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Abstract

Simulating the BGP routing sysi 1. ot Internet is crucial to the analysis
of Internet backbone network ro*ino I, ~havior, locating network failure and,
evaluating network performance to. future Internet. However, the existing
BGP routing model lacks in the coarse modeling granularity and the priori
knowledge based model. TV e ana. rsis of BGP routing data that reflects the
routing behaviors, directly ..~nac s the BGP routing decision and forward
strategy. The efficiency of such analysis dictates the time it takes to come
up with such a time-criv.~»" der.sion and strategy. Under the existing model,
BGP routing data ar alysis « ,es not scale up.

In this paper, w2 an. 'vze the inter-domain routing decision making pro-
cess, then present .. vefix level route decision prediction model. More specif-
ically, we apply teer learning methods to build a high-precision BGP route
decision proce.s m¢ 'el. Our model handles as much available routing da-
ta as possib! : tc prcmote the prediction accuracy. It analyzes the routing
behaviors witn. 't ~.ny prior knowledge. Beyond discussing the characteris-
tics of th: moc-l, we also evaluate the proposed model using experiments
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explained in detailed cases. For the research community, our e’ nod could
help in detecting routing dynamics and route anomalies for 1. ting Hehavior
analysis.

Keywords:
Deep learning, BGP route decision process, data-drive.. moac'ing, and
future Internet

1. Introduction

Internet is composed of tens of thousands of A.*onomous Systems (AS).
Such ASes run their network individually, ai. ' exch: nge their routing infor-
mation using inter-domain routing protocol, . hicu 1s Border Gateway Proto-
col (BGP) in real-life deployment. In spit~ ~f**- srowing trend of discussing
the next generation networking, the distri. “ted management framework of
Internet can hardly be changed due t ... ~~onomic, political, geographical
involvements.

Inter-domain routing protocol pi>y. a cominant role in the maintenance
and management of Internet. Arnropi.ate protocol configurations could sig-
nificantly improve network perforn.. nce. On the contrary, inappropriate pro-
tocol configuration could be a disaster to the regional network, or even the
whole Internet. It has beer deca 'es since the research community realized
the importance of understawn 'ing, < nalyzing, and predicting the inter-domain
routing behaviors, then -a1odeling BGP networks route decision process. Un-
fortunately, modeling t. = ryute decision process is a non-trivial problem. An
AS’s BGP configurat on inv.'ves its business secret, thus AS administrators
never share their r:tw.~ks BGP configuration. The only way to conduct
route decision me '~ling is to compare the input and output of the route
decision process thra construct a general mapping from the input to the
output. Howerer, ..~ BGP, the same route decision result could be reached
after a series of < quivalent configurations on the granularity of prefix. Due
to different ecc. om’: interest, traffic engineering objectives and political rea-
sons, prac.ical conngurations of BGP are always different. Therefore, to form
a general routin , model for BGPs route decision process that satisfies most
cases i~ lwa, . a challenge.

G cnerali_;, existing work models the route decision process based on prior
experi.nce which means analyzing data, making assumptions, building a
m wol ~nd finally verifying the correctness of the model. Such manner takes




the route decision process as a white box, which explains exp..-it!'y how and
why the model works. However, it leads to the following lii. ‘tatic °s of the
route decision model:

First, researchers have to make the right assumptic « in che first place.
Due to the reasons discussed above, such assumption can n.-dly fit all ASes
de facto BGP configurations, thus limits the accur cy of the model. For
example, AS business relationship model, the most amous routing model,
assumes that the AS administrators always run thcu network based on their
business relationships with their networks neighb wi-.g A Ses. The model has
been proven to be correct. However, recent wo.'- ha: “ound more and more
counter examples of this AS business relationship 1. odel. Growing amount
of supporting BGP data has indicated that ti. de .acto AS relationship is
actually more complex than the AS business .~lationship. As a result, the
AS business relationship model does n. work for applications that need
understanding of certain routing behaviors .. a finer granularity (e.g. in
prefix level).

Second, since adjustment on t! ~ mo.'el according to the input/output
data is an inevitable , the structure (t .2 white box (the model) must not
be too complex to conduct any -i,.* ent. As a result, the estimation of
the model parameters can only be p.-formed on a limited quantity of BGP
data. Thus the accuracy of t+ _ ~oute decision model can hardly be improved
when the available BGP d' ta inc1 ases. For example, since 2001, when the
AS business routing mo-el v s arst proposed, the amount of observable
BGP data has been inc eas .d by 2 orders of magnitude, and the amount of
BGP data is still grovwing Svh available data should reveal more detailed
information of an in’ *r-domaun routing system. However, due to the limited
expressiveness of tue exi “ing white box routing models, the accuracy and
performance of t! e e -isting routing models are limited.

In recent ye.s. deep learning technology is developing rapidly, which
gives us an op ,ortuni. - to model the BGP route decision process in a smarter
way, i.e. to oncuct data-driven modeling on the route decision process di-
rectly from *he 1. *.ing data, without understanding or explaining everything.
With dee > lear: ing methods, we can form a general classification model to
work as t1.~ rou’ e decision process. It learns from the available BGP data all
by its :it, then reveals possible configurations of BGP protocol. Intuitively,
the a-curacy of the route decision process model should be improved with
the grow..g amount of BGP data, since theoretically, the more input data
fea to .nc neural network structure, the more accurate the results. However,




few existing works dedicate to model the route decision proce.- b~ means of
deep learning methods.

Considering the limitations of existing white box routir o moac’s, we pro-
pose to view the route decision process as a black box, .nd .ry .o solve the
route decision process modeling problem using deep learning methods. Since
the route decision process takes the candidate rout s as i puts, then out-
puts the optimal route, we model it as a classifier v hich ¢ istinguishes the
optimal route from other candidate routes. Fun-amentaily, the challenges
of this modeling problem include 1). model stru 't e r: tionality discussion
and, 2). parameter estimation for the model fo. eac! \S. In this paper, we
focus on the former. We also discuss the model s ucture, the characteri-
zation of candidate routes, the training data s * co.struction as well as the
model evaluation.

The contributions of this paper are t. -ee rolds:

1) We propose to model the route decisic ~» process using a data-driven
method, which enables us to focus on t. e e.nciency of our networking model,
without the explanation of model ¢ -nictu e during the construction phase.

2) We propose an efficient super -isc ! learning resolution for the route
decision process modeling, inclu .y “* > characterization, feature selection,
and training data set construction .. ndules. Our deep learning resolution
ensures the scalability of th~ _~ute decision process modeling, so that the
model accuracy improves v ith the growth of the available BGP data.

3) We investigate thr fea. hiity of our model with open source BGP
data based case study cva'aation. We also compare our model with the
AS business relationship 10d I, proving its effectiveness for route decision
modeling in finer gr- ~ularity. We then discuss possible further applications
of the proposed model 1. 'ata analysis, network modeling and prediction.

The rest of th . p« »er is organized as following. First we introduce related
works in Section ? ".'hen we propose the general structure and details of our
routing mode’, incluu ng the characterization, the training set construction,
and how to “ag “ne training data in Section 3. Next, we evaluate our model
with comp~rison. *, the AS business relationship model using a case study
presentec in Se tion 4. Finally, we discuss the feasibility of our model in
Section 5, “hen _onclude the paper with future works to follow in Section 6.




2. Related Works

2.1. Route Decision Process Modeling

Researchers have been pursuing an appropriate mocal fr ¢ . ter-domain
routing policy during the last two decades. Lixin Gao p. wosed AS busi-
ness relationship [3], which is the first and most wide'y-use” model on inter-
domain routing policy. She partitioned routing policy nto 3 ¢ asses: provider-
customer, peer-peer, and sibling-sibling. Based or ..S buoiness relationship,
she proved that a reasonable AS path should follc w ~ alle /~free policy. Based
on this model, there have been plenty of worke on irfe- ring AS business re-
lationship [4, 5, 6, 7, 8]. Towards a finer granulari. 7, works [1, 2] use BGP
atoms to represent groups of prefixes (originav. 1 by « given AS) that receive
equivalent treatment by a set of BGP route.> Work [9] discusses the ap-
propriate granularity of routing policy tc¢ .oue: routing policy by comparing
AS business relationships and BGP atoms. * also shows that a large frac-
tion of path choices correspond to the "eler v.cn of neighboring ASes choices.
Work [11] proposes a SDN solutio~ for he inter-domain routing of IXPs.
Different from our work, they manag. v..~ inter-domain routing based on the
management of virtual topolog: -~~o1ling to a manually predefined state
machine.

Based on the above routine models, researchers [10, 12, 13, 14] investigate
both the intra-domain [10, "2, 13| nd inter-domain [14] routing policies. For
most cases, the AS business . ~lat’onship works. However, due to reasons of
the complex routing rel .tio'.ships, sibling ASes, prefix-specific policies, and
filtering of more-specific ~ efix :s, a non-trivial amount of incoherences exist
in the Internet. Wor! s [15, 1u, 17, 18, 19] also contributes to related Internet
and routing issues.

2.2. Feature Sel ctic v Methods

Based on “ne se.. -tion criterion, the feature selection methods can be
roughly divi .ed .nte three categories: filter, wrapper and embedded meth-
ods. A filter 1.tbod [20, 21, 22] relies on the evaluation metrics such as
correlatic a, dep, ndency, consistency, distance and information to select fea-
tures. A -rapp r method [23] performs a forward or backward strategy in
the srace ot all possible feature subsets, using a classifier to make choice
amot 7 the s ibsets. Generally, this kind of method has high accuracy and is
about v ©.d the features suitable for the predetermined learning algorithm.




However, the exponential number of possible subsets makes thi. -ir d of meth-
ods computationally expensive. A embedded method [24, .7 26; “ttempts
to simultaneously maximize the classification performance .. d m.. imize the
number of selected features by integrating the feature sr.ect’on process into
the model training process. It can provide suitable featu.~ subset for the
learning algorithm much faster than the wrapper me hods, but the selected
features may be not suitable for other learning algor1 hms.

3. Design of Our Route Decision Model

BGPs route decision process learns candidate .outes from neighboring
routers, ranking the preference of the candida.~ rov .es, and decides the op-
timal route. Herein, as a general model for .~e route decision process, our
model takes the candidate routes inform. .iou as input, and decides the op-
timal route as output.

Since BGPs route decision proces: de ...s the optimal for each prefix,
our model also works in a per-prefi~ leve . Since the route decision process
ranks all candidate routes according t. the same preference standard. We
decompose the modeling proble . +n i set of sub problems which decides
whether a candidate route is optin..! The structure of our route decision
model works as following (sherm in Figure 1).

Candidate Routes Route ecision Model

Feature
sele ion

) fertue 4 T =
(E—

prefix flA; A, A; ...

Route
TR oet £ > | Classifiers

prefix 7B, B, B; ... Voter | Optimal Routes

prefix AC €, C; ...

Figure 1: Model structure.

3.1. Moa.! Stru ture

Fe. each prefix, our route decision model decides the optimal route a-
mong the se of candidate routes to the destination prefix. Since we aim at
resolving <ur modeling problem in a deep learning way, we need to transform
the or g samples (i.e. the candidate routes) to acceptable information for
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the neural networks. As a result, our route decision model “r¢’ conducts
characterization to generate a set of features of the candidav. rouv. s, which
we will discuss in detail in Section 3C. As a matter of f-c. din.rent Ases
have various correlated features, which impact the effect ver :ss of the route
decision modeling, thus we conduct further feature selection . n the generated
features. We will introduce our feature selection met’.od in Section 3D. The
route classifier is a supervised training model, and we will d scuss the gener-
ation of the labeled training data set in Section 3P. <he selected features are
feed into the route classifier which determines wetlier he candidate route
is optimal, more concretely, the possibility of tl.. can ' .ate route to be opti-
mal. The voter collects the output of the route clas ifier for each candidate
route, and decides the optimal routes for each | vefi-..

3.2. Labeled Candidate Route Set Const .cowuie

The route decision model works in a sup.vised way, i.e., we train our
model with the labeled candidate rou.»s. nowever, the BGP data we use
for model construction is the public RGl data set(e.g. Oragon data), which
is routing table collected from BGP .ou.-rs (i.e. the optimal route for each
prefix). As a result, we need t¢ »c..ow"e the candidate route set ourselves
together with the optimal-route labe..

Our idea for the data se* _~mstruction is to rely on the data exchange
between BGP monitors. T.ere, a BGP monitor refers the routers cited in
an monitored AS which sharc. its routing table to the public data source.
When monitors are cit d i-. neighboring ASes, they would exchange their
routing tables with eah ¢ ner thus the candidate routes could be estimated
according to the rov ‘ng tables of monitors cited in neighboring ASes.

As shown in Figure » ‘s an example. Monitor A cites in AS 1; monitor
B cites in AS 2, anc monitors C cites in AS 3. Both AS 1 and AS 2 are
neighboring ASe. ¢ AS 3. From the routing tables observed on monitor
A and B, we observe the paths towards prefix f are “1 4 57 and “2 4 57
for AS 1 anc A¢ 2 idividually. Accordingly, AS 3 would receive the route
announcer~t . “t 47 and “2 4 5”7 from AS 1 and AS 2 towards prefix f.
Thus the candicte routes towards prefix f on monitor C should be “3 1 4 5”
and “3 2 < H”.

D-.e to the existence of the out-bound filters, route announce from neigh-
borin * Ases ould filtered, so that the corresponding candidate routes would
not. be 1ceaved. For example, in Figure2, monitor A may set up filter rules




Candidate routes: ", 3 . 4 5
A1 45 ; A2 45 A3 a4

C—=>  Optimal ro~ ‘£3 .15

A3245 — » Route ~nnour sement

Figure 2: Example of candidate route . ~* con truction.

which filter the out-bound route announceme._* of “. 4 57, so that the can-
didate route on monitor C would be just “5 245 .

We resort to the historical routing ~_ ..., to ensure the existence of
candidate routes. Since the out-bound filte. ~1les do not change frequently,
we investigate the routing updates to.-aiv . 'hie same prefix during a recent
period of time. If the candidate routc could be observed in the routing
updates, we consider that the candia. > route exists.

To sum up, our methods to ~~nstru-t the labeled candidate route set of
a target monitor works as follown.. (shown in Alg. 1). The input of the
algorithm includes the target monitor, the BGP monitor set, the snapshots
observed on such monitors, «d tL » historical routes derived by collecting the
routing updates observed on e te ‘get monitor. The algorithm generates the
labeled candidate route set ‘or vae target monitor. To that end, we search
for the monitors cited .~ ’“ne -.eighboring ASes of the target monitor, and
generate the candida’ e route. for each prefix of the target monitor according
to the searched mo.ito.. If the generated route could be observed during a
recent historical .. 'nd based on the routing updates observed on the target
monitor, we adc it t, the candidate route set. To label the candidate route,
we compare it witl “he snapshot of the target monitor, and label the can-
didate route obs’ rved in the target monitors snapshot as the optimal route.
The rest of gew. ~at .d candidate routes are labeled as non-optimal routes.

3.3. Cha acteriz ition

TT_ labeica candidate route set is used for training the route classifier,
whicl is res'ized by a neural network. Thus we need to extract a set of
feature. fr-.n the candidate route to feed the route classifier. To ensure the
ef.cu- - ss of the route classifier, the extracted features need to be impact




Algorithm 1 Labeled candidate route set construction algOIfh_r',.

Input:
a: The monitor cited in the target modeling AS;
M: BGP monitor set;
R: Snapshot observed on monitors;
H': Historical routes observed on monitors;
Output:
C: Candidate route set of the monitor a
1: Foreach m in M

2: If @ and m cite in a pair of neighboring ASes

3: Foreach prefix p

4: If “AS(a) R(m,p)” do not exists in ""(a,p) : :AS(a) refers to the ASN

of monitor a

5: next;

6: If “AS(a) R(m,p)” == R(a,p)

T label “AS(a) R(m,p)” a- ~ntimau

8: Else

9: label “AS(a) R(m,p)’ s no. optimal
10: Add “AS(a) R(m,p)” to C ‘v,

factors of the route decision nrocess.

On the perspective of ne work nanagement motivations, there are mainly
three impact factors for the . ~te lecision process control, including operat-
ing earnings, networks 7 erfc ‘mance, and traffic engineering.

Operating earnings. e br ckbone of the Internet is composed of a num-
ber of ASes run by I€'Ps (Inte net Service Providers). An ISP always want to
make as much moncy as [ assible according to their business agreement. Thus
the network admi ... ‘rators always prefer the routes which could bring more
operating earnir os. The AS business relationship model is based on such
consideration, whic.. classifies the AS relationships based on the charging
mode of dat. trs asfer. For example, the traffic through customer networks
usually makes . orc money than the traffic through provider networks.

Netwe ck pe formance. Data transferred on the Internet between hosts
for comn. micat on usually need to traverse a number of Ases. The more
ASes ‘L trausterred data traverse, the longer the round trip time would
cost, leadiny to bad QoS(Quality of Service). To guarantee the network
perfori. ~n~ towards the target prefix, network administrators always prefer
th 1o, © = with shorter AS path length.




Traffic engineering. For large scale ISPs, there are usually muv.tiple next
hop network access points. At the same time, a large amount . ¥ pre.’zes need
to get through such access points after applying the abe.. two principles.
To conduct load balance to ensure none of the access p sinte ge. congested.
Network administrators usually conduct real-time traffic «~gineering, and
configure the network to prefer different next-hop lear ned rc tes for different
prefixes.

On the perspective of protocol configuration n cuvnods, the impacting fac-
tors are the route attributes considered (Local-p of AS path length, Origin
type, MED, etc) in the route decision proces. for ~_c¢work configuration.
Local-pref refers to the local configuration for the c. ndidate route; AS path
length refers to the quantity of the traversed .'Ses in the candidate route;
Origin type refers to the origin of the candida.. route (IGP > BGP). It also
needs to be mentioned that the BGP rc 're attributes could be configured
based on BGP communities. BGP commun..'=s are declared by individual
ASes, and marked on the routes trave.in ,. A BGP router would configure
the route attributes based on the F “*P cc mmunities marked on the routes.

According to the above discussic», .he next-hop ASes, the quantity of
traversed ASes, the next hop & .o = twork point, and the target prefix
are the dominant impacting factors .. the route decision process. Since the
candidate routes towards di‘’_-~ut target prefixes and the network access
points usually traverse a se’ of dift rent ASes. We believe we could represent
the dominant impacting ‘actc.~ c. each candidate route by the set of ASes
the candidate route tra- ersiig.

Our method worke a. ollc ving, we first make a list of considered ASes
as the feature vector “or the candidate routes, noted as ASN digit list. Then
we mark the feature vec. v for each candidate route, if the AS path of the
route traverses ¢ cta n AS in the list, we mark its corresponding ASN digit
in the list.

3.4. Feature Sel ction

The fertire .t we generate in the previous subsection could be at the
length of cens o. thousands. However, in most cases, there are no more than
ten ASes . all :andidate paths. The feature information content could be
really spars~. A number of ASN digits are seldom used, and turn out to be
noisy data t) the route decision modeling. As a result, we conduct feature
selection .o improve the feature information content density.
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Unlike the existing feature selection methods, which ain. =t .mproving
the model prediction accuracy according to the training dav. ouw -bjective
is to select the most informative features (i.e., the ASN 7. its). The more
frequently an AS shows up in the candidate routes, tle nore craffic it is
likely to be responsible for, making it more important for v. ~ route decision
process. Following this idea, our plan is to select the mr ost fre vuently observed
ASes in the candidate route set. Specifically, we cal 1late ~he frequency of
all the observed ASes in the candidate route set, & .u rank the observed ASes
according to the frequency from high to low. Fin-.y, ve select the top k
ASes if the feature size is k.

3.5. Running Fxample

Now we present a running example to cons. mict the training and validat-
ing data set. As shown in Table 1 we 1.~ all the candidate routes. In our
example, we train the route decision nrocess “or AS 1. AS 1 have 3 neigh-
boring ASes (AS 2, AS 3, and AS 4). Tuae candidate routes are observed
from such neighboring ASes. The ~utin, table of AS 1 includes 4 prefixes
(p1, P2, P3, ). Since AS 1 selects the hau “1 25 9” for prefix py, the candi-
date path “2 59”7 from AS 2 is v. = < * nal path, and the paths “3 7 9” and
“4 8 9” are non-optimal paths (noteu ~s (“259”, 1), (“379”,0), and (“4 8
9”7, 0)). Similar for the other . ~fixes.

The next step is to ran’ the ol served ASes according to their frequency.
According to Table 1, A 2, .. 7, AS 4, AS6, and AS 8 are observed for 4
times. AS 5, and AS 7 are observed for 2 times. AS 9, AS 10, AS 11, and
AS 12 are observed fo~ 5 . mes. Herein, the ranking for the observed ASes is
(2,3,4,6,8,9,10, ** 12,5, 7). When the feature size is 5, we select AS 2,
3, 4, 6, and 8. When the feature size is 9, we select AS 2, 3, 4, 6, 8, 9, 10,
11, 12.

Suppose thay “h . feature size is 5. We then extract characters from the
candidate rov_.es. Su.ce the selected features are AS 2, 3, 4, 6, and 8, the
candidate pc*h "2 5 9” only traverses AS 2, and the extracted character is
(1,0, 0, 0. M. S..~narly, the extracted character for the path “2 6 107 is (1,
0,0, 1,0 since “2 6 9” traverses both AS 2 and AS 6.

4. E salua.‘on by Case Study

In 1.0 _ection, we investigate the feasibility of our proposed model. As a
fir. ¢ st w0 the correctness of our method, we want to begin with case study
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AS # [ Prefix | AS path | AS # | Prefix | AS pa h |
1 P | 1259 2 256
1 ps | 12610 ] 2 p [2F20
1 ps | 14811 ] 2 ps | 251
1 pye | 13712 2 pe 1269
3 ;o |379 4 p |48 ]
3 ps | 3810 4 ps 14670
3 s | 3811 1 s lasil |
3 Py | 3712 4 o 4612

Table 1: Routing table of Figu.~ 3.

of routing policy modeling, focusing on the de:. iled routing scenarios, and
investigate the difference between our mihod and the previous proposed
methods. To that end, we first intr- '-~= our used dataset together with
the topology of our example cases; we t. e 1 compare the prediction accuracy
of our method with the AS busin .- re. tionship model with analysis of
the model difference; next we invest,rate the feature selection and model
parameter details to discuss the ‘mpiovement of the model performance;
finally, we analyze why our models wocks and the limitations of our model.

Our experiment environr.eny = Ubantu 16.04.1 LTS system, 64 bits, with
4 cores 1.8GHz, 4G memo.  Our deep learning tool is Keras using theano
as backend.

4.1. Our Data Set

Our dataset is le a. ~d from the open sourced BGP data of Oregon, which
includes snapshot data every few hours and all routing updates. Since our
aim is to train e rov ing policy model by learning the candidate paths and
the optimal paths, re do not want to involve routing policy by using routing
updates. Th.s w2 download the snapshot data, and the data is generated
during Octon.~ 207 .. Totally, there are 54 full-table monitors in the Oregon
data.

Our i 'ea to . enerate the candidate routes set and the optimal route set
is as follow.~~  When two monitors cite in neighboring ASes, and one AS
provi tes da. transmitting service for the other AS, the provider AS is likely
to an. ouncs its entire routing table to the customer AS. As a result, the
sr ., ~hat of the monitor in the provider AS could be observed as the candidate

12




routes of the monitor in the customer AS. The snapshot of .2 “aonitor in
the customer AS indicates its route choice among the candic te 1o ttes (i.e.
the optimal routes). Herein, we could generate the can ..'ate .>utes and
optimal routes based on the monitors cited in neighborin prs viacr-customer
AS pairs; take the providers snapshot as the candidate ro.“e set; and take
the customers snapshot as the optimal route set.

In the rest of this paper, we focus on the 3 fol ~wing cases as shown
in Figure 3, which are used for modeling the rov’.iug noucy of AS3356 and
AS23673. For the case of AS3356, we have two m. ni’ors ited in AS2914 and
AS1299 individually. AS2914 and AS1299 are | nth » _ering AS of AS3356,
and are both Tier-1 AS in the Internet. For the ca e of AS23673, we have
3 monitors cited in AS1299, AS3257, and AS5.74 ir dividually, which are all
provider AS of AS23673.

AS1299 AS2914 AS1299 ASs. 7 AS3356

customer =———————Pp provider
AS3356 AS23673

Figure 3: Top.'ogv of our two modeling cases.

Since inferring AS bu 7 iess relationships is not our main objective in this
paper, we utilize the AS busuiess relationship provided by Caida data, their
data is based on Luckies method [27]. We also double check the AS business
relationships inve ve ' in our paper with the AS business relationships com-
bining Caidas d. a -vith the relationships inferred from Ark traceroute data
[28].

Accordin  tc our method introduced above, we generate the candidate
route set and s.. n cags to the candidate route set to indicate the optimal
route. Fr the monitor in AS3356, there are 847752 candidate routes for
423876 p1 ~fixes. caking about 50% of AS3356’s entire routing table. For the
rest 57 /0 of AS3356’s routes, there are no more than one candidate route for
each orefix. It is meaningless to model the route decision process for such
prefixes ~*~_ce there is only one route choice, and we ignore the candidate
ro. tes . such prefixes. Similar for AS23673, there are about 1297471 can-
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didate routes for 436888 prefixes, taking about 67% of ASZ. 477 s routing
table.

We then select and extract features with the candidat- . »ute . 2t. Based
on our method introduced above, we conduct statistics on .ne ,howing up
frequency of each AS observed in the candidate route set. the * select the most
frequently observed ASes as the features, and generat 2 the J~ature values for
each candidate route. We split our tagged candidate i ~ute s t into two parts
as the training route set (90% of all routes) and th . validaung route set (10%
of all routes).

4.2. AS Business Relationship Model

As a comparison, we conduct route predicti.» fo. our cases based on the
AS business relationship model, which always . ~lects the shortest path from
the optimal neighboring AS. Of course, ~11 ot the candidate routes in our
training set comes from the same kird of neizhboring AS, thus we simply
select the shortest path. When there a. = r.uwiple shortest paths, we make a
random choice. When the optimal ~ute ‘s not selected from our candidate
route set, we simply ignore that prefix Ut of 81389 prefixes in the candidate
route set of AS3356, the AS bu. .o » lationship model makes the correct
route choice for 67373 prefixes with a1, ~ccuracy of 82.78%. And out of 235594
prefixes in the candidate rov’ . =t of AS23673, the AS business relationship
model makes the correct re 1te cho ce for 90413 prefixes, with an accuracy of
38.3%.

With no surprise, fc. 26096 of AS3356’s prefixes (148566 for AS23673),
there are more than ores.. rter ¢ path, and the route choice is made randomly.
As a result, the trad” “onal A business relationship model performs terribly
in our cases.

4.83. Prediction ‘ccoracy of Our Method

Utilizing t'ie train.ag data and validating data, we then model the route
decision prc =ss for AS3356 and AS23673. Since our route decision mod-
el is comp~~2d w *1 route classifier, we begin with the prediction accuracy
evaluatio 1 of th. route classifier. In our model, each route classifier is a neu-
ral netwo.™- ta'ing the candidate route feature as input, and determining
whet! er it s an optimal route. The neural network of our route classifier is
comp ysed w th multiple layers of sequential models, and each layer includes
as many wcurons as the input feature number.
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We also need to set a limitation to the feature size, we ha.~ t vo reasons
for that. First, our experiment environment contains limitc ' cown.butation
capability, and features more than 1000 would make the *..ning procedure
of the model take quite a long time period. Second, as sho /n .. Figure 4
is the AS show-up frequency of ASes in the candidate rou. set. Both axis
are in log-scale, and both curves have fat tale. For most ~f the ASes, the
show-up frequency ranges from 0-100, and for the top 1000 ASes, the show-
up frequency is at the level of 200-300. ASes shor.ing 1p no more than 100
times usually cite at the edge of the Internet, ad .nov up at the last 1-2
hops of the AS paths. For example, AS3356 ..~s tv~ candidate routes for
the prefix of 181.189.248.024, the corresponding pau. s are “1299 6830 23520
27696” and “2914 6830 23520 27696”. AS235.29 ard AS27696 both cite at
the edge of the Internet. They seldom show u in AS3356s routes to other
prefix, and cannot help in making the ~~ute choice since they appear on
both candidate routes. To sum up, we believe 1000 could be an appropriate
feature size up-limit.

1x10° . . . -— . .
AS3356 —+—
AS23673 —x—
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Figure 4: Show-up frequency.

As shvwn in Figure 5 is the prediction accuracy of our route classifier
with v . ying reature size. Here the neural networks contains 1 hidden layer.
For & 1 of th. experiments of AS3356, the prediction accuracy is better than
82% (527 “or AS23673). With appropriate feature size setup, the prediction
ac rs ., could be improved by 8 percent for our cases. With the optimal

15




feature size, we use the trained route classifier for route decisio.. ~f Jur model,
and achieve an accuracy of 94% (92% for AS23673). Comp.ved . the AS
business relationship model, our model performs much be’ .. -.

For AS23673, the accuracy generally keeps improvi g, ~vhica indicates
that the performance of our model could be improved when . = consider more
routing information. However, there exists counterc xamp. ~, for which the
accuracy decreases with the growing feature size (e.g. featu e size = 20 and
50 for AS23673). This indicates that there should Le other impacting factors
for the feature selection, and selecting the most ol se” ved nay introduce noise
into the training data.

For AS3356, the accuracy could be improved v hen the feature size is
expanded to 10. However, there is general a dec. ~asi* g trend when we expand
the feature size, indicating that the feature .’ve should not be too big to
induce too much noise.
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Figure 5: Accuracy vs Feature size.

As a matter ~f fuict, a deep learning method should not consider only one
hidden le yer. Thus we evaluate the prediction accuracy for our cases with
varies que ntity « f hidden layers in Figure 6.

Gecrally, with the growing size of neural network, when the feature size
is smll (2 o 10), the prediction accuracy gets worse; when the feature size
is bigg. " *.an 20, the prediction result is improving. We believe this is
be aus . . deeper neural network need more training data, and the limited
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training data for the small feature size setup makes the mode. v .er-fitting.
The prediction accuracy improvement is not promising, bec>1se (o neural
network size and the training data size are both limited. F_. =ver, ompared
to the AS business relationship model, we believe this is a p- onusing result.

67 : “AS23673 B - AS23673
TR FerE f BRI
£ g

.

e w e
//\ -

( d ) e ! ( f )
<

Figure 6: Accuracy with varies # layers.

4.4. Limitations

In the previous seci. n the prediction accuracy can hardly be improved
(93% at the best). T s we . re considering our models limitations, or more
specifically, the tra'ning data sets limitation. The problem is, when we ex-
tract the features “. a selected set of frequently observed ASes, where would
multiple routes vith different optimal tags fell into the same feature value.
For example, “or A._2356, supposing the two selected ASes is AS1299 and
AS2914. Tb re .re 2 candidate routes: “113.193.215.0/24 2914 9498 9730
45528” and “1.1 87.168.0/21 1299 4671 4795”, the former one is tagged as
optimal r sute. "he feature value for the candidate route is “113.193.215.0/24
2914 949¢ 9730 < 5528” is (1, 0), and the feature value for the candidate route
“124.87.168.u, 21 1299 4671 4795”7 is also (1, 0). For such two cases, the in-
put ¢ f our 1. odel, but they have conflict labels. If we let the model satisfy
the for. = _oute, the prediction of the later route would endure errors since
th va '’ -tion route set is directly selected from the candidate route set. We
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believe that conflict routes paly a dominant role in the inac-mr.cy of our
prediction model.

As shown in Figure 7 is the ratio of the conflict rout .=t w. h various
feature size. For AS3356, when the features just consider 2 A'es, che conflict
routes take about 18% of all the candidate routes; when the .~atures consider
1000 top observed ASes, the conflict routes could be decrec sed to 4% of all.
Thus, on the perspective of avoiding conflict routes, * is b tter to consider
more ASes as features.

It should be noticed that the feature size of Fiov.e 7 is in log-scale, thus
the conflict ratio decreases very slow with the ~row'~ 4 of the feature size.
Thus with our method, it could be very hard excluc > all the conflict routes.

The time consumption of our model genei 'v -clies on the layers used
for the model. When the quantity of the lay.~s is less than 4, the overall
time consumption of the model always te. <s 1ess than 10 seconds. When the
quantity of the layers is 5, it generallv will .~ke a few minutes, and takes
hours for 6 layers on our laptop.
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Ficare 7: Training data set conflict ratios.

5. Dis~uss. .s

5.1. MModel 1 'haracteristic
The .5 business relationship model make the route choice according to
the ne v uop AS type, and the AS path length. We believe such two factors
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are both considered in our model. The neighboring ASes arc *hr most fre-
quently observed ASes in monitors routing table, so they ha - firs. priority
to be selected as features. With further appropriate trainir ., the 1. utes from
the preferred neighboring ASes are more likely to be se’:cte « by our model
since it simply speaks for the data.

Since our model considers a list of frequently ol servec ASes, the more
ASes an AS path traverses, the more ASN digit wil. be te s;ged as 1. And
such ASN digit correlates to the path length. As d'scussea in Section 4.3, the
infrequently observed ASes usually cite at the ed e 1 In ernet, which would
show up in all candidate routes. And ignoring s. ~h A< _s will not impact the
path length difference.

As a result, we believe our method is reasc~ab': to outperform the AS
business relationship model, because it conside.. all the factors of AS business
and induce more detailed information in ne route decision process.

A much more precise way for route deci,’on modeling is to adjust the
configuration of the BGP network to ma’.e ics routing consist with the de
facto BGP routing [9], on base of  ver- wrefix granularity. Our method is
quite similar to theirs. Both let the ¢ate speak for the route decision. How-
ever, there is a semantic gap bc wee he BGP protocol configuration and
its routing policy. Simply adjust the nrotocol configuration could seriously
impact the flexibility and th- _“Fectiveness of the routing model expression,
and our method do not ne .d to ¢ nduct detailed adjustment to the model,
because we borrow the p~pui. d ep learning method to do it for us.

5.2. Modeling for All Al

One may also arg: ~ that tne utilization of our model could be very limited,
since we need to feed our . >odel with multiple routing tables for the modeling
of one single mor.to, Actually, the routing modeling of an AS merely need
a candidate rou.> 2t and its optimal route tags. This could be done by
collecting rov .ing up ates of the modeled monitor, and ranking the path
preference b - cs.cul .ting path usage time [29]. The path with longest life
time is the ~ptu. »" path. For the ASes without monitors, their routes and
path usa e timc could be observed by other monitors, which we could use
to conduc. the ~aodeling [30]. As a bigger picture, with the growing amount
of BC'# monitors deployed, the quantity of the ASes with available monitors
is grc ving. n that case we could conduct precise route modeling for most
ASes in e central part of the Internet.
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5.8. Application

Another interesting problem is how could our model be ~ad i~ the re-
search and industry community. As a general picture, our .. ion .. to model
the internet. Generate a route decision model for each A 5, 2 1d s.mulate the
route transmission routing behaviors, so that we can anau, "o, control, and
predict the Internet routings with detail. A potenti [ app ‘cation could be
ISP traffic engineering.

For the current situation, our model could be ».sed for analysis of routing
dynamics. With modeling of routing decision p1 »cr,s o each monitor with
historical routing data, we are able to depict .o m-.tors’ routing policy.
And feeding the latter routes to the model could c eck the consistence be-
tween the routing policy and the later routes, .” not, there might be a route
instability or a routing policy change.

Another possible application is to ide..m1ty the fraud routings. Our model
learns routing behaviors from the de facto ro ting updates. With accumu-
lated training data, the fraud routings ca 1 werely take a small part of the
overall training set. Herein, a frat ' rou ing can hardly be selected as the
best path. If there is a conflict in practic. the fraud routings could be easily
detected.

6. Conclusion

In this paper, we introu ~e a r.ata-driven method for the BGP network
modeling, which sheds li-, nt nn 1..odeling the BGP route decision process as a
black box. We discuss .“e "nod ling details including model structure, route
set construction, char acteri.>"1on and feature selection. By comparison with
the AS business re’ati.»ship model in the form of a case study, we prove
the effectiveness o ~ur model. As a future work, it is necessary to conduct
evaluation in mc e ¢r ses with more training data in order to further evaluate
the effectiveness. _~ investigate the rout decision modeling for ASes with
no sited mor cor- would also be a critical problem for the utilization of our
model. We ai>. oeli -ve that our route decision model could help in detecting
routing p aicy changes and route anomalies for Internet routing prediction,
routing k ~havior analysis, and route instabilities detection.
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Our research focuses on the modeling of inter-domain route decision process. In the era of smart
data with growing amount of routing data, we believe learning, understanding, and modeling the
route decision process without the priori knowledge would be very important for the future
Internet. Therein, in this paper, we propose a data —driven model for the inter-dcmain route
decision process with deep learning method. We propose a set of deep learning re . ~lution with
structure, characterization, feature selection, and training data construction. We also disc. s the
effectiveness of our paper with detailed cases, which indicates that our mode' out erforms the

AS business relationship model.
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