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h i g h l i g h t s

• We develop a virtual selfishness queue (VSQ), to model the relay’s selfish character after having analyzed the relationship between relay’s selfishness
and its time varying factors in WCNs.

• In harmony with the time-varying network state information, a novel dynamic data transmission scheme is proposed to coordinate the source and the
relays to achieve their objectives, respectively.

• We employ the stochastic game to model the strategic interactions among selfish relays and prove the existence of Nash equilibrium (NE). Moreover,
a combined Q-learning algorithm is raised for the relay to obtain the equilibrium strategy.

• We present a dynamic FA algorithm for the source to maximize the average network throughput whilst keeping the network stability and bounding
relay’s selfishness. In the proposed algorithm, the source executes the dynamic FA based solely on relays’ current VSQ information and QSI.
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a b s t r a c t

The haptic communications is considered as the prime application running on the Tactile Internet.
Therefore, Tactile Internet required to be highly reliable, provide a very low latencies, and required
sufficient capacities at intermediate nodes to allow a large number of devices to communicate with
each other simultaneously and autonomously. Moreover, the wireless cooperative network (WCN), is
considered as one of the major component of the 5G technologies due to it promising advantages, such as
improving wireless transmission capacity and reliability. However, the selfish nature of relay nodes may
depress such enhancement and is not favored by the source node. In this paper, we propose an incentive-
based dynamic flow allocation (FA) and forwarding strategy selection (FSS) scheme under time-varying
selfishness. In the proposed scheme, the source node determines the FA tomaximize the average network
throughput under the constraints of network stability and selfishness boundaries, while each selfish
relay executes the FSS to optimize its own profit with regard to the dynamic network state. Moreover,
to cope with the conflicting interests between selfish relays a stochastic game model is employed to
design a competition for haptic information forwarding and Nash equilibrium is proven also a combined
Q -learning-based algorithm is proposed to guide the relays’ forwarding strategies. Furthermore, by
considering the stochastic property of the network state, the FA for the source is formulated as a stochastic
optimization problem. Finally, by exploiting the concept of virtual selfishness queue, the problem is
solved by using the Lyapunov optimization theory. Performance of the proposed scheme is evaluatedwith
traditional FA approach and data queue-based FA approach. Numerical results exhibit that our scheme
not only sustains a large network throughput but also achieves low latency and avoids the occurrence of
a completely selfish relay in the long term.
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1. Introduction

Recently, the Tactile Internet has attracted significant attention
of both industrial and academic communities [1]. Because of its
ability to transport real-time control and physical tactile experi-
ences remotely, the Tactile Internet requires low latency and suf-
ficient capacity to perform critical routine life tasks remotely over
the Internet. The haptic communicationswill be the prime applica-
tion running on the Tactile Internet [2] and the 5G communication
systems are expected to play an integral part in underpinning the
Tactile Internet at the wireless edge [3]. The cooperative diversity
is considered as the one of the promising technique for enhancing
the network throughput in 5G communication systems [4,5]. In
wireless cooperative networks (WCNs), the participation of more
relay nodes can significantly increases the reception reliability,
improves the data rate, enhances the connectivity, and supports
the low latencies. However, owing to the proliferation of the intelli-
gence agents, the relay nodes that participate in cooperative trans-
mission in WCNs are endowed with smart autonomic functions
and pursue self-interest [6]. Such autonomous relays may present
selfishness when delivering the intended information, which is
the unavoidable result of many practical factors, e.g., finite energy
and limited computing capacity. The selfish behavior of the relay
significantly degrades the performance of WCNs, which have high
requirements on delay time and data rates [7,8], and may further
hinders the intersection of the larger Tactile Internet and emerging
5G systems.

In order to enhance the performance of WCNs under the sce-
nario of selfish nodes, information delivery-related issues need
to be addressed. First, the incentive-based mechanism can play
a key role in stimulating the cooperation among relay nodes [9].
Second, as each relay updates its forwarding strategy based on
its own profit and the interference causes the coupling among
relays, an effective technique should be proposed to coordinate
the forwarding strategies among relays for effective information
delivery in WNCs. Third, as the relay’s selfishness changes with
its time-varying factors, a comprehensive mathematical model
should be developed to portray the dynamics of the relay’s selfish-
ness. Besides, the flow allocation (FA) of the Tactile traffic must be
completed under the time-varying selfishness anddata queue state
information (QSI). A dynamic program should be developed for
the source node to perform Tactile information delivery in WCNs.
Hence, it is important to introduce a dynamic information delivery
scheme to coordinate both the FA for the source and the forwarding
strategy selection (FSS) for each selfish relay, based on the time-
varying network state (data queues and selfishness at relays).

In this study, we examine the dynamic delivery of Tactile in-
formation for WCNs with dynamic selfishness. Considering the
conflicts of the selfish relays’ benefits due to their mutual inter-
ferences, a stochastic game is presented to model the competi-
tion among relays for optimizing their own profits. Meanwhile, a
Lyapunov optimization framework is employed for the source to
maximize the average network throughput under the constraints
of the relays’ selfishness boundaries and network stability. Because
the network stability also indicates the limitations of the informa-
tion delivery delay [10], our scheme also meets the low-latency
requirement for delivering real-time control in WCNs.

The main contributions of this study are listed as follows:

• Consistent with the time-varying network state, we propose
a novel dynamic information delivery scheme to execute the
remote real-time control inWCNs by coordinating the source
and the relays to achieve their objectives.

• We develop a virtual selfishness queue (VSQ), to model the
relay’s selfish behavior after analyzing the relationship be-
tween the relay’s selfishness and its time-varying factors in
WCNs.

Fig. 1. Haptic information delivery over WCN..

• We employ the stochastic game to model the strategic inter-
actions among selfish relays and prove the existence of Nash
equilibrium. Moreover, a combined Q -learning algorithm is
developed for the relay to obtain an equilibrium strategy.

• We present a dynamic FA algorithm for the source to max-
imize the average network throughput while keeping the
network stability and bounding the relay’s selfishness. In
the proposed algorithm, the source executes the dynamic FA
based solely on the relays’ current VSQ information and QSI.

The rest of the paper is organized as follows. Section 2 presents
the related works. The system model and incentive mechanism
are presented in Section 3. In Section 4, we provide the problem
formulation and build the virtual selfishness queue. In Section 5,
we design a stochastic game for relays to update their forwarding
strategies. A dynamic FA algorithm is proposed for the source in
Section 6. Section 7 shows the performance of the scheme while
Section 8 presents the simulation results to evaluate the proposed
scheme. The conclusions are presented in Section 9.

2. Related works

Resource allocation including FA has received significant re-
search attention in recent years [11]. A gradient-based FA algo-
rithm was proposed in [12] regarding the fairness among flows;
however, the nodes’ selfishness in wireless networks was ne-
glected. In order to study the strategic interactions among self-
ish nodes, game theory is considered a powerful tool in wireless
networks [13] because it is the inherent nature for selfish nodes
to reduce their costs whilst simultaneously maximizing their pay-
offs, e.g., energy resource. An evolutionary game-based packet
forwarding scheme was introduced in [14]. However, they did
not provide the specific decision-making process of autonomous
relay and ignores the potential conflicting interests among the
source and the relays. Stackelberg game is always used to man-
age the different objectives of the source and relays in wireless
networks [15,16]. An incentive mechanism was proposed in [15]
via Stackelberg game to obtain the optimal pricing and purchasing
strategy, whilst a socially optimal approach routing was presented
in [16] based on Stackelberg game. To ensure the cooperation
among autonomous nodes over wireless cooperative networks,
a core game was proposed in [17] by considering multi-sources
and multi-relays. However, these schemes are mainly based on
the static situations, e.g., the node’s energy resource is assumed
to be constant, which may not be valid for practical wireless
networks.

3. Systemmodel

Considering the node’s dynamic selfishness, which changes
with its time-varying factors, an FA optimization problem was
proposed in [18] based on the social and behavioral trust of the
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Table 1
Key notations.
Notation Interpretation

G, V directed graph, node set
L, hτ

nn directed links, channel gain
NI , nI relay set, relay
NU , nU TD set, TD
F , rn data session, delivery data
FI , f In relays’ session set, nI ’ session
FU , f Un TDs’ session set, nU ’ session
Rg , Rp reward, token consumption
t , τ time frame, timeslot
ρ slots number within one frame
An strategy set
an , a−n nI ’ strategy, others’ strategies
f , d cooperative action, dropping action
PT
n , P

R
n transmission power, reception power

γ τ
n (an, a−n) SINR

W , Dt
n bandwidth, queue backlog

γ ∗
n , o

τ
n SINR threshold, interference state

Rτ
n(an, a−n, oτ

n) nI ’ utility
U t (F t ) network throughput
wn , ϖn weights of nI

Ū , Stn average throughput, nI ’ VSQ
PTotal,t
n total energy consumption

Gt , NL stochastic game, player set
S, C tr

n strategy set, forwarding cost
sn(on), s−n(on) mixed strategies of nI ’ and others
Vn(sn(on), s−n(on)) discounted payoff
s∗n(on), s∗

−n(on) equilibrium strategies of nI ’ and others
V ∗
n (s

∗
n(on), s∗

−n(on)) equilibrium utility
Ton,o′

n
transition probability

Q ∗
n (on, an) optimal Q-value

sτn(on, an) probability of nI ’ choosing action

nodes, while a routing application maximization was developed
in [19] depending on the dynamic trust management. However,
these studies executed the FA based on the individual node’s trust
aggregation and excluded the selfish nodes to the network by
simply setting a trust threshold,which greatlywasted the potential
relays and does not effectively avoid the existence of completely
selfish relay. They did not jointly schedule the FA for the source
and FSSs for relays in terms of dynamic network parameters. A
flexible resource management scheme was built in [20] for Tac-
tile communication in 5G-enabled Tactile Internet. To meet the
stringent latency requirements for Tactile Internet capable net-
works, a predictive resource allocation algorithm including dy-
namic wavelength and bandwidth allocationwas proposed in [21].
Nevertheless, existing works neglected the influence of the dy-
namic network state on system performance, which may lead to
an unacceptable degradation of network stability [22].

Haptic communications will be the prime application running
on the Tactile Internet [2]. The relationship between the haptic
communications and Tactile Internet will be that of service and
medium, respectively (e.g., the relationship between VoIP and
the Internet). The functional architecture of the Tactile Internet
for remote and real-time human-to-machine interaction, such as
haptic communication is shown in Fig. 1. The master domain,
which consists of a human and a human system interface, sends
the command signals to control the operation of a remote robot
(or tele-operator) in a slave domain through the network domain
(the forward path). Moreover, the robot in the slave domain will
feedback the kinesthetic signals to the master domain via the net-
work domain for the human to learn the remote environment (the

Fig. 2. WCNs with selfish relays.

reverse path). We express the command signals on the forward
path and the kinesthetic signals on the reverse path as Tactile
information. The network domain, which is the 5G communication
system containing wireless cooperative network in this study,
provides a medium for Tactile information delivery between the
master and slave domains. Therefore, the human can touch, feel,
and manipulate the remote robot in an interactive environment.
To extend the transmission convergence and improve the network
capacity, we employ cooperative transmission in a 5G communi-
cation system and study the cooperative haptic information deliv-
ery in WCN (network domain) for real-time control. Table 1 lists
notation used in this study. To describe the our system model in
detail, we divided it into a number of sub-models and discuss each
sub-model separately in following subsections.

3.1. Network model

In our network model, the potential selfish relay nodes are
represented as a directed graph G = {V,L}. The set of nodes V
includes the source node s, relay nodes NI

= {1I, 2I, . . . ,NI
}

within transmission range of source node, and other terminal
devices (TDs) NU

= {1U , 2U , . . . ,NU
} that are out of the source’s

transmission range. The set of link L contains directional links
which exists if and only if two nodes are within a each other
transmission range.

We assume that the Tactile-based haptic information is deliv-
ered in the form of data packets. The source node receives the data
packets about the haptic information from the master domain on
a forward path (or slave domain on the reverse path) and sends
the packets to the network nodes (relays and TDs). When the
packets reached at their intended destination in theWCN (a TD or a
relay), they further forwarded to the slave domain on the forward
path (or master domain on the reverse path). Due to the limited
delivery range, when the source wants to transmit TDs’ packets, it
requests the relays to forward the packets to its intended TDs. We
also assume that each relay can forward the received packets to a
specific TD and has an infinite buffer for backlogging the packets.
There exist N communication pairs that share the same frequency
resource as shown in Fig. 2. We further assume that both relay nI

and the TD nU can receive data packets from the source and further
send to the next domain. There exists a set of F active unicast data
sessions in the considered network scenario. Let fnI and fnU denote
the sessions whose source is s and the destination nodes are relay
nI and TD nU , respectively.
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Fig. 3. Structure of data packet.

3.2. Incentive model

As the forwarding actions may consume a certain amount of
energy; therefore, relay nodes may be unwilling to forward the
received packets to save their limited energy for receiving their
own packets such a selfish behavior of the relaymay greatly reduce
the network throughput. An incentivemechanism [23] is exploited
to overcome selfishness of relay nodes, in which to stimulate the
relays to participate in the cooperative packet forwarding, the
source will pay tokens to the relays when it wants to deliver the
packets to its intended TD via a relay nodes. If the relay node for-
wards the intended packets to the corresponding TD successfully,
it will receive the tokens and may use them for receiving data
from the source. Tokens that a relay node obtains from the source
node as an incentive are related to its contribution to improve
the network capacity. Specifically, when the relay nI successfully
participates in the cooperative packet forwarding to the TD nU with
a transmission rate of rn, it will receive Rg rn tokens as a reward,
where Rg is the number of received tokens for unit packet. The
specific expression of the delivery rate rn for the communication
pair nwill be provided in the following subsection. When the relay
has no tokens, it loses the chance to receive its own data packets
from the source.

In order to enable the nodes to pay and earn tokens, a credit
clearance center (CCC) [24] is employed to manage the tokens for
the relay. Each network node can use wireless link to communi-
cate with the CCC for the verification and the payment of virtual
currency during the rewarding process. Furthermore, each relay
holds a digitally signature to the CCC. Then, the relay can register
itself to the CCC and know the number of its virtual currency.
When the source sends a data packet whose destination is TD nU ,
there exists a space at the head of the packet which contains unit
incentive Rg based on the packet type. During the transmission
process, others can also add some forwarding information onto
the packet. Specifically, if relay nI receives and forwards this data
packet, it will add its digitally signature to the packet. After the
packet reaches the destination (TD nU ) via nI , the destination will
add link rate rn to the packet. Then, the destination nU extracts the
forwarding information from the data packet and submits it as a
report message to the CCC via wireless link, as shown in Fig. 3. The
CCC will calculate and charge rewarding currencyRg rn to relay nI

from source’s account via a virtual bank, after it has verified the
receipt. If relay nI does not participate in the cooperative trans-
mission, it will get nothing. Note that, to keep track the forwarding
packet path truthfully, the currency exchange between the relay
and source is virtual, and the currency is not actually sent by the
source.

3.3. Joint FA and FSS model

Noting that the selfishness of relay nI may varies with its
residual energy and holding tokens1 and QSI of nI which evolves
with the allocated rates of TD nU . The source aims to optimize the
average network throughput by allocating the flow rates regarding

1 More details will be discussed in Section 4.

Fig. 4. Joint FA and FSS.

the dynamic network state, i.e., the relays’ data queues and self-
ishness. Each relay’s objective is to take autonomous forwarding
strategies for maximizing its own profit based on the interference.
The specific illustration for the joint FA and FSS model is showed
in Fig. 4. As there may exist conflicts of interests between the
source node and the relay nodes. Moreover, collecting the relevant
information of the relays incurs a non-negligible cost to the source;
therefore, we consider a time-division system to dynamically co-
ordinate the FA for the source and FSSs for the relays.

The time horizon is divided into time frames where each time
frame containsρ short timeslots indexed by τ . In this time-division
system, the FA Ft = [FtI, FtU ] = [f tnI , f tnU ]n∈N is operated by the
source node at the beginning of the time frame according to the
dynamic network state. However, at timeslot τ within a specific
time frame the forwarding strategy an ∈ An = {f , d}, is up-
dated by relay nI to maximize its profit based on the interference,
where f and d denote the relay’s cooperative forwarding action and
dropping action, respectively. When the network state changes
and the next time frame comes, a new coordination period for
the FA of the source and FSSs for each relay start. The variations
in the relay’s available resources (energy, tokens, or data queue)
are much lower than those in its forwarding strategy, such as the
timescale of the relay’s energy variation is the hour [25] and the
timescale of the forwarding strategy update is the second [26].
Various timescales of these factors lead to the different changing
rates for the interference and the network state. Therefore, we
assume that the network state is constant during one time frame
and may vary over the frame boundaries, while the interference
changes at each timeslot.

3.4. Data queuing model

The channel state information (CSI) of the link for communica-
tion pair n where n ∈ N at timeslot τ is defined as the channel
gain hτ

nn. We assume that hτ
nn is independently and identically dis-

tributed over different timeslots. Moreover, we use PT
n to designate

the transmission power of relay nI . Then, by considering the inter-
ference introduced by the other communication pairs, the received
signal-to-interference-plus-noise ratio (SINR) of communication
pair n, γ τ

n (an, a−n) at timeslot t is given as follows:

γ τ
n (an, a−n) =

hτ
nnP

T
n 1

f ,τ
n

σ 2 +
∑

m∈N\{n} hτ
mnPT

m1
f ,τ
m

, (1)

where σ 2 is the variance of the additive white Gaussian noise,
a−n = {a1, . . . , an−1, an+1, . . . , aN}, hτ

mn is the channel gain of the
link between relaymI

∈ NI and node nU .
∑

m∈N\{n} h
τ
mnP

T
m1

f ,τ
m de-

notes the interference which is introduced by others’ information
deliveries. PT

m is the transmission power of relay mI (e.g., m ̸= n).
The term hτ

nnP
T
n 1

f ,τ
n denotes the practical received signal at node

nU . The indicator function 1f ,τ
n is defined as follows:

1f ,τ
n =

{
1 if an = f ,
0 if an = d. (2)
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an is the forwarding strategy, such that an ∈ An = {f , d}, and is up-
dated by relay nI to maximize its profit based on the interference.
Without the loss of generality and under the framework of the
Shannon formula, the transmission rate for communication pair
n at timeslot t is rτ

n = W log
(
1 + γ τ

n (an, a−n)
)
, ∀t > 0, n ∈ N ,

where W is the bandwidth and γ τ
n (an, a−n) denotes the SINR of

communication pair n, at timeslot t . The dynamic of the queue
backlog Dt

n for communication link n (∀t > 0, n ∈ N ) over
different time frames denotes the data queuing model used in our
study is given as

Dt+1
n = max[Dt

n −

ρ−1∑
τ=0

rτ
n , 0] + f tnIρ, (3)

where
∑ρ−1

τ=0 r
τ
n and f tnIρ are the accumulative transmission rate

and flow rate for communication pair n within time frame t ,
respectively. The first term in (3) corresponds to the departure
process and the second term corresponds to the arrival process.
Due to the time-varying variables (transmission rate rτ

n and flow
rate f tnI ), both the departure and arrival processes are stochastic;
therefore, the data queue backlogs change over time.

4. Problem formulation and virtual selfishness queue

In this section we will discuss our problem formulation and
virtual selfishness queue procedure.

4.1. Problem formulation

In the WCNs with selfish relays, there naturally exist different
objectives for the source and the selfish relays. In other words, the
source allocates the flow rates to the network nodes to meet the
requirement of a large network throughput for delivering sufficient
Tactile information in WCNs, while the selfish relays select the
forwarding strategies for maximizing their own profits. To coordi-
nate the FA for the source and FSSs for relays, we consider a time-
division system in Section 3. The network state is assumed to be
constant during one time frame while the interference changes
across different timeslots. Then, the source executes the FA ac-
cording to the network state for each time frame that contains
ρ timeslots, while the selfish relay determines the forwarding
strategy based on its utility, which is related to its current in-
terference, at each timeslot. The relay’s forwarding strategies for
various timeslots within a time frame impact the network state
and further the source’s FA at the next time frame. The source’s
FA at the current time frame influences the relays’ selfishness and
the forwarding strategies at the next time frame. The source’s FA
and each relay’s FSSs affect each other over time via the network
state.

4.1.1. FSS problem for selfish relay
Only if the relay forwards the data packet to the corresponding

TD successfully, can it receive the tokens. The interference among
the relays may influence the selfish relay’s packet delivery and its
revenue. Specifically, when relay nI acts as a forwarder and if its
SINR γ τ

n (an, a−n) is above the preset threshold γ ∗
n at timeslot τ , it

will gain the reward and consume its energy resource. If relay nI

acts as a forwarder but its SINR γ τ
n (an, a−n) is below the threshold

γ ∗
n , it cannot forward the packet successfully, then it receives a null

reward but consumes its energy resource. Meanwhile, if the relay
acts as a dropper, both its reward and energy consumption are
zero. As the token number that the relay obtains is related to the
transmission rate of its corresponding communication pair, relay
nI ’s payoff also depends on the others’ forwarding strategies a−n.

Then, we useRτ
n(an, a−n, oτ

n) to denote the payoff of nI at timeslot
τ , where oτ

n is the current interference state of relay nI and

oτ
n =

{
1 if γ τ

n (an, a−n) ≥ γ ∗
n ,

0 otherwise. (4)

Considering that the relay is selfish and updates its forwarding
strategy to maximize its own payoff at each timeslot, we build the
FSS problem for relay nI , nI

∈ NI as follows.

Problem 1. The FSS problem for relay nI at timeslot τ is

maxan Rτ
n(an, a−n, oτ

n) (5)
s.t. an ∈ {f , d}, ∀nI

∈ NI, (C1)
oτ
n ∈ {0, 1}, ∀0 < τ ≤ ρ, nI

∈ NI, (C2)

where (C1) and (C2) are the constraints of the relay’s forwarding
strategy and interference state, respectively.

Due to the relays’ discrete decision variables and severe cou-
pling in the interference among relays, the traditional optimization
method [27] cannot be applied to solve Problem 1. Using the
advantage of game theory in overcoming the conflicting interests
among selfish relays, we employ a stochastic game [28] to model
the competition among relays for maximizing their utilities. More-
over, in the stochastic game,wepropose a novel learning algorithm
for the relay to select its forwarding strategy across the timeslots.
The details are presented in Section 5.

4.1.2. FA problem for source node
Source node s controls the flow rates Ft at time frame t to max-

imize the network throughput for delivering Tactile information
in WCNs. However, the existence of the selfish relays in WCNs
always has a negative impact on the network throughput. Espe-
cially, when the relay is completely selfish, it denies to forward any
data packets, which results in an enormous decrease in network
throughput or even in the failure of system operation [6]. Thus,
the source is required to reduce the relays’ selfishness and prevent
complete selfishness. Moreover, network stability is a natural con-
straint in the dynamic system for remote control [22]. Therefore,
the objective of the source node in our study is to maximize the
average network throughput while maintaining network stability
and preventing the relay node from becoming completely selfish.
The function U t (Ft ) defines the network throughput at time t as
follows:

U t (Ft ) =

∑
n

[
ωn log(e + f tnI ) + ϖn log(e + f tnU )

]
, (6)

where log and e represent the logarithm and the constant, respec-
tively. Additionally, ωn and ϖn denote the weights. In (6), the first
term represents the sum of the weighted data traffic for relay nI

where n ∈ N , while the second term represents the sum of the
weighted data traffic for node nU . The term log(e+f tnI ) presents the
traffic flow rate between the source and relay nI , and log(e + f tnU )
reflects the flow rate between the source and the node nU . Next,
we construct the FA problem for the source.

Problem 2. In order to maximize the long-term network through-
put, the FA problem for the source is

max U = lim
T→∞

1
T

T−1∑
t=0

E[U t (Ft )] (7)

s.t. f tnI ≥ 0, f tnU ≥ 0, ∀t ≥ 0, n ∈ N , (C3)
0 ≤ f tnI + f tnU ≤ At

n, ∀t ≥ 0, n ∈ N , (C4)
there exit no completely selfish nodes, (C5)
the network is stable, (C6)
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where At
n is the flow rate budget, (C3) shows that the link rate can-

not be negative, (C4) represents the constraint of the maximal rate
for each link, (C5) is the constraint of relay’s selfishness boundary,
and (C6) is the network stability constraint.

It is impossible to directly find a solution to Problem 2 via
the optimization method because there exists no comprehensive
model to portray the relay’s dynamic selfishness in terms of its
time-varying factors. Moreover, there is no clear definition of the
complete selfishness of the relay. In the following subsection, we
employ a novel technique tomodel the relay’s dynamic selfishness
and determine the selfishness boundary. Then, Problem 2 can be
transformed into a solvable stochastic optimization problem.

4.2. Virtual Selfishness Queue (VSQ)

During data transmission, the relay’s selfishness is influenced
by both the holding token and the residual energy of the relay.
A relay with small battery power and large number of tokens
may use all the available energy and then show no willingness for
further data transmission. However, if a relay has sufficiently large
battery power but very few tokens, then it will tend to help deliver
data for earning tokens to pay for data acquisition. The relay’s
residual energy and holding tokens may vary with its receiving
and forwarding actions; especially when the energy consumption
of the relay includes traffic reception and transmission. Because
relay nI uses power PT

n to achieve its transmission goal when it
decides to forward the packets, the energy consumption of relay
nI for forwarding its received data traffic at timeslot τ is PT

n 1
f ,τ
n .

Inspired by [29], the energy consumption of its own data reception
is PRf tnI and the energy consumption of data reception for node nU

is PRf tnU , where PR denotes the energy consumption of the unit data
reception. Thus, the total energy consumption PTotal,t

n of relay nI at
time frame t is as follows:

PTotal,t
n = PRρ(f tnI + f tnU ) +

ρ−1∑
τ=0

PT1f ,τ
n . (8)

The first term and the second term on the right hand side of (8)
are the cumulative energy consumption of relay nI for receiving
and forwarding the data packets within time frame t , respectively.
Moreover, based on the proposed incentive mechanism in the sys-
temmodel, each relay earns tokens by forwarding received packets
and spends tokens to receive its own data traffic. Specifically, if the
relay forwards the data packet to its corresponding TD successfully
(oτ

n = 1) with transmission rate rτ
n , it will receive Rg rτ

n o
τ
n tokens

at timeslot τ . Additionally, when the relay buys its own data traffic
with a rate of f tnI , it will consume Rpf tnI tokens, where Rp is the
spent tokens of the relay for unit data packet. A decrease in the
number of holding tokens will decrease the selfishness of relay
nI and encourage nI to forward more data packets. Meanwhile,
the depletion of residual energy or an increase in the number
of holding tokens will increase the selfishness of relay nI . Mo-
tivated by [30] that used a virtual energy queue to limit power
consumption while at the same time sustaining the throughput
performance, our objective is to construct a virtual queue, called
virtual selfishness queue (VSQ), to model the relays’ selfishness
dynamics over time. In this study, we regard the decrease in relay’s
selfishness as the departure of VSQ and the increase in selfishness
as the arrival of VSQ. Then, the backlog of VSQ St+1

n can be formu-
lated as

St+1
n = max[Stn − Rpf tnIρ, 0] + PTotal,t

n + Rg
ρ−1∑
τ=0

rτ
n o

τ
n, (9)

where St+1
n ∈ [0, ∞) and oτ

n is the interference state. Rg ∑τ=ρ−1
τ=0

rτ
n o

τ
n and Rpf tnIρ are the cumulative tokens that the relay earns

and spends during time frame t , respectively. Similarly, because
of the time-varying variables, the VSQ value changes over time.
Moreover, based on the built VSQ in (9), if its value Stn becomes
larger, relay nI is more reluctant to forward the data packets
of TD nU and its selfishness is higher. Specifically, when its VSQ
value approaches to infinity, i.e., Stn → ∞, relay nI is completely
selfish and will refuse any forwarding service requests about TD
nU . Additionally, Stn = 0 means that relay nI is altruistic and may
forward the received data packets.

4.3. Stochastic optimization problem for FA

In this subsection, we consider a non-cooperative system, in
which each selfish relay behave as a learning agent that adjusts its
forwarding strategy, i.e. whether forwards the data packets or not
(f or d), over the timeslots based on its profit by assuming that each
relay’s VSQ and QSI keep constant. We employed the VSQ tomodel
the dynamics of the relay’s selfishness in terms of its time-varying
factors. A larger VSQ value indicates higher selfishness of the relay.
Therefore, we can use the bounded selfishness (VSQ value) to avoid
complete selfishness of the relay. The following definition is to
determine the network stability and relay’s selfishness boundary.

Theorem 1. A discrete time queue is called mean rate stable if [31]

lim
t→∞

1
t
E[Dt

n] = 0, (10)

where Dt
n denotes a specific queue.

To ensure system stability and further limit the delivery la-
tency [10] for Tactile information delivery, the data queues for
all relays in the network should be mean rate stable [21]. Then,
(10) can be used to determine whether the network is stable
or not. Here, we also employ (10) to bound the relay’s dynamic
selfishness in the long term. If the relay’s VSQ is mean rate stable,
its selfishness is bounded. Then, Problem 2 is translated as the
following optimization problem.

Problem 3. The FA problem for the source is

max U = lim
T→∞

1
T

T−1∑
t=0

E[U t (Ft )] (11)

s.t. (C3) and (C4)

lim
t→∞

1
t
E[Dt

n] = 0, ∀t ≥ 0, n ∈ N , (C7)

lim
t→∞

1
t
E[Stn] = 0, ∀t ≥ 0, n ∈ N , (C8)

where (C7) is the data queue stability constraint and (C8) is the
selfishness boundary constraint to prevent the relay from being
completely selfish.

Problem3 can be understood from the stochastic programming
perspective. The objective is to design an algorithm that enables
the data rates Ft passing through the source to satisfy all con-
straints and maximize the network utility as much as possible. We
introduce our proposed dynamic FA algorithm in Section 6. The
proposed algorithm achieves the optimal solution of Problem 3 in
terms of average network throughput.

Remark 1. The source allocates the flow rates to the network
nodes at the beginning of each time frame based on the relays’
queue information including data queues and VSQs (Section 6).
Meanwhile, each relay updates its forwarding strategy at each
timeslot based on its own profit that is also related to its queue
information (Section 5). The allocated flow rate and a series of
forwarding strategies for the relaywill cause variations in its queue
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Fig. 5. Dynamics of queue information, FA and FSS.

Fig. 6. Flow chart of Algorithm 1.

information including QSI and VSQ in the next time frame ((3)
and (9)). Then, the FA for the source and FSSs for each relay will
be executed depending on the new queue values, which influence
each other, and the co-evolution across the time frames (Fig. 5).

5. Stochastic game among relays with different resource states

In this section, we consider a non-cooperative system, in which
each selfish relay behaves as a learning agent that adjusts its
forwarding strategy across the timeslots based on its profit, by
assuming that each relay’s VSQ and QSI are constant. Based on the
relays’ dynamic interference state in various timeslots, we formal-
ize the relays’ sequential forwarding decisions (Problem 1) within
a specific time frame t through non-cooperative game playing
because the proposed incentives engender a competition among
relays that play strategies on their activation.

5.1. Stochastic game

Because of the complicated wireless environment, the relay
does not knowother relays’ payoffs andpossible actions. Therefore,
we build a stochastic game to explore the relay’smixed forwarding
strategy, i.e., the probability of the relay selecting f action to
forward the received packets at a specific timeslot by considering
the relay’s selfishness. Cost parameters, payoff functions, and for-
warding strategies are private knowledge among the game players
in this study.

Let Gt
= [NL, S,R(·)] denote the stochastic game where NL

is the index set for relays, S is the mixed strategy set, and R(·) is
the utility function of the player. The utility of each relay depends
on its own behavior and also on the choice of other relays’ actions.
Formally, stochastic game Gt is expressed as

• Players: The players are relays NL in the network.
• Strategies: The strategy of a player is the probability of the

relay selecting f action. Then, the stochastic mixed strategy
for relay nI is sn where sn ∈ S.

• Payoffs: Player’s payoff is determined by multiple factors,
including the cost of forwarding the packet and the reward
obtained by forwarding or dropping the packet.

When the relay acts as a forwarder and its SINR γ τ
n is above the

threshold γ ∗
n , it will obtain Rg rτ

n tokens at timeslot τ . Moreover,
the relays with different VSQ values will react differently to the
consumption of their energy resources. For instance, the nodewith
higher selfishness (more tokens and shorter residual energy) will
appreciate its residual energy more and its forwarding cost will be
relatively higher than that of the others. We define the forwarding
cost of relay nI considering its current VSQ as the relative cost:

C tr
n = PT

n S
t
n. (12)

Then, by normalizing the costs to this expected benefit, we obtain
the payoff of relay nI at timeslot τ as

Rτ
n(an, a−n, oτ

n) =

⎧⎨⎩
Rg rτ

n − C tr
n if an = f and oτ

n = 1,
−C tr

n if an = f and oτ
n = 0,

0 if an = d,
(13)

where oτ
n is the interference state defined in Section 4 and an = f

means that relay nI is willing to forward the packet at timeslot τ .
The interference state transition from oτ

n to oτ+1
n for relay nI across

the timeslots is also determined by the stochastic mixed strategies
of other relays. In the non-cooperative game, each relay chooses
the mixed strategy independently to maximize its total expected
discounted payoff. Then, we define the total expected discounted
reward of relay nI within the time frame t (ρ timeslots and ρ ≫ 1)
as

Vn(sn(on), s−n(on)) =

E

[
ρ−1∑
τ=0

βτRn(sτn(on), s
τ
−n(on)) | o0n = on

]
, (14)

where βτ
∈ [0, 1) is the discount factor, on is the interchangeable

expression of oτ
n , s

τ
n(on) is the mixed strategy of relay nL at state

on, sτ
−n(on) = (sτ1(o1), . . . , s

τ
n−1(on−1), sτn+1(on+1), . . . , sτN (oN )) and

Rn(sτn(on), sτ
−n(on)) = E[Rτ

n(on, an, a−n)]. In the stochastic game,
each relay behaves as a learning agent whose task is to find the
optimal mixed forwarding strategy s∗n(on) for each interference
state on where on ∈ O, within time frame t .

Theorem 2. A tuple of N strategies {s∗n(on), s∗
−n(on)} is a Nash

equilibrium within time frame t, if a relay nI

V ∗

n (s
∗

n(on), s
∗

−n(on)) ≥ Vn(sn(on), s∗

−n(on)), (15)

∀s∗n(on) ∈ S , for each state on.

Every strategic-form game has a mixed strategy equilibrium
[32], i.e., there always exists an Nash equilibrium in our game for-
mulation of stochastic strategy adaptation. The equilibrium strat-
egy satisfies the Bellman’s optimal equation.

Vn(s∗n(on), s
∗

−n(on)) = max
an∈An

E[Rn(an, s∗

−n(on))]

+ β
∑
o′∈O

Ton,o′n (an, s
∗

−n(on))Vn(s∗n(o
′
n), s∗

−n(o
′
n)), (16)
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where Ton,o′n is the state transition probability, A−n = {A1, . . . ,

An−1,An+1, . . . ,AN} and E[Rn(an, s∗
−n(on))] =

∑
a∗
−n∈A−n

[Rτ
n(on,

an, a∗
−n)

∏
m∈N/{n} s

∗
m(on)].

5.2. Solution techniques for stochastic game

In this subsection, we consider the Q -learning algorithm as
the benchmark to solve the stochastic game because it needs no
prior knowledge about the interference state transition probabil-
ities Ton,o′n (·). We define the optimal Q -value Q ∗

n of relay nI as
the current expected reward plus its future expected discounted
rewards when all relays follow the Nash equilibrium strategies,

Q ∗

n (on, an) = E[Rn(an, s∗

−n(on))]

+ β
∑
o′n∈O

Ton,o′n (an, s
∗

−n(on))Vn(s∗n(o
′
n), s∗

−n(o
′
n)). (17)

Then, we have

Q ∗

n (on, an) = E[Rn(an, s∗

−n(on))]

+ β
∑
o′n∈O

Ton,o′n (an, s
∗

−n(on)) max
bn∈An

Vn(b∗

n(o
′
n)). (18)

The combined Q -learning process attempts to find the optimal Q -
value Q ∗

n (on, an) in a recursive way using the relays’ information
set I = {an, on, o′

n, sτn|∀n ∈ N }, where on(= oτ
n) and o′

n(= oτ+1
n )

are the interference states observed by relay nI at timeslot τ and
τ +1, respectively. Additionally, an is the forwarding action of relay
nI taken according to the current forwarding strategy policy sτn at
timeslot τ . Then,we derive the combinedQ -learning updating rule
(19) which is given in Box I. where ατ

∈ [0, 1) is the learning rate.
According to (19), to learn the optimal strategy, relay nI needs

to know not only its own strategy, but also other relays’ interfer-
ence states and available forwarding strategies, which are their
private information. It is difficult for the relays to obtain the exact
private information of their opponents in the non-cooperative sce-
nario; the relay can only obtain its own local information, such as
the interference state, forwarding strategy, and historical rewards.
To avoid obtaining others’ private strategy information, the relay
nI estimates how its competitors’ strategic decisions vary in re-
sponse to its own actions. Based on [33], the estimated probability
that all other relays choose the action set a−n at timeslot τ is

c̃τ
n (on, a−n) = c̃τ−1

n (on, a−n) − w
on,a−n
n [sτn(on, an) − s̃τ−1

n (on, an)],

(20)

for n ∈ N . For each relay, any change in their current strategy will
encourage other competing relays to make well-defined changes
in the next timeslot. By incorporating (19) and (20), the combined
Q -learning algorithm rule is modified as (21) which is given in
Box II. An alternative solution is to vary the action probabilities as a
graded function of theQ -value. Themost commonmethod is to use
a Boltzmann distribution [34]. Relay nI chooses action an ∈ {f , d}
in state on at timeslot τ with probability

sτn(on, an) =
eQ

τ
n (on,an)/ν∑

bn∈An
eQ τ

n (on,bn)/ν
, (22)

where ν is a positive parameter and eQ
τ
n (on,an)/ν is related to the

Q -value for a specific action an of relay nI . Moreover,
∑

bn∈An
eQ

τ
n (on,bn)/ν denotes the sum of Q -values for relay’s all potential

actions. The entire combined Q -learning algorithm is summarized
in Algorithm 1. The flowchart of Algorithm 1 is shown in Fig. 6,
which is also the running example of solution to stochastic game.

Algorithm 1 Combined Q -learning algorithm
1: Given the timeslot index τ = 0,
2: for each node nL

∈ NL, an ∈ A, on ∈ O do
3: Initialize strategy stn(o

′
n, an) and w

on,a−n
n > 0;

4: end for
5: Evaluate the initial state on = otn.
6: for τ > 0 do
7: Choose action ai according to the forwarding strategy

sτn(on, an);
8: Measure the received SINR with the feedback information of

intended receiver;
9: Observe the interference state o′

n = oτ+1
n by identifying the

transmission strategy and comparing γn with the threshold
γ ∗
n ;

10: A reward Rτ (on, an, a−n) can be achieved;
11: Update Q τ+1

n (on, an)-value based on c̃τ
n (on, a−n) according to

(18);
12: Update strategy sτ+1

n (on, a−n) according to (22);
13: Update conjecture cτ+1

n (on, a−n) according to (20);
14: on = on,τ+1, τ = τ + 1;
15: end for

Fig. 7. Flowchart of Algorithm 2.

5.3. Convergence of the combined Q -learning Algorithm

In this section, we focus on the convergence of the combined
Q -learning algorithm. By establishing the convergence of a general
Q -learning process updated by a pseudo contraction operator [35],
we can prove the convergence of the learning algorithm. Addition-
ally, we use Q to denote the space of all Q -values.

Theorem 3. Regardless of any initial values chosen for Q 0
n (s

o
n, an), if

τ is sufficiently large, the iteration that is defined by

Q τ+1
= (1 − ατ )Q τ

+ ατ (HτQ τ ), (23)

converges to Q ∗ w.p.1. and the algorithm converges, where Hτ is the
mapping function.

Proof. See Appendix A. □

6. Dynamic FA for source

To solve Problem3,wepropose a dynamic optimizationmethod
to design the FA framework for the source. The challenge behind
Problem3 is thatwe determine an FA decision Ft at time frame t for



L. Feng, A. Ali, H.B. Liaqat et al. / Future Generation Computer Systems 95 (2019) 277–291 285

Q τ+1
n (on, an) = (1 − ατ )Q τ

n (on, an) + ατ

{
E[Rτ

n(on, an, a−n)] + β max
bn∈An

Q τ
n (o

′
n, bn)

}

= (1 − ατ )Q τ
n (on, an) + ατ

{ ∑
a−n∈A−n

⎡⎣ ∏
m∈N\{i}

sτ (om, am)Rτ
i (on, an, a−n(on))

⎤⎦ + β max
bn∈An

Q τ
n (o

′
n, bn)

}
, (19)

Box I.

Q τ+1
n (on, an) = (1 − ατ )Q τ

n (on, an) + ατ

⎧⎨⎩ ∑
a−n∈A−n

c̃τ
n (on, a−n)Rτ

i (on, an, a−n(on)) + β max
bn∈An

Q τ
n (o

′
n, bn)

⎫⎬⎭ (21)

Box II.

Fig. 8. Interrelationship between the stochastic game and the Lyapunov frame-
work.

stabilizing the queues (bothdata queues andVSQs)while alsomax-
imizing the average network throughput. By controlling the arrival
and departure processes of the queues appropriately via Lyapunov
drift-plus-penalty method [36], the FA decisions can stabilize the
queues, whilst maximizing the average network throughput.

LetΘΘΘ t denote thematrix containing the queues {Dt
n, S

t
n|n ∈ N }.

We define the quadratic Lyapunov function at time frame t as

L(ΘΘΘ t ) =
1
2

∑
n

[Dt
n]

2
+

∑
n

[Stn]
2. (24)

The conditional expected Lyapunov drift at time frame t is defined
as follows:

∆(ΘΘΘ t ) :≜ E[L(ΘΘΘ t+1)|ΘΘΘ t
] − E[L(ΘΘΘ t )], (25)

where the expectation is taken over by the randomness of depar-
ture and arrival processes of the queues. Following the Lyapunov
optimization framework,we add thepenalty term−VE[U t (Ft )|Θ t

]

to (25) to obtain the following drift-plus-penalty term,

∆V (ΘΘΘ t ) = ∆(ΘΘΘ t ) − VE[U t (Ft )|ΘΘΘ t
]. (26)

Here, V > 0 is a control parameter. Through minimizing drift-
plus-penalty term at each time frame, we can limit the increases of
relay’s selfishness and data queues, and also improve the network
throughout. Then, the objective of FA problem for the source is
further achieved. Then, we have the following theorem regarding
the drift-plus-penalty term.

Theorem 4. For any feasible FA decision that can be implemented
at time frame t, we define (27) (given in Box III ), where Rt denotes
the matrix {

∑ρ−1
τ=0 r

τ
n |∀n ∈ N } and B is an upper bound on the

term 1
2 [(R

t )H (Rt )+ (FtU )H (FtU )] +
1
2 [(R

p)2(FIt )HFtI + (PT )2(It )H It +

(Rg )2(Rt )HRt
+ (PR)2(FtU )HFtU + (PR)2(FtI)HFtI], which holds under

the fact that the flow rates satisfy the properties of boundedness.

Proof. See Appendix B. □

Our dynamic rate allocation policy is designed to observe the
data queuesDt

= {Dt
n|n ∈ N } and VSQ St = {Stn, n ∈ N }, as well as

to make a flow rate allocation decision Ft for minimizing the right-
hand-side (RHS) of (27) for the current time. The non-constant part
of the RHS of (27) can be written as (28) (given in Box IV ), where
χ t

=
∑

n
∑ρ−1

τ=0[D
t
nr

τ
n +StnR

g rτ
n o

τ
n −T t

nP
T1f ,τ

n ] is a constant for time
frame t . Next, Problem 3 is translated into a series of optimization
problems for each time frame. Then, the FA problem for the source
to relays at time frame t is

max
∑
n

[Vwn log(f tnI + e) − StnP
Rf tnI + RpStnf

t
nI

Vϖn log(f tnU + e) − Dt
nf

t
nU − StnP

Rf tnU ] (29)
s.t. f tnI + f tnU ≤ At

n, f
t
nI ≥ 0, f tnU ≥ 0.

(29) has a strictly concave function that can be decomposed by
the dual decomposition method [27]. Relaxing the constraint by
introducing the Lagrangian multiplier γ t

n associated with f tnI +

f tnU ≤ At
n for the source’s FA to relay nI at time frame t , the

Lagrangian is formed as

L(Ft ) =

∑
n

[Vwn log(f tnI + e) − StnP
Rf tnI + RpStnf

t
nI (30)

+Vϖn log(f tnU + e) − Dt
nf

t
nU − StnP

Rf tnU − γ t
n (f

t
nU + f tnI − At

n)].

There is no coupling in the term
∑

n, suggesting that the source
allocates the flow rates to different relays independently. Thus, the
optimal flow rate f tnU is obtained by solving

max
0≤f t

nU
≤Atn

Vϖn log(f tnU + e) − Dt
nf

t
nU − StnP

Rf tnU − γ t
n f

t
nU . (31)

Similarly, the optimal flow rate f tnI allocated to relay nI is obtained
by solving

max
0≤f t

nI
≤Atn

Vwn log(f tnI + e) − StnP
Rf tnI + RpStnf

t
nI − γ t

n f
t
nI . (32)

(31) and (32) are the concave optimization problems, which can
be solved efficiently by the gradient descent method [27]. Given
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∆V (ΘΘΘ t ) ≤ B − VE[U t (Ft )|ΘΘΘ t
] + E[(FtU − Rt )HDt

|ΘΘΘ t
] + E[(ItPT

− RpFtI + RgRt
+ FtUP

R
+ FtIP

R)HSt |ΘΘΘ t
], (27)

Box III.

VU t (Ft ) − (FtU )
HDt

+ (Rt )HDt
− (It )HPTSt + RpFtIS

t
− FtUP

RSt − FtIP
RSt − RgRtSt

= V
∑
n

wn log(f tnI + e) + V
∑
n

ϖn log(f tnU + e) −

∑
n

Dt
nf

t
nU −

∑
n

StnP
Rf tnU −

∑
n

StnP
Rf tnI + Rp

∑
n

Stnf
t
nI + χ t . (28)

Box IV.

Algorithm 2 Dynamic FA for the source
1: At each time frame t , the source observes the relays’ data queue

states Dt and VSQ states St .
2: The source obtains FA Ft by solving (31) and (32) via the

gradient descent method.
3: The relays update Dt and St according to (3) and (9).
4: t = t + 1.

an optimal γ t
n , the rate f tnU allocated to node nU can be calculated

by applying the KarushKuhn–Tucker (KKT) method, which results
in

f tnU =

[
Vwn

(γ t
n + Dt

n + PRStn)
− e

][0,Atn]

, (33)

where [x][0,A
t
n] denotes the projection of x onto [0, At

n]. The flow rate
f tnI is

f tnI =

[
Vϖn

(γ t
n + StnPR − StnRp)

− e
][0,Atn]

. (34)

Then, the dynamic FA for source is given by Algorithm 2. The
flowchart of Algorithm 2 is shown in Fig. 7, which is also the
running example of FA problem at each time frame.

Remark 2. The FA in Algorithm 2 is performed in a centralized
way, which may bring communication and computing overheads
to the source. The utility function for each relay is a concave
function of the flow rates. Distributed algorithms can therefore
be found using dual decomposition methods. Choosing either a
centralized way or a distributed way depends on the practical
communication scene and the network node’s properties. If the
autonomous relay is willing to compute and submit the optimal
flow rates for the source, the distributed way will be better for the
scheme. Otherwise, the scheme can only use a centralized way.

7. Performance analysis

In this section, wewill analyze the performance of the proposed
scheme.

7.1. Summary of the overall solution

Fig. 8 summarizes the overall solution and the interrelationship
of the stochastic game and the Lyapunov framework. The decision
of FA is made by the source at each time frame based on the QSI
and VSQ information of the relays while the decision of forwarding
strategy is made by each relay at every timeslot depending on its
profit (Fig. 8). Specifically, at the beginning of each time frame,
we first employ the dynamic FA algorithm (Algorithm 2) for the

source to determine the flow rates of network nodes such that the
average network throughput is maximized under the constraints
of network stability and selfishness boundary. Then, forρ timeslots
within a specific time frame, we employ the combined Q -learning
algorithm (Algorithm 1) for the relay to select the forwarding
strategy to maximize its own profit at each timeslot. By weaving
the concepts from Lyapunov optimization and stochastic game,
both the source and relays can achieve their objectives in an
orderly manner.

7.2. Performance achieved in our scheme

For the dynamic FA of the source, the gap between the average
network throughput under our algorithm and the optimal one2 is
bounded by the term B

V based on the property of the Lyapunov
optimization framework [37]. Similarly, the average data queue
length of the network in this study employing Lyapunov optimiza-
tion is also related to parameter V . Based on Little’s theorem, the
average data queue length can represent the information delivery
delay [10]. Then, by setting an appropriate V , the average network
throughput can be close to the optimal one and the relatively low
delivery delay can also be achieved. Thus, our scheme can meet
the requirements of the sufficient capacity and low latency for
real-time control in WCNs. Regarding the FSS of each relay, aided
by the incentive mechanism, our scheme can effectively man-
age the dynamic selfishness of relays and reduce the selfishness’
negative influence on the network throughput. The autonomous
relay will actively participate in the FSS based on Algorithm 1
for maximizing its utility. As the relay’s reward depends on the
transmission rate of its communication pair (the incentive mech-
anism proposed), the instantaneous network throughput can also
be maintained. In our scheme, the relay with the lower VSQ value
(more residual energy and fewer holding tokens) will be allocated
more data traffic of the TD ((33) for FA in Section 6) and then
undertake more forwarding tasks owing to its lower forwarding
cost ((13) for FSS in Section 5). The relay with the higher VSQ value
(less energy resource and sufficient tokens) will be allocated less
data traffic of TD and forward a smaller number of data packets.
Because the relay’s VSQ value indicates the count of its available re-
sources including residual energy and holding tokens, the scheme
also contributes to the resource balance for the relays.

7.3. Main motivations for dividing time horizon

Noting that, there naturally exist conflicting interests between
the source and the relays for the informationdelivery inWCNs [16].
Moreover, in the practical communication system, the node’s

2 The optimal network throughput is obtained based on a dynamic algorithm,
which only maximizes the network throughput and does not consider network
stability or selfish boundary.
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source states may change much slower than channel fading. To
deal with the different objectives between the source and relays,
we propose a two-timescale information delivery scheme based
on the different timescale states. In this two-timescale scheme, the
source only needs to collect the current QSI and VSQ information of
relays at each time frame. It benefits from low signaling overhead
and computational complexity. Motivated by the analysis in [38],
for FA of the source at a large time frame, the signaling overhead
is O(2N) due to that the total number of collected data bits is 2N .
Meanwhile, the source has to calculate the flow rates for each
relay and TD. By using primal–dual interior point methods, the
computational complexity of FA problem with 2N variables is
O(8N3). While, for FSS of the relay, there exists no communication
overhead owing to that the relay executes the FSS just according
to its local information at each timeslot. And also, since each
relay chooses its own strategy based on the Q -value, the total
computational complexity of FSS problems for relays is O(Nρ).
Thus, the signaling overhead of our two-timescale delivery scheme
for one time frame is O(2N), and the computational complexity is
O(8N3

+ Nρ). Compared with the one-timescale algorithm whose
signaling overhead is O((2N)ρ) and computational complexity is
O(ρ(8N3

+ N)), the communication overhead imposed by the
proposed algorithms in our scheme is trivial. However, the high
prediction accuracy is required in our scheme owing to that it will
significantly affect the outputs of Algorithm 1. In addition, the
iteration complexity3 of (Algorithm 1) is O(1) due to the fact that
it is iterated only once within each timeslot. Besides, by referring
to Section 6 in [39], we know that the iteration complexity of
Algorithm 2 is O( 1

δ
) when setting the tolerance deviation of the

algorithm iterations as 1
N ∥FtI − Ft∗I ∥ +

1
N ∥FtU − Ft∗U ∥ < δ where δ

stands for the accuracy index.4

8. Simulation results

This section presents the performance analysis results of the
proposed scheme. First, we illustrate the convergence of the pro-
posed combined Q-learning algorithm for stochastic games. Sec-
ond, we present the dynamic processes of the FA for the source.
Then, we present the queue length of the proposed scheme and
demonstrate the characteristics of network throughput.

8.1. Simulation settings

In our simulation, we consider a cooperative 5G system with
multi-hop cooperative delivery. We consider a total of 20 commu-
nication pairs that are uniformly distributed. For the sake of sim-
plicity, we consider that the normalized duration of the timeslot is
1 and B = 1 denotes the normalized bandwidth spacing.Moreover,
we model the channel process as Gaussian random variables as
i.i.d over different timeslots. Our proposed scheme starts with the
queue lengths including data queues D0 and VSQs S0: S01 = 1, S02 =

5, S03 = 3, D0
1 = 6, D0

2 = 4, D0
3 = 1. Other simulation parameters

are listed in Table 2 in compliance with previous studies [4,40].
To demonstrate the effectiveness of the proposed scheme, we

compare the performance of our proposed scheme with the fol-
lowing two schemes. Traditional FA approach (TFA): TFA divides
the data rates equally among all the network nodes at each time
frame and ignores the nodes’ differences in the node-selfishness
andQSIs.Data queue-based FA approach (QBFA):QBFAmakes the
dynamic FA to maximize the average utility when just considering
the network stability. Additionally, for the sake of fairness, the
incentive mechanisms in the compared algorithms are similar to
our scheme.

3 The iteration complexity is defined as the maximum number of algorithm
iterations before the agent obtains the optimal strategy at a specific system state.
4 Ft∗I and Ft∗U are the theoretical optimum values for flow rates at time frame t .

Table 2
Simulation settings.
Parameter Value

Transmit power PT 2
Receive power PR 0.08
Maximum transmit power Pmax 3
Spent tokens Rp 0.42
Earned tokens Rg 0.1
Maximum data rate for link between s and nI At

n 40
Number of short timeslots with a frame ρ 200

8.2. Processes of dynamic strategy decisions and queues

Fig. 9 shows the convergence of the proposed combined Q -
learning algorithm by using stochastic game. Fig. 9(a) exhibits the
expected payoffs of the relays, whereas Fig. 9(b) presents the op-
timal mixed forwarding strategies for relays across the timeslots.
It proves the robust convergence of Algorithm 1, that verifies the
result of Theorem 3. The happens because the relay nodes also
considers others’ strategies during the learning process.

Fig. 10 illustrates the basic ideal of the proposed scheme (the
FA processes results of Algorithm 2) to deal with the selfishness of
relay nodes and to improve the overall network throughout with
the help of source’s FAs and incentive mechanism. In our proposed
scheme, when a relay exhibits selfishness for its TD′s data traffic,
it is assigned less traffic to decrease the packet-dropping rate and
to obtains more traffic of its own to decrease its selfishness (based
on the incentive mechanism). Fig. 10(a) demonstrates the dynam-
ics of allocated flow rates to the relay nodes, whereas Fig. 10(b)
shows the dynamics of allocated flow rates to nodes NU via a
corresponding relays. Fig. 10 indicates that the FA decision is made
dynamically from frame-to-frame and it is influenced by queuesDt

and St . From this figure, we can also observe that the larger node-
selfishness results in the more flow traffic allocated to relay but
the fewer traffic for the corresponding TD via a relay. Hence, these
resultsmeets the normal considerations formaximizing the overall
network throughput when the source executes the FAs to the relay
nodes.

Fig. 11 presents the evolution of queues (i.e., VSQs and data
queues) of the proposed scheme across time frames. Fig. 11(a) plots
the VSQs’ lengths for relay nodes, whereas, Fig. 11(b) demonstrates
the dynamic lengths of data queues. From Fig. 11, we can observe
that the proposed scheme keeps the lengths of both queues below
a positive value. This happens because the source considers both
the boundaries of relay’s selfishness and the data queues while
performing the FAs. Since the relays’ selfishness are bounded by
the positive values which implies that the proposed scheme can
also prevent the autonomous relay from being completely selfish,
that may effectively depress the selfishness’s negative influence
on network throughput. Therefore, this figure also shows that the
proposed scheme can ensures the network stability.

8.3. Average queue length and network throughput for different ap-
proaches

Fig. 12 presents the time-average lengths of the queues versus
the control parameter V . Fig. 13(a) exhibits the length of data
queue D1, whereas Fig. 13(b) shows the length of VSQ S1 for
communication pair 1. From this figure, we can observe that the
parameter V impacts the average length of the queues and changes
the values. As the data queue lengthmay represent the information
delivery delay, we can adjust the appropriate parameter V to let
the data queue length and further the delivery delay of our scheme
in satisfactory states. Its clear from this figure that the proposed
scheme performs better than the other approaches with smaller
values of data queues and VSQs because our proposed scheme
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Fig. 9. Convergence of the learning algorithm.

Fig. 10. Rate allocation across the time frames.

Fig. 11. Processes for queues across the time frames..

Fig. 12. Average queue lengths vs. V.
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Fig. 13. Utility vs. V.

considers both thedata queue state and the selfishness of the relays
when executing the FAs.

Fig. 13 depicts the average network throughput (utility) versus
the control parameter V for different approaches. The average
throughput achieved by the proposed algorithm is larger than
that of the other compared approaches because the source node
in our proposed scheme considers the relays’ selfishness while
performing the FAs. Then, the relay with lower node-selfishness
undertakes more forwarding tasks in our proposed scheme, which
significantly reduces the packet-dropping.

9. Conclusions

In this paper, we employed a cooperative transmission in 5G
communication systems and studied the Tactile information deliv-
ery via 5G systems to understand the real-time human-to-machine
interactions remotely for the Tactile Internet. Specifically, we de-
veloped a dynamic information delivery scheme in WCNs to coor-
dinate the FA for the source and FSS for each relay according to the
relays’ dynamic selfishness. Considering the interference among
the relays, we employed the stochastic game tomodel the strategic
interactions among selfish relays and prove the existence of Nash
equilibrium. We proposed a combined Q -learning algorithm for
the relay to obtain the equilibrium strategy and then a stochastic
optimization model was presented for the source node in terms
of the dynamic network state to allocate the flow rates to max-
imize the average network throughput under the constraints of
the network stability and selfishness boundary. Aided by relay’s
VSQ and the Lyapunov optimization theory, an effective iteration
algorithm was established to solve the optimization problem. Our
scheme has a practical significance for managing the dynamic
delivery of Tactile information and reducing the negative influence
of selfishness on network throughput, contributing to the wide
applications of the Tactile Internet and smart autonomous devices.

Appendix A. Proof of Theorem 3

Based on Theorem in [41], if the mappingHτ meets the follow-
ing conditions: (1) there exists a number 0 < β < 1 (2) a sequence
ξ τ

≥ 0 converging to zero w.p. 1, such that ∥ HτQ τ
− HτQ ∗

∥ ≤

β∥Q τ
− Q ∗

∥ +ξ τ for all Q τ
∈ Q and Q ∗

∈ E[HτQ ∗
], then the

algorithm converges. Similar to the proof of theorem in [33], we
can prove the convergence of our combined Q -learning algorithm.

Appendix B. Proof of Theorem 4

Followed from (24), we have

L(ΘΘΘ t+1) − L(ΘΘΘ t ) =
1
2
(ΘΘΘ t+1)HΘΘΘ t+1

−
1
2
(ΘΘΘ t )HΘΘΘ t ,

=
1
2
(max[Dt

− Rt , 0] + FtU )
H (max[Dt

− Rt , 0] + FtU )

+
1
2
(max[Tt

− RpFtI, 0] + ItPT
+ RgRt

+ FtUP
R
+ FtIP

R)H

(max[Tt
− RpFtI, 0] + ItPT

+ RgRt
+ FtUP

R
+ FtIP

R)

−
1
2
(Dt )HDt

−
1
2
(St )HSt , (35)

where we used the queue evolution in (3) and (9). For any non-
negative scalar quantities D, f , and r , the inequality

(max[D − r, 0] + f )2 ≤ D2
+ r2 + f 2 + 2D(f − r), (36)

holds. Similarly,(
max[St − RpFtI, 0] + ItPT

+ RgRt
+ FtUP

R
+ FtIP

R)2
≤ (St )HSt + (Rp)2(FIt )HFtI + (PT )2(It )H It

+ (Rg )2(Rt )HRt
+ (PR)2(FtU )

HFtU + (PR)2(FtI)
HFtI

+ 2(ItPT
+ RgRt

+ FtUP
R
+ FtIP

R)2 − (RpFtI)
HSt . (37)

Then, we have

L(ΘΘΘ t+1) − L(ΘΘΘ t )

≤
1
2
(Rt )H (Rt ) +

1
2
(FtU )

H (FtU ) + (FtU − Rt )HDt

+
1
2
(Rp)2(FIt )HFtI + (PT )2(It )H It +

1
2
(Rg )2(Rt )HRt

+
1
2
(PR)2(FtU )

HFtU +
1
2
(PR)2(FtI)

HFtI

+ (ItPT
+ RgRt

+ FtUP
R
+ FtIP

R)2 − (RpFtI)
HSt

≤ B + (FtU − Rt )HDt

+ (ItPT
− RpFtI + RgRt

+ FtUP
R
+ FtIP

R)HSt , (38)

where B is an upper bound on the term 1
2 [(R

t )H (Rt )+ (FtU )H (FtU )]+
1
2 [(R

p)2(FIt )HFtI + (PT )2(It )H It + (Rg )2(Rt )HRt
+ (PR)2(FtU )HFtU +

(PR)2(FtI)HFtI], which holds under the fact that the wireless link
transmission rates satisfy the properties of boundedness.

Adding −VE[U t (Ft ,ht )|ΘΘΘ t
] to both sides of (37) and taking a

expectation, yields

∆V (ΘΘΘ t ) ≤ B − VE[U t (Ft )|ΘΘΘ t
] + E[(FtU − Rt )HDt

|ΘΘΘ t
]

+ E[(ItPT
− RpFtI + RgRt

+ FtUP
R
+ FtIP

R)HSt |ΘΘΘ t
].

This completes the proof of Theorem 4.
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