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Abstract

Simulating the BGP routing system of Internet is crucial to the analysis
of Internet backbone network routing behavior, locating network failure and,
evaluating network performance for future Internet. However, the existing
BGP routing model lacks in the coarse modeling granularity and the priori
knowledge based model. The analysis of BGP routing data that reflects the
routing behaviors, directly impacts the BGP routing decision and forward
strategy. The efficiency of such analysis dictates the time it takes to come
up with such a time-critical decision and strategy. Under the existing model,
BGP routing data analysis does not scale up.

In this paper, we analyze the inter-domain routing decision making pro-
cess, then present a prefix level route decision prediction model. More specif-
ically, we apply deep learning methods to build a high-precision BGP route
decision process model. Our model handles as much available routing da-
ta as possible to promote the prediction accuracy. It analyzes the routing
behaviors without any prior knowledge. Beyond discussing the characteris-
tics of the model, we also evaluate the proposed model using experiments
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explained in detailed cases. For the research community, our method could
help in detecting routing dynamics and route anomalies for routing behavior
analysis.

Keywords:
Deep learning, BGP route decision process, data-driven modeling, and
future Internet

1. Introduction

Internet is composed of tens of thousands of Autonomous Systems (AS).
Such ASes run their network individually, and exchange their routing infor-
mation using inter-domain routing protocol, which is Border Gateway Proto-
col (BGP) in real-life deployment. In spite of the growing trend of discussing
the next generation networking, the distributed management framework of
Internet can hardly be changed due to its economic, political, geographical
involvements.

Inter-domain routing protocol plays a dominant role in the maintenance
and management of Internet. Appropriate protocol configurations could sig-
nificantly improve network performance. On the contrary, inappropriate pro-
tocol configuration could be a disaster to the regional network, or even the
whole Internet. It has been decades since the research community realized
the importance of understanding, analyzing, and predicting the inter-domain
routing behaviors, then modeling BGP networks route decision process. Un-
fortunately, modeling the route decision process is a non-trivial problem. An
AS’s BGP configuration involves its business secret, thus AS administrators
never share their networks BGP configuration. The only way to conduct
route decision modeling is to compare the input and output of the route
decision process, then construct a general mapping from the input to the
output. However, for BGP, the same route decision result could be reached
after a series of equivalent configurations on the granularity of prefix. Due
to different economic interest, traffic engineering objectives and political rea-
sons, practical configurations of BGP are always different. Therefore, to form
a general routing model for BGPs route decision process that satisfies most
cases is always a challenge.

Generally, existing work models the route decision process based on prior
experience, which means analyzing data, making assumptions, building a
model, and finally verifying the correctness of the model. Such manner takes
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the route decision process as a white box, which explains explicitly how and
why the model works. However, it leads to the following limitations of the
route decision model:

First, researchers have to make the right assumption in the first place.
Due to the reasons discussed above, such assumption can hardly fit all ASes
de facto BGP configurations, thus limits the accuracy of the model. For
example, AS business relationship model, the most famous routing model,
assumes that the AS administrators always run their network based on their
business relationships with their networks neighboring ASes. The model has
been proven to be correct. However, recent work has found more and more
counter examples of this AS business relationship model. Growing amount
of supporting BGP data has indicated that the de facto AS relationship is
actually more complex than the AS business relationship. As a result, the
AS business relationship model does not work for applications that need
understanding of certain routing behaviors in a finer granularity (e.g. in
prefix level).

Second, since adjustment on the model according to the input/output
data is an inevitable , the structure of the white box (the model) must not
be too complex to conduct any adjustment. As a result, the estimation of
the model parameters can only be performed on a limited quantity of BGP
data. Thus the accuracy of the route decision model can hardly be improved
when the available BGP data increases. For example, since 2001, when the
AS business routing model was first proposed, the amount of observable
BGP data has been increased by 2 orders of magnitude, and the amount of
BGP data is still growing. Such available data should reveal more detailed
information of an inter-domain routing system. However, due to the limited
expressiveness of the existing white box routing models, the accuracy and
performance of the existing routing models are limited.

In recent years, deep learning technology is developing rapidly, which
gives us an opportunity to model the BGP route decision process in a smarter
way, i.e. to conduct data-driven modeling on the route decision process di-
rectly from the routing data, without understanding or explaining everything.
With deep learning methods, we can form a general classification model to
work as the route decision process. It learns from the available BGP data all
by itself, then reveals possible configurations of BGP protocol. Intuitively,
the accuracy of the route decision process model should be improved with
the growing amount of BGP data, since theoretically, the more input data
fed to the neural network structure, the more accurate the results. However,
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few existing works dedicate to model the route decision process by means of
deep learning methods.

Considering the limitations of existing white box routing models, we pro-
pose to view the route decision process as a black box, and try to solve the
route decision process modeling problem using deep learning methods. Since
the route decision process takes the candidate routes as inputs, then out-
puts the optimal route, we model it as a classifier which distinguishes the
optimal route from other candidate routes. Fundamentally, the challenges
of this modeling problem include 1). model structure rationality discussion
and, 2). parameter estimation for the model for each AS. In this paper, we
focus on the former. We also discuss the model structure, the characteri-
zation of candidate routes, the training data set construction as well as the
model evaluation.

The contributions of this paper are three folds:
1) We propose to model the route decision process using a data-driven

method, which enables us to focus on the efficiency of our networking model,
without the explanation of model structure during the construction phase.

2) We propose an efficient supervised learning resolution for the route
decision process modeling, including the characterization, feature selection,
and training data set construction modules. Our deep learning resolution
ensures the scalability of the route decision process modeling, so that the
model accuracy improves with the growth of the available BGP data.

3) We investigate the feasibility of our model with open source BGP
data based case study evaluation. We also compare our model with the
AS business relationship model, proving its effectiveness for route decision
modeling in finer granularity. We then discuss possible further applications
of the proposed model in data analysis, network modeling and prediction.

The rest of the paper is organized as following. First we introduce related
works in Section 2. Then we propose the general structure and details of our
routing model, including the characterization, the training set construction,
and how to tag the training data in Section 3. Next, we evaluate our model
with comparison to the AS business relationship model using a case study
presented in Section 4. Finally, we discuss the feasibility of our model in
Section 5, then conclude the paper with future works to follow in Section 6.
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2. Related Works

2.1. Route Decision Process Modeling

Researchers have been pursuing an appropriate model for inter-domain
routing policy during the last two decades. Lixin Gao proposed AS busi-
ness relationship [3], which is the first and most widely-used model on inter-
domain routing policy. She partitioned routing policy into 3 classes: provider-
customer, peer-peer, and sibling-sibling. Based on AS business relationship,
she proved that a reasonable AS path should follow valley-free policy. Based
on this model, there have been plenty of works on inferring AS business re-
lationship [4, 5, 6, 7, 8]. Towards a finer granularity, works [1, 2] use BGP
atoms to represent groups of prefixes (originated by a given AS) that receive
equivalent treatment by a set of BGP routers. Work [9] discusses the ap-
propriate granularity of routing policy to model routing policy by comparing
AS business relationships and BGP atoms. It also shows that a large frac-
tion of path choices correspond to the selection of neighboring ASes choices.
Work [11] proposes a SDN solution for the inter-domain routing of IXPs.
Different from our work, they manage the inter-domain routing based on the
management of virtual topology according to a manually predefined state
machine.

Based on the above routing models, researchers [10, 12, 13, 14] investigate
both the intra-domain [10, 12, 13] and inter-domain [14] routing policies. For
most cases, the AS business relationship works. However, due to reasons of
the complex routing relationships, sibling ASes, prefix-specific policies, and
filtering of more-specific prefixes, a non-trivial amount of incoherences exist
in the Internet. Works [15, 16, 17, 18, 19] also contributes to related Internet
and routing issues.

2.2. Feature Selection Methods

Based on the selection criterion, the feature selection methods can be
roughly divided into three categories: filter, wrapper and embedded meth-
ods. A filter method [20, 21, 22] relies on the evaluation metrics such as
correlation, dependency, consistency, distance and information to select fea-
tures. A wrapper method [23] performs a forward or backward strategy in
the space of all possible feature subsets, using a classifier to make choice
among the subsets. Generally, this kind of method has high accuracy and is
about to find the features suitable for the predetermined learning algorithm.
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However, the exponential number of possible subsets makes this kind of meth-
ods computationally expensive. A embedded method [24, 25, 26] attempts
to simultaneously maximize the classification performance and minimize the
number of selected features by integrating the feature selection process into
the model training process. It can provide suitable feature subset for the
learning algorithm much faster than the wrapper methods, but the selected
features may be not suitable for other learning algorithms.

3. Design of Our Route Decision Model

BGPs route decision process learns candidate routes from neighboring
routers, ranking the preference of the candidate routes, and decides the op-
timal route. Herein, as a general model for the route decision process, our
model takes the candidate routes information as input, and decides the op-
timal route as output.

Since BGPs route decision process decides the optimal for each prefix,
our model also works in a per-prefix level. Since the route decision process
ranks all candidate routes according to the same preference standard. We
decompose the modeling problem to a set of sub problems which decides
whether a candidate route is optimal. The structure of our route decision
model works as following (shown in Figure 1).

Figure 1: Model structure.

3.1. Model Structure

For each prefix, our route decision model decides the optimal route a-
mong the set of candidate routes to the destination prefix. Since we aim at
resolving our modeling problem in a deep learning way, we need to transform
the origin samples (i.e. the candidate routes) to acceptable information for
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the neural networks. As a result, our route decision model first conducts
characterization to generate a set of features of the candidate routes, which
we will discuss in detail in Section 3C. As a matter of fact, different Ases
have various correlated features, which impact the effectiveness of the route
decision modeling, thus we conduct further feature selection on the generated
features. We will introduce our feature selection method in Section 3D. The
route classifier is a supervised training model, and we will discuss the gener-
ation of the labeled training data set in Section 3B. The selected features are
feed into the route classifier which determines whether the candidate route
is optimal, more concretely, the possibility of the candidate route to be opti-
mal. The voter collects the output of the route classifier for each candidate
route, and decides the optimal routes for each prefix.

3.2. Labeled Candidate Route Set Construction

The route decision model works in a supervised way, i.e., we train our
model with the labeled candidate routes. However, the BGP data we use
for model construction is the public BGP data set(e.g. Oragon data), which
is routing table collected from BGP routers (i.e. the optimal route for each
prefix). As a result, we need to generate the candidate route set ourselves
together with the optimal-route labels.

Our idea for the data set construction is to rely on the data exchange
between BGP monitors. Here, a BGP monitor refers the routers cited in
an monitored AS which shares its routing table to the public data source.
When monitors are cited in neighboring ASes, they would exchange their
routing tables with each other, thus the candidate routes could be estimated
according to the routing tables of monitors cited in neighboring ASes.

As shown in Figure 2 is an example. Monitor A cites in AS 1; monitor
B cites in AS 2, and monitors C cites in AS 3. Both AS 1 and AS 2 are
neighboring ASes of AS 3. From the routing tables observed on monitor
A and B, we observe the paths towards prefix f are “1 4 5” and “2 4 5”
for AS 1 and AS 2 individually. Accordingly, AS 3 would receive the route
announcement of “1 4” and “2 4 5” from AS 1 and AS 2 towards prefix f.
Thus the candidate routes towards prefix f on monitor C should be “3 1 4 5”
and “3 2 4 5”.

Due to the existence of the out-bound filters, route announce from neigh-
boring Ases could filtered, so that the corresponding candidate routes would
not be received. For example, in Figure2, monitor A may set up filter rules
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Figure 2: Example of candidate route set construction.

which filter the out-bound route announcement of “1 4 5”, so that the can-
didate route on monitor C would be just “3 2 4 5”.

We resort to the historical routing updates to ensure the existence of
candidate routes. Since the out-bound filter rules do not change frequently,
we investigate the routing updates towards the same prefix during a recent
period of time. If the candidate route could be observed in the routing
updates, we consider that the candidate route exists.

To sum up, our methods to construct the labeled candidate route set of
a target monitor works as following (shown in Alg. 1). The input of the
algorithm includes the target monitor, the BGP monitor set, the snapshots
observed on such monitors, and the historical routes derived by collecting the
routing updates observed on the target monitor. The algorithm generates the
labeled candidate route set for the target monitor. To that end, we search
for the monitors cited in the neighboring ASes of the target monitor, and
generate the candidate routes for each prefix of the target monitor according
to the searched monitors. If the generated route could be observed during a
recent historical period based on the routing updates observed on the target
monitor, we add it to the candidate route set. To label the candidate route,
we compare it with the snapshot of the target monitor, and label the can-
didate route observed in the target monitors snapshot as the optimal route.
The rest of generated candidate routes are labeled as non-optimal routes.

3.3. Characterization

The labeled candidate route set is used for training the route classifier,
which is realized by a neural network. Thus we need to extract a set of
features from the candidate route to feed the route classifier. To ensure the
effectiveness of the route classifier, the extracted features need to be impact
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Algorithm 1 Labeled candidate route set construction algorithm.

Input:
a: The monitor cited in the target modeling AS;
M : BGP monitor set;
R: Snapshot observed on monitors;
H: Historical routes observed on monitors;

Output:
C: Candidate route set of the monitor a

1: Foreach m in M
2: If a and m cite in a pair of neighboring ASes
3: Foreach prefix p
4: If “AS(a) R(m, p)” do not exists in H(a, p) #AS(a) refers to the ASN

of monitor a
5: next;
6: If “AS(a) R(m, p)” == R(a, p)
7: label “AS(a) R(m, p)” as optimal
8: Else
9: label “AS(a) R(m, p)” as nonoptimal

10: Add “AS(a) R(m, p)” to C(p)

factors of the route decision process.
On the perspective of network management motivations, there are mainly

three impact factors for the route decision process control, including operat-
ing earnings, networks performance, and traffic engineering.

Operating earnings. The backbone of the Internet is composed of a num-
ber of ASes run by ISPs (Internet Service Providers). An ISP always want to
make as much money as possible according to their business agreement. Thus
the network administrators always prefer the routes which could bring more
operating earnings. The AS business relationship model is based on such
consideration, which classifies the AS relationships based on the charging
mode of data transfer. For example, the traffic through customer networks
usually makes more money than the traffic through provider networks.

Network performance. Data transferred on the Internet between hosts
for communication usually need to traverse a number of Ases. The more
ASes the transferred data traverse, the longer the round trip time would
cost, leading to bad QoS(Quality of Service). To guarantee the network
performance towards the target prefix, network administrators always prefer
the routes with shorter AS path length.
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Traffic engineering. For large scale ISPs, there are usually multiple next
hop network access points. At the same time, a large amount of prefixes need
to get through such access points after applying the above two principles.
To conduct load balance to ensure none of the access points get congested.
Network administrators usually conduct real-time traffic engineering, and
configure the network to prefer different next-hop learned routes for different
prefixes.

On the perspective of protocol configuration methods, the impacting fac-
tors are the route attributes considered (Local-pref, AS path length, Origin
type, MED, etc) in the route decision process for network configuration.
Local-pref refers to the local configuration for the candidate route; AS path
length refers to the quantity of the traversed ASes in the candidate route;
Origin type refers to the origin of the candidate route (IGP > BGP). It also
needs to be mentioned that the BGP route attributes could be configured
based on BGP communities. BGP communities are declared by individual
ASes, and marked on the routes traversing. A BGP router would configure
the route attributes based on the BGP communities marked on the routes.

According to the above discussion, the next-hop ASes, the quantity of
traversed ASes, the next hop access network point, and the target prefix
are the dominant impacting factors in the route decision process. Since the
candidate routes towards different target prefixes and the network access
points usually traverse a set of different ASes. We believe we could represent
the dominant impacting factors of each candidate route by the set of ASes
the candidate route traversing.

Our method works as following, we first make a list of considered ASes
as the feature vector for the candidate routes, noted as ASN digit list. Then
we mark the feature vector for each candidate route, if the AS path of the
route traverses certain AS in the list, we mark its corresponding ASN digit
in the list.

3.4. Feature Selection

The feature set we generate in the previous subsection could be at the
length of tens of thousands. However, in most cases, there are no more than
ten ASes in all candidate paths. The feature information content could be
really sparse. A number of ASN digits are seldom used, and turn out to be
noisy data to the route decision modeling. As a result, we conduct feature
selection to improve the feature information content density.
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Unlike the existing feature selection methods, which aim at improving
the model prediction accuracy according to the training data, our objective
is to select the most informative features (i.e., the ASN digits). The more
frequently an AS shows up in the candidate routes, the more traffic it is
likely to be responsible for, making it more important for the route decision
process. Following this idea, our plan is to select the most frequently observed
ASes in the candidate route set. Specifically, we calculate the frequency of
all the observed ASes in the candidate route set, and rank the observed ASes
according to the frequency from high to low. Finally, we select the top k
ASes if the feature size is k.

3.5. Running Example

Now we present a running example to construct the training and validat-
ing data set. As shown in Table 1 we list all the candidate routes. In our
example, we train the route decision process for AS 1. AS 1 have 3 neigh-
boring ASes (AS 2, AS 3, and AS 4). The candidate routes are observed
from such neighboring ASes. The routing table of AS 1 includes 4 prefixes
(p1, p2, p3, p4). Since AS 1 selects the path “1 2 5 9” for prefix p1, the candi-
date path “2 5 9” from AS 2 is the optimal path, and the paths “3 7 9” and
“4 8 9” are non-optimal paths (noted as (“2 5 9”, 1), (“3 7 9”, 0), and (“4 8
9”, 0)). Similar for the other prefixes.

The next step is to rank the observed ASes according to their frequency.
According to Table 1, AS 2, AS 3, AS 4, AS6, and AS 8 are observed for 4
times. AS 5, and AS 7 are observed for 2 times. AS 9, AS 10, AS 11, and
AS 12 are observed for 3 times. Herein, the ranking for the observed ASes is
(2, 3, 4, 6, 8, 9, 10, 11, 12, 5, 7). When the feature size is 5, we select AS 2,
3, 4, 6, and 8. When the feature size is 9, we select AS 2, 3, 4, 6, 8, 9, 10,
11, 12.

Suppose that the feature size is 5. We then extract characters from the
candidate routes. Since the selected features are AS 2, 3, 4, 6, and 8, the
candidate path “2 5 9” only traverses AS 2, and the extracted character is
(1, 0, 0, 0, 0). Similarly, the extracted character for the path “2 6 10” is (1,
0, 0, 1, 0) since “2 6 9” traverses both AS 2 and AS 6.

4. Evaluation by Case Study

In this section, we investigate the feasibility of our proposed model. As a
first step to the correctness of our method, we want to begin with case study
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AS # Prefix AS path AS # Prefix AS path
1 p1 1 2 5 9 2 p1 2 5 9
1 p2 1 2 6 10 2 p2 2 6 10
1 p3 1 4 8 11 2 p3 2 5 11
1 p4 1 3 7 12 2 p4 2 6 12
3 p1 3 7 9 4 p1 4 8 9
3 p2 3 8 10 4 p2 4 6 10
3 p3 3 8 11 4 p3 4 8 11
3 p4 3 7 12 4 p4 4 6 12

Table 1: Routing table of Figure 3.

of routing policy modeling, focusing on the detailed routing scenarios, and
investigate the difference between our method and the previous proposed
methods. To that end, we first introduce our used dataset together with
the topology of our example cases; we then compare the prediction accuracy
of our method with the AS business relationship model with analysis of
the model difference; next we investigate the feature selection and model
parameter details to discuss the improvement of the model performance;
finally, we analyze why our models works and the limitations of our model.

Our experiment environment is Ubantu 16.04.1 LTS system, 64 bits, with
4 cores 1.8GHz, 4G memory. Our deep learning tool is Keras using theano
as backend.

4.1. Our Data Set

Our dataset is learned from the open sourced BGP data of Oregon, which
includes snapshot data every few hours and all routing updates. Since our
aim is to train a routing policy model by learning the candidate paths and
the optimal paths, we do not want to involve routing policy by using routing
updates. Thus we download the snapshot data, and the data is generated
during October, 2017. Totally, there are 54 full-table monitors in the Oregon
data.

Our idea to generate the candidate routes set and the optimal route set
is as following. When two monitors cite in neighboring ASes, and one AS
provides data transmitting service for the other AS, the provider AS is likely
to announce its entire routing table to the customer AS. As a result, the
snapshot of the monitor in the provider AS could be observed as the candidate
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routes of the monitor in the customer AS. The snapshot of the monitor in
the customer AS indicates its route choice among the candidate routes (i.e.
the optimal routes). Herein, we could generate the candidate routes and
optimal routes based on the monitors cited in neighboring provider-customer
AS pairs; take the providers snapshot as the candidate route set; and take
the customers snapshot as the optimal route set.

In the rest of this paper, we focus on the 3 following cases as shown
in Figure 3, which are used for modeling the routing policy of AS3356 and
AS23673. For the case of AS3356, we have two monitors cited in AS2914 and
AS1299 individually. AS2914 and AS1299 are both peering AS of AS3356,
and are both Tier-1 AS in the Internet. For the case of AS23673, we have
3 monitors cited in AS1299, AS3257, and AS3356 individually, which are all
provider AS of AS23673.

Figure 3: Topology of our two modeling cases.

Since inferring AS business relationships is not our main objective in this
paper, we utilize the AS business relationship provided by Caida data, their
data is based on Luckies method [27]. We also double check the AS business
relationships involved in our paper with the AS business relationships com-
bining Caidas data with the relationships inferred from Ark traceroute data
[28].

According to our method introduced above, we generate the candidate
route set and sign tags to the candidate route set to indicate the optimal
route. For the monitor in AS3356, there are 847752 candidate routes for
423876 prefixes, taking about 50% of AS3356’s entire routing table. For the
rest 50% of AS3356’s routes, there are no more than one candidate route for
each prefix. It is meaningless to model the route decision process for such
prefixes since there is only one route choice, and we ignore the candidate
routes for such prefixes. Similar for AS23673, there are about 1297471 can-
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didate routes for 436888 prefixes, taking about 67% of AS23673’s routing
table.

We then select and extract features with the candidate route set. Based
on our method introduced above, we conduct statistics on the showing up
frequency of each AS observed in the candidate route set, then select the most
frequently observed ASes as the features, and generate the feature values for
each candidate route. We split our tagged candidate route set into two parts
as the training route set (90% of all routes) and the validating route set (10%
of all routes).

4.2. AS Business Relationship Model

As a comparison, we conduct route prediction for our cases based on the
AS business relationship model, which always selects the shortest path from
the optimal neighboring AS. Of course, all of the candidate routes in our
training set comes from the same kind of neighboring AS, thus we simply
select the shortest path. When there are multiple shortest paths, we make a
random choice. When the optimal route is not selected from our candidate
route set, we simply ignore that prefix. Out of 81389 prefixes in the candidate
route set of AS3356, the AS business relationship model makes the correct
route choice for 67373 prefixes with an accuracy of 82.78%. And out of 235594
prefixes in the candidate route set of AS23673, the AS business relationship
model makes the correct route choice for 90413 prefixes, with an accuracy of
38.3%.

With no surprise, for 26996 of AS3356’s prefixes (148566 for AS23673),
there are more than one shortest path, and the route choice is made randomly.
As a result, the traditional AS business relationship model performs terribly
in our cases.

4.3. Prediction Accuracy of Our Method

Utilizing the training data and validating data, we then model the route
decision process for AS3356 and AS23673. Since our route decision mod-
el is composed with route classifier, we begin with the prediction accuracy
evaluation of the route classifier. In our model, each route classifier is a neu-
ral network, taking the candidate route feature as input, and determining
whether it is an optimal route. The neural network of our route classifier is
composed with multiple layers of sequential models, and each layer includes
as many neurons as the input feature number.
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We also need to set a limitation to the feature size, we have two reasons
for that. First, our experiment environment contains limited computation
capability, and features more than 1000 would make the training procedure
of the model take quite a long time period. Second, as shown in Figure 4
is the AS show-up frequency of ASes in the candidate route set. Both axis
are in log-scale, and both curves have fat tale. For most of the ASes, the
show-up frequency ranges from 0-100, and for the top 1000 ASes, the show-
up frequency is at the level of 200-300. ASes showing up no more than 100
times usually cite at the edge of the Internet, and show up at the last 1-2
hops of the AS paths. For example, AS3356 has two candidate routes for
the prefix of 181.189.248.024, the corresponding paths are “1299 6830 23520
27696” and “2914 6830 23520 27696”. AS23520 and AS27696 both cite at
the edge of the Internet. They seldom show up in AS3356s routes to other
prefix, and cannot help in making the route choice since they appear on
both candidate routes. To sum up, we believe 1000 could be an appropriate
feature size up-limit.
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Figure 4: Show-up frequency.

As shown in Figure 5 is the prediction accuracy of our route classifier
with varying feature size. Here the neural networks contains 1 hidden layer.
For all of the experiments of AS3356, the prediction accuracy is better than
82% (82% for AS23673). With appropriate feature size setup, the prediction
accuracy could be improved by 8 percent for our cases. With the optimal
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feature size, we use the trained route classifier for route decision of our model,
and achieve an accuracy of 94% (92% for AS23673). Compared to the AS
business relationship model, our model performs much better.

For AS23673, the accuracy generally keeps improving, which indicates
that the performance of our model could be improved when we consider more
routing information. However, there exists counterexample, for which the
accuracy decreases with the growing feature size (e.g. feature size = 20 and
50 for AS23673). This indicates that there should be other impacting factors
for the feature selection, and selecting the most observed may introduce noise
into the training data.

For AS3356, the accuracy could be improved when the feature size is
expanded to 10. However, there is general a decreasing trend when we expand
the feature size, indicating that the feature size should not be too big to
induce too much noise.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1  10  100  1000  10000

A
cc

ur
ac

y

Feature size

AS23673
AS3356

Figure 5: Accuracy vs Feature size.

As a matter of fact, a deep learning method should not consider only one
hidden layer. Thus we evaluate the prediction accuracy for our cases with
varies quantity of hidden layers in Figure 6.

Generally, with the growing size of neural network, when the feature size
is small (2 or 10), the prediction accuracy gets worse; when the feature size
is bigger than 20, the prediction result is improving. We believe this is
because a deeper neural network need more training data, and the limited
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training data for the small feature size setup makes the model under-fitting.
The prediction accuracy improvement is not promising, because to neural
network size and the training data size are both limited. However, compared
to the AS business relationship model, we believe this is a promising result.
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Figure 6: Accuracy with varies # layers.

4.4. Limitations

In the previous section, the prediction accuracy can hardly be improved
(93% at the best). Thus we are considering our models limitations, or more
specifically, the training data sets limitation. The problem is, when we ex-
tract the features for a selected set of frequently observed ASes, where would
multiple routes with different optimal tags fell into the same feature value.
For example, for AS3356, supposing the two selected ASes is AS1299 and
AS2914. There are 2 candidate routes: “113.193.215.0/24 2914 9498 9730
45528” and “124.81.168.0/21 1299 4671 4795”, the former one is tagged as
optimal route. The feature value for the candidate route is “113.193.215.0/24
2914 9498 9730 45528” is (1, 0), and the feature value for the candidate route
“124.81.168.0/21 1299 4671 4795” is also (1, 0). For such two cases, the in-
put of our model, but they have conflict labels. If we let the model satisfy
the former route, the prediction of the later route would endure errors since
the validation route set is directly selected from the candidate route set. We
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believe that conflict routes paly a dominant role in the inaccuracy of our
prediction model.

As shown in Figure 7 is the ratio of the conflict route set with various
feature size. For AS3356, when the features just consider 2 ASes, the conflict
routes take about 18% of all the candidate routes; when the features consider
1000 top observed ASes, the conflict routes could be decreased to 4% of all.
Thus, on the perspective of avoiding conflict routes, it is better to consider
more ASes as features.

It should be noticed that the feature size of Figure 7 is in log-scale, thus
the conflict ratio decreases very slow with the growing of the feature size.
Thus with our method, it could be very hard exclude all the conflict routes.

The time consumption of our model generally relies on the layers used
for the model. When the quantity of the layers is less than 4, the overall
time consumption of the model always takes less than 10 seconds. When the
quantity of the layers is 5, it generally will take a few minutes, and takes
hours for 6 layers on our laptop.
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Figure 7: Training data set conflict ratios.

5. Discussions

5.1. Model Characteristic

The AS business relationship model make the route choice according to
the next hop AS type, and the AS path length. We believe such two factors
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are both considered in our model. The neighboring ASes are the most fre-
quently observed ASes in monitors routing table, so they have first priority
to be selected as features. With further appropriate training, the routes from
the preferred neighboring ASes are more likely to be selected by our model
since it simply speaks for the data.

Since our model considers a list of frequently observed ASes, the more
ASes an AS path traverses, the more ASN digit will be tagged as 1. And
such ASN digit correlates to the path length. As discussed in Section 4.3, the
infrequently observed ASes usually cite at the edge of Internet, which would
show up in all candidate routes. And ignoring such ASes will not impact the
path length difference.

As a result, we believe our method is reasonable to outperform the AS
business relationship model, because it considers all the factors of AS business
and induce more detailed information in the route decision process.

A much more precise way for route decision modeling is to adjust the
configuration of the BGP network to make its routing consist with the de
facto BGP routing [9], on base of a per-prefix granularity. Our method is
quite similar to theirs. Both let the data speak for the route decision. How-
ever, there is a semantic gap between the BGP protocol configuration and
its routing policy. Simply adjust the protocol configuration could seriously
impact the flexibility and the effectiveness of the routing model expression,
and our method do not need to conduct detailed adjustment to the model,
because we borrow the popular deep learning method to do it for us.

5.2. Modeling for All ASes

One may also argue that the utilization of our model could be very limited,
since we need to feed our model with multiple routing tables for the modeling
of one single monitor. Actually, the routing modeling of an AS merely need
a candidate route set and its optimal route tags. This could be done by
collecting routing updates of the modeled monitor, and ranking the path
preference by calculating path usage time [29]. The path with longest life
time is the optimal path. For the ASes without monitors, their routes and
path usage time could be observed by other monitors, which we could use
to conduct the modeling [30]. As a bigger picture, with the growing amount
of BGP monitors deployed, the quantity of the ASes with available monitors
is growing. In that case we could conduct precise route modeling for most
ASes in the central part of the Internet.
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5.3. Application
Another interesting problem is how could our model be used for the re-

search and industry community. As a general picture, our vision is to model
the internet. Generate a route decision model for each AS, and simulate the
route transmission routing behaviors, so that we can analyze, control, and
predict the Internet routings with detail. A potential application could be
ISP traffic engineering.

For the current situation, our model could be used for analysis of routing
dynamics. With modeling of routing decision process of each monitor with
historical routing data, we are able to depict the monitors’ routing policy.
And feeding the latter routes to the model could check the consistence be-
tween the routing policy and the later routes, if not, there might be a route
instability or a routing policy change.

Another possible application is to identify the fraud routings. Our model
learns routing behaviors from the de facto routing updates. With accumu-
lated training data, the fraud routings can merely take a small part of the
overall training set. Herein, a fraud routing can hardly be selected as the
best path. If there is a conflict in practice, the fraud routings could be easily
detected.

6. Conclusion

In this paper, we introduce a data-driven method for the BGP network
modeling, which sheds light on modeling the BGP route decision process as a
black box. We discuss the modeling details including model structure, route
set construction, characterization and feature selection. By comparison with
the AS business relationship model in the form of a case study, we prove
the effectiveness of our model. As a future work, it is necessary to conduct
evaluation in more cases with more training data in order to further evaluate
the effectiveness. To investigate the rout decision modeling for ASes with
no sited monitors would also be a critical problem for the utilization of our
model. We also believe that our route decision model could help in detecting
routing policy changes and route anomalies for Internet routing prediction,
routing behavior analysis, and route instabilities detection.
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Our research focuses on the modeling of inter-domain route decision process. In the era of smart 

data with growing amount of routing data, we believe learning, understanding, and modeling the 

route decision process without the priori knowledge would be very important for the future 

Internet. Therein, in this paper, we propose a data –driven model for the inter-domain route 

decision process with deep learning method. We propose a set of deep learning resolution with 

structure, characterization, feature selection, and training data construction. We also discuss the 

effectiveness of our paper with detailed cases, which indicates that our model outperforms the 

AS business relationship model. 
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