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a b s t r a c t 

As an attractive business model of cloud computing, outsourcing services usually involve 

online payment and security issues. The mutual distrust between users and outsourcing 

service providers may severely impede the wide adoption of cloud computing. Neverthe- 

less, most existing payment solutions only consider a specific type of outsourcing service 

and rely on a trusted third-party to realize fairness. 

In this paper, in order to realize secure and fair payment of outsourcing services in general 

without relying on any third-party, trusted or not, we introduce BCPay, a blockchain based 

fair payment framework for outsourcing services in cloud computing. We first present the 

system architecture, specifications and adversary model of BCPay, then describe in detail 

its design. Our security analysis indicates that BCPay achieves Soundness and what we call 

Robust Fairness , where the fairness is resilient to eavesdropping and malleability attacks. 

Furthermore, our performance evaluation shows that BCPay is very efficient in terms of 

the number of transactions and computation cost. As illustrative applications of BCPay, we 

further construct a blockchain-based provable data possession scheme in cloud computing 

and a blockchain-based outsourcing computation protocol in fog computing. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

As a promising computing paradigm, cloud computing has many attractive benefits, such as flexibility, high efficiency

and high availability. It can provide a diversity of outsourcing services including storage and computations [3] . With the

rapid development of cloud computing technologies, an increasing number of individuals and enterprises have uploaded

their various data onto third-party cloud platforms either for ease of sharing or for cost savings. The cloud storage service

of Dropbox currently has approximately 500 million registered users and 500 petabytes of user data [27] . Users can also

subscribe to flexible computation resources from cloud service providers such as Google and Amazon. In order to facilitate

the operation of computation, storage and networking services between end users and cloud computing data centers, fog

computing further extends cloud computing to the edge of the network [9] . In fog computing, the outsourcing computation
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service is required because end users usually are resource-constrained. Obviously, outsourcing services play an important

role in the development of cloud and fog computing. 

Although cloud computing allows users to customize outsourcing services, its unique aspects also raise various security

and privacy concerns [29,32,34,35,41,49–51] . In cloud storage, for instance, users usually require assurance of data possession

besides confidentiality of outsourced data. As for computation, users expect to get valid and correct computation results

from the outsourcing service provider once the service fee is paid. Recently, great effort s have been made to realize provable

data possession (PDP) [4,6] and verifiable outsourcing computation [13,15,25,33,42] . However, most of the existing schemes

do not consider the payment issues in outsourcing services. Take PDP as an example. In a challenge proof of PDP, if the

server is malicious, a user’s data may be lost without any compensation even if he/she has paid for the service. On the

other hand, in the case of a malicious user, the server cannot earn the service fee from the user even if it enforces a valid

and correct PDP service. Because of the distrust between the user and the server [18,24,37,47,48] , the payment issues are

sufficiently challenging for outsourcing services considering fairness. 

In order to simultaneously address the payment and security issues, most of the existing schemes adopt the (default)

traditional payment mechanism and rely on a trusted third-party such as a bank. For example, the Google cloud platform

provides a series of cloud services including computing and data storage, and the registration requires a bank account [20] .

In cloud computing, however, the traditional payment solution suffers several drawbacks. First, it is assumed that the bank

is trusted by all the users and the server and it deals with all procedures in a fair manner. Second, the payment mechanism

needs to be adapted to multiple banks used by different participants and has to be updated whenever they change, which

will become a bottleneck of the payment system. Last but not least, users’ privacy associated with bank accounts may be

violated. 

Recently, blockchain technologies have gained prominent popularity mostly due to its distributed nature and the lack of

a central authority. In blockchain-based outsourcing services, the service fee is transferred directly between the user and

the server and they do not have to trust any third-party. However, to the best of our knowledge, blockchain technologies

have seldom been used in general for fair payment of outsourcing services in cloud and fog computing. 

1.1. Our contributions 

To eliminate the third-party, trusted or not, while ensuring the fairness of payment against malicious users and outsourc-

ing service providers, we introduce BCPay, a blockchain based fair payment framework for outsourcing services in cloud and

fog computing. Our contributions are three-folds: 

1. We first propose the system architecture, specifications and adversary model of BCPay, then describe its design details.

We prove that BCPay enjoys Soundness and Robust Fairness where the latter implies that fairness is resilient to any attacks

including eavesdropping and malleability attacks without relying on any third-party. 

2. In BCPay, soundness and robust fairness are achieved by an all-or-nothing checking-proof protocol. In the protocol, it is

ensured that the outsourcing service provider either earns the service fee and gets his/her guaranty back simultaneously

or pays a penalty in the form of deposit to the user. Besides, our performance evaluation shows that BCPay is very

efficient in terms of the number of involved transactions and computation cost. 

3. To illustrate the applications of BCPay, we propose a blockchain-based PDP scheme in cloud computing and an outsourc-

ing computation protocol suitable for fog computing. 

1.2. Related work 

As an earlier and important application of blockchain technologies, Bitcoin was announced under the pseudonym Satoshi

Nakamoto [39] . To facilitate the wide use of blockchain technologies, Buterin [10] proposed Ethereum, a next-generation

smart contract and decentralized application platform. Later, Andrychowicz et al. [2] proposed a bitcoin-based timed com-

mitment scheme, in which the committer has to reveal his/her secret before a specific time, or to pay a fine. With bitcoin-

based timed commitments in place, they further constructed protocols for secure multiparty lotteries. In order to realize

more general computation, Andrychowicz et al. [1] proposed a simultaneous Bitcoin-based timed commitment scheme. Sub-

sequently, they presented a two-party computation protocol, which modifies the Bitcoin specifications to resist malleability

attacks. Similar ideas were developed independently by Bentov et al. [8] . Note that all these bitcoin-based schemes cannot

realize what we call all-or-nothing property which is required in outsourcing services. Specifically, the all-or-nothing prop-

erty ensures that the outsourcing service provider either earns the service fee and gets his/her guaranty back simultaneously

or pays a penalty to the user. The line of work on outsourcing service consists of outsourcing storage and outsourcing com-

putation. 

As for outsourcing storage, based on RSA homomorphic tags, Ateniese et al. [4] proposed the first PDP scheme, which

allows users to challenge the cloud server for a proof that the integrity of their data is not violated. Recently, homomorphic

signature and encryption technologies have obtained many attentions [40,45] . In the same year, Juels et al. [30] defined

and explored proofs of retrievability, which enables the cloud server to produce a concise proof that a user can retrieve a

target file. Later, Ateniese et al. [7] presented a PDP scheme based on identification protocols supporting public verification.

Data dynamics are further considered in [5,43,46] . On the other hand, outsourcing computation enables resource-limited
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Table 1 

Notations used in BCPay. 

C The client I i , j The hash value of the j th 

S The server node with height i in T � 
H A hash function σroot The ECDSA signature of 

r S The secret of S the root of T � 
h S The hash value H ( r S ) chal A challenge-related hash value 

t A time-lock set used in the service checking 

T � A service data tree chal 0 A challenge-related variable set 

� The height of T � used in the service checking 

( pk A , sk A ) An ECDSA key pair of A ChalIndex A challenge-related index 

data 0 Service-related local data set used in the service checking 

data 1 The outsourcing data max B The maximal delay between 

chaldata A challenge (data indexes) broadcasting a transaction and 

D i The i th data block in data 1 including it on the blockchain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

end users in fog computing to complete computationally expensive tasks with the help of fog nodes (a.k.a. workers). This

introduces the potential of cheating by untrusted participants in a commercial setting. To protect the rights and interests

of users, the concept of ringer [26] is introduced to verify the validity of outsourcing computation results. In order to im-

prove efficiency, Du et al. [22] presented a commitment-based scheme to prevent workers from cheating. Gennaro et al.

[25] proposed a verifiable outsourcing computation scheme while protecting the input and output privacy. Carbunar et al.

[12] proposed several outsourcing computation solutions that simultaneously ensure correct remuneration for computation 

tasks completed on time and prevent workers’ laziness. Chen et al. [16] considered outsourcing computation with such

workers that may not send the computation results on time. Chen et al. [14] further proposed a conditional e-payment sys-

tem based on a restrictive partially blind signature scheme. Song et al. [42] proposed a solution to verifiable outsourcing of

polynomial evaluation. Additionally, verifiable computation over large database is studied in [17] . 

In the above schemes, however, either the payment issue is not taken into account or the traditional payment framework

is adopted, which needs a trusted third-party to realize fair payment. To solve these problems, blockchain technologies have

been introduced to outsourcing services. Compared to traditional payment technologies, the independence from central au-

thorities is the key advantage of blockchain-based solutions. Ateniese et al. [6] introduced accountable storage based on an

extension of invertible Bloom filters, and showed how to combine it with Bitcoin based zero-knowledge proofs. However, the

combination involves a trusted third-party called Bitcoin arbitrator. Huang et al. [28] proposed a blockchain-based outsourc-

ing computation scheme, in which a trusted third-party is still required. Obviously, all these schemes [6,28] fail to truly

realize blockchain-based decentralized outsourcing services. Campanelli et al. [11] defined the notion of zero-knowledge

contingent service payment to realize service payment based on blockchains. They constructed two high-level protocols and

presented a concrete realization based on the proof of retrievability service. However, the proposed protocols are only con-

ceptual and lack design details, of which the efficiency remains to be improved because a witness indistinguishable protocol

[23] is used as a building block. Based on game theory and Ethereum smart contracts, Dong et al. [21] proposed a pro-

tocol for checking the correctness of computation in cloud computing. However, it is assumed that users are honest and

two clouds cannot collude. On the other hand, in order to improve the transaction throughput and latency in blockchains,

current effort s f ocus on off-chain payment channels which can be combined in a payment-channel network to enable a

number of payments without accessing the blockchain. Khalil et al. [31] presented a solution which allows an arbitrary set

of users in the payment-channel network to securely rebalance their channels. Malavolta et al. [36] formalized the security

and privacy notions in a payment-channel network including balance security and value privacy. In this paper, we propose

a general blockchain-based payment solution for outsourcing services, which can efficiently address the threat of cheating

from malicious participants and offer guarantees that the service has been correctly enforced. 

1.3. Organization 

The rest of the paper is organized as follows. Some preliminaries are given in Section 2 . We then present the system

architecture, specifications and adversary model in Section 3 . The proposed framework BCPay together with its security

analysis are presented in Section 4 . Section 5 shows the performance evaluation of BCPay. In Section 6 , we present several

applications of BCPay. Finally, concluding remarks are made in Section 7 . 

2. Preliminaries 

In this section, we first list some notations and then briefly review blockchains and Bitcoin-based timed commitments. 

2.1. Notations 

In Table 1 , we present notations mainly used in BCPay. 
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Fig. 1. An example of transaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Blockchain 

The blockchain is an essential technology behind many cryptocurrencies, with Bitcoin and Ethereum as the two most

widely used ones. The idea of the blockchain is that the longest chain is accepted as the proper one. In the following, we

describe blockchain in terms of the Bitcoin currency system, including addresses and transactions. 

As an important ingredient of the Bitcoin system, the ECDSA signature is associated with a public-secret key pair ( pk , sk ).

Technically, an address is a hash of a public key pk . To keep the exposition as simple as possible, we use pk to represent an

address. Suppose a user A has a key pair ( pk A , sk A ), then sig A (m ) denotes the ECDSA signature on a message m associated

with sk A , and vec A (m, σ ) denotes the result of the verification of the ECDSA signature σ on the message m with regard to

pk A . The most general form of a Bitcoin transaction Tx x is 

((y 1 , a 1 , σ1 ) , . . . , (y n , a n , σn ) , (v 1 , π1 ) , . . . , (v m 

, πm 

) , t) . 

The inputs of Tx x are triples (y 1 , a 1 , σ1 ) , . . . , (y n , a n , σn ) , where y i is the hash of some previous transaction Tx y i , a i is an

index of the output of Tx y i and σ i is called an input script. The outputs of Tx x are a list of pairs (v 1 , π1 ) , . . . , (v m 

, πm 

) ,

where v i is the value of the i th output of Tx x and π i is an output script. In particular, t is a time-lock, which means that

Tx x is valid only if time t is reached. In Ethereum, similar mechanisms can be realized based on the Ethereum Alarm Clock

[38] . Furthermore, the body of Tx x is denoted as 

[ Tx x ] = ((y 1 , a 1 ) , . . . , (y n , a n ) , (v 1 , π1 ) , . . . , (v m 

, πm 

) , t) , 

which is equal to Tx x without the input script. The transaction Tx x is valid if π ′ 
i 
([ Tx x ] , σi ) evaluates to true for 1 ≤ i ≤ n ,

where π ′ 
i 

is the output script of the a i th output of Tx y i . The scripts are written in the Bitcoin scripting language, which is a

stack based, not Turing-complete language. In Fig. 1 , as an example of transactions, the user A aims to transfer d from Tx 1

to the user B after time t based on Tx 2 , where the output script is an ECDSA signature verification. Similar to [1,2] , to keep

the exposition simple we present our results assuming that the transaction fees are zero. 

2.3. Bitcoin-based timed commitment 

In BCPay, the bitcoin-based timed commitment scheme [2] is used, which is also adopted by Ateniese et al. [6] and Huang

et al. [28] . The commitment scheme is denoted by CS (S, C, d, t, s ) and is executed between S and C, where the outsourcing

service provider S acts as a committer and the outsourcing service client C acts as a receipt. Concretely, S commits to a

secret s and has to open the commitment before a specific time t to get his/her deposit of value d back. Otherwise, the

deposit will be given to C. The commitment scheme consists of three phases: the commitment phase CS . Commit (S, C, d, t, s ) ,

the opening phase CS . Open (S, C, d, t, s ) and the punishment phase CS . Fine (S, C, d, t, s ) . Note that the punishment phase is

performed only if the opening phase is not correctly performed. Three transactions TxCommit , TxOpen and TxFine , as

shown in Fig. 2 , are involved in the commitment phase, the opening phase and the punishment phase, respectively. In

Fig. 2 , the omitted arguments of scripts are denoted by ⊥ and H is a hash function. Please refer to Andrychowicz et al.

[2] for more details. 

3. System architecture, specifications and adversary model 

In this section, we first present the system architecture and specifications of BCPay. Then, the adversary model and design

goals of BCPay are described in detail. 

3.1. System architecture of BCPay 

The system architecture of BCPay is illustrated in Fig. 3 , and it involves clients (i.e., users), servers (i.e., outsourcing

service providers) and a blockchain. In the rest of this paper, we use C and S to denote a client and a server, respectively.

Suppose C plans to subscribe to an outsourcing service sv from S . To keep the presentation compact, we only show the

main procedures of BCPay in Fig. 3 . The procedures (1), (2), (3.1) and (3.2) are used to implement sv . The procedures (4),

(5), (6.1) and (6.2) are used to check the sv implementation and the checking result is reflected in the service payment
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Fig. 2. The transactions involved in bitcoin-based timed commitments. 

Fig. 3. The system architecture of BCPay. 

 

 

 

 

 

 

 

 

 

 

(7) or the service claim (8). In BCPay, a public blockchain is considered, such as the Bitcoin blockchain and the Ethereum

blockchain. The entities C and S are detailed as follows: 

• Client C: As a user, C subscribes to an outsourcing service sv from S . After sv is enforced by S, C can get a preliminary

service confirmation from S based on the blockchain. In order to check the implementation of sv before the payment,

C sends a challenge to S . S first makes a claim commitment to ensure that C will get enough compensation in the

form of deposits if S is malicious. Then, C and S jointly initiate the service implementation proof by specifying some

requirements of sv . If S fails to provide a valid service proof that the service implementation meets the requirements

before a specific time, C can claim enough deposits by himself from S . 
• Server S: As an outsourcing service provider, S aims to earn service fees from C by enforcing services subscribed by C.

Upon receiving the service subscription request from C, S completes the enforcement of sv based on the blockchain and

sends to C a preliminary confirmation message. Then, S makes the claim commitment after receiving the challenge from

C. Once the joint proof initiation is finished, S provides a valid service implementation proof to get the service fee from
C in the service payment phase before the specific time. 
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3.2. Specifications of BCPay 

BCPay consists of five phases: the system setup phase, the service implementation phase, the service checking phase, the

service payment phase and the service claim phase. The first four phases are compulsory and the service claim phase is

performed by C only if S is malicious. 1 The details of the specifications of BCPay are as follows: 

3.2.1. System setup phase 

C and S initialize some parameters such as unredeemed transactions on the blockchain to be used in the subsequent

phases. 

3.2.2. Service implementation phase 

The outsourcing service sv is implemented in this phase. Three procedures, service subscription, service enforcement and

preliminary service confirmation, are sequentially performed as below. 

• Service subscription: C subscribes to sv from S by sending service-related data to S . 
• Service enforcement: In this procedure, sv is enforced by S . Upon receiving the subscription data from C, S enforces sv .

Then, S generates a digital signature according to the enforcement of sv and stores the signature on the blockchain.

Finally, S sends a confirmation message to C that helps C to obtain the signature from the blockchain. 
• Preliminary service confirmation: After obtaining the signature from the blockchain, C considers that sv has been prelimi-

narily implemented, where “preliminarily” means that the sv implementation will be checked by C before the payment.

3.2.3. Service checking phase 

This phase is used by C and S to jointly initiate the service checking. In this phase, the service requirements are specified.

Three sequential sub-phases, challenge generation phase, claim commitment phase and proof initiation phase, are performed

as below. 

• Challenge generation phase: In order to check the sv implementation, C sends a challenge to S besides reaching an agree-

ment beforehand on service-related parameters such as the compensation and penalty of S in the case of service failure.
• Claim commitment phase: This phase is used by S to make a commitment that once the sv implementation does not

meet the requirements specified in the Proof Initiation Phase and the malicious S refuses to compensate C in the Service

Payment Phase before a specific time, C is able to claim enough deposits of S by himself/herself as a penalty in the

Service Claim Phase after the specific time. 
• Proof initiation phase: This phase is used by C and S to realize the service checking by temporarily freezing a joint deposit

consists of service fee and guaranty respectively from C and S, in which the requirements of sv are agreed upon. After

this phase, honest C can ensure that either a valid sv is achieved in the Service Payment Phase by paying the service fee

or enough deposits are claimed in the Service Claim Phase no matter how S behaves. On the other hand, honest S can

ensure that if the sv implementation is valid, he/she will earn the service fee no matter how C behaves. 

3.2.4. Service payment phase 

This phase is performed by S to earn the service fee from C by proving that the sv implementation meets the require-

ments. Certainly, C can ensure that the service fee is paid only if the sv implementation is what is expected. 

3.2.5. Service claim phase 

Only if S fails to prove that the sv implementation meets the requirements of C before a specific time, BCPay comes to

the Service Claim Phase . This phase is used by C to claim enough deposits from S no matter how S behaves. 

3.3. Adversary model and design goals of BCPay 

In BCPay, both C and S can be malicious and they are of mutual distrust. Concretely, malicious C aims to enjoy the

outsourcing service sv provided by S without paying the service fee while malicious S tries to get the service fee from C
without implementing the service sv as specified in the requirements of C. As for the blockchain, its contents are publicly

available and both C and S can verify the authenticity of data in the blockchain. 

In addition, no private channels are required in BCPay. Hence, eavesdropping attacks and malleability attacks should be

taken into consideration. In these attacks, the adversary aims to undermine the fairness in BCPay. 

• Eavesdropping attacks: The adversary can eavesdrop on the public channel to see the transactions sent by the honest

party, before they appear on the blockchain. 
• Malleability attacks: Based on the eavesdropping, the adversary tries to make some transactions invalid by modifying

their hash values without changing the semantics. 
1 Strictly speaking, we mean S fails to provide a valid service implementation proof. 
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In BCPay, our security goals mainly include soundness and robust fairness as follows 2 : 

• Soundness: If both C and S are honest, then C can obtain the required service implementation and S can gain the corre-

sponding service fee. 
• Robust fairness: The fairness means that it is infeasible for the malicious C to enjoy the outsourcing service sv provided by

S without paying the service fee and it is infeasible for the malicious S to get the service fee paid by C without providing

a valid sv implementation proof in terms of the requirements of C before a specific time. Particularly, if malicious S fails

to provide such a proof, C is able to get enough compensation or penalty from S . Robust fairness means that the fairness

is resilient to eavesdropping attacks and malleability attacks, without needing a third-party. 

Furthermore, from the standpoint of efficiency, both the number of involved transactions and computation cost should

be considered. 

• Number of transactions: The number of transactions involved in BCPay should be as small as possible. 
• Computation cost: The computation cost of BCPay should be as low as possible considering resource-constrained users. 

4. BCPay: blockchain-based fair payment framework 

In this section, we first present the main idea of BCPay, and then describe the design details of BCPay together with its

security results. 

4.1. Challenge and main idea 

According to the adversary model and design goals in Section 3.3 , the main challenge to design BCPay is Robust Fairness

besides efficiency. The basic idea for realizing Robust Fairness is as follows. 

In the service implementation phase, S constructs a Merkle tree based on the data from C and generates a signature on

the root of the tree. The signature is then stored on the blockchain, which cannot be changed later, and acts as a “root of

trust” in the service checking and payment. The ingredient of ensuring fairness is an all-or-nothing checking-proof protocol

CP AON . The idea of CP AON lies in two aspects: 

1. S is able to earn the service fee from C and get his/her guaranty back if and only if he/she provides a valid service

implementation proof, denoted as ServiceProof ; 

2. If S fails to provide such a proof before a specific time t , C is able to claim from S either enough compensation together

with his/her service fee refund or enough fines in the form of deposit. 

In order to achieve these goals, in BCPay, C and S jointly create a deposit transaction TxProofInit , which consists of the

service fee from C and the guaranty from S . In the normal case, TxProofInit can be completely redeemed by S based on

his/her signature and ServiceProof , and hence the Soundness is realized. If S cannot provide ServiceProof , TxProofInit

can be completely redeemed by C based on his/her signature and a secret r S from S . If r S is replaced with the signature of

S, BCPay may suffer from malleability attacks. Because BCPay does not use private channels, ServiceProof may be eaves-

dropped by C before honest S gets the service fee. As a result, malicious C can redeem TxProofInit before honest S, which

violates (1) mentioned above. To overcome this problem, in BCPay, S just makes r S public after redeeming TxProofInit .

Certainly, in this case, malicious S will not publicize r S even if he/she fails to provide ServiceProof , and hence C cannot

redeem TxProofInit to claim compensation, which violates (2) mentioned above. To tackle this issue, in BCPay, S is required

to make a commitment to r S based on a deposit transaction TxClaimCommitment . The commitment must be opened by S
before time t to redeem TxClaimCommitment . Otherwise, C can redeem TxClaimCommitment himself as a punishment

to S after time t . Note that, the order among the involved transactions and the use of r S make BCPay malleability-resistant. 

In addition, to ensure the efficiency of BCPay, we aim to introduce small and constant number of transactions in a service

implementation checking and proof. In fact, based on the “root of trust” constructed by S in the service implementation

phase, C is able to specify the service requirements in terms of the authentication path of the Merkle tree. That is, the

service implementation checking can be accomplished in one round CP AON . Hence, the efficiency of BCPay is assured. 

4.2. Design details of BCPay 

As we know, the Bitcoin script is simple, stack-based and purposefully not Turing-complete. Unlike the Bitcoin protocol,

the Ethereum is a programmable blockchain and it allows users to create their own operations of any complexity they

wish [10,19,44] . In other words, the Ethereum blockchain is more flexible than the Bitcoin blockchain. However, in order to

achieve easy understanding and keep the exposition simple, we present BCPay following the style of Bitcoin transactions in

the same way as [1,2,6,28] . Now, we present the details of BCPay. 
2 Because the design of BCPay does not change the underlying blockchains, traditional attacks on blockchains, such as 51% attacks and Sybil attacks, are 

not considered in BCPay. 
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Fig. 4. The example of T 3 . 

Fig. 5. The service signature transaction TxServiceSig . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1. System setup phase 

Let H be a cryptographic hash function, such as SHA-256. A secure symmetric encryption algorithm should be chosen for

specific services if necessary, such as the PDP service. For simple exposition, we assume C and S choose their own ECDSA

public-secret key pairs, denoted by ( pk C , sk C ) and ( pk S , sk S ), respectively. S prepares an unredeemed transaction Tx S 
sig 

of

value d sig , which can be redeemed with sk S . 

4.2.2. Service implementation phase 

In order to realize the outsourcing service sv , the following three procedures are performed. 

• Service subscription: C preprocesses service-related local data data 0 and sends the result data 1 to S for subscribing to

sv . Note that the preprocessing is specified by concrete outsourcing services. For example, PDP involves encryption and

hashing. Without loss of generality, suppose data 1 consists of n = 2 � data blocks and data 1 = { D 1 , D 2 , . . . , D 2 � } . 
• Service enforcement: Upon receiving the subscription data data 1 from C, S first enforces sv based on data 1 . In order to

prove the sv implementation to C and earn the service fee in the subsequent phases, a Merkle tree T � is built by S after

the service enforcement, where � denotes the height of the tree and the leaf nodes have a height of 0. In T � , each interior

node has a hash value. For 1 ≤ i ≤ � , the j th node of height i has a value 

I i, j = H(I i −1 , j ‖ I i −1 , j+2 i −1 ) , 

where I i −1 , j and I i −1 , j+2 i −1 represent the hash values of the left child and the right child of I i , j , respectively. Furthermore,

if i = �, I i, j = I �, 1 is the root node, which is also denoted by I root . If 1 ≤ i < � and I i , j is a left child, then its right sibling

is I i, j+2 i . Otherwise, I i , j is a right child and its left sibling is I i, j−2 i . If i = 0 , I i, j = I 0 , j represents the j th leaf and I 0 , j = D j .

As an example, T 3 is shown in Fig. 4 . Subsequently, S computes a signature σroot = sig S (I root ) , and stores σroot on the

blockchain by broadcasting a service signature transaction TxServiceSig shown in Fig. 5 . Here, σroot is publicly output

by TxServiceSig based on the opcode OP RETURN of Bitcoin transactions. 3 Finally, S sends the transaction ID to C. 
• Preliminary service confirmation: Upon receiving the transaction ID from S, C first locates TxServiceSig on the blockchain

and gets σroot from OP RETURN . Then, C computes I root based on data 1 . If vec S (I root , σroot ) = true , C thinks sv has been

preliminarily implemented. According to context of the concrete service under consideration, C could immediately delete

data 1 or store data 1 till a successful service checking proof. In any case, C should store � as metadata, which will be used

to specify the service requirements. 

4.2.3. Service checking phase 

In this phase, C and S jointly initiate the service checking based on three sequential sub-phases: the Challenge Generation

Phase , the Claim Commitment Phase and the Proof Initiation Phase . Suppose there is an unredeemed transaction Tx S 0 of value

d 0 , which can be redeemed by S and is used as the penalty of S in the case of service failure. 
3 In the Ethereum blockchain, each transaction has a data field data , which can also be used to store σroot on the blockchain. 
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Fig. 6. The claim commitment transaction TxClaimCommitment . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Challenge generation phase: To check the sv implementation, C sends a challenge chaldata to S, which specifies the data

blocks to be challenged in T � . Suppose 

chaldata = (k 1 , k 2 , . . . , k c ) , 

which sequentially specifies data blocks { D k j 
} 1 ≤ j≤c . For each k ∈ chaldata , denote by path k the path from the leaf node

I 0, k to the root I root of T � , and by AuthenPath k the authentication path of I 0, k . To be specific, AuthenPath k consists of I 0, k 

and the sibling nodes corresponding to I 0, k and the interior nodes on path k . Define 

AuthenPath = 

⋃ 

k ∈ chaldata 

AuthenPath k −
⋃ 

k ∈ chaldata 

( path k − I 0 ,k ) . 

Denote by chal the ordered version of AuthenPath such that a node with a smaller first index and a smaller second index

is placed in the front. Formally, given I i 1 , j 1 
, I i 2 , j 2 

∈ chal , I i 1 , j 1 
is in front of I i 2 , j 2 

if i 1 < i 2 or (i 1 = i 2 ∧ j 1 < j 2 ) . In addition,

denote the challenge index set by ChalIndex = { (i, j) } I i, j ∈ chal . For example, in Fig. 4 , chaldata = (1 , 6) , and 

path 1 = { I 0 , 1 , I 1 , 1 , I 2 , 1 , I 3 , 1 } , 
path 6 = { I 0 , 6 , I 1 , 5 , I 2 , 5 , I 3 , 1 } , 

AuthenPath 1 = { I 0 , 1 , I 0 , 2 , I 1 , 3 , I 2 , 5 } , 
AuthenPath 6 = { I 0 , 6 , I 0 , 5 , I 1 , 7 , I 2 , 1 } , 

chal = { I 0 , 1 , I 0 , 2 , I 0 , 5 , I 0 , 6 , I 1 , 3 , I 1 , 7 } , 
ChalIndex = { (0 , 1) , (0 , 2) , (0 , 5) , (0 , 6) , (1 , 3) , (1 , 7) } . 

Note that ChalIndex can be computed by C based on the metadata � without knowing chal . Furthermore, suppose there

are unredeemed transactions Tx S 1 of value d C 
1 

and Tx S 1 of value d S 
1 

, which can be redeemed by C and S, respectively.

In order to force S to compensate C before a specific time once sv fails, let d 0 ≥ d C 
1 

+ d S 
1 
. Here, d C 

1 
and d S 

1 
denote the

service fee of C and the compensation of S in the case of service failure, respectively. 
• Claim commitment phase: Upon receiving chaldata , S performs CS . Commit (S, C, d 0 , t, r S ) , where t is a specific time and

r S ∈ R {0, 1} ∗. Specifically, S posts a deposit transaction TxClaimCommitment of value d 0 on the blockchain, which

makes a commitment that once the sv implementation does not meet the requirements specified in the Proof Initiation

Phase and malicious S refuses 4 to compensate C in the Service Payment Phase before time t , C is able to claim d 0 of

S by himself/herself as a penalty in the Service Claim Phase after time t . After TxClaimCommitment is included on the

blockchain, S creates the body of the punishment transaction TxFine , which will be used by C to claim the penalty,

signs it and sends the signed body sig S ([ TxFine ]) to C. The details of TxClaimCommitment are shown in Fig. 6 , where

h S = H(r S ) . TxOpen and TxFine will be detailed in the Service Payment Phase and the Service Claim Phase , respectively.

Certainly, if the sv implementation is valid, S will eventually get his/her deposit back no matter how C behaves. 
• Proof initiation phase: If TxClaimCommitment is included on the blockchain with enough confirmations and the signa-

ture sig S ([ TxFine ]) is received, C initiates the service proof request based on ChalIndex and σroot , which can be obtained

from the blockchain. Generally speaking, C chooses a single variable x and a variable set chal 0 = { x i, j } (i, j) ∈ ChalIndex , which

can be chosen by S based on chaldata and T � . Also, C and S jointly make a deposit transaction TxProofInit , which spec-

ifies the requirements of sv implementation and is finally posted on the blockchain by S . The idea of joint deposit has

been used in [1,2] . The joint deposit in TxProofInit consists of the service fee d C 
1 

from C and the guaranty d S 
1 

from S,

where the guaranty is used as the compensation in the Service Claim Phase . Please find the details of TxProofInit in Fig. 7 ,
4 Refusing to compensate means that S does not redeem TxClaimCommitment based on the opening transaction TxOpen before time t , that is, r S is 

not revealed by S before time t . 



Y. Zhang et al. / Information Sciences 462 (2018) 262–277 271 

Fig. 7. The transactions involved in the service implementation checking and proof of BCPay. 

Fig. 8. The all-or-nothing checking-proof protocol CP AON . 

 

 

 

 

 

 

 

 

 

 

in which check ( chal 0 , σroot ) 
�= vec S (I ∗root , σroot ) and I ∗root is computed based on chal 0 in the same way as I root is computed

based on chal according to the construction of T � . Obviously, hashing and ECDSA signature verification are involved in

the output script. More details of the service proof are given based on a checking-proof protocol CP AON performed by C
and S, which is described in Fig. 8 and additionally involves the Service Payment Phase and the Service Claim Phase . We

call CP AON an all-or-nothing protocol in the sense that either the service fee and the guaranty are redeemed by S at

the same time or more deposit of S will be paid to C. 

4.2.4. Service payment phase 

In this phase, if S can provide a valid proof ServiceProof before the specific time t − 2 max B to prove that the sv imple-

mentation meets the requirements, S can earn the service fee d C 
1 

of C and get his/her guaranty d S 
1 

back by redeeming

TxProofInit based on TxServiceFee and TxGuaranty , respectively. The transactions TxServiceFee and TxGuaranty are shown

in Fig. 7 . Furthermore, S performs CS . Open (S, C, d 0 , t, r S ) , in which S opens the claim commitment made in the Claim Com-

mitment Phase by posting the opening transaction TxOpen on the blockchain before time t . The details of TxOpen are

shown in Fig. 9 . Note that TxOpen redeems TxClaimCommitment and hence S can get his/her commitment deposit back.

Finally, S quits. 
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Fig. 9. The opening transaction TxOpen . 

Fig. 10. The punishment transaction TxFine . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.5. Service claim phase 

Suppose S fails to provide a valid service implementation proof ServiceProof in the Service Payment Phase before time

t − 2 max B , BCPay comes to the Service Claim Phase . In this phase, C is able to get enough deposit from S no matter how S
behaves. Two cases should be taken into account. 

• Case 1. S refuses to pay the compensation d S 
1 

to C, that is, S does not open the claim commitment made in

the Claim Commitment Phase and TxOpen is not included on the blockchain before time t . In this case, C performs

CS . Fine (S, C, d 0 , t, r S ) , in which C gets the penalty d 0 by posting the punishment transaction TxFine on the blockchain,

and then quits. The detail of TxFine is given in Fig. 10 . 
• Case 2. S refuses to pay the penalty d 0 to C, that is, S opens the claim commitment by posting the opening trans-

action TxOpen on the blockchain before time t . In this case, C gets both the refund d C 
1 

and the compensation d S 
1 

by immediately posting the refund transaction TxRefund and the compensation transaction TxCompensation on the

blockchain, respectively. Then C quits. The details of TxRefund and TxCompensation are given in Fig. 7 . 

4.3. Security analysis 

In this section, we present the results of security analysis of BCPay in Theorems 1 and 2 . As mentioned before, eaves-

dropping attacks and malleability attacks are considered and no third-party is involved in BCPay. 

Theorem 1. Based on the collision-resistance of the adopted hash function H and the unforgeability of ECDSA, BCPay satisfies the

property of soundness. 

Proof. Suppose both C and S are honest and they follow the procedures of BCPay. We show that even outside adversaries

make eavesdropping attacks and malleability attacks, C and S will always obtain the required service implementation and

the corresponding service fee at the end, respectively. As a matter of fact, in the service enforcement procedure of the

service implementation phase, S computes a signature σroot which is stored on the blockchain by broadcasting the service

signature transaction TxServiceSig . After a challenge is generated by C in the challenge generation phase, S makes a com-

mitment based on CS . Commit . Subsequently, C and S perform the all-or-nothing checking-proof protocol CP AON , in which

only the proof initiation phase and the service payment phase are involved if both parties are honest. In the proof initiation

phase, after C initiates the service proof based on σroot , C and S make a joint deposit transaction TxProofInit , which is fi-

nally posted on the blockchain by S . In the service payment phase, S provides a service implementation proof ServiceProof

to earn the service fee from C and get his/her current guaranty back by redeeming TxProofInit based on TxServiceFee and

TxGuaranty , respectively. According to the definitions of check and ServiceProof in Section 4.2 , if a ServiceProof , which is

deduced by outside adversaries based on eavesdropping attacks and malleability attacks, can pass check , then either a hash

collision is found or ECDSA is forgeable. In other words, if the adopted hash function is collision-resistant and ECDSA is

unforgeable, it is ensured that check has the value true only if ServiceProof meets the service requirements specified in

the proof initiation phase. Therefore, if C and S are honest and follow the procedures of BCPay, they will always obtain the

required service implementation and the corresponding service fee, respectively. �

Theorem 2. BCPay satisfies the property of robust fairness without needing a third-party if the adopted hash function H is

collision-resistant and ECDSA is unforgeable. 
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Proof. As mentioned in Section 3.3 , no private channels are required in BCPay. So, eavesdropping attacks and malleability

attacks may be made by a malicious party to undermine the fairness for the honest party. In the following, we first prove

the robust fairness for C against malicious S, and then consider the robust fairness for S in the case of malicious C. 

Case 1. Suppose C is honest and S is malicious. In this case, S aims to get the service fee from C without providing a

valid service implementation proof in terms of the requirements specified by C before time t − 2 max B . At the same time, S
is reluctant to pay compensation and penalty to C. Assume that C does not get a valid service implementation proof from

S in terms of his/her requirements before time t , which means the service implementation proof ServiceProof is invalid.

Hence, the joint deposit transaction TxProofInit cannot be redeemed by S based on TxServiceFee and TxGuaranty before

time t − 2 max B in the service payment phase. According to the definitions of check and ServiceProof in Section 4.2 , we

know S cannot get the service fee d C 
1 

from C unless S is able to forge an ECDSA signature or find a collision of the hash

function H . Furthermore, S may make malleability attacks by eavesdropping transactions on the public channel. However,

the attacks are meaningless because the transactions involved in BCPay are posted on the blockchain in order and C is still

able to claim enough compensation or penalty from S . Please refer to Figs. 7 and 8 for more details. 

Specifically, if S refuses to pay the compensation d S 
1 

to C, which means S does not open the claim commitment made

in the claim commitment phase by broadcasting TxOpen based on CS . Open before time t , C performs CS . Fine , in which C
gets the penalty d 0 with d 0 ≥ d C 

1 
+ d S 

1 
by posting the punishment transaction TxFine on the blockchain. If S refuses to pay

the penalty to C, which means S opens the claim commitment by performing CS . Open to post TxOpen on the blockchain

before time t , C can claim both the refund d C 
1 

and the compensation d S 
1 

by posting TxRefund and TxCompensation

on the blockchain, respectively. Accordingly, in any case, if malicious S fails to provide a valid service implementation proof,

C is able to claim enough compensation besides the service fee refund or penalty from S no matter how S behaves. 

Generally speaking, the robust fairness for C is ensured in BCPay without needing a third-party if the hash function H is

collision-resistant and ECDSA is unforgeable. 

Case 2. Suppose S is honest and C is malicious. In this case, C aims to obtain a valid service implementation proof in

terms of his/her requirements before time t − 2 max B without paying the corresponding service fee to S . Assume that S
provides a valid service implementation proof in terms of the requirements of C before time t . It follows that the service

implementation proof ServiceProof is valid. According to the details of BCPay, C only puts service fees in the generation of

the joint deposit transaction TxProofInit , which can be successfully redeemed by S in the service payment phase based on

TxServiceFee and TxGuaranty before time t − 2 max B only if ServiceProof is valid. In fact, malicious C may try to eavesdrop

TxServiceFee and TxGuaranty on the public channel to get the service proof ServiceProof together with sig S ([ TxServiceFee ])

and sig S ([ TxGuaranty ]), respectively. After that, C mauls the joint deposit transaction TxProofInit to prevent S from earning

the corresponding service fee. As we know, however, the service payment phase is behind the proof initiation phase in

BCPay, hence this malleability attack is meaningless. 

On the other hand, malicious C may try to claim compensation or penalty from S after ensuring that the service proof

is valid in terms of his/her requirements. Obviously, it is infeasible for C to claim compensation from S because TxGuaranty

has been posted on the blockchain. In particular, C cannot redeem TxProofInit before S unless he/she finds a collision of H

or forges an ECDSA signature. According to the service payment phase of BCPay, CS . Open is immediately performed by S to

open the claim commitment and hence to get the punishment deposit back before time t . From the property of transaction

lock-time, it follows that C cannot get a penalty from S even if malleability attacks are made. 

Therefore, the robust fairness for S is ensured in BCPay without needing a third-party if H is collision-resistant and

ECDSA is unforgeable. �

5. Performance evaluation 

In this section, we evaluate the performance of our proposed BCPay in terms of the number of involved transactions and

computation cost. 

5.1. Number of transactions 

As for BCPay, in the Service Implementation Phase , only one transaction TxServiceSig is required. In the Service Checking

Phase , transactions TxClaimCommitment and TxProofInit are involved. In the Service Payment Phase , transactions TxOpen ,

TxServiceFee and TxGuaranty are needed. In the Service Claim Phase , either the transaction TxFine or transactions TxRefund

and TxCompensation are created. Note that TxServiceFee and TxGuaranty can be replaced with one transaction because

they only need signatures of the server. Similarly, TxRefund and TxCompensation can also be combined into one trans-

action. Accordingly, as shown in Fig. 11 , the number of involved transactions is small and constant and it is affected neither

by the height of the data tree nor by the number of challenge data blocks. 
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Fig. 11. The number of transactions in BCPay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Computation cost 

In BCPay, the most common operations are hashing and ECDSA signature operations. Considering that the computation

cost of a hashing is far less than that of an ECDSA signature, we take ECDSA signature into account in the following. In our

experiments, we evaluate the computation time of the ECDSA signature used in transactions on a virtual machine (3.6 GHz

single-core processor and 6 GB DDR3-1600 RAM memory) based on Ubuntu 16.04 LTS and OpenSSL 1.0.2g. In particular, a

specific elliptic curve called secp256k1 with the equation y 2 = x 3 + 7 is adopted, which is used by Bitcoin and can also be

used in Ethereum. Additionally, in the following figures, we display the computation time with data trees of height 7, 10,

13, and 16, respectively. In any case, the number of challenge data blocks can reach 100 ( < 2 7 ). 

BCPay is very efficient because the computation cost is not related to the height of the data tree and the number of

challenge data blocks. If the server is honest, the client only participates in creating the transaction TxProofInit in the

Service Checking Phase , and hence only one ECDSA signature is needed. The computation time of the client is presented in

Fig. 12 (a). On the other hand, if the server is malicious, the client only computes one ECDSA signature in the Service Claim

Phase . The corresponding claim time for the client is presented in Fig. 12 (b). In BCPay, the server creates TxServiceSig ,

TxClaimCommitment , TxOpen , TxProofInit , TxServiceFee and TxGuaranty . Note that, even if TxServiceFee and TxGuaranty 

are combined, the number of ECDSA signatures is not reduced. In addition, the creation of TxFine also needs a signature of

the server. Therefore, the server has to perform 7 ECDSA signature operations in BCPay. Computation time of the server is

presented in Fig. 12 (c). 

6. Decentralized applications of BCPay 

BCPay is a blockchain-based fair payment framework. In this section, we show how to realize two important decentral-

ized applications based on BCPay. 

6.1. Blockchain-based PDP 

In the case of sv = PDP, according to the details of BCPay, we only need to display the Service Implementation Phase ,

which is implemented based on the following three procedures. 

• Service subscription: Let data 0 = { F 1 , F 2 , . . . , F 2 � } be the plaintext data collection. C encrypts data 0 based on a symmet-

ric encryption algorithm and sends the resulting ciphertext data collection data 1 to S for subscribing the PDP service.

Suppose data 1 = { D 1 , D 2 , . . . , D 2 � } in which D k is the ciphertext of F k for 1 ≤ k ≤ 2 � . 
• Service enforcement: Upon receiving the subscription data data 1 from C, S constructs a Merkle tree T � . 

Subsequently, S computes σroot = sig S (h r ) , and stores σroot on the blockchain by broadcasting TxServiceSig as shown

in Fig. 5 . Finally, S sends the transaction ID to C. 
• Preliminary service confirmation: Upon receiving ID from S, C first locates TxServiceSig on the blockchain and gets σroot .

Then, C computes h r based on data . If vec (h r , σroot ) evaluates to true , C stores the height � of the Merke tree. Based on
1 S 
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Fig. 12. Computation time in BCPay. 
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his/her practical outsourcing strategies, such as redundant outsourcing, C immediately deletes data 1 or stores data 1 until 

a successful service checking proof. 

Note that a challenge-response mechanism is needed in the traditional PDP. In blockchain-based PDP, C can challenge S
based on the Service Checking Phase of BCPay for data integrity. S can response to C based on the Service Payment Phase .

To further support data dynamics, the user only needs to store the structure of the Merkle tree as metadata in Preliminary

Service Confirmation . 

6.2. BCOC: blockchain-based outsourcing computation 

In this section, we show the application of BCPay in outsourcing computation, and propose a blockchain-based outsourc-

ing computation scheme, denoted as BCOC. BCOC can be used in fog computing, where a fog user with limited resources

wants to outsource distributed computation tasks to the fog node. For consistency, we use C and S to represent the fog user

and the fog node, respectively. Based on the definition in [26] , a distributed computation involves a function, a screener

and a payment scheme. However, a trusted third-party is introduced in [26] . In BCOC, we realize both the screener and the

payment based on blockchain and no third-party is required. Formally, let f be a one-way function from X to Y , denoted as

f : X 
→ Y . Suppose y ∗ = f (x ) for x ∈ X . Note that multiple such x may exist. Given f and y ∗ only, the objective of the computa-

tion is to discover all such x by exhaustive search of the domain X . According to the design details of BCPay, we show the

outsourcing of inverting a hash function. Based on the original procedures of BCPay, C and S further perform the following.

• System setup phase: C specifies a task task = ( f, X, y ∗) , where X = { x 1 , x 2 , . . . , x N } . 
• Service implementation phase: 

– Service subscription: C sends task to S . 

– Service enforcement: For 1 ≤ i ≤ N , S computes y i = f (x i ) . Without loss of generality, suppose 

{ x ∈ X | f (x ) = y ∗} = { x 1 , x 2 , . . . , x 2 � } �= X 

∗, 

where � ≤ log N . S constructs a Merkle tree based on X 

∗ as before and sends � to C. 
• Preliminary service confirmation: C stores � . 

• Service checking phase: 

– Challenge generation phase: As before. 

– Claim commitment phase: As before. 

– Proof initiation phase: C and S jointly create TxProofInit based on check and y ∗ by putting H(x ′ 
k 
) = y ∗ for k ∈ chaldata

in the output script, where the value of x ′ 
k 

is from x k provided by S in the Service Payment Phase . That is, the service

proof provided by S in the Service Payment Phase should satisfy the basic correctness requirement besides check . 
• Service payment phase: S provides { x k } k ∈ chaldata besides ServiceProof . 
• Service claim phase: As before. 

7. Conclusion 

In this paper, we introduced BCPay, a blockchain based fair payment framework for outsourcing services in cloud com-

puting. Specifically, we presented the system architecture, specifications and adversary model, and described the design

details of BCPay. Our security analysis indicated that BCPay enjoys Soundness and Robust Fairness . Our performance analysis

showed that BCPay is very efficient in terms of the number of involved transactions and computation cost. To illustrate

the applications of BCPay, we presented a blockchain-based PDP scheme and a blockchain-based outsourcing computation

protocol based on BCPay. 
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