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A Model-Based Approach for Design and Verification of Industrial Internet of
Things

Abstract

This investigation presents an Industrial Internet of Things (IIoT) architecture and a Model-Based Engineering
(MBE) approach for design, verification, and auto-code generation of control applications in process industries.
The IIoT architecture describes the hardware components, communication modules, and software. It emerges
as a major enabler for providing open connectivity to process industry which provides greater data-aggregation,
visibility, availability, flexible control, and cloud-connectivity. The MBE approach is based on multiple views
of the systems with each domain model describing a particular view. The multi-view modelling approach is
used to perform design and verification of the IIoT enabled control in process industries. We show that such an
integration of MBE, cloud-computing, and IIoT provides certain desirable features such as plug-and-play control
and on-the fly verification which are lacking in the process industry. The proposed MBE approach and IIoT
architecture are illustrated on the quadruple tank process, a benchmark problem in control. Our deployment
results verify the benefits envisaged by IIoT, cloud, and MBE integration.

Keywords: Industrial Internet of Things (IIoT), Model-Based Engineering (MBE), Verification, process
industries, IoT architecture.

1. Introduction1

Combining the Internet of Things (IoT) with cloud-intrinsic capabilities can transform the way industrial2

automation systems are designed, deployed and managed currently in process industries [1, 2, 3]. While the3

cloud offers capabilities such as virtualization, scalability, lifecycle management, and multi-tenancy, the IoT4

compliments it using its open connectivity and emergent computing environments (e.g., fog computing). In5

addition, the cloud offers attractive delivery models such as software-as-a-service, platform-as-a-service, and6

infrastructure-as-a-service with different deployment models. Consequently, many desirable features such as7

increased flexibility, adaptability, data-visualization, enterprise-wide communication, intelligence, and agility8

can be realized on low-power electronic devices. Besides, the cloud can host a variety of auxiliary services9

that can enhance the automation capabilities and promote smart manufacturing. Many recent investigations10

have stressed the need for transforming the cloud-IoT integration to deployment (see, [4, 5, 6] and references11

therein). However, industrial automation lacks engineering approaches and tools to accomplish this integration.12

Moreover, their deployment possess strict challenges due to hardware limitations of the IoT components such as13

real-time performance, reliability, and safety. Arguably, the IoT-based devices cannot fully substitute the legacy14

automation systems, but they can be deployed in tandem with them to perform specific/specialized tasks. This15

requires frameworks that consider both legacy and IoT devices in one framework.16

Engineering industrial automation systems has been focus of many investigations and methods based on17

component-based [7], formal models [8], agent-based [9], service-oriented architecture (SoA) [10], design pat-18

terns [11] and Model-Based Engineering (MBE) [12] have been proposed. Vyatkin [13] provides a good review on19

these approaches. Notwithstanding these developments, the automation software complexity and the function-20

alities realized using them have grown steadily. This, the industries discern, will increase the design, validation21

and verification costs significantly. Moreover, design upgrades and post design validations are proving costlier.22

In this backdrop, the Model-Based Engineering (MBE), an approach using models to design software and23

perform component testing emerges as a promising solution. As they automate the design process through24

auto-code generation capabilities. Further, design validation can be performed early during the life-cycle. The25

use of MBE approach for code-generation in legacy industrial automation systems has been studied in [14].26

Similarly, to handle the complexity of industrial automation system with entangled behaviours from various27

domains, artifacts, and interactions, multi-domain models have been studied in [15]. As for Industrial IoT, an28

UML (Unified Modelling Language) profile for IoT in manufacturing industry was presented in [16]. The use29

of semantic technologies adding meaning to machine-to-machine communication using ontologies of interlinked30

terms, concepts, relationships and entities was investigated in the context of IIoT in [17]. These investigations31

either model legacy systems or IoT systems without involving cloud features.32

More recently, combining cloud-intrinsic features with IIoT for providing enterprise-wide connectivity has33

been studied in [18, 19]. The IMC-AESOP project [20] extended the engineering methods based on Object34
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Figure 1: Proposed IIoT Architecture

Oriented and Aspect Oriented approach to industrial automation [21] using formal modelling extensions. Simi-35

larly, the use of agent-based approaches for cloud integrated IoT systems was studied in [22]. However, the use36

of MBE approach for cloud-based IIoT starting from the model to the deployment is currently not available to37

our best knowledge.38

This investigation addresses this research gap by proposing a multi-view model of industrial automation and39

an MBE approach for design and verification of cloud-based IIoT implementations in process industries. The40

main contributions of this investigation are: (i) An IIoT architecture that promotes cloud-based engineering of41

the process control applications, (ii) Multi-view models for industrial automation systems in process industries42

that include various participating domains, artefacts, and interactions, (iii) A MBE approach for designing43

and verifying cloud-based IIoT, (iv) a workflow for performing Model-Based Design (MBD) and verification in44

emergent IIoT paradigm to realize sophisticated controllers, e.g., model predictive controller [23], (v) Present45

the advantages of the proposed architecture to perform plug-and-play control, on-the-fly verification, and smart46

manufacturing, and (vi) Demonstrate the MBE approach on a quadruple tank process applications.47

The paper is organized into six sections. Section II, presents the IIoT architecture and the MBE approach48

is discussed in Section III. The cloud-enabled flexibilities are discussed in Section IV. Section V presents the49

deployment results of the IIoT. Conclusions and future course of investigation are discussed in Section VI.50

2. Proposed IIoT Architecture51

The architecture that enables MBE for cloud-based IIoT is shown in Fig. 1. It consists of three major blocks:52

plant-level automation, the IIoT gateway, and the automation cloud. The plant-level automation consists of53

conventional Programmable Logic Controllers (PLCs) and IoT based commercial-of-the-shelf (COTS) target54

platform. The PLC interfaces to the sensors using conventional industrial protocols (e.g., Modbus). While the55

COTS platform uses TCP based protocols such as Message Queue Telemetry Transport (MQTT) or Advanced56

Message Queuing Protocol (AMQP), wireless and other forms of dedicated communication (e.g., I2C) to interface57

the field devices. A gateway is used to communicate with COTS target platform and legacy protocols with58

an incompatible physical layer (e.g., Profibus PA). OPC UA is used for aggregating information from the59

conventional PLCs and field devices due to its prevalence in the automation industry. Further, its security and60

platform independence makes it a good choice for the IIoT.61

The IIoT gateway has interfaces on one side to the plant-level automation, and on the other to the cloud. The62

IIoT core is the main component of the IIoT gateway that orchestrates different protocols, devices, applications63

and software routines. It collects data from OPC UA using a client and transfers to other devices using MQTT64

or AMQP extensions. The MQTT extensions, (i.e., services) are used to collect information from the MQTT65

broker (an entity that supplies information to all devices subscribing to it). The OPC UA client and MQTT66

extension perform both device and data management within the IIoT gateway. The FTP, web interfaces and web67

applications are used to communicate to plant-level devices and cloud. The IIoT gateway provides extensions68

for the cloud and hardware devices, data persistence (DP) for securing data delivery in events of communication69

failures, and a secured FTP for enhancing the application security. Here it should be clarified that the MQTT70
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and AMQP are shown as communication links only for illustrative purposes of this investigation. The IIoT71

gateway can be used for other protocols as well with suitable modification.72

The cloud-intrinsic features— DP, virtualization, communication interfaces, multi-tenancy, auxiliary appli-73

cation support and others are offered by the automation cloud. The cloud offers virtualization through model74

repositories and emulators. The model repositories consist of the processes and controller instances, topology,75

behaviourial models of the devices and all other aspects required for performing MBE. Employing the commu-76

nication interfaces, the cloud talks to the IIoT gateway through the MQTT and AMQP. To compliment the77

IIoT gateway, the cloud has FTP, HTTP and external interfaces for enabling file transfer, web applications78

and using third-party applications. The IIoT architecture simplifies the communication between legacy devices79

and IoT devices in the plant-floor and enables open connectivity between plant-floor and cloud. Therefore, the80

architecture promotes the implementation of the cloud-based IIoT.81

3. Model Driven Engineering for Industrial Internet of Things82

With the emergence of IIoT, the heterogeneity and networking capability of the hardware, and the proportion83

of system functionality realized using software has increased stupendously leading to an increase in the design84

space. Coupled with these developments, market influences requiring smart and flexible manufacturing are85

obligating a more flexible automation that provides upgrades/modifications with minimum engineering effort.86

As stated earlier, the MBE approach is more suitable in such scenarios as it raises the abstraction levels and87

automates the labour-intensive and error-prone tasks in the design, e.g., code-development [13]. This not only88

brings down the design cost, but enhances reusability, efficient data exchange, and verifiability of the system.89

Above all, the MBE promotes MBD and Model-Based Verification (MBV). Using these methods the design,90

validation and verification can be automated to a greater extent even from the cloud. However, the model of the91

industrial automation system by itself is complex due to the interaction of multiple domains and heterogeneous92

entities. There is a lack of tools, formalisms and semantics capable of incorporating semantic relations among93

the disciplines. Developing a meta-model encapsulating all aspects of an industrial automation system is rather94

difficult. More recently, the use of multiple views for industrial automation systems have been investigated for95

industrial production units [24]. This investigation uses the multi-view modelling approach for performing MBE96

for cloud-based IIoT solutions.97

3.1. Multi-View Model for IIoT98

Multiple views model is an emerging concept for building complex systems wherein different stakeholder’s99

viewpoints are captured as domain models or views [25]. The multi-view model of cloud based IIoT has different100

but entangled views—devices, architecture, information, software, control, domains, behaviour and others.101

These different viewpoints need to be considered simultaneously for engineering IIoT systems. Consequently,102

system integration emerges as a key challenge due to potential contradictions or overlapping information among103

the views. Therefore model transformations and mapping are required for engineering systems with multiple104

views. This investigation uses a meta-modelling approach for capturing the different views.105

Figure 2: Multi-View model of IIoT
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The multi-view model of the industrial automation system and the different tools for obtaining these views106

are shown in Fig. 2. To integrate these different views, this investigation uses the AutomationML (Automation107

Markup Language) 1 (AML) for providing the topology view and uses it as a meta-model of the IIoT based108

automation systems [26]. The process industries with its various process stations are modelled in the AML using109

suitable abstractions. The AML provides XML/CAEX (Computer Aided Engineering Exchange) formats for110

the topology view and in addition provides the communication view through the InterfaceLibraryClass, wherein111

additional interfaces specific to IIoT are defined. The process views are obtained from the P and ID diagram,112

the controller design is modelled in Simulink using state-space/transition formalisms, the OPC UA provides the113

information models, the software design is modelled using UML and behavioural models based on state-charts.114

In addition to these models, there can be domain views that capture the formalisms and artefacts of the different115

domains (electrical, mechanical) modelled using suitable software tools, e.g., Dymola. The multi-view model116

forms the basis on which the MBD and MBV are performed.117

3.2. Workflow for Model-Based Design and Verification118

Figure 3: Workflow for MBE based Design of IIoT

The workflow for performing MBD and MBV from multi-view models is illustrated in Fig. 3. The P and119

ID’s process view defined in the IEC 62424 standard is used as the starting point. It has three basic concepts:120

process control engineering requests (PCE-R), process control engineering function (PCE-f), and process control121

loop (optional). The PCE-R defines the requirements of the process control equipment. The PCE-R collects all122

information about the functional requirements. PCE-R and its unique ID are important specifications for the123

requirements diagram.124

The AML model uses the PCE-R to create a meta-model of the entire process that can be later used to map125

different models. The ability to produce neutral XML/CAEX schema makes AML a suitable tool for information126

exchange between engineering applications. The InstanceHierarchy represents the entire automation project and127

it has the child nodes called the InternalElements that hold the attributes of the different properties of the object128

and have objects that hold the attributes need to describe them. Here, process control loop implies the unitary129

process description, e.g., level control of the tank. Each object in the InternalElements is associated with a130

RoleClassLibrary that provides the functional view of the object, an useful aspect for semantic classification.131

In addition, there is the SystemUnitClassLibrary defining the specific aspects of the process control application,132

e.g., height of the specific tank.133

The communication interfaces are modelled using the AML basic InterfaceLibrary which is extended using134

four additional classes for the IIoT applications: IIoTEndPoint, CloudEndPoint, ProcessEndPoint, and Logical-135

ConnectionEndPoint. The IIoTEndPoint contains special plugs to model Ethernet-based connectivity of IIoT136

based TCP/IP, MQTT, AMQP, RS 232, Modbus, and other communication available with the COTS target137

platform and device. The CloudEndpoint defines the interfaces for cloud communication such as the FTP and138

HTTP services, AMQP and MQTT for data-transfer. The ProcessEndPoint defines the traditional connectivity139

1https://www.automationml.org/
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with non TCP/IP based protocols such as the Profibus using the gateway that delivers TCP/IP messages to the140

IIoT. The LogicalConnectionEndpoints model the communication between PLC and IIoT, master-slave, Bus,141

etc. In addition, we define CommunicationRules that enforce logically correct connectivity, e.g., MQTT to142

TCP/IP based devices. These interfaces model the physical interconnection of the components. The annotated143

AML CAEX schema thus generated represents the multi-view model of the automation systems. The COTS144

target platform is mapped as resources to specific process control instances using UML models. The multi-view145

models and the annotated requirements are the input to the model-based design and verification steps.146

The CAEX schema is then annotated with additional user-defined requirements either using UML models147

or textual representations. The requirements are generated for both the design and verification. The MBD and148

MBV approach used to design and verify automation systems will be detailed in the next sections. Of particular149

interest to this investigation is the design of MPC from the requirements. As MPC is emerging as a workhorse150

for smart manufacturing and one of the sophisticated control algorithms executed in process industry.151

3.3. Model Based Design for Cloud-Based IIoT152

The PLCs are the processing units for performing control in process industries and they are programmed153

using IEC 61131 standard. The role of MBD approach for auto-generating code for IEC 61131 based process154

automation has been studied in literature [14]. The PLCs are bit inflexible due to real-time requirements and155

sophisticated controllers such as MPCs are usually implemented on dedicated hardware platforms. Even in156

literature, the MPC implementation on PLC is quite scarce. With the emergence of IIoT, these sophisticated157

controllers can be realized in IIoT hardware and executing conventional control in traditional PLC systems.158

In this scenario, the MBD approach should be able to automate the code generation of sophisticated control159

schemes such as MPC. Therefore, for the rest of the section, we focus on the auto-code generation for MPC,160

rather than executing simple logics or control actions such as Proportional Integral Derivative control. This161

brings down the cost and development time significantly.162

The workflow for performing MBD-based design for cloud integrated IIoT is shown in Fig. 4 and it follows163

the V-model. It has four validation stages: Model-in-the-loop (MIL), software-in-the-loop (SIL), processor-164

in-the-loop (PIL) and Hardware-in-the-loop (HIL), before actual deployment. The real-time performance is165

validated through these different steps, an important requirement for process control applications. In the design166

flow requirements in the form of objective function (e.g., track a reference signal with minimum energy) and167

constraints (e.g., the maximum voltage of a pump) are fed as the requirements to the control design. The MPC168

parameters are computed based on the requirements using the design equations, (refer Appendix A for MPC169

models). Then both controller and process are simulated in a virtual environment to verify the control design,170

the procedure is called MIL. The model used is called platform independent model (PIM).171

Following MIL, the target platform is identified, and the software code for the specific target is generated172

using an auto-coder. This model is called PDM, and the software emitted by the auto-coder is used to run the173

SIL, wherein the platform dependent software code and process models are simulated in virtual environment.174

This validation procedure tests the software code. The SIL code is ported to the target hardware, and tested175

on the virtual process with sensor and actuator models in the PIL validation, verifies the hardware capabilities,176

e.g., sampling time. Finally, the controller code working on the target hardware is interfaced to the sensors177

and it controls the virtual model of the process in the HIL. The validations are iterative procedures and design178

changes can be made based on the results. A controller design successfully validated in the four tests is deployed179

in the process industry with the control action performed by the target hardware. Two important observations180

here are:181

1. There are not many auto-coders available for MPCs as they involve optimization solvers. These solvers182

face numerical accuracy, computational complexity and other numerical issues. This investigation used183

the jMPC2, a MATLAB based toolbox for auto-code generation for MPCs.184

2. Combining the virtualization and multi-tenancy capabilities of cloud, when emulators of the specific185

hardware are in the cloud, then MBD can be performed from the cloud and the solution can be deployed186

in process industries.187

3.4. Model Based Verification of IIoT188

To perform model-based verification, the formal requirement specifications generated by AML (XML/CAEX189

schema) are mapped to abstract behavioral models (networks of timed automata). The automata model of the190

system under verification describes how the system is required to behave. The model, built in a suitable machine191

interpretable formalism is fed to model checker which verifies the model w.r.t properties of the specification.192

There are multiple different formalisms used for building formal requirement models. Our choice is Uppaal193

2http://www.i2c2.aut.ac.nz/Resources/Software/jMPCToolbox.html
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Figure 4: MBD Workflow

timed automata (UTA) [27] because the formalism is designed to express the timed behavior of state transition194

systems and it has been previously been applied successfully to verify industrial automation systems in [28].195

In the second step, the model templates for the component models are defined. The component models are196

modelled using UTA templates. The timed-action pattern shown in Fig. 5 is used to model the requirement197

specification following [29]. These are called the action patterns and timing wrapper have been presented198

in [28] for industrial automation systems. The timing patterns are interlaced with the component models of the199

process industry, e.g., pump. The component models with their timing interfaces for a quadruple tank process200

is illustrated in Fig. 6. A detailed discussion on the models is presented in the results section.201

Figure 5: A Synchronous-Parallel Composition of Time Action Pattern cf[29]

Figure 6: Parameterized Models of Quadruple WaterTank Process

In the third step, the model checker is used to verify the formal model w.r.t to a requirement specifications202

(properties). Like the model, the properties are expressed in a formal well-defined logics such as subset of CTL203

(computation tree logic) as in [29]. The CTL offers several temporal operators to express the requirements as204

CTL formulae can be classified by properties they express as reachability, safety and liveness, detailed analysis205

of these properties are provided in [29].206

6



4. Cloud-Intrinsic Features for Enabling Flexibility in IIoT207

This section highlights the opportunities in enhancing the performance of industrial automation by combining208

cloud capabilities with IIoT. In particular, three cases are considered: (i) plug-and-play control, (ii) smart209

manufacturing, and (iii) on-the fly verification.210

4.1. Plug-and-Play Control211

Vast control designs in industries are monolithic, i.e., entire control system needs to be changed, when a212

sub-system or hardware modifications are performed. As flexibility is emerging as a key requirement, control213

objectives of the plant change with time or even within production processes. In such scenarios, it is desirable214

to change control laws without diminishing existing controllers. The IIoT provides a way to flexibly change215

control algorithms using cloud services. The workflow for performing plug-and-play control is shown in Fig. 7.216

To guarantee security of the applications, the file transfers for the plug-and-play control happens using secure217

FTP, while for less important actions using FTP. In these scenarios, the user informs the cloud through a web

 

Figure 7: MBD Based Plug-and-Play Control for IIoT

218

interface about the changes. This is transmitted using HTTP interface of the IIoT gateway to the cloud. The219

cloud’s HTTP interface receives this request. There are three components in the request, process, controller and220

hardware specification. The process model informs which of the process loop requires an upgrade, the controller221

instance/requirements, and the target hardware. The cloud then instantiate the virtual environment to obtain222

the process model, requirements for the specific controller, and controller design in PIM. It generates the PSM223

based on the controller specified by the user and ports it into the emulator and validates the design. Once the224

validation tests are successful, the control code is transmitted via IIoT gateway’s FTP interface to the COTS225

embedded controller of the controlled process. Now, the control code is deployed on the hardware.226

4.2. Smart Manufacturing using Cloud’s Auxiliary Services227

Computing power of IoT devices restricts their applications to perform computationally intensive task and228

is a major hindrance in the deployment of IIoT. Typically in smart manufacturing, data-mining models are229

used for creating knowledge from raw-data, both intrinsic and extrinsic to process industries. For example,230

forecasts on energy prices can be obtained using the data mining model and then integrated with optimization231

routines to perform smart manufacturing. Such data-mining models requires large memory for storing data and232

execution. They can also be available as third party applications as APIs. Exploiting the cloud features, the233

data-mining algorithms can be implemented in the cloud and knowledge aggregated can be transferred to the234

process controller using IIoT gateway using the MQTT and AMQP interfaces. Such aggregated knowledge can235

be embedded in the MPC controller for making knowledge based and optimization driven decisions.236

4.3. On-the Fly Verification in the cloud237

When hardware like sensor or actuators are updated, generally the control loop’s timing performance is238

changed and the controller implementation needs to be modified as sampling and quantization levels have239

changed. If the devices match, such a scenario may not arise. But, the problem is faced with most legacy240

automation systems. When a sensor or actuator different from the one used is changed, the performance of241

the IIoT has to be verified. In our IIoT framework, the model templates (behaviour models) of the different242

components and their timing interfaces are available in the cloud’s model repository. In case, a particular243

specification is unavailable for a model template, it is obtained from the field using a web application or FTP.244

These model templates are then composed and the MBV workflow is implemented from bottom to check whether245

the timing or safety requirements are met. This allows dynamic configuration of components in IIoT.246
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5. Results247

5.1. Case Study: Quadruple Tank Process248

To illustrate the MBE approach for cloud-based IIoT, this investigation uses the quadruple tank process249

(QTP), a benchmark control problem in process control. The schematic of the QTP and its prototype used250

for deployment of IIoT is shown in Fig. 8. The QTP consists of four uniform sized cylindrical tanks with251

cross-sectional area A and outlet cross-sectional area a. In addition, there are two identical pumps namely252

Pump 1 and Pump 2. Four valves namely, HV 1, HV 2, HV 3 and HV 4 are provided to regulate the inlet253

liquid flow to the tanks. The objective of the low-level control is to maintain the liquid level in Tank 1 (h1) and254

Tank 2 (h2) at pre-defined value called the reference by varying the flow rate (f) of Pump 1 and Pump 2, by255

adjusting their supply voltage V1 and V2, respectively. The equations modelling the dynamics of QTP are given256

in Appendix B. To illustrate the use of the proposed approach, three use-cases are presented here: (i) Model-

 

Figure 8: Schematic and the Process Station of the Quadruple Tank Process

257

Based Design, (ii) plug-and-play control, and (iii) Model-Based Verification. The Raspberry PI 3 was chosen258

as the target hardware for our experiments.259

5.2. Use-case: 1 Model Based Deign260

The MBD approach was used to design four different MPCs M1 − M4 described in Appendix A. The261

MBD workflow shown in Fig. was used to generate the auto-code using jMPC toolbox for the target embedded262

platform, Raspberry PI 3 in our case. The requirements were generated from the multi-view model of the263

QTP generated as shown in Fig. 2. The requirements are: offset-free tracking, faster response time (rise time)264

and settling time for the levels in the tank, i.e., h1 and h2. With MBD, the four MPC models M1 −M4265

were studied. Our results showed that M1 met the design requirements and it was validated using MIL, HIL,266

and real-time deployment. The controller was deployed on the target hardware and it was used to control the267

process. The results of MIL, HIL and real-time deployment are shown in Fig. 9. While the MIL and HIL268

validated the results, small pulsations in the output are seen due to sensor noise from the environment that269

impacts the process performance. The other MPCsM2-M4 did not meet the requirements that were identified270

either during MIL, SIL or HIL. This results shows the ability of MBD approach to generate auto-code from271

requirements for even sophisticated controller such as MPC and to detect design issues early during the design272

phase, eliminating costly design upgrades later. It should be pointed here that using the emulator stack, the273

MBD approach can be performed in the cloud as well, thereby enabling cloud-based engineering of the solution.274

Figure 9: MIL, HIL and SIL Validation for M1
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Table 1: Execution time of auto-generated code and CVXGEN code for the MPC models for 25 iterations

MPC Auto code (sec) CVXGEN code (sec)
M1 24.8 198.77
M2 25 162.308
M3 24.9 113.24
M4 25 144.55

5.3. Use-case:2 Plug-and-Play Control275

The user sends information on the requirements, hardware controller, and the process to the cloud. The276

cloud’s virtualization and persistence services are used to generate the model templates for the process and277

controller as a PIM and the auto-code is emitted from the PSM for the target hardware. This is followed by SIL278

and the virtualization ability of the cloud is used to instantiate an emulator to perform the HIL. On successful279

validation of the requirements, the control code file is transferred using secure FTP interfaces of the cloud and280

IIoT gateway to the specific target platform. The plug-and-play deployment of the QTP is shown in Fig. 8 and281

the results obtained are shown in Fig. 10. One can verify that the plug-and-play control is performed and the282

requirements are met by the deployment. A slight pulsations are seen in the levels due to sensor’s inertia and283

noise.284

 

Figure 10: Plug-and-Play Control in IIoT

The computation time the plug-and-play control for the MPC models M1 − M4 is compared with the285

code generated by the auto-coder CVXGEN 3 for the target hardware within the process station (without286

file transfers). The computation times for 25 iterations of these codes are shown in Table 1. It can be seen287

that the auto-generated code for the target platform is lesser than CVXGEN code directly ported to the target288

hardware. This is due to run-time compilation that happens with the Python code as against compiled execution289

of the auto-generated code. This results demonstrates the plug-and-play capabilities introduced due to cloud’s290

capabilities.291

5.4. Use-case:3 Model Based Verification292

The UTA model for the quadruple water-tank process (QTP) is composed of automata of water tanks,293

sensors, pumps and controller are shown in Fig. 6. The model-templates using action model patterns and294

composition operators, that are used to construct the formal model of timing variations, and timing-wrapper is295

used in case of periodic operations. The composed model of the QTP with its component and timing interfaces296

is shown in Fig. 11297

5.4.1. Verification of Requirement Specifications298

This investigation verifies QTP performance in two modes: minimum and non-minimum phase. In minimum299

phase mode, the level of Tank 1 depends on the flow from Pump1 and that of Tank 2 is influenced by Pump2300

and this is a stable operation mode. While in non-minimum phase, the level of Tank 1 depends on the flow301

from Pump2 and that of Tank 2 depends on Pump1 leading to an unstable mode. To facilitate verification, the302

requirements specifications is mapped to the formal specifications of the QTP (for notations please refer the303

Nomenclature section).304

The level of the tank w Lev and the additional parameter TOver are used to denote overflowing of the tank305

w Lev >= TOver, in such situations the pumps are slowed down. Including these new parameters, the UTA306

model is redefined for verifying the following properties:307

3https://cvxgen.com/
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Figure 11: Simulation and Generated Traces for above properties

• (a) Deadlock Property, we prove at first that there is not blocking states in the system. It is proved by308

running the model checking query309

A[] not deadlock310

• Verifying Minimum phase model of the QTP.311

Property 1: The reachability properties need to be verified for showing that the reaction time requirements312

are met. First we show that the both pumps supply sufficient water flow to tanks i.e.,313

A <> Tank 13.w Lev == TV ol Max && G Clock <= Ub314

The query proves that the water tanks filling time from level 0 to w Lev should not be exceed time bound315

Ub.316

Property 2: The property expresses that whenever the water level in particular tank reaches to TOver317

level, sensor measure the level and pass the signal to the controller, which issues the control signal cStop318

to the particular pump.319

E <> Tank 24.w Lev >= TOver imply (Tank 24.Overflow && p run[2] == 0 && pCl <= Ub1)320

• Verification of non-minimum phase model of operation Property 1: Similarly as above, we prove that321

the controller issue the control signal to Pump2 to maintain water level in Tank13 as the requirement of322

Non-Minimum Phase Mode of Operation.323

E <> Tank 13.w Lev >= TOver imply (Controller.SpeedUP && Pump(2).Off)324

The query proves that the upon receiving signal from sensor[1] at Tank13 (overflowing) the control issue325

a signal to Pump2 to Stop or speedDown the water supply in Tank3.326

The model checker generates the witness or counterexample depending upon if property is satisfied by the327

model. The automatic generation of witness and counterexample is considered as the key advantage of model328

checking which provides a useful source of diagnostic information and a basis for automated test generation.329

The Fig. 11 represents the simulation layout and generated traces for particular property. By using the model330

templates in the cloud, the MBV can be done on-the fly as illustrated in the example.331

Comments: During the deployment of the MPCs in IoT devices, there were few issues that surfaced. First, the332

speed of the control algorithm depended on the target code language. For example, a C-code performed better333

than a run-time compiler language such as Python. Second, the latencies in the sensors and computations were334

not significant with on-board communications, but were significant in IP based communication. However, they335

were not at a level to destabilize the operations for the process application chosen. Third, the IoT controllers336

and sensors the effect of timing imperfections and noise created pulsations in the output. Fourth, there were337

some MPC implementations that could not be validated in the HIL, but they passed the other validation tests.338

Fifth, the real-time performance of the target platform is greatly influenced by the amount of TCP based339

communication used. Sixth, the cloud based communications and field level TCP communications generate340

only the same amount of latencies, this is partially due to the high computing power of the server. Finally,341

the cloud services communicating through the TCP based protocols have the same computation burden as any342

TCP device.343
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6. Conclusions344

This investigation presented an IIoT architecture, a model-based engineering approach (MBE), and work-345

flows for implementing cloud-based IIoT. The IIoT architecture combined the open connectivity with cloud-346

intrinsic features. To perform model based engineering, a multi-view model of the industrial automation captur-347

ing various aspects was proposed. A meta-model of the automation system integrating these different views was348

generated using AutomationML. This meta-model provided the basis for performing Model Based Engineering.349

Further, it generated the requirements for the design and verification. The Model Based Design (MBD) ap-350

proach was used to design MPC, a sophisticated controller that repeatedly solves an optimization routine, for351

the target platform. The MBD approach generated the auto-code for the MPC and also validated the design352

through MIL, SIL and HIL during its workflow. The behaviour models from the requirements were used to353

perform model based verification. The Uppaal Timed Automata (UTA) models with action patterns of timing354

behaviour were composed to verify the timing performance to guarantee timing. Consequently, reducing the355

engineering efforts of cloud-based IIoT significantly. Insights into performing MBD and MBV from cloud was356

also provided. Next, the additional benefits provided by cloud-based IIoT was discussed with features such as357

plug-and-play control, smart manufacturing, and on-the-fly verification. The proposed IIoT architecture, MBE358

approach, and workflow were demonstrated on a QTP, a benchmark problem in process control. Our results359

showed the benefits of the combining cloud and IoT, and MBE as an approach for realizing it. Studying deploy-360

ment of cloud-based IIoT for providing enterprise wide connectivity and performing plant wide optimization361

are future course of this investigation.362

Appendix 1363

MPC Optimization Models364

In the MBD workflow, the objective function and constraints of the MPC denote the requirements of the365

control algorithm. The investigation considers four different MPC models, they are:366

M1 : minimize J
U

= (Y − Yr)TQ(Y − Yr) + ∆UTR∆U

Subject to: C
M2 : minimize J

U
= (Y − Yr)TQ(Y − Yr) +

(U − ud)TR(U − ud)

Subject to: C
M3 : minimize J

U
= (Y − Yr)TQ(Y − Yr) + UTRU

Subject to: C
M4 : minimize J

U
= (Y − Yr)TQ(Y − Yr) + ∆UTR∆U

Subject to: C
(1)

where the constraints C is given by367

x(k + 1) = Ax(k) +Bu(k) + d̂(k), ∀k = 1, ..Np

y(k) = Cx(k) ∀k = 1, ..Np

umin ≤ u(k) ≤ umax ∀k = 1, ..Np

∆umin ≤ ∆u(k) ≤ ∆umax ∀k = 1, ..Np

ymin ≤ y(k) ≤ ymax ∀k = 1, ..Np

These constraints model the physical and operating constraints of the MPC. They capture the system dynamics,368

constraints on the control input, change in control input and output, respectively.369

Quadruple Tank Process Dynamics370

The dynamics of the quadruple process is given by371

ḣ1(t) =
1

A
(a
√

2gh3 + γ1f1 − a
√

2gh1)

ḣ2(t) =
1

A
(a
√

2gh4 + γ2f2 − a
√

2gh2)

11



ḣ3(t) =
1

A
((1− γ2)f2 − a

√
2gh3)

ḣ4(t) =
1

A
((1− γ1)f2 − a

√
2gh4) (2)
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Highlights 

 Presents a Model‐Based Engineering Approach for Industrial 

Internet of Things in Process Industries. 

 Shows that combining the Internet of Things, Cloud‐Services, 

and MBE desirable control features such as plug‐and‐play 

control, on‐the‐fly verification can be achieved. 

 An IIoT architecture for process industry is proposed. 
 Workflow for model‐based design. 

 Demonstrates the MBE approach in a process industry. 


