneously

calculate partial supports for 16 K itemsets. Thus, if |RAj |=100 M, we must call the

KTFL function d 100M
16K e ≈ 6, 250 times. That is, for the same transaction block TBk in

TBBuf , GMiner executes the kernel function repeatedly while changing the affected

portions of RAj . When copying data, RA is the outer operand, and TB is the inner

operand. However, when calling the kernel function, TBk is the inner operand, and

RAj is the outer operand.

Next, we present the pseudo code for the GPU kernel function of GMiner in Algo-

rithm 2. This function is used not only in the TFL strategy but also in the HIL strategy

in Section 4. It takes a pair ofRAj and TBk, along with doneIdx andmaxThr, as in-

puts. Here, doneIdx is the index of the last candidate that was processed in RAj . This

value is required to identify the portion of RAj that the current call of KTFL should

process. For example, if |RAj | = 10000 and maxBlk = 1000, doneIdx in the second

call of KTFL becomes 1000. The input maxThr is the maximum number of threads

in a single GPU block, which we can specify when calling KTFL, as with maxBlk.

BID and TID are the IDs of the current GPU block and GPU thread, respectively,

which are automatically determined system variables. Because many GPU blocks ex-

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 1: The TFL strategy
Input : D; /* transaction database */

Input : minsup; /* minimum support */

Output : F ; /* frequent itemsets */

1 Load D into MM ;

2 Allocate PSArray on MM ;

3 Allocate {TBBuf,RABuf, PSBuf} on DM ;

4 F1 ← find all frequent 1-itemsets;

5 Build TB1:R using D and F1 on MM ;

6 dict← dictionary mapping x to RA(x) (x ∈ F1);

7 L← 1;

8 while |FL| > 0 do

9 L← L+ 1;

/* Generating candidates using CPUs */

10 CL ← generate candidate itemsets using FL−1;

11 Convert CL to RA1:Q using dict;

/* Testing using GPUs */

12 for j ← 1 to Q do

13 Copy RAj into RABuf of DM ;

14 for k ← 1 to R do

15 Copy TBk into TBBuf of DM ;

16 Call KTFL(RAj , TBk); /* d |RAj |
maxBlk e times */

17 Copy PSBuf into PSArray of MM ;

18 Thread synchronization of GPUs;

19 σ(c)←∑R
k=1 PSArray[c][k], for ∀c ∈ CL;

20 FL ← {c|c ∈ CL

∧
σ(c) ≥ minsup};

21 F ← ⋃
FL;

22 Return F ;

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ecute concurrently, some might have no corresponding candidate itemsets to test. For

instance, when |RAj | = 100 and maxBlk = 200, 100 GPU blocks should not execute

the kernel function because some blocks would have no itemsets. Thus, when the cur-

rent GPU block has no itemset, the kernel function returns immediately (Lines 1-2).

The kernel function prepares two frequently-accessed variables, namely, can and sup,

in the shared memory in GPUs to improve performance. The variable can contains the

itemset for which the current GPU block BID will calculate the partial support, and

the vector sup is initialized to zero.

The main loop of KTFL performs bitwise AND operations simultaneously and re-

peatedly (Lines 5-8). Under current GPU architectures, a single GPU thread can effi-

ciently perform bitwise AND operations for single-precision widths (i.e., 32 bits). That

is, a single GPU block can perform bitwise AND operations up to maxThr × 32 bits

simultaneously. However, the width of a transaction block W might be considerably

larger than maxThr × 32 bits.

Figure 2 shows an example of KTFL, when maxThr = 2, and can = 0, 1, 3.

Here, we assume that a GPU thread can perform bitwise AND for 4 bits for simplicity.

Because the length of candidate itemset is 3, threads 1 and 2 perform bitwise AND

operations twice over {TB(0), TB(1), TB(3)} and store the resultant bits in bitV .

The kernel repeats this process W
maxThr∗32 times. The number of 1s in bitV can easily

be counted using the popCount function and stored in the sup vector. In CUDA, the

popCount function is denoted as popc(). The partial support values are accumulated

in the sup vector W
maxThr∗32 times, as shown in Figure 2. Finally, the kernel function

aggregates the values in sup into a single partial support value in TBk for the candidate

itemset can using a parallelReduction function (Line 9).

3.4. Exploiting GPUs

In this section, we present the details of the GMiner implementation that exploits

GPUs. First, we discuss how to allocate and utilize the GPU memory. In particular, we

consider a method to avoid the out-of-memory issue when handling large-scale data

using GPUs. Second, we explain how to set GPU threads and improve the GPU ker-

nel function performance. Third, we explain the details of the nested-loop streaming,

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0110 1101

1111 1000

1100 0001

1001 1011

1111 1010

1101 0011

…

…

…

thread 1 thread 2 thread 1 thread 2
0100 0000 1001 0010bitV

TB(0)TB(1)TB(3)

PSBuf[BID]
…

3 1

n-way
bitwise AND

popCountsup
parallelReduction

4

w=0 w=

Figure 2: The GPU kernel function KTFL (a GPU block takes an itemset{A,B,D}).

process, including both synchronization and host-device transfer.

First, we allocate three types of buffers to GPU memory only once; subsequently

we use them repeatedly for the entire mining task. The out-of-memory issue of current

GPU-based methods indicates that the overall mining tasks fail due to increasing data

sizes that do not fit into GPU global memory. To avoid this out-of-memory issue, we al-

locate the buffers (i.e., TBBuf , RABuf , and PSBuf) to GPU global memory once

while considering the GPU memory capacity, and then use them repeatedly. When the

data (i.e., relative addresses and transaction bitmap) are larger than the size of the cor-

responding buffers, our method divides the data (i.e., relative addresses and transaction

bitmap) into multiple partitions, each of which then fits into the corresponding buffer,

and then copies each partition to the buffer individually. Consequently, our method

avoids the out-of-memory issue and simultaneously reduces the buffer allocation over-

head in GPU memory. In contrast, other GPU-based methods repeatedly allocate the

buffers to GPU memory during the mining task.

Second, we exploit the shared memory of GPUs. Each GPU follows the single

instruction multiple thread (SIMT) model and handles threads in a warp, which is a

group of 32 threads. Multiple warps form a GPU block, and threads in the same GPU

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 2: KTFL: Kernel function for partial supports
Input : RAj ; /* j-th partition of RA */

Input : TBk; /* k-th transaction block */

Input : doneIdx; /*index of last candidates done in RAj*/

Input : maxThr; /*max number of threads in GPU block*/

Variable: can; /* shared variable for a candidate */

Variable: sup; /* shared variable for a partial support */

1 if doneIdx+BID ≥ |RAj | then

2 return;

3 can← RAj [doneIdx+BID];

4 sup[0 : maxThr]← 0;

5 for i← 0; i < W
maxThr∗32 ; i← i+ 1 do

6 bitV ← ⋂
i∈can TBk[i][w ∗maxThr + TID];

7 sup[TID]← sup[TID] + popCount(bitV);

8 syncthreads();

9 PSBuf [doneIdx+BID]← parallelReduction(sup[]);

block can quickly communicate with one another using shared memory and built-in

primitives. Frequently accessing GPU global memory to update variables is generally

prohibitively expensive. To avoid this cost, our method uses shared memory to store the

number of 1s in the bit vectors corresponding to the candidate itemset x. After comput-

ing the partial support for the corresponding transaction block, our method stores the

partial support of x in the corresponding location of PSBuf . As a result, our method

improves performance by accessing the GPU global memory only once. We also con-

sider the number of GPU threads for the GPU kernel function. As discussed in Section

3.3, our GPU kernel function includes the parallelReduction function. However, this

function uses multiple brand-and-bound operations, which degrade the performance

when using GPUs. This performance degradation becomes more marked as the num-

ber of GPU threads increases. Therefore, by default, we set the number of GPU threads

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to 32, because they might be scheduled together in the GPU architecture.

Third, we exploit multiple asynchronous GPU streams. This approach reduces the

data transmission overhead between main memory and GPU memory. Figure 3 shows

the timeline of the copy operations of the transaction blocks. A CPU thread first trans-

fersRAj toRABuf . Then, it starts multiple GPU streams, each of which performs the

following series of operations repeatedly, while incrementing k: (1) copying TBk to

TBBuf , (2) executing the GPU kernel function, denoted asK, to calculate PSj,k, and

(3) copying PSj,k back to main memory. We denote the number of GPU streams asm.

Then, this scheme requires the size of TBBuf to equal m transaction blocks and the

size of PSBuf to be m x |RAj |, where |RAj | denotes the number of candidate item-

sets in RAj . In general, the above three kinds of operations, namely, copying to GPU

memory, kernel execution, and copying to main memory, can overlap with one another

in the current GPU architecture [16]; thus, a large portion of the copying time between

GPU memory and main memory becomes hidden. After processing m streams, all the

GPU threads are synchronized by calling the cudaStreamSynchronize function to

compute the exact partial supports for the corresponding m transaction blocks. Here,

the number of GPU streams m is specified by the user; we used m = 4 as the default.

Timeline

KStream 1

Stream 2

Stream m

TB1 PS1RA1

KTB2 PS2

KTBk PSk

KTBk+1 PSk+1

KTBk+2 PSk+2

KTB2k PS2k

…

…

…

… ……

Figure 3: Multiple asynchronous GPU streams of GMiner˙

4. HIL Strategy

The TFL strategy in GMiner can find all the frequent itemsets for a large-scale

database using GPUs that have only a limited amount of GPU memory. Although it

shows outstanding performance in most cases, its performance might degrade if the

lengths of the frequent itemsets were to become very long. To solve this issue, we

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

propose the hopping from intermediate level (HIL) strategy, which increases the scala-

bility of the testing step in terms of the lengths of itemsets by utilizing more memory.

We first present the data structure for storing some frequent itemsets at low intermedi-

ate levels, which are called fragment blocks, in Section 4.1, and then present the HIL

algorithm in Section 4.2.

4.1. Fragment Blocks

The HIL strategy horizontally partitions each transaction block TBk into disjoint

fragment blocks. We define the fragment size as the number of frequent 1-itemsets that

belong to a single fragment block. The fragment size is fixed, and we denote it as H .

Thus, there are a total of S = d |F1|
H e fragment blocks in each transaction block.

The HIL strategy materializes all frequent itemsets within each fragment block.

Here, materialization of itemset xmeans creating a bit vector for x in the corresponding

fragment block. Because the fragment size isH , up to a maximum of 2|H|−1 frequent

itemsets can be materialized in each fragment block. Thus, we set the height of a

fragment block to 2|H| − 1, instead of H .

The HIL strategy vertically and horizontally partitions the transaction bitmap TB

into fragment blocks, each of which has the width W and height 2|H| − 1. A fragment

block has its own ID within a transaction block, denoted as FID. Each fragment block

is allocated consecutively in main memory (or stored as a chunk in secondary storage,

similar to a disk page). We denote the l-th fragment block of TBk as TBk,l. A frag-

ment block TBk,l consists of 2|H|−1 bit vectors, and we denote the set of itemsets cor-

responding to those bit vectors as itemsets(TBk,l). Figure 4 shows an example of the

HIL strategy in which there are a total ofR×3 fragment blocks andH = 2. The trans-

action block TB1 is partitioned into three fragment blocks {TB1,1, TB1,2, TB1,3},
and each fragment block contains 22−1 = 3 bit vectors. In Figure 4, itemsets(TB1,2)

becomes {{C}, {D}, {C,D}}. The bit vectors of the n-itemsets (n > 1) in each frag-

ment block are initialized with 0s before materialization.

In terms of space complexity, the HIL strategy requires the space of O(|F1|
H ×

(2H−1)×|D|) bits for the transaction bitmap. Compared with the full materialization

of frequent itemsets at intermediate levels, the fragment blocks require a much smaller

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

amount of memory. For example, suppose that |D| = 10M , and |F1| = 500. Then,

full materialization up to third level might require up to (
(
500
1

)
+
(
500
2

)
+
(
500
3

)
) ×

10,000,000 ≈ 23 TB. In contrast, the fragment blocks with H = 5 require only 500
5 ×

(25 − 1)× 10,000,000 ≈ 3.6 GB.

For materialization, the HIL strategy performs frequent itemset mining from levels

2 to H for each of R × S fragment blocks. In general, the number of fragment blocks

increases as the size of database increases and can become very large. For fast materi-

alization of many blocks, we utilize the same nested-loop streaming technique as was

proposed in Section 3. Because the fragment blocks are not correlated, they can be

materialized independently.

01101101

TB1,1
…

TBR,1
11111000 …

Main memory

{ 2,3 }{A,B,E}

{ 1,5 }{B,E,F}

RA
1 0

PSArray…
2 0… σσσσCL

{A}

{B}

fragment blocks
10101101

10010000

itemsets
17

14

01101000 … 10000000{A,B} TB1,2
…

TBR,2
…

{C}

{D}

itemsets
11000000 … 00011000{C,D}

11001010

11000001

00111010

10011101TB1,3
…

TBR,3
…

{E}

{F}

itemsets
00010100 … 01001010{E,F}

01010101

10010110

01001010

11101111

B
1

3

{A}

{B}

dict
{A,B}

0

1

2

{E}

{F}

{E,F}

3

4

5

1
2

2

3 4

5

Figure 4: Example of the HIL strategy.

Algorithm 3 presents the algorithm to materialize the fragment blocks. The algo-

rithm takes all the fragment blocks as input. It first calculates the maximum num-

ber of fragment blocks that can be materialized simultaneously using RABuf on

DM (Line 1); we denote this number as Q. Then, it executes the main loop Q times.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The algorithm streams the fragment blocks of FIDs between the start and end of all

transaction blocks, i.e., FB[1:R,begin:end]. That is, a total ofR× S
Q fragment blocks are

transferred to GPU memory in a streaming fashion. To map the itemsets in those blocks

to their relative memory addresses, we build the dict (Lines 5-6). Then, the algorithm

maps only the itemsets for FH −F1 because we do not need to materialize F1 (Line 7).

The algorithm executes the kernel functionKHIL simultaneously as it streams the frag-

ment blocks (Lines 9-12). Here, KHIL is basically the same with KTFL, but it stores

bitV vectors in the corresponding positions in the fragment blocks in TBBuf , instead

of calculating partial supports; thus we omit the pseudo code for KHIL. After the call

to KHIL completes, the updated fragment blocks TBk,[start:end] are copied back to

main memory. This materialization scheme, which uses GPU computing, is very fast;

its elapsed time is almost negligible, as shown in Section 6.

Algorithm 3: Materialize fragment blocks
Input : TB1:R,1:S ; /* fragment blocks */

1 Q← integer value satisfying S
Q × (2|H| − 1) < |RABuf |;

2 for j ← 1 to Q do

3 start← (j − 1)× S
Q + 1;

4 end← j × S
Q ;

5 FH ←
⋃l=end

l=begin itemsets(TBj,l);

6 dict← dictionary mapping x to RA(x) (x ∈ FH);

7 Convert FH − F1 to RAj using dict;

8 Copy RAj into RABuf of DM ;

9 for k ← 1 to R do

10 Copy TBk,[start:end] into TBBuf of DM ;

11 Call KHIL(RAj , TBk,[start:end]);

12 Copy TBk,[start:end] on DM back to MM ;

13 Thread synchronization of GPUs;

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2. HIL Algorithm

The HIL strategy tries to reduce the number of bitwise AND operations by utiliz-

ing fragment blocks, which are a type of precomputed results. Different from the TFL

strategy, the HIL strategy determines the set of fragments at each level dynamically to

reduce the amount of transaction bitmap transferred to GPUs. Algorithm 4 presents

the pseudo code of the HIL strategy. It first materializes the fragment blocks using Al-

gorithm 3 (Lines 1-2). After generating the candidate itemsets CL, the algorithm finds

the minimal set of fragments, denoted asB, that contain all the itemsets in CL (Line 7).

When the level, L, is low, most of fragments would be chosen as the set B. However,

as level L increases, the number of fragments that contain CL decreases; thus, we can

reduce the overhead involved in transferring fragment blocks. Because the set of frag-

ments changes at each level, the relative memory addresses of candidate itemsets in CL

also change. Thus, the algorithm builds dict using only the itemsets in B at each level

and converts CL to RA1:Q (Lines 8-9). When streaming the transaction bitmap to the

GPUs, the algorithm copies only the relevant fragment blocks TBk,l∈B instead of the

entire transaction block TBk.

In the HIL strategy example shown in Figure 4, we assume thatCL = {{A,B,E}, {B,E, F}}.
Then, we can easily identify the fragments B = {1, 3} that contain all the itemsets in

CL. The dictionary dict is built using the first and third fragments; thus, RA({E})
becomes 3 instead of 6. When converting an itemset x ∈ CL to RA(x), RA(x) in the

HIL strategy is shorter than in the TFL strategy. That is, fewer bitwise AND operations

are required to obtain the partial supports. For instance, the length of RA({A,B,E})
is two (i.e., {2, 3}), whereas it is three in the TFL strategy. As the fragment size H

increases, the length of RA(x) tends to decrease. Each RAj is copied to RABuf in

GPU memory; then, the first set of fragment blocks {TB1,1, TB1,3} in B are streamed

to TBBuf in GPU memory. Next, the second set of fragment blocks {TB2,1, TB2,3}
are streamed.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Algorithm 4: HIL Algorithm
Input : D; /* transaction database */

Input : minsup; /* minimum support */

Input : H; /* fragment size */

Output : F ; /* frequent itemsets */

/* Lines 1-4 in Algorithm 1 */

1 Build TB1:R,1:S using D, F1, and H on MM ;

2 Materialize the fragment blocks of TB1:R,1:S ;

3 L← 1;

4 while |FL| > 0 do

5 L← L+ 1;

/* Generating candidates using CPUs */

6 CL ← generate candidate itemsets using FL−1;

7 B ← set of fragment blocks containing CL;

8 dict← dictionary mapping x ∈ itemsets(B) to RA(x);

9 Convert CL to RA1:Q using dict;

/* Testing using GPUs */

10 for j ← 1 to Q do

11 Copy RAj into RABuf of DM ;

12 for k ← 1 to R do

13 Copy TBk,l∈B into TBBuf of DM ;

14 Call KTFL(RAj , TBk,l∈B);

15 Copy PSBuf into PSArray of MM ;

/* Lines 18-20 in Algorithm 1 */

16 F ← ⋃
FL;

17 Return F ;

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5. Multiple GPUs and Cost Model

5.1. Exploiting Multiple GPUs

GMiner can be easily extended to exploit multiple GPUs and further improve the

performance. When exploiting multiple GPUs, GMiner copies the different portion of

the outer operand to the different GPUs and copies the same transaction (or fragment)

blocks to all the GPUs. We call this scheme as the transaction bitmap sharing scheme.

This scheme can be applied to both TFL and HIL strategies.

Figure 5 shows the data flow of our scheme. When there are two GPUs, the scheme

copies RA1 to GPU1 and RA2 to GPU2. Then, it copies the same TB1 to both GPU1

and GPU2. The kernel function on GPU1 calculates the partial supports in RA1, while

that on GPU2 calculates the partial supports in RA2. Note that because RA1 and RA2

have no common itemsets, the results of both kernel functions can be copied back to

PSArray in main memory without conflicts.

This scheme is highly scalable in terms of the number of GPUs used because RAj

and RAk are independent tasks (j 6= k). In addition, it does not have the problem of

workload imbalances, which is a typical issue in distributed and parallel computing

methods. The computation is not skewed when RAj and RAk are the same size, be-

cause the computation heavily relies on the number of bitwise AND operations and does

not use complex or irregular data structures. Therefore, regardless of the characteristics

of the processed datasets, the proposed scheme achieves a stable speed-up ratio when

using multiple GPUs.

5.2. Cost Model

In this section, we present the cost models of GMiner to understand its performance

tendencies. In particular, we present the model for the TFL strategy and skip that of

the HIL strategy due to their similarity. Here, we consider the factors that significantly

affect the performance. The cost model of the TFL strategy is given by

#iteration∑

L=1

(
|RA1:Q|
c1×N +

Q

N
× {|TB1:R|

c2
+ tcall(R× d

|RAj |
maxBlk

e)+

tkernel(TBR) +
|PSj,R|
c2

}).
(1)

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

CPU’s MM GPU
1
’s DM

PCI-E bus

GPU
2
’s DM

…

copy

different

RA

PSBuf

RABuf

TBBuf

RABuf

TBBuf

PSBuf

RA1 RA2
…TB1 TB2
…

copy

the same

TBPSArray1,1 PSArray2,1
PSArray1,2 PSArray2,2

… …
copy

different

PSArray

Figure 5: Data flow of GMiner using multiple GPUs.

where, c1 and c2 respectively represent the communication rate between main mem-

ory and GPU memory in chunk copy mode (approximately 12GB/sec in PCI-E 3.0

x16 interface, in practice) and that in streaming copy mode (approximately 8GB/sec

in PCI-E 3.0 x16 interface, in practice), and N represents the number of GPUs. The

term |RA1:Q|
c1×N represents the total amount of time required to copy the outer operands,

i.e., RA1:Q to GPU memory. It is divided by N because the data is transferred con-

currently to N GPUs. The terms in brackets represent the costs of streaming the inner

operands and computing partial supports. In detail, the term TB1:R

c2 represents the cost

of streaming the transaction blocks. It cannot be reduced by using multiple GPUs due

to the characteristics of the transaction bitmap sharing scheme. Here, tcall(n) is the

time overhead for calling a kernel function n times. The TFL strategy calls the kernel

function R × d |RAj |
maxBlk e times for each RAj . The term tkernel(TBR) indicates the

kernel execution time for the last single transaction block, which cannot be hidden by

data streaming. Likewise, the term |PSj,R|
c2 indicates the cost for copying the last partial

supports for RAj back to main memory, which also cannot be hidden by streaming.

6. Performance Evaluation

In this section, we present the experimental evaluation of GMiner compared with

other representative methods summarized in Table 1. We present experimental results

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in three categories. First, we evaluate the performance of GMiner compared with the

representative sequential (i.e., single-threaded) methods, Apriori by Borgelt [6], Eclat

by Borgelt [6], Eclat by Goethals [10], FP-Growth* [11], and LCM [30]. Second, we

evaluate the performance of GMiner compared with the representative parallel (i.e.,

multi-threaded, distributed, and GPU-based) methods. The considered multi-threaded

methods are MC-Eclat[26], ShaFEM[32], and FP-Array[20]; the distributed method is

the implementation of FP-Growth with MLlib [3] of Apache Spark; and the GPU-based

methods are TBI [7], GPApriori [37], and Frontier Expansion [38]. Third, we examine

the performance characteristics of GMiner while varying a wide range of settings and

compare them with those of the TFL and HIL strategies.

6.1. Experimental Setup

For experiments, we use both a real dataset and synthetic datasets, as presented in

Table 2. As the real dataset, we use the largest dataset from FIMI Repository [8], called

Webdocs [21], which has been widely used for the performance evaluation of frequent

itemset mining. As synthetic datasets, we use datasets generated by using IBM Quest

Dataset Generator [2], which accepts four major parameters: Tavg , the average number

of items per transaction; Mavg , the average length of the maximal pattern; |D|, the

number of transactions; and |I|, the number of distinct items. In Table 2, the values

of |D| are in millions (M) and the values of |I| are in thousands (K). We generate

the default synthetic dataset, which is called Quest-Def, and multiple variations by

changing parameters. We note that Webdocs is relatively sparse, whereas Quest-Def is

relatively dense.

To evaluate LCM, FP-Growth*, Eclat (Borgelt), Eclat (Goethals), Apriori (Borgelt),

GPApriori, TBI, and Frontier Expansion, we download and compile their latest source

code. To evaluate MC-Eclat, ShaFEM, and FP-Array, we use the implementations

presented in [36] and [5]. To evaluate Apache Spark MLlib’s FP-Growth, we down-

load and use the source code from [3]. All the methods in experiments are compiled

with the same optimization option, namely -O3, with gcc 4.9. We perform all exper-

iments on Ubuntu 14.04.3 LTS with the same GPU Toolkit, namely, CUDA 7.5. For

the distributed methods, we use Scala 2.11.7, Spark 1.5.0, and Hadoop 1.2.1. When

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Statistics of transaction datasets used in the experiments.

Name Webdocs Quest-Def Quest-Scale1 Quest-Scale2

Tavg 177.2 200 200 200

Mavg N/A 25 25 25

|D| (M) 1.692 10 [1,5,10,15] 10

|I| (K) 5,268 10 10 [5,10,15,20]

size (GB) 1.4 9 [0.9,4.6,9.1,14] [8.9,9.1,9.8,11]

measuring the elapsed times of GPU-based methods such as TBI, GPApriori, Frontier

Expansion, and GMiner, to perform a fair comparison, we include all the time spent

transferring data between GPU memory and main memory. We set the number of GPU

streams for GMiner to four as the default.

We conduct all the experiments on a machine with two Intel 8-core CPUs running

at 2.90 GHz (a total of 16 cores), 128GB of main memory, and four NVIDIA GTX

1080 GPUs with 2,560 cores running at 1.7 GHz, 8 GB of device memory, and 96 KB

of shared memory. The NVIDIA GTX 1080 GPU follows the Pascal GPU architecture

and supports CUDA 8.0, which includes many new features, such as improved compiler

performance. The CPUs and GPUs are connected via PCI-E 3.0 x16 interface. We

conduct all the experiments that involve distributed methods on a cluster of eleven

machines, one master and ten slaves, each of which is equipped with an Intel quad-

core CPU running at 3.40 GHz, 32 GB of main memory, and 4 TB HDDs. That is, the

cluster slaves have a total of 40 CPU cores and 320 GB main memory.

We present the detail settings used for the GPU-based methods, namely, TBI [7],

GPApriori [37], Frontier Expansion [38], and GMiner. For both TBI and GPApriori,

the experimental settings, such as the number of GPU threads and the number of GPU

blocks, are not given in their papers. Therefore, for both methods, we set the number

of GPU threads and the number of GPU blocks to 32 and 16,384, respectively, which

were the best parameters found through trial-and-error-based tuning. For Frontier Ex-

pansion, 256 GPU threads and 2,048 GPU blocks were used in the original study [38].

However, we found that these parameters did not yield the best performance in our

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

experimental environments. Therefore, we set the number of GPU threads and the

number of GPU blocks to 32 and 4,096, respectively, which were the best parameters

we found. For GMiner, we set the number of GPU threads, the number of GPU blocks,

and the number of GPU streams to 32, 16,384, and 4, respectively. For GMiner, we set

the width of transaction blocks to 8,192 in four bytes.

6.2. Comparison with Sequential Methods

Figures 6(a)-(b) present the speed-up ratios of GMiner over the representative se-

quential methods, namely, FP-Growth*, LCM, Eclat (Borgelt), Eclat (Goethals), and

Apriori (Borgelt), on both the Webdocs and Quest-Def datasets while varyingminsup.

The speed-up ratios on the Y-axis are shown in log-scale, and O.O.M. means an out-

of-memory error. We use the same X-axis range as in [26]. In the figures, although

the elapsed times of all the methods decrease as minsup increases, the gaps in elapsed

time between GMiner and all the other methods increase slightly; thus, the speed-up

ratios also increase slightly.

For both the Webdocs and Quest-Def datasets, GMiner consistently and signifi-

cantly outperforms all other methods. In Figure 6(a), GMiner outperforms LCM, FP-

Growth*, Eclat (Borgelt), and Apriori (Borgelt) by factors of 7−100, 23−494, 13−90,

and 124 − 3094, respectively. Among the existing methods, LCM shows the overall

best performance on both datasets. The large performance gap between GMiner and

the existing methods is mainly due to the TFL strategy, which fully exploits fast and

massive bitwise computation using thousands of cores and simultaneously reduces the

memory access overhead by using relative memory addresses on the transaction blocks

of F1 and nested-loop streaming, as explained in Section 3. In Figure 6(b), LCM and

Eclat (Borgelt) encounter O.O.M. errors because they tend to consume more memory

when improving the performance than do the other existing methods.

6.3. Comparison with CPU-based Parallel Methods

Figures 7(a)-(b) present the speed-up ratios of GMiner over the representative

CPU-based parallel methods, namely, MC-Eclat, ShaFEM, FP-Array, and MLlib, on

both the Webdocs and Quest-Def datasets. MC-Eclat, ShaFEM, and FP-Array are

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1101001000
0.01 0.012 0.014 0.016 0.018 0.02Speed-up ratio minsup

FP-Growth* LCM Eclat (Borgelt) Eclat (Goethals) Apriori (Borgelt)
O.O.M. O.O.M. O.O.M. O.O.M. O.O.M. O.O.M. O.O.M. O.O.M.

1101001000
0.06 0.08 0.1 0.12 0.14 0.16 0.18Speed-up ratio minsup

FP-Growth* LCM Eclat (Borgelt) Eclat (Goethals) Apriori (Borgelt)

(a) Comparison with sequential methods (Webdocs).

(b) Comparison with sequential methods (Quest-Def).
Figure 6: Performance comparison with sequential frequent itemset mining methods.

CPU-based parallel methods that run on a single machine, and MLlib is a distributed

method that runs on Spark. On both the Webdocs and Quest-Def datasets, GMiner

still consistently and significantly outperforms all other methods, except for FP-Array

at minsup = 0.06 on the Webdocs dataset. In Figure 7(a), GMiner outperforms MC-

Eclat and FP-Array by factors of 3.3− 94 and 0.45− 2.8, respectively.

Among the existing three multi-threaded methods, FP-Array achieves the best over-

all performance on the Webdocs dataset, while MC-Eclat achieves the best overall per-

formance on the Quest-Def dataset. FP-Array usually results in O.O.M. errors on the

Quest-Def dataset, because it requires more memory than do MC-Eclat and ShaFEM.

As stated earlier, FP-Array is a multi-threaded version of FP-Growth*; therefore, it

requires considerably more memory than does FP-Growth*. However, FP-Array is

much faster than FP-Growth* on a given dataset and with the same minsup value. Be-

tween the Webdocs and Quest-Def datasets, Quest-Def usually requires more memory

because it is denser. ShaFEM results in the worst performance among multi-threaded

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0.1

1

10

100

1000

0.06 0.07 0.08 0.1 0.12 0.14 0.16 0.18

S
p
e
e
d
-u
p
 r
a
ti
o

minsup

MC-Eclat ShaFEM FP-Array MLlib

1

10

100

1000

0.01 0.012 0.014 0.016 0.018 0.02

S
p
e
e
d
-u
p
 r
a
ti
o

minsup

MC-Eclat ShaFEM FP-Array MLlib

(a) Comparison with CPU-based parallel methods (Webdocs).

(b) Comparison with CPU-based parallel methods (Quest-Def).

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

Figure 7: Performance comparison with CPU-based parallel frequent itemset mining methods.

methods. We note that a distributed method, namely, MLlib, achieves the worst perfor-

mance among the existing parallel methods or fails to find frequent itemsets, although

it utilizes a total of 40 CPU cores and 320 GB of main memory. MLlib is based on

FP-Growth, where each conditional database is processed by the FP-Growth method

in each machine. In some cases, the degree of workload skewness (i.e., imbalance)

is extremely high; in such cases, a single conditional database has almost the same

size as the original database. In addition, MLlib’s FP-Growth is implemented on top

of Apache Spark; thus, it tends to use more memory than did the original FP-Growth

and incur additional overhead. These results suggest that improving the performance

of frequent itemset mining using the sequential methods is non-trivial, and a parallel

method must be devised carefully to achieve that goal.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.4. Comparison with GPU-based Parallel Methods

Figures 8(a)-(b) present the speed-up ratios of GMiner over the representative

GPU-based parallel methods, including Frontier Expansion, TBI, and GPApriori, on

both the Webdocs and Quest-Def datasets. Note that the existing GPU-based methods

outperform the CPU-based methods, but only when the size of data to be copied to

GPU memory is quite small. In contrast, the performances of the GPU-based methods

degrade compared with CPU-based methods as the data size increases. This is because

the data transmission overhead between main memory and GPU memory can signif-

icantly affect the performance. GMiner does not have the drawbacks of the existing

GPU-based methods. For instance, GMiner reduces the overhead of data transmission

between the host and GPU devices by exploiting multiple GPU streams, as explained

in Section 3, while other methods do not hide the overhead. As a result, GMiner out-

performs the state-of-the-art CPU-based methods, as shown in Figures 6 and 7.

Frontier Expansion achieves a performance similar to MC-Eclat for Webdocs, but

is outperformed by MC-Eclat on Quest-Def. In many cases, Frontier Expansion fails

to find frequent itemsets due to O.O.M. errors on Quest-Def. This result occurs be-

cause Frontier Expansion tries to maintain frequent itemsets at the intermediate level

in GPU memory and Quest-Def is denser than Webdocs; therefore, it must store consid-

erably more intermediate data in GPU memory. TBI outperforms Frontier Expansion

at the minsup values of 0.1-0.18 on Webdocs, because TBI processes more candidate

itemsets simultaneously. However, TBI shows O.O.M. errors at the minsup values of

0.06-0.08, while Frontier Expansion successfully completes the pattern mining at the

sameminsup values. This is because TBI tries to maintain a larger number of frequent

intermediate-level itemsets in GPU memory than does Frontier Expansion. GPApriori

results in O.O.M. errors in all cases on both Webdocs and Quest-Def; that is, the size

of its static bitmap is larger than the capacity of main memory (i.e., 128 GB). This

result occurs because GPApriori generates a static bitmap for the whole input database

without pruning the infrequent 1-itemsets during initialization.

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0

20

40

60

80

100

120

140

160

180

0.06 0.07 0.08 0.1 0.12 0.14 0.16 0.18

S
p
e
e
d
-u
p
 r
a
ti
o

minsup

Frontier Expansion TBI GPApriori

0

200

400

600

800

1000

1200

0.01 0.012 0.014 0.016 0.018 0.02

S
p
e
e
d
-u
p
 r
a
ti
o

minsup

Frontier Expansion TBI GPApriori

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

O.

O.

M.

(a) Comparison with GPU-based parallel methods (Webdocs).

(b) Comparison with GPU-based parallel methods (Quest-Def).

Figure 8: Performance comparison with GPU-based parallel frequent itemset mining methods.

6.5. Scalability test

Figures 9(a)-(b) present the speed-up ratios of GMiner over the representative

sequential and parallel methods, namely, FP-Growth*, LCM, Eclat (Borgelt), Eclat

(Goethals), Apriori (Borgelt), MC-Eclat, FP-Array, and Frontier Expansion, on the

Quest-Def dataset. In these experiments, we omit GPApriori, TBI, ShaFEM, and ML-

lib because they resulted in relatively poor performances in the experiments in Sections

6.2, 6.3, and 6.4. Figure 9(a) shows the results obtained while varying the number of

transactions (i.e., Quest-Scale1 in Table 2). As the number of transactions increases,

the speed-up ratios also increase, i.e., GMiner improves the performance more com-

pared to the existing methods. Figure 9(b) shows the results obtained while varying

the number of distinct itemsets (i.e., Quest-Scale2 in Table 2). As the number of dis-

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

tinct itemsets (i.e., |I|) increases, the speed-up ratios remain approximately constant.

GMiner consistently outperforms the existing methods, regardless of the value of |I|.

1101001000
1M 5M 10M 15MSpeed-up ratio The # of transactions

FP-Growth* LCM Eclat (Borgelt) Apriori (Borgelt)Eclat (Goethals) MC-Eclat FP-Array Frontier Expansion
O.O.M. O.O.M. O.O.M.O.O.M. O.O.M. O.O.M.O.O.M. O.O.M.O.O.M.

1101001000
5K 10K 15K 20KSpeed-up rati

o
The # of distinct items

FP-Growth* LCM Eclat (Borgelt) Apriori (Borgelt)Eclat (Goethals) MC-Eclat FP-Array Frontier Expansion
O.O.M.O.O.M.O.O.M.O.O.M.O.O.M. O.O.M. O.O.M. O.O.M. O.O.M.O.O.M. O.O.M.O.O.M.

(a) Scalability with respect to the number of transactions.

(b) Scalability with respect to the number of distinct items.

Figure 9: Scalability test varying the number of transactions and distinct items.

Figures 10(a)-(b) present the speed-up ratios obtained when using two GPUs for

the GPU-based methods, namely, Frontier Expansion and GMiner. Here, the theoret-

ical maximum speed-up ratio is two. On both the Webdocs and Quest-Def datasets,

GMiner achieves ratios close to this maximum value in most cases. In contrast, Fron-

tier Expansion shows much lower speed-up ratios below one in most cases, which

means that using two GPUs degrades its performance compared to using a single GPU.

When the range of minsup is within [0.1, 0.14] on Webdocs, the speed-up ratios of

GMiner degrade slightly because the total elapsed time is too short (≤ 1sec.) and the

time spent in support counting using GPUs is relatively small. However, except when

the workload is small, GMiner achieves almost the maximum speed-up ratio because

it shares the transaction bitmap among all the GPUs and assigns equal-sized indepen-

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

dent RAj to each GPU, as explained in Section 5.1. In contrast, Frontier Expansion

assigns a subtree of the enumeration tree (i.e., equivalence class) to each GPU. Because

it is likely that those subtrees have different amounts of workload (that is, a workload

skewness problem occurs), its scalability can degrade greatly. In addition, Frontier Ex-

pansion requires a larger overhead when exploiting multiple GPUs than does GMiner

because it divides the search space of patterns into equivalence classes.

Figures 11(a)-(b) present the speed-up ratios of GMiner when using multiple GPUs.

We define the speed-up ratio as T1

TM
, where T1 and TM are the running times using a

single GPU and M GPUs, respectively. Figure 11(a) shows the ratios obtained while

varying the number of transactions (i.e., |D|) among 1 M, 5 M, 10 M, and 15 M. Fig-

ure 11(b) shows the ratios obtained while varying the number of distinct items (i.e.,

|I|) among 5 K, 10 K, 15 K, and 20 K. The results show that regardless of the dataset

characteristics, the speed-up ratios of GMiner increase almost linearly. We note that

there is a small gap between the number of GPUs and the ideal speed-up ratio; this gap

occurs mainly because of synchronization overhead among the GPUs.

0

0.5

1

1.5

2

0.01 0.012 0.014 0.016 0.018 0.02

S
p
e
e
d
-u
p
 r
a
ti
o

minsup

GMiner Frontier Expansion

O.

O.

M.

O.

O.

M.

O.

O.

M.0

0.5

1

1.5

2

0.04 0.06 0.08 0.1 0.12 0.14

S
p
e
e
d
-u
p
 r
a
ti
o

minsup

GMiner

Frontier Expansion

O.

O.

M.

(a) Speed-up ratio when using two GPUs (Webdocs). (b) Speed-up ratio when using two GPUs (Quest-Def).

Figure 10: Speed-up ratios when using multiple GPUs for GPU-based methods.

6.6. Characteristics of GMiner

Figure 12 presents the elapsed times obtained while varying the width of TB (i.e.,

W) and the number of GPU blocks, on both datasets. As shown in the figure, 8 K

× 32 = 262,144 bits for the width of TB and 16 K GPU blocks yield the best overall

performance; thus, we applied these values as the default settings for GMiner. Because

GMiner sets the number of threads per GPU block to 64, the total number of threads

used in GMiner is 64 × 16 K = 1 million.

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0

1

2

3

4

2 3 4

S
p
e
e
d
-u
p
 r
a
ti
o

of GPUs

1M 5M 10M 15M

0

1

2

3

4

2 3 4

S
p
e
e
d
-u
p
 r
a
ti
o

of GPUs

5K 10K 15K 20K

(a) Varying |D| and the number of GPUs. (b) Varying |I| and the number of GPUs.

Figure 11: Speed-up ratios of GMiner when using multiple GPUs and varying the characteristics of datasets.

0

50

100

150

2K 4K 8K 16KE
la
p
s
e
d
 t
im
e
 (
in
 s
e
c
o
n
d
s
)

Widths of TB (x32)

Webdocs Quest-Default

0

50

100

150

0.5K 1K 2K 4K 8K 16K 32K

E
la
p
s
e
d
 t
im
e
 (
in
 s
e
c
o
n
d
s
)

of GPU blocks

Webdocs Quest-Default

(a) Varying the width of TB (i.e., W). (b) Varying the number of GPU blocks.

Quest-Def Quest-Def

Figure 12: Finding optimal W and the number of GPU blocks.

Figure 13 presents the various characteristics used in the HIL strategy of GMiner.

Figure 13(a) shows the memory usage as a function of the fragment size (H), which

increases almost exponentially as H increases. Figure 13(b) shows the elapsed time

for fragment materialization (described in Algorithm 3) which increases in proportion

to the amount of memory usage in Figure 13(a). We note that the materialization

time is very short compared with the total running time in Figure 13(d) and is almost

negligible. Figure 13(c) shows the ratio of the number of fragment blocks copied to

GPU memory for support counting to the total number of fragment blocks in each

iteration. When H = 1, i.e., using the TFL strategy, the transaction blocks for F1

are copied to GPU memory at every iteration, so the usage ratio is 100 %. However,

when H > 1, i.e., using the HIL strategy, only a necessary subset of fragment blocks

is copied to GPU memory, as described in Algorithm 4 resulting in a usage ratio of

approximately 55 %, regardless of fragment size. Figure 13(d) shows the total running

time, which is minimized when H = 5.

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0

0.5

1

1.5

2

2.5

1 3 5 7

M
e
m

o
ry

 u
s
a
g
e
 (

G
B

)

fragment size

0

0.05

0.1

0.15

0.2

1 3 5 7E
la

p
s
e
d
 t
im

e
 (

in
 s

e
c
.)

fragment size

0%

20%

40%

60%

80%

100%

1 3 5 7

U
s
a
g
e
 r

a
ti
o
 (

%
)

fragment size

0

10

20

30

40

1 3 5 7

E
la

p
s
e
d
 t
im

e
 (

in
 s

e
c
.)

fragment size

Support counting
Candidate generation

(a) Memory usage.

(c) Usage ratio of blocks.

(b) Materialization time.

(d) Total mining time.

Figure 13: Characteristics of the HIL strategy.

We note that the support counting step still takes most of the running time even

though GMiner exploits GPUs for support counting. Based on these results, we set H

= 5 as the default for the HIL strategy.

Figure 14 presents the comparison results between the TFL and HIL strategies. For

this experiment, we added a long pattern of length n to the Quest-Def dataset; as a

result, the dataset contains many long patterns of lengths n - 1, n - 2, and so on. Figure

14(a) shows the total mining time (as a multiple of 1000 sec.) as a function of the

length of n. The HIL strategy outperforms the TFL strategy from n = 22; subsequently,

the performance gap between two strategies increases as n increases, as explained in

Section 4. The HIL strategy reduces the number of bitwise AND operations, while using

more memory. Figure 14(b) shows the trade-off between running time and memory

usage as a function of H in the HIL strategy. In this figure, H = 7 yields slightly

improved performance, but greatly increases the memory usage. Thus, we suggest that

H = 5 is a good setting for databases that contain long patterns.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

20 22 24 26 28 30

S
p

e
e

d
-u

p
 r

a
ti

o

E
la

p
se

d
 t

im
e

 (
in

 X
1

0
0

0
 s

e
c.

)

length of long pattern

TFL HIL Speed-up

0

1

2

3

4

5

6

0

0.5

1

1.5

2

1 3 5 7

M
e
m

o
ry

 u
s
a
g
e
 (

G
B

)

E
la

p
s
e
d
 t
im

e
 (

in
 X

1
0
0
0
 s

e
c
.)

fragment size

Elapsed time Memory usage

(a) Comparison between TFL and HIL. (b) Trade-off between time and space

(for HIL).

Figure 14: Evaluation of the HIL strategy for database containing long patterns.

7. Summary

In this paper, we proposed a fast GPU-based frequent itemset mining method for

large-scale datasets called GMiner. In detail, we proposed the TFL strategy, which

fully exploits the computational power of GPUs by performing a large amount of com-

putation on a small amount of data, and the HIL strategy, which can further improve the

performance on datasets that contain long patterns by performing a moderate amount

of computation on a moderate amount of data. GMiner solves the workload skew-

ness problem the existing parallel methods suffer from by splitting an array of relative

memory addresses for candidate itemsets among the GPUs and streaming transaction

blocks to all the GPUs. Through extensive experiments, we demonstrated that GMiner

significantly outperforms most of the state-of-the-art methods that have been addressed

in recent studies [4, 9, 25, 31, 33] on two kinds of benchmarks, and its performance is

scalable in terms of the number of GPUs.

Acknowledgements

This research was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and

Future Planning(2017R1E1A1A01077630) and Samsung Research Funding Center of

Samsung Electronics under Project Number SRFC-IT1502-10.

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] C. C. Aggarwal, J. Han, Frequent pattern mining, Springer, 2014.

[2] R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules in Large

Databases, in: VLDB, 487–499, URL http://www.vldb.org/conf/

1994/P487.PDF, 1994.

[3] Apache Spark MLlib, http://spark.apache.org/mllib/, 2017.

[4] E. Baralis, T. Cerquitelli, S. Chiusano, A. Grand, Scalable out-of-core itemset

mining, Information Sciences 293 (2015) 146–162.

[5] C. Bienia, S. Kumar, J. P. Singh, K. Li, The PARSEC benchmark suite: charac-

terization and architectural implications, in: PACT, ACM, 72–81, 2008.

[6] C. Borgelt, Efficient implementations of apriori and eclat, in: FIMI, 2003.

[7] W. Fang, M. Lu, X. Xiao, B. He, Q. Luo, Frequent itemset mining on graphics

processors, in: DaMon, ACM, 34–42, 2009.

[8] FIMI Repository, http://fimi.ua.ac.be, 2005.

[9] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, H. B. Le, A survey of

itemset mining, Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 2017.

[10] B. Goethals, Survey on frequent pattern mining, Univ. of Helsinki, 2003.

[11] G. Grahne, J. Zhu, Efficiently Using Prefix-trees in Mining Frequent Itemsets.,

in: FIMI, vol. 90, 2003.

[12] F. Gui, Y. Ma, F. Zhang, M. Liu, F. Li, W. Shen, H. Bai, A distributed frequent

itemset mining algorithm based on Spark, in: CSCWD, 271–275, URL http:

//dx.doi.org/10.1109/CSCWD.2015.7230970, 2015.

[13] J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.

41

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[14] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in:

ACM SIGMOD Record, vol. 29, ACM, 1–12, 2000.

[15] Y.-S. Huang, K.-M. Yu, L.-W. Zhou, C.-H. Hsu, S.-H. Liu, Accelerating Parallel

Frequent Itemset Mining on Graphics Processors with Sorting, in: Network and

Parallel Computing, Springer, 245–256, 2013.

[16] M.-S. Kim, K. An, H. Park, H. Seo, J. Kim, GTS: A Fast and Scalable Graph

Processing Method based on Streaming Topology to GPUs, in: SIGMOD, ACM,

447–461, 2016.

[17] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Y. Chang, Pfp: parallel fp-growth for

query recommendation, in: RecSys, ACM, 107–114, 2008.

[18] C. Lin, K. Yu, W. Ouyang, J. Zhou, An OpenCL Candidate Slicing Frequent

Pattern Mining algorithm on graphic processing units, in: SMC, 2344–2349, URL

http://dx.doi.org/10.1109/ICSMC.2011.6084028, 2011.

[19] M.-Y. Lin, P.-Y. Lee, S.-C. Hsueh, Apriori-based frequent itemset mining algo-

rithms on MapReduce, in: ICUIMC, ACM, 76, 2012.

[20] L. Liu, E. Li, Y. Zhang, Z. Tang, Optimization of frequent itemset mining on

multiple-core processor, in: PVLDB, VLDB Endowment, 1275–1285, 2007.

[21] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, WebDocs: a real-life huge trans-

actional dataset., in: FIMI, vol. 126, 2004.

[22] S. Moens, E. Aksehirli, B. Goethals, Frequent itemset mining for big data, in: Big

Data, IEEE, 111–118, 2013.

[23] S. Orlando, kDCI: a multi-strategy algorithm for mining frequent sets, in: Proc.

IEEE ICDM’03 Workshop FIMI’03, 2003.

[24] S. Parthasarathy, M. J. Zaki, M. Ogihara, W. Li, Parallel data mining for associa-

tion rules on shared-memory systems, Knowledge and Information Systems 3 (1)

(2001) 1–29.

42

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[25] B. Schlegel, Frequent itemset mining on multiprocessor systems, Dissertation,

Technischen Universität Dresden, 2013.

[26] B. Schlegel, T. Karnagel, T. Kiefer, W. Lehner, Scalable frequent itemset mining

on many-core processors, in: DaMon, ACM, 3, 2013.

[27] B. Schlegel, T. Kiefer, T. Kissinger, W. Lehner, PcApriori: scalable Apriori for

multiprocessor systems, in: SSDBM, ACM, 20, 2013.

[28] C. Silvestri, S. Orlando, gpuDCI: Exploiting GPUs in Frequent Itemset Mining,

in: PDP, 416–425, URL http://dx.doi.org/10.1109/PDP.2012.94,

2012.

[29] G. Teodoro, N. Mariano, W. M. Jr., R. Ferreira, Tree Projection-Based Frequent

Itemset Mining on Multicore CPUs and GPUs, in: SBAC-PAD, 47–54, URL

http://dx.doi.org/10.1109/SBAC-PAD.2010.15, 2010.

[30] T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: Efficient mining algorithms for

frequent/closed/maximal itemsets, in: FIMI, vol. 126, 2004.

[31] R. L. Uy, M. T. C. Suarez, Survey on the Current Status of Serial and Parallel

Algorithms of Frequent Itemset Mining, Manila Journal of Science 9 (2016) 115–

135.

[32] L. Vu, G. Alaghband, Novel parallel method for mining frequent patterns on

multi-core shared memory systems, in: DISCS, ACM, 49–54, 2013.

[33] K. Wang, Y. Qi, J. J. Fox, M. R. Stan, K. Skadron, Association Rule Mining with

the Micron Automata Processor, in: IPDPS, 689–699, URL http://dx.doi.

org/10.1109/IPDPS.2015.101, 2015.

[34] M. J. Zaki, K. Gouda, Fast vertical mining using diffsets, in: SIGKDD, ACM,

326–335, 2003.

[35] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, et al., New Algorithms for Fast

Discovery of Association Rules., in: KDD, vol. 97, 283–286, 1997.

43

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[36] S. Zalewski, Mining Frequent Intra-and Inter-Transaction Itemsets on Multi-Core

Processors, MS thesis, NTNU, 2015.

[37] F. Zhang, Y. Zhang, J. D. Bakos, GPApriori: GPU-Accelerated Frequent Itemset

Mining, in: CLUSTER, 590–594, URL http://dx.doi.org/10.1109/

CLUSTER.2011.61, 2011.

[38] F. Zhang, Y. Zhang, J. D. Bakos, Accelerating frequent itemset mining on graph-

ics processing units, The Journal of Supercomputing 66 (1) (2013) 94–117, URL

http://dx.doi.org/10.1007/s11227-013-0887-x.

[39] J. Zhou, K. Yu, B. Wu, Parallel frequent patterns mining algorithm on GPU,

in: SMC, 435–440, URL http://dx.doi.org/10.1109/ICSMC.2010.

5641778, 2010.

44

