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a b s t r a c t

Ultra-reliable low-latency communications (URLLC) is a key technology in 5G supporting real-time
multimedia services, which requires a low-cost signal recovery technology in the physical layer. A kind of
well-known low-complexity signal detection is message passing algorithm (MPA) based on factor graph.
However, reliability and robustness of MPA are deteriorated when there are cycles in factor graph. To
address this issue, we propose two novel Gaussian message passing (GMP) algorithms with the aid of
deep neural network (DNN), in which the network architectures consist of two DNNs associated with
detections for mean and variance of the signal. Particularly, the network architecture is constructed by
transforming the factor graph and message update functions of the original GMP algorithm from node-
type into edge-type. Then,weights and bias parameters are assigned in the network architecture.With the
aid of deep learning methods, the optimal weights and bias parameters are obtained. Numerical results
demonstrate that two proposed DNN-aided GMP algorithms can significantly improve the convergence
of original GMP algorithm and also achieve robust performances in the cases without prior information.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, with the rapid development of smart wireless de-
vices, the future communication mechanisms consists of coex-
istence of human-centric and machine-type services as well as
hybrids of these cases, which is very different from traditional
human-centric communications [1]. To support such various ap-
plications, 5G wireless services are classified into three categories:
ultra-reliable and low-latency communication (URLLC), enhanced

∗ Corresponding author.
E-mail address: bsong@mail.xidian.edu.cn (B. Song).

mobile broadband (eMBB), and massive machine-type commu-
nication (mMTC), which includes vehicle-to-vehicle (V2V) com-
munications [2],machine-to-machine (M2M) communications [3],
Internet-of-things (IoT) [4–7], and cloud radio access network (C-
RAN) [8–11].

Due to the fact that URLLC has two stringent requirements:
low latency and high reliability, the design of physical-layer tech-
nologies is very challenging, in which signal recovery is the core
technology to guarantee the successful transmissions of messages
in wireless networks. Among signal detection algorithms, it is well
known that Minimum Mean Square Error (MMSE) detection is
optimal in the case of linear detection of Gaussian sources in noisy
channels. Nevertheless, the complexity of MMSE detection is very
high due to performing matrix inversion. In order to avoid the
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matrix inversion, one of popular low-complexity methods for sig-
nal recovery is message passing algorithm (MPA) based on factor
graph [12–17], in which the optimal recovery for signals is decom-
posed into many distributed local calculations at nodes in the fac-
tor graph. The specific MPAs are required to be designed for differ-
ent applications. For example, belief-propagation (BP) algorithm
is designed for low-density parity-check (LDPC) decoding [17].
Gaussian message passing (GMP) are proposed for the massive
multiple-input-multiple-output (MIMO) systems and the MIMO
non-orthogonalmultiple access (NOMA) systems respectively [18–
20]. In [21,22], the MPAs are designed for mmWave MIMO and
C-RAN systems respectively. Although the applications of MPAs
are very extensive, the problem of convergence severely restricts
the effectivity and robustness of the MPAs [17–22], which is still
very intractable now. The reason is that the MPAs can converge to
the optimal solutions in a tree-like factor graph [12,13], but easily
diverge when there are cycles in the factor graph. To improve the
convergences of the GMP algorithms, the scaled-and-added (SA)
GMP algorithms are proposed in [18–20] based on the law of large
numbers and infinite iteration number, which have been proved
to be converged to the MMSE detector. However, the SA-GMP
algorithms cannot also be always effective for the finite-length
systems with finite iterations.

Recently, powerful deep neural networks (DNNs) [23] have
been applied to the communications [24–32], whose results are
superior/comparable to those of the conventionalmethods in com-
munications. In [27], DNN is used to recover chemical signals in
molecular communications,wherein precisemathematicalmodels
cannot represent the channel. Single-user MIMO systems based on
DNN are proposed in [28], which achieve better performances than
the conventional MIMO cases. In [29], DNN is employed for chan-
nel estimation and signal recovery in the orthogonal frequency-
division multiplexing (OFDM) system, which is more robust to
channel conditions than the conventionalmethods. Note that stan-
dard DNNs are used as black boxes commonly in [27–29]. Inspired
by [30], a DNN can be designed by unfolding an existing iterative
algorithm. Thus, a BP decoding method based on DNN is proposed
to decode short binary channel codes [31] and a projected gradient
descent method based on DNN is used to detect binary signals in
MIMO systems [32], which are regarded as binary classification
problems. However, the activation functions of these methods [31,
32] cannot be directly used for detection of real signals.

In this paper, a DNN-aided GMP algorithm is proposed to ad-
dress the problemof signal recovery inURLLC systems. Specifically,
a DNN is constructed explicitly by transforming the factor graph of
original GMP fromnode-type into edge-type,which consists of two
neural networks associated with detections for mean and variance
of the signal. Then, activation functions at each layer are designed
according to the message update functions of GMP. Weight and
bias parameters are assigned in the DNN, which are trained with
the aid of deep learning methods. In order to further achieve more
reliable performance, a DNN-aided SA-GMP algorithm is proposed
based on the original SA-GMP algorithm, which is designed simi-
larly as the DNN-aided GMP algorithm. The major contributions of
this paper are summarized as follows.

1. DNN is combined with GMP and SA-GMP algorithms to
improve the reliability in finite-length systems.

2. DNN aids the GMP and SA-GMP algorithms to converge fast
with less iteration.

3. Numerical results demonstrate that the proposed DNN-
aided GMP and DNN-aided SA-GAMP algorithms are robust
to the cases with imperfect channel estimations and the
cases without priori information.

The rest of this paper is organized as follows. In Section 2,
problem formulation for signal recovery is presented. In Section 3,

the proposed neural network architecture and particular DNN-
GMP algorithm are given. Section 4 provides a DNN-SA-GMP al-
gorithm and Section 5 presents various simulations to validate the
reliability and robustness of proposed DNN-aided MPA detection
methods in URLLC systems. Finally, Section 6 concludes this paper
and provides some future works.

2. Problem formulation

In this paper, we consider the recovery of signal vector x =

[x1, . . . , xK ]
T from a noisy measurement y ∈ RM×1:

y = Hx + n, (1)

where H ∈ RM×K is a given measurement matrix and n =

[n1, . . . , nM ]
T is an additive Gaussian noise vector obeying N (0,

σ 2
n IM ) with an M × M identity matrix IM .
Note that we assume that entries of x obey independent Gaus-

sian distributions, i.e., xk ∼ N (0, σ 2
k ), k = 1, . . . , K . Although

discrete modulated signals are used in real communications, in-
dependent Gaussian sources are also usually employed in the
design of communication network [33–36]. The reason is that in
order to enable URLLC, the statistical distribution of transmitted
discrete signals should be approximated as Gaussian distribution
according to Shannon theory [37,38], which could employ Gallage
mapping [37,38] or superposition coded modulation [39,40] to
generate Gaussian-like transmit signals. Therefore, the proposed
detection method based on Gaussian sources can be extended for
discrete signals cases.

In order to recover Gaussian signal vector x with low complex-
ity, the GMP algorithm is employed in [18–20]. As shown in Fig. 1,
a pairwise factor graph for the GMP algorithm is presented, which
consists of Gaussian nodes, variable nodes, sumnodes, noise nodes,
and the corresponding edges. Based on the factor graph, we briefly
introduce the GMP algorithm.Message update among nodes in the
GMP is similar to the BP decoding for LDPC codes [17], but the
differences from the BP decoding are Gaussian messages passing
along edges and update functions for Gaussian messages at nodes.
The GMP algorithm is given as follows.

2.1. Message update at sum nodes

In Fig. 1, each sumnode is regarded as amultiple-access process,
such that message update at themth sum node is⎧⎪⎪⎨⎪⎪⎩

esm→k(t) = ym −

∑
i̸=k

hmiev
i→m(t − 1),

vs
m→k(t) =

∑
i̸=k

h2
miv

v
i→m(t − 1) + σ 2

n ,
(2)

wherem ∈ M,M = {1, . . . ,M}, i, k ∈ K,K = {1, . . . , K }, ym is the
mth entry of y, hmi is the entry in the mth row and the ith column
of H , and t denotes the iteration index. Let ev

i→m and vv
i→m denote

the mean and variance passing from the ith variable node to the
mth sum node. Let esm→k and vs

m→k denote the mean and variance
passing from the mth sum node to the kth variable node. Initially,
values of ev

i→m(0) and vv
i→m(0) equal to 0 and +∞ respectively.

2.2. Message update at variable nodes

In Fig. 1, each variable node is regarded as a broadcast process,
such that message update at the kth variable node is⎧⎪⎪⎨⎪⎪⎩

vv
k→m(t) = (

∑
j∈M

h2
jkv

s
j→k(t)

−1
+ σ−2

k )−1,

ev
k→m(t) = vv

k→m(t)
(∑
j∈M

hjkv
s
i→k(t)

−1esj→k(t)
)
,

(3)

where k ∈ K andm, j ∈ M.
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Fig. 1. Factor graph of GMP for signal recovery.

2.3. Decision and output of GMP

The iterative process between sum nodes and variable nodes
will stop when the MSE requirement is satisfied or the preset
maximum iteration number is reached. Estimated signal x̂k and
obtained variance σ 2

x̂k
are⎧⎪⎨⎪⎩

σ 2
x̂k

= (
∑
m

h2
mkv

s
m→k(t)

−1
+ σ−2

k )−1,

x̂k = σ 2
x̂k

(∑
m

hmkv
s
m→k(t)

−1esm→k(t)
)
.

(4)

However, as shown in Fig. 1, there are a large number of cy-
cles in the factor graph, such that the GMP algorithm may easily
diverge. As a result, the SA-GMP algorithm is proposed to improve
the convergence of the GMP algorithm based on the law of large
numbers [18–20]. Nonetheless, the SA-GMP algorithm does not
always work well in finite-length systems. Therefore, our goal is
to exploit the powerful DNN to aid the convergences of GMP and
SA-GMP algorithms in finite-length systems.

3. Deep neutral network — GMP

In this section, we propose a DNN-GMP algorithm based on
the constructed neural network below. With the aid of DNN [23],
training the parameters of neural network is to enhance reliable
messages and suppress unreliable messages properly for the orig-
inal GMP algorithm during each iterative detection.

3.1. Construction of neural network

Note that a deep learning network can be designed by unfolding
an existing iterative algorithm [30–32,41]. Similarly, to construct
a DNN for GMP effectively, we transform the message update
functions and factor graph of the original GMP from node-type
into edge-type.Meanwhile, since the Gaussian signals are detected
based on the estimations ofmeans and variances in Eqs. (2)–(4), the
proposed DNN-GMP consists of two neural networks associated
with detections for means and variance respectively.

To be specific, let the maximum iteration number be L, and
the total number of edges in the factor graph be E = M × K .
Through unfolding the message update functions in Eqs. (2)–(4),
the both proposed neural networks of detections for means and

variances consist of 2L + 2 layers, which include one input layer,
2L hidden layers, and one output layer. The number of nodes in the
input layer, each hidden layer, and the output layer is M , E, and
K respectively. Then, the inputs of the neural networks associated
with means and variances detections are received signal y and
noise variance σ 2

n respectively. The outputs of the output layers in
the above two networks are estimated signal x̂ = [x̂1, . . . , x̂K ]

T

and estimated variance σ2
x̂ = [σ 2

x̂1
, . . . , σ 2

x̂K
]
T respectively. For

hiddenmiddle layers of the above two networks, the inputs are the
means and variances of messages passing from the previous layer,
and the outputs are the means and variances of updated messages
passing to the next layer. In this way, the proposed neural network
is obtained.

According to the original GMP algorithm, the activation func-
tions and parameters of the DNN are designed to obtain the DNN-
GMP algorithm. Due to the different rules of messages update
at sum nodes and variable nodes, the activation functions in the
even hidden layers and the odd hidden layers employ the message
update functions at sum nodes and variable nodes respectively.
The activation functions in the input layers are linear functions
with respect to y and σ 2

n . The activation functions in the output
layers are the combination of full estimated messages associated
with mean and variances respectively. Then, weight parameters
are assigned to themessages on all edges among layers of theDNNs
for mean and variance detections. Bias parameters are assigned to
all edges among layers of theDNN for variance detection. The initial
values of these weight and bias parameters are 1.

To illustrate the DNN architecture clearly, we take an example,
where K = 3,M = 4, and L = 2. The DNN architecture is shown in
Fig. 2, where the indices of nodes in the hidden layers denote those
of edges in the factor graph. Here, the corresponding edges matrix
E and edge-type channel matrix HE

K×M are given as

E =

⎡⎢⎣ e1 e2 e3
e4 e5 e6
e7 e8 e9
e10 e11 e12

⎤⎥⎦ ,

HE
K×M = [h111K×M h121K×M h1K1K×M . . . hMK1K×M ] ,

where 1K×M denotes an all-ones column vector of length K × M .
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Fig. 2. Network architecture of the DNN-GMP for signal recovery (K = 3,M = 4, L = 2).

3.2. DNN-GMP algorithm

Based on the constructed DNN architecture, the DNN-GMP al-
gorithm is proposed, whose differences from the original GMP al-
gorithm are the edge-type message update functions and training
network parameters in the DNN. The update process is given as
follows in detail.

3.2.1. Message update in even hidden layers⎧⎪⎪⎨⎪⎪⎩
esℓ1,d=(m,k) = w

ym
ℓ1,dym −

∑
d′=(i,m),i̸=k

wes
ℓ1,d,d′hmiev

ℓ1−1, d′ ,

vs
ℓ1,d=(m,k) =

∑
d′=(i,m),i̸=k

wvs

ℓ1,d,d′h2
miv

v
ℓ1−1,d′ + wn

ℓ1,dσ
2
n + bnℓ1,d,

where m ∈ M, k, i ∈ K, d, d′
∈ E ′

= {1, . . . , E}, ℓ1 ∈ L =

{2, . . . , 2L + 1}, ℓ1 is the index of even hidden layers, esℓ1,d=(m,k)
and vs

ℓ1,d=(m,k) denote the mean and variance passing from themth
sum node in the ℓ1th layer to the kth variable node in the (ℓ1+1)th
layer, ym is the mth entry of y, hmi is the entry in the mth row and
the ith column ofH , ev

ℓ1−1,d′=(i,m) and vv
ℓ1−1,d′=(i,m) denote themean

and variance passing from the ith variable node in the (ℓ1 − 1)th
layer to the mth sum node in the ℓ1th layer, bnℓ1,d denotes the
bias parameter, and {w

ym
ℓ1,d, w

es
ℓ1,d,d′ , w

vs

ℓ1,d,d′} denotes weights on

the edges between the (ℓ1 − 1)th layer and the ℓ1th layer. The
initial values of ev

1,d′ and vv
1,d′ are 0 and +∞ respectively.

3.2.2. Message update in odd hidden layers

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vv

ℓ2,d=(k,m) = (
∑

d′=(j,k),j̸=m

wvv

ℓ2,d,d′h2
jkv

s−1

ℓ2−1,d′ + wk
ℓ2,dσ

−2
k

+bkℓ2,d)
−1
,

ev
ℓ2,d=(k,m) = vv

ℓ2,d=(k,m)

∑
d′=(j,k),j̸=m

wev
ℓ2,d,d′hjkv

s−1

ℓ2−1,d′esℓ2−1,d′ ,

where k ∈ K,m, j ∈ M, d, d′
∈ E ′, bkℓ2,d denotes the bias parameter,

{wev
ℓ2,d,d′ , wvv

ℓ2,d,d′} denotes weights on the edges between the (ℓ2 −

1)th layer and the ℓ2th layer, and ℓ2 takes odd values in L.

3.2.3. Message combination in odd hidden layers⎧⎪⎪⎨⎪⎪⎩
σ 2
x̂k,ℓ2

= (
∑

d=(m,k)

h2
mkv

s−1

ℓ2−1,d + σ−2
k )−1

,

x̂k,ℓ2 = σ 2
x̂k
(

∑
d=(m,k)

hmkv
s−1

ℓ2−1,de
s
ℓ2−1,d),

where x̂k,ℓ2 and σ 2
x̂k,ℓ2

are the estimated means and variances of
users’ signals at the output of the odd hidden layers. x̂k,ℓ2 denotes
the estimated signal when one iteration detection is finished, such
that the accuracy of detection in each iteration can be traced by
taking into account the MSE between x̂k,ℓ2 and true signal x in the
loss function.

3.2.4. Message combination in the output layer⎧⎪⎪⎨⎪⎪⎩
σ 2
x̂k

= (
∑

d=(m,k)

wv
2L+1,dh

2
mkv

s−1

2L+1,d + wk
2L+1,dσ

−2
k + bk2L+1,d)

−1
,

x̂k = σ 2
x̂k
(

∑
d=(m,k)

we
2L+1,dhmkv

s−1

2L+1,de
s
2L+1,d),

where k ∈ K, m ∈ M, d ∈ E ′, bk2L+1,d denotes the bias parameter,
{we

2L+1,d, w
v
2L+1,d} denotes weights on the edges between the last

hidden layer and the output layer, and x̂k is the kth element of
estimated signal x̂.

3.3. DNN-GMP in matrix form

Note: let HE,2
K×M = HE

K×M • HE
K×M , • denote Hadamard product,

σ2
n = [σ 2

n ]E×1,σ2
x = [σ 2

xd,k ]E×1,W in
y = [w

ym
in,d]E×M ,W in

e = [wes
in,d]E×E ,
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W in
v = [wvs

in,d]E×E , W in
n = [wn

in,d]E×1, Bin
n = [bnin,d]E×1, E in

v =

[ev
in,d′ ]E×1, V in

v = [vv
in,d′ ]E×1,W ℓ1

y = [w
ym
ℓ1,d]E×M ,W ℓ1

e = [wes
ℓ1,d,d′ ]E×E ,

W ℓ1
v = [wvs

ℓ1,d,d′ ]E×E , W ℓ1
n = [wn

ℓ1,d]E×1, Bℓ1
n = [bnℓ1,d]E×1, W ℓ2

e =

[wev
ℓ2,d,d′ ]E×E , W ℓ2

v = [wvv

ℓ2,d,d′ ]E×E , W ℓ2
x = [wk

ℓ2,d]E×1, Bℓ2
x =

[bkℓ2,d]E×1, W out
e = [we

2L+1,d]K×E , W out
x = [wk

ℓ,d]K×1, W out
v =

[wv
2L+1,d]K×E , σ2

x̂ = [σ 2
x̂d,k

]K×1, Bout
x = [bkℓ2,d]K×1. Eℓ1→ℓ2

sv and V ℓ1→ℓ2
sv

denote the estimated mean and variance passing from the ℓ1-th
layers to the ℓ2-th layers respectively. Eℓ2→ℓ1

vs and V ℓ2→ℓ1
vs denote

the estimated mean and variance passing from the ℓ2-th layers to
the ℓ1-th layers respectively E x̂,ℓ2 and V σ2

x̂ ,ℓ2
denote the message

combination in the odd hidden layers respectively. E x̂ and V σ2
x̂

denote the message combination in the output layers respectively.
As shown in Fig. 2, the proposed DNN is not fully connected so
that all weight matrices consisting of nonzero elements and zeros
are designed according to message update rules in Eqs. (2)–(4).
Algorithm 1 shows the detailed process of matrix-form DNN-GMP.

Algorithm 1 DNN-GMP Algorithm

1: Input: y, HE
K×M , HE,2

K×M , HE
K , H

E,2
K , σ2

x , σ
2
x̂ , σn.

2: Initialization: E in
v = 0, V in

v =+∞.
3: Input layer → ℓ1 = 2 even hidden layer:

4: Eℓ1=2→ℓ2=3
sv = W in

y y − (W in
e • HE

K×M )E in
v

5: V ℓ1=2→ℓ2=3
sv = (W in

v • HE,2
K×M )V in

v + W in
n • σ2

n + Bin
n

6: Hidden layers:
7: for: ℓ2 ∈ L odd hidden layer:
8: V ℓ2→ℓ1

vs =[(W ℓ2
v •HE,2

K×M )(V ℓ1→ℓ2
sv )−1

+W ℓ2
x •σ−2

x +Bℓ2
x ]

−1

9: Eℓ2→ℓ1
vs =V ℓ2→ℓ1

vs •[(W ℓ2
e •HE

K×M )((V ℓ1→ℓ2
sv )−1

•Eℓ1→ℓ2
sv )]

10: V σ2
x̂ ,ℓ2

= [HE,2
K (V ℓ1→ℓ2

sv )−1
+ σ2

x̂ ]
−1

11: E x̂,ℓ2 = V σ2
x̂ ,ℓ2

• [HE
K ((V

ℓ1→ℓ2
sv )−1

• Eℓ1→ℓ2
sv )]

12: for: ℓ1 ∈ L even hidden layer:
13: Eℓ1→ℓ2

sv = W ℓ1
y y − (W ℓ1

e • HE
K×M )Eℓ2→ℓ1

vs

14: V ℓ1→ℓ2
sv = (W ℓ1

v • HE,2
K×M )V ℓ2→ℓ1

vs + W ℓ1
n • σ2

n + Bℓ1
n

15: Output layers:
16: V σ2

x̂
= [(W out

v • HE,2
K )(V ℓ1=2L→ℓ2=2L+1

sv )−1
+ W out

x • σ2
x̂ + Bout

x ]
−1

17: E x̂ = V σ2
x̂
• [(W out

e • HE
K )((V

ℓ1=2L→ℓ2=2L+1
sv )−1

• Eℓ1=2L→ℓ2=2L+1
sv )]

3.4. Loss function

In order to ensure the high reliability of signal recovery, the goal
is to train all weight matrices W E = {W in

y ,W in
e ,W in

v ,W in
n ,W ℓ1

y ,

W ℓ1
e ,W ℓ1

v ,W ℓ1
n ,W ℓ2

e ,W ℓ2
v ,W ℓ2

x ,W out
e ,W out

v ,W out
x } and bias BE =

{Bin
n ,Bℓ1

n ,Bℓ2
x , Bout

x }, ℓ1, ℓ2 ∈ L, to achieve the minimum MSE. Here
we present two kinds of loss function to train the DNN. One is
termed as single loss, i.e.,

min
{WE ,BE }

1
2
∥x − x̂∥2

2,

which is in fact used for the end-to-end learning process. The other
one is termed as multi-loss, i.e,

min
{WE ,BE }

1
2
∥x − x̂∥2

2 +
1
2

∑
ℓ2

∥x − x̂ℓ2∥
2
2,

which combines the effect of each odd hidden layer to strengthen
each iterative detection actually.

The item ∥x − x̂ℓ2∥
2
2 denotes the MSE between true signal x

and estimated signal x̂ℓ2 at the ℓ2-th iteration, where ℓ2 < L. As a
result, the second item

∑
ℓ2

∥x− x̂ℓ2∥
2
2 of the multi-loss function is

Fig. 3. Computational complexity of each layer of the DNN-GMP algorithm.

Table 1
Complexity comparisons of IF, MMSE, GMP, and the proposed DNN-GMP detection
algorithms.
Detection IF MMSE GMP DNN-GMP

Complexity O(M2K+M3) O(min(MK 2
+ M3, KM2

+ M3)) O(MKL) O(MKL)

introduced to enforce the reliability of estimation at each iteration
during the training process as soon as possible.

To further investigate the effect of estimations at hidden layer,
we also consider a loss function termed as layer loss, i.e.,

min
{WE ,BE }

1
2

∑
ℓ2

∥x − x̂ℓ2∥
2
2,

where ℓ2 takes an odd value and ℓ2 < L.

3.5. Complexity comparison

In our proposed DNN-GMP algorithm, although many weight
and bias parameters are introduced, the neural network is trained
offline on a HP Z840 workstation with NVIDIA GeForce GTX 1080
Ti. Consequently, the trained neural network can be stored in the
on-device memory for online use. Therefore, the training com-
plexity of DNN-GMP algorithm is just an offline complexity, such
that the computation of DNN-GMP algorithm is dominated by the
online calculation. According to Algorithm 1, the online compu-
tation complexities of input layer, each hidden layer, and output
layer of DNN are calculated as shown in Fig. 3, which includes
the number of multiplications and additions. Note that there are
O(KM) multiplications and additions in each layer. As a result, the
online complexity of our proposed DNN-GMP algorithm is as low
as O(MKL), which is the same as the original GMP algorithm.

Among existing signal detection algorithms, it iswell known the
MMSE detection is optimal when users employ Gaussian sources.
But the complexity ofMMSE detection is very high due to perform-
ingmatrix inversion operations [42]. On the other hand, inverse fil-
ter (IF) [43] is also known as zero-forcing or decorrelator receiver,
which also needs to perform matrix inversion operations. In the
GMP algorithm [18–20], since it is performed based on the factor
graph, it can achieve linear complexity with K andM . Here we give
the detailed complexity comparisons of the above algorithms in
Table 1.
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4. Deep neutral network — SA-GMP

Considering that the SA-GMP has been presented in [18,19] to
improve the convergence of the GMP based on the law of large
numbers, a DNN-SA-GMP is proposed to further improve the relia-
bility of the SA-GMP in finite-length systems. Moreover, since the
SA-GMP provides a more robust initialization of neural network
than the GMP, the DNN-SA-GMP can take less training epochs to
achieve the optimal network parameters. The detailed DNN-SA-
GMP is given as follows.

4.1. Message update in even hidden layers

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
esℓ1,d=(m,k) = w

y′m
ℓ1,dy

′

m −

∑
d′=(i,m),i̸=k

wes
ℓ1,d,d′h′

mie
v
ℓ1−1, d′ ,

vs
ℓ1,d=(m,k) =

∑
d′=(i,m),i̸=k

wvs

ℓ1,d,d′h2
miv

v
ℓ1−1,d′ + wℓ1,d,nσ

2
n

+bℓ1,d,n,

where y′
=

√
αy, h′

mi =
√

αhmi, and α is a relaxation parameter
obtained from [18,19].

4.2. Message update in odd hidden layers

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

vv
ℓ2,d=(k,m) = (

∑
d′=(j,k)

wvv

ℓ2,d,d′h2
jkv

s−1

ℓ2−1,d′ + wℓ2,d,kσ
−2
k

+bℓ2,d,k)−1
,

ev
ℓ2,d=(k,m) = vv

ℓ2,d=(k,m)

( ∑
d′=(j,k)

wev
ℓ2,d,d′h′

jkv
s−1

ℓ2−1,d′esℓ2−1,d′

)
−wev

ℓ2,d,d′′ (α − 1)ev
ℓ2−2,d′′=(k,m),

where ev
ℓ2−2,d′′=(k,m) = 0 for ℓ2 ≤ 2, ℓ2 ∈ L, and d′′

∈ E ′.

4.3. Message combination in the output layer

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ 2
x̂k

= (
∑

d=(m,k)

wv
2L+1,dh

2
mkv

s−1

2L+1,d + wk
2L+1,dσ

−2
k + bk2L+1,d)

−1
,

x̂k = σ 2
x̂k
(

∑
d=(m,k)

we
2L+1,dh

′

mkv
s−1

2L+1,de
s
2L+1,d)

−
α − 1
M

∑
d′′=(m,k)

wev
2L+1,d,d′′ev

2L−1,d′′ ,

Note that the online complexity of theDNN-SA-GMP is as low as
O(MKL), which is same as the original GMP. Moreover, the training
process of the DNN-SA-GMP is similar as that of the DNN-GMP.

5. Numerical results

In simulations, we consider the signal recovery in an uplink
MIMO-NOMA system [44–46], which is the key multiple-access
technology in 5G supporting URLLC systems.We assume that there
are K = 10 single-antenna users and a base station equipped
with M = 20 receive antennas. Here, we consider that entries
of x obey independent and identically distributed (i.i.d.) Gaussian
distribution N (0, 1), i.e., σ 2

k = 1, k ∈ K, and those of channel
matrix H obey i.i.d. Gaussian distribution N (0, 1).

The training and testing datasets are generated independently
according to Eq. (1) (y = Hx + n) respectively. That is, input
labels x and H are generated independently according to N (0, 1)
and output label y is obtained based on y = Hx + n, where
n is generated according to N (0, σ 2

n ). Note that signal-to-noise

Fig. 4. MSE comparisons among the proposed DNN-GMP, the proposed DNN-SA-
GMP, GMP [18,19], SA-GMP [18,19], and MMSE (optimal), where K = 10, M = 20,
and L ∈ {10, 20}.

ratio (SNR) =
∥H∥

2
2

σ2
n

. Therefore, different output labels y are ob-
tained under different SNRs. The training of the proposed DNN is
implemented in TensorFlow [47] and conducted using stochastic
gradient descent with mini-batch learning. In our experiments,
we do not observe overfitting phenomenon. Details about our
experiments and results are provided as follows.

Let the maximum iteration number L = 10 and average MSE =
1
K E[∥x − x̂∥2

2]. The size of training data is 100000, the size of mini-
batch learning is 100, and the learning rate is adjusted gradually.
The weight and bias parameters are trained under SNR = 60 dB
and employed for each SNR ∈ {20 dB, 30 dB, 40 dB, 50 dB, 60 dB}.
The online simulated MSEs are averaged over 100 realizations.

5.1. MSE performance comparison

To evaluate recovery accuracy of the proposed DNN-GMP and
DNN-SA-GMP, we provide the MSE comparisons of the GMP [18,
19], the SA-GMP [18,19], the DNN-GMP, the DNN-SA-GMP, and
MMSE. As shown in Fig. 4, the MSEs of DNN-GMP and DNN-SA-
GMP are more close to that of MMSE than those of GMP and SA-
GMP over the almost entire SNR region, in which MMSE is optimal
when employing Gaussian signals. Note that theMSE curve of GMP
slightly diverges and that of SA-GMP converges to a bad MSE at
2 × 10−2, the DNN-GMP and the DNN-SA-GMP converge more
reliablywith the aid of DNN.When themaximum iteration number
L increases to 20, the GMP becomes diverging severely that is not
given, but the SA-GMP becomes better. Nonetheless, our proposed
DNN-GMP and DNN-SA-GMP still have large performance gains
over the SA-GMP when SNR > 40 dB.

5.2. MSE evolution in DNN

Since L is set as 10, there are 2L + 2 = 22 layers in the
network architecture. In the proposed DNN-GMP and DNN-SA-
GMP, the estimated signals can be traced at the outputs of the
odd hidden layers and the output layer. Thus, Fig. 5 shows that
the MSE performances of the DNN-GMP and DNN-SA-GMP evolve
with the increase of layer number. In Fig. 5, we consider the effect
of three loss functions on the MSE performances, i.e., signal loss,
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Fig. 5. Output MSEs of the odd hidden layers and the output layer of the proposed
DNN-GMP and DNN-SA-GMP with signal loss, multi-loss, and layer loss functions
under SNR ∈ {30 dB, 40 dB, 50 dB, 60 dB}, where K = 10,M = 20, and L = 10.

multi-loss, and layer loss. As shown in Fig. 5(a), themulti-loss func-
tion can help the DNN-GMP converge more reliably in each odd
hidden layer than the single loss function. The MSE performances
with multi-loss function improve almost linearly with increasing
number of layers. Note that the MSE curve of layer loss function
is close to the multi-loss function among the hidden layers, but
becomes bad at the output layer when the index of layer is 22.
The reason is that the layer loss function does not include the
network parameters of the output layer, such that these network
parameters are not trained effectively.

The similar phenomenon is also observed in Fig. 5(b), which
shows the effect of loss functions on the MSE performances of the
DNN-SA-GMP algorithm. This also indicates that the number of
layers in the DNN can be determined when the MSE requirement
is given.

Fig. 6. MSE performances of the proposed DNN-GMP andDNN-SA-GMP algorithms
with multi-loss function during the training process, where K = 10, M = 20, and
L = 10.

5.3. Convergence rate during training process

To investigate the convergence rate of the proposed DNN-
GMP and DNN-SA-GMP algorithms during the training process,
we present the MSE curves under the multi-loss function for each
training epoch as shown in Fig. 6. Note that the initial point of
the DNN-SA-GMP is lower than that of the DNN-GMP due to the
fact that the original SA-GMP algorithm provides a more robust
initialization than the original GMP algorithm. Meanwhile, since
the DNN-SA-GMP combines the advantages of SA-GMP andDNN at
the same time, the DNN-SA-GMP converges faster than the DNN-
GMP during the training process.

5.4. Impact with imperfect channel estimation

Since channel estimation is hard to be always estimated pre-
cisely, we consider the impact of imperfect channel estimation
on the MSE performances of the proposed DNN-GMP and DNN-
SA-GMP algorithms. Here we consider the variances of estimated
channel errors are 0.04 and 0.1. As shown in Fig. 7, when the
estimated channel information is imperfect, theMSEperformances
of GMP and SA-GMP with L = 10 are poor. When L = 20,
the MSE of GMP becomes diverging severely and that of SA-GMP
is improved slightly. Compared with the GMP and the SA-GMP,
our proposed DNN-GMP and DNN-SA-GMP with L = 10 can still
achieve reliable MSE performances at 7 × 10−4.

5.5. Impact without priori information

To investigate the robustness of the proposed DNN-GMP and
DNN-SA-GMP algorithms, we consider the signal recovery in the
cases without the priori information, in which the variance vector
of x is unavailable. Fig. 8 shows that the MSE performances of the
GMP [18,19], the SA-GMP [18,19], the DNN-GMP, and the DNN-SA-
GMP in the case of unavailable a priori variance.

Note that the initial point of MSE curve of the GMP at SNR=

20 dB is larger than 1 and MSE performance of the GMP becomes
poor, which shows the convergence of the GMP diverges in the
cases without a priori variance. For the SA-GMP without a priori
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Fig. 7. MSEs comparisons of the proposed DNN-GMP, proposed DNN-SA-GMP,
GMP [18,19], and SA-GMP [18,19] under imperfect channel estimation with error
variances {0.1, 0.04}, where K = 10,M = 20, and L ∈ {10, 20}.

variance, its MSE performance become slightly bad when L = 10.
As L increases to 20, the SA-GMP without a priori variance can
achieve MSE as low as 2 × 10−3 when SNR = 60 dB. Note that
the initial points of MSE curves of DNN-GMP and DNN-SA-GMP
are slightly higher than those of SA-GMP with L = 10 and 20.
The reason is that the DNN-GMP and DNN-SA-GMP are trained
under SNR=60 dB and the MSE performances of DNN-GMP and
DNN-SA-GMP become slightlyworse at SNR=20 dB. In contrast, the
DNN-GMP without a priori variance can achieve MSE at 9 × 10−4

and the SA-GMP without a priori variance can achieve MSE as low
as 5 × 10−4 when SNR = 60 dB and L = 10. This verifies that
the proposed DNN-GMP and DNN-SA-GMP are robust to the cases
without priori variance.

Fig. 8. MSEs comparisons of the proposed DNN-GMP, proposed DNN-SA-GMP,
GMP [18,19], and SA-GMP [18,19] in the cases of unavailable priori variances.

Fig. 9. MSE comparisons among the proposed DNN-GMP, the proposed DNN-SA-
GMP, GMP [18,19], SA-GMP [18,19], and MMSE (optimal), where K = 10, M = 60,
and L = 5.

5.6. MSE performance in large-scale system

To evaluate the effectivity of the proposed DNN-GMP and DNN-
SA-GMP algorithms in large-scale systems, we consider the MSE
performances of the GMP [18,19], the SA-GMP [18,19], the DNN-
GMP, the DNN-SA-GMP, and MMSE over MIMO-NOMA system,
where K = 10, M = 60, and L = 5. As shown in Fig. 9, the MSE
performances of the DNN-GMP and the DNN-SA-GMP are more
close to the MSE performance of MMSE than those of the GMP
and the SA-GMP. Note that although the GMP and the SA-GMP
can converge, the DNN-GMP and the DNN-SA-GMP improve the
convergences significantly at the same iteration L = 5 with the aid
of DNN. This verifies that the proposed DNN-GMP and DNN-SA-
GMP algorithms can also be applicable to the large-scale systems.
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6. Conclusion

In this paper, we have proposed the DNN-aided GMP algo-
rithm and the DNN-aided SA-GMP algorithm to recover signals
in URLLC systems, which combines with the advantages of DNN
and MPA. With the aid of deep learning, training the constructed
neural network offline is to search for the optimal weight and
bias parameters. Numerical results have verified that the proposed
DNN-aided GMP algorithm and DNN-aided SA-GAMP algorithm
can achieve more reliable performance and faster convergence
than the original GMP algorithm and SA-GAMP algorithm, as well
as robust performances in the cases with imperfect channel esti-
mations and the cases without a priori information.

There are three possible extensions to our work. The first one is
to extend our proposed DNN-aided MPA methods in the discrete
signals systems. The second one is to combine the DNN-aided
MPAmethodswith sliding-window technology for very large-scale
systems. The third extension is to exploit the evolutionary neural
networks [48,49] to improve the adaptability of the proposed
method in dynamic communication environments.
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