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a b s t r a c t

In Petroleum Cyber–Physical Social workflows, monetary profit optimization is essential. In this work, a
production optimization approach for the Petroleum Cyber–Physical System is proposed which spans the
field production to the petroleum social market. Dynamic Programming technique, Linear Programming
technique and Stochastic Programming technique are first utilized to improve the monetary profit for a
single petroleum company. A market-driven petroleum social workflow aware production optimization
technique is then proposed to facilitate profit optimization among multiple petroleum companies. The
case study result shows that the monetary income can be increased up to 311.67% in an one year time
span.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Petroleum industry has embraced the emerging Cyber–Physical
System (CPS) technologies recently [1,2] . Under the petroleumCPS
framework, dynamic exploration of production data and static geo-
logical data are used to analyze andmanage petroleum production
activities. Several CPS related Petroleum researchworks have been
proposed. For example, the work [1] analyzes hidden interwell
connectivity on the petroleum field and the work [2] analyzes the
potential cyberattack in the petroleum CPS. In the petroleum CPS,
real-data of petroleum activities can be obtained by the physical
part and by utilizing the cyber part of the system, the production on
petroleum field can be managed. The management which impacts
the petroleum activities in the next round and subsequently the
loop of the petroleum CPS is formed.

Petroleum CPSs can be built for various purposes, amongwhich
optimization for petroleum production is regarded as a critical
objective in practice. There are previous works considering the
problem of production optimization [3,4]. However, they are all
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focused on the single petroleum field, and they are based on the
real-timeoil price. But the oil price is determinedby theproduction
quantity in the market which is contributed by all petroleum
companies.Whena largenumber of petroleumcompanies increase
the production quantity during the time they believe the oil price
is relatively high, the real oil price can be decreased since there are
excessive production increases. This over suppliance for petroleum
over the market can cause a long term continuing decrease of oil
price. If all the petroleum companies only working alone with-
out taking other companies into account, the constantly ‘‘unwise’’
strategy can make the whole petroleum suffered downturn. Thus,
the production optimization needs to consider the interactions
among multiple petroleum companies at the petroleum society
level. In the modern petroleum CPS, the petroleum company de-
ploys the daily production optimization and market level suppli-
ance strategy to achieve the maximum profit. For each petroleum
company, it periodically monitors the petroleum production re-
lated data and optimizes the production procedures accordingly
at field level. At the market level, the petroleum company can
dynamically adjust the selling strategy to satisfy the current mar-
ket condition by comprehensively considering the production and
the petroleum price. In [5], multiple companies are considered
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Fig. 1. Hierarchical petroleum production optimization.

using non-cooperative Stackelberg game. In [6] a two-piece von
Neumann–Morgenstern utility function based approach is pro-
posed for the Organization of the Petroleum Exporting Countries
(OPEC) behavior. In [7], the development of cooperative strategies
between countries generating Liquefied Natural Gas (LNG) and
members of the Gas Exporting Countries Forum (GECF) are exam-
ined by Massol. In [8], a decision-making framework is proposed
for the conceptual design and project evaluations in the oil and
gas industry. The above works are all focused on the petroleum
society level and rarely related to the petroleum field level. The
production optimization considering both the petroleum field and
the petroleum society is highly necessary. In fact, as shown in
Fig. 1 optimization on both the petroleum field and the petroleum
society are considered in practice. To tackle this practical scenario,
this work develops a hierarchical optimization approach for the
petroleum production.

In this paper, a new petroleum production optimization is
proposed at the petroleum society level. Utilizing the dynamic pro-
gramming technique, a single petroleum company based produc-
tion optimization is first proposed. A game theoretical method is
then developed for multiple petroleum companies at the
petroleum society level. Contributions of this work are as follows.

• A production optimization approach for the Petroleum
Cyber–Physical System is proposed which spans the field
production to the petroleum social market.

• Dynamic Programming technique, Linear Programming tech-
nique and Stochastic Programming technique are first uti-
lized to improve the monetary profit for a single petroleum
company. Amarket-driven petroleum social workflow aware
production optimization technique is then proposed to facil-
itate profit optimization among multiple petroleum compa-
nies.

• The case study result shows that themonetary income can be
increased up to 311.67% in an one year time span.

The rest of the paper is organized as follows. Section 2 in-
troduces preliminaries of petroleum optimization for both the
single company scenario and the petroleum society level. Sec-
tion 3 proposes the petroleum profit optimization approach for
single petroleum company only. Section 4 proposes the profit

optimization method for the petroleum society. Section 5 presents
case study results with analysis. A summary of work is given in
Section 6.

2. Preliminaries

In this work, the proposed optimization approaches need to
iteratively simulate the reservoir under different tentative produc-
tion scheduling. Thus reservoir modeling is necessary in this work,
preliminaries of them are introduced as follows.

Black-oil model which is known as the isothermal oil/water/gas
flow model is utilized in this work to simulate the reservoir activ-
ities. Three components (oil, water and gas) are modeled together
and there are no transfers between the water component and
the other two hydrocarbon components. The gas component is
the part of the petroleum that turns into gas after differential
vaporization and the oil component is the part that remains liquid.
Like many other numerical simulations, the targeted reservoir is
grided into a set of grid blocks. Each of grid blocks is surrounded
by other six blocks.Modeling equations are formulated at each grid
block. These equations include principles ofmass conservation and
Darcy’s law. Rather than that, equations of state and constitutive
are also needed [9]. Follow these principles, the total liquid volume
flow heading into the grid block, shown in Fig. 2 which is for one
dimensional flow, have to be equal to the volume of outgoing
flow. The black-oil model consists of the oil component, the gas
component and the water component. Each of these components
can formulate the above principles. Note the gas component in-
cludes the solution-gas component which can dissolve in oil and
the remaining free-gas component. Detailedmodeling formulation
can be presented as follows:

For the oil component, there is∑
l∈υn

T n+1
ol,n

[(
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on
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Fig. 2. Grid block in 3D flow.

For the free-gas component, there is∑
l∈υn
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[(
pn+1
gl − pn+1

gn

)
− ϑn

gl,n (El − En)
]

+

∑
l∈εn

rn+1
fgcl,n

+ rn+1
fgcn

=
Vbn

θc∆t

[(
φSg
Vg

)n+1

n
−

(
φSg
Vg

)n

n

]
.

(2)

For the solution-gas component, there is∑
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For the water component, there is∑
l∈υn
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υn is the set of existing grid blocks (that are neighbors to grid
block n and εn is all reservoir boundaries which share with grid
block n. El and En represent the elevation of grid block l and n. θc is
the volume conversion factor and ϑo is the gravity of oil-phase at
reservoir conditions. rfgc , roc and rwc are production rate of free-gas,
oil-phase and water-phase component under standard conditions.
∆t is the time step in the simulation. p is the pressure, S is the
saturation of each phase and Cs is the solution GOR. Vo, Vw , and
Vg are the oil, water and gas formation volume factor respectively.
Vbn represents bulk volume of block n.

The flow of oil, water and gas is coexist, such that:

Sg = Sfg + Ssg , Sg = 1 − So − Sw, (5)

where Sg , So and Sw stand for the saturation of oil phase, water
phase and gas phase and Sfg and Ssg represent the saturation of
free-gas phase and solution-gas phase respectively.

There are also capillary pressure constraints in the simulation,
which is,

pw = po − Powc (Sw) , (6)

pg = po + Pgoc
(
Sg
)
, (7)

where po, pg , pw represent the pressure of oil phrase, gas phrase
andwater phrase respectively. Pgoc is gas/oil capillary pressure and
Powc is oil/water capillary pressure.

Bring pg − Sg formulation into the gas/water flow model, and
there are,

Sw = 1 − Sg (8)

pw = pg − Pgwc
(
Sg
)
. (9)

where Pgwc is the gas/water capillary pressure.
By solving the above equation arrays, the flow activities of the

reservoir can be calculated and thus the reservoir can be simulated.
For more details of the reservoir simulation model, please refer to
the literature [10].

3. Petroleum production optimization for single company sce-
nario

In this work, the ultimate target is to optimize the monetary
benefits at the petroleum society level. The optimization method
can be treated as a two-step approach. The first step is tomaximize
the monetary profit at one company site, and the second step is to
maximize the monetary income for each company at petroleum
social level. Since, every petroleum company operates production
procedures on the petroleum field. Thus, production optimization
on the petroleum field is focused for single company scenario.

In this section, the quantity of the production on the petroleum
field is first proposed to provide more opportunities for the opti-
mization at market level. At the market level, a price model is in-
troduced to computemonetary profits for the petroleum company.
Since, there are always variations in reality for any price prediction
model. A Linear Programming (LP) technique based deterministic
optimizationmethod is proposed tomaximize the profit and, based
on it, a stochastic programming optimization method is proposed
to tackle the model variation.

3.1. On field production quantity optimization

For a G&O field, there are a series of adjustable production
activities in the production. For example, as shown in Fig. 3, the
water injection at the injection well can help to push oil out of
the reservoir through production wells. This injection activity can
be processed by the petroleum control unit which are separators
and chokes. Note that, the injection is one of production activities
which also includes tuning the limitations of well yield orwell bot-
tom pressure, tuning the pumping strategy on productionwell and
etc. In this paper, the strategy of injection well is mainly taken into
consideration. Scheduling of injection well is constrained with the
earliest injection time, the latest injection time and the limitation
of injection volume per unit time. For example, an injection well
cannot inject more than 1 ton water in 15 days and can scheduled
anytime from between 1994 and 2000. In this example, the earliest
injection time is in January, 1st, 1994, the latest injection time is
in December, 31st, 2000 and the limitation of injection volume in
every 15 days is 1 ton.

In this work, the scheduling time horizon is divided into T
discrete intervals. Tomake the production scheduling over a series
of different injection strategies, the reservoir modeling technique
is utilized to simulate the well producing process and compute
the total oil yield. Let the array of Φm = {a1m, a2m, a3m, . . . , anm}

represents the mth partial solution, anm represents the scheduling
action in the nth time interval and Γ () represents the function
of reservoir model. Daily average production of crude oil in the
current time interval can be calculated by the reservoir model. In
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Fig. 3. On field management for petroleum production.

this way, the problem formulation for one petroleum company can
be described as follows: (10).
max : {P1, P2, P3, . . .}

S.T . Pm =

∑
j

Tsum
T

Γ (Φm)j, for j = 1 to T

Γ (Φm)j = f (ajm), for j = 1 to T

Φm = {a1m, a2m, a3m, . . . , aTm}

(10)

where Tsum is the total injectable time. Pm is the oil quantity under
the partial solution Φ . Through Γ (Φ). Daily production can be
computed by the function f (ajm).

To tackle the above problem, a dynamic programming tech-
nique based algorithmhas been proposed as shown in Algorithm1.
Inputs of the algorithm are the earliest injectable time ts, the latest
injectable time te, the threshold of stop criteria of ∆R, injection
constraintsVm, the total number of injectionwellsNw and reservoir
model Γ (a). Outputs of the proposed algorithm are the simulated
maximum production amount Pom and its corresponding produc-
tion activities set Φ . In the proposed algorithm, the variables of Ω ,
P , Φ , Rm, Tm and n are initialized. Where the set Ω is used to store
the best production activities, P is used to store the production
result of the partial production activities, the array Φ is used to
store the current production activities, Rm and Tm represent the
current best improving ratio compares to no water inject solution
and its injection time interval respectively.

First, under the condition of no water being injected, the pro-
duction quantity can be calculated by the reservoirmodel in step 2.
From step 3 to step 22, the algorithm keeps adding injection water
times until the improving value of increasing ratio Rm−Rm−1 being
less than the stop criteria threshold ∆R. From step 4 to step 19,
the algorithmwould examine the solution profit of injecting water
in different time intervals. The algorithm evaluates the solution
profit of injecting water in different wells from step 5 to step 17.
Before to start ‘‘injecting water’’, whether the time interval t has
already been a ‘‘injection day’’ need to be checked from step 6
to step 8. If it is not a ‘‘injection day’’, in step 9, a new partial
solution atm is to be added into the set Φ[n] which stores the
current scheduling solution. Calculate the current production P
after adding the solution atm by the reservoirmodelΓ (a) in step 10.
In step 11, the current improving ratio Rn is computed. From step
12 to step 15, the inferior solution can be pruned by comparing to
the best solution from current state, and the scheduling solution
with biggest production of current loop is selected to the set Ω .
Thus, entire scheduling solutions are stored in the set Φ at the end
of this algorithm.

Algorithm 1 The dynamic programming based production opti-
mization algorithm for a single company.
Input: ts, te, ∆R, Vm, Γ (a), Nw .
1: initiate Ω , P , array Φ , Rm → 0, Tm → 0;
2: P0 →

∑T
j=0

Tsum
T Γ (aj0);

3: while Rm−1 − Rm−2 < ∆R do
4: for each t ∈ [ts, te] do
5: for each w ∈ [1,Nw] do
6: if t ∈ Ω then
7: continue;
8: end if
9: Φ[n] → atm;

10: P → Γ (Φ[n]);
11: Rn →

P−P0
P0

;
12: if Rm < Rn then
13: Rm → P;
14: Tm → t;
15: end if
16: n → n + 1
17: end for
18: [Tm, φ] add Ω

19: end for
20: Φ → 0, Rm → 0, Tm → 0, n → 0,m → m + 1;
21: Φ add Ω

22: end while
Output: Pom and Φ .

3.2. Production data based pricing modeling

The quantity of oil sale is an essential and adjustable factor that
can impact the crude oil price. Organization of Petroleum Export-
ing Countries (OPEC), established in 1960s, gradually undertake
the task of adjusting the global oil prices after 1970s. According to
data statistics of OPEC, only in 1974, 1980 and 1999, the increasing
of oil quantity leads to a decreasing of oil price from 1971 to
1999 [11]. By means of multiple regression analysis of the price
and quantity data, the functional relationship among price and
quantity is established as shown in Eq. (11).

St = ζ +

∑
i

αiPi

1.7 < St < 35.52, ∀i ∈ [1, t]

α0 < α1 < · · · < αt

(11)
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where Pt and St represent the oil quantity and price at time t
respectively. αi is the weight value of the oil quantity at time
i and weights are increasing progressively while approaching to
the time t . ζ is a constant which is utilized to balance the effect
of other inconsiderable factors to the oil price. According to the
historical data between year 1971 and 1999, the oil price St is
set to be less than the maximum oil price $35.52 per barrel and
greater than minimum oil price $1.7 per barrel in that period.
To build a regression model for the oil price, the least square
approach are utilized in thisworkwith parameters of ζ andα. Note
that, β, b1, b2, . . . , bt are assumed to be least-square estimation of
ζ , α1, α2, . . . , αt and Eq. (11) can be reformed as:

St = β +

∑
i

biPi. (12)

For each group of P , a certain value of St is computed. If St is
close to the real price, the regression model has the better ability
to simulate the real problem. Assume that Ŝt represents the real oil
price at time t . The sum of bias squares is

Q (β, b1, b2, . . . , bt ) =

∑
j

(
Stj − Ŝtj

)2
=

∑
j

(
Stj − β −

(∑
i

biPij

))2

. (13)

For the limit theory in differential calculus, unknown parame-
ters ζ , α1, α2, . . . , αt are the solution of following equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂Q
∂β

= −2
∑

j

(
Stj − Ŝtj

)2
= 0

∂Q
∂bk

= −2
∑

j

(
Stj − Ŝtj

)2
Pij = 0.(j = 1, 2, . . . , T )

(14)

According to Eq. (11), calculated by theOPEC statistics,αt is pos-
itive, for α1, α2, α3, . . . , αt−1, positive correlations exist between
oil price and current production, and negative correlations with
previous oil productions. The high oil production leads to the price
deflation in the following time, but the high oil price can encourage
oil companies to increasing the oil production.

Note that, this price model has variations in practice. There
are other impact factors, such as politics, market demand, social
development etc., which can effect oil price as well. Therefore, in
this paper, this price model is first used to solve a deterministic
optimization problem. After that, a stochastic programming tech-
nique is used to tackle the variations of the price model.

3.3. Deterministic programming based optimization

Assuming that, there is no variation with the price model. To
maximize the monetary profit oil price Linear Programming (LP)
technique is utilized for a deterministic solution. Suppose that Ci
and ai represent the oil price and oil sale quantity at time interval
i, Cil and Cih are the lowest and highest current oil price while
considering the effect of other factors. The optimization target is
illustrated as Eq. (15).

maximize :

n∑
i

Ciai − CrRi

S.T . Cil ≤ Ci ≤ Cih

ail ≤ ai ≤ aih

aih = Pi + Ri−1

0 ≤ Ri ≤ Rh,

Ri = Ri−1 + Pi − ai

(15)

where ail and aih are minimum and maximum sale amount at
time interval i. Cr is the oil storage cost and Ri is the reserved
oil volume at time interval i. Rh is the maximum amount of oil
reserved. Pi represents the oil quantity at time interval i. Maximum
sale amount ail at time interval i is the oil quantity at time interval
i and reserved oil volume at time interval i − 1. The reserved oil
volume at time interval i can be computed by the current sales
volume, current oil production and last reserved oil volume. For
each time interval, the crude oil can be either sold or store for the
future sale.

3.4. Stochastic programming based optimization

In practice, the crude oil price is not only correlated to the total
quantity of production, it also has variations which can be caused
by other issues, such as political situations. To tackle this variation
issue, this paper proposes a stochastic programming technique
based approach for the monetary profit optimization.

Suppose that, crude oil price is various in a range of [Cl, Ch],
then how to determine what is the value of Ci within the range.
Stochastic programming technique with Monte Carlo simulation
is utilized. A yield value τ is introduced to determine the value of
Ci. Motivated by [12], this paper defines that:

Ci = τiCil + (1 − τi)Cih, τ ∈ [0, 1] (16)

where τi is the yield value at the time interval i.
The algorithmic flow for scheduling optimization is shown in

Fig. 4. First of all, the oil price range at every time interval, maxi-
mum amount of reserved oil, reserve cost and minimum turnover
at one time interval require to be set in advance. Then, yield value τ ,
which is in the range of 0 to 1, can be divided into t times. For each
yield value τi, based on the restrictions (15), the best marketing
strategy can be computed utilizing linear programming algorithm.
By means of Monte Carlo method, a large number of oil price is
generated in the price range that are set at first. Compute total
profits for generated partial oil prices under current bestmarketing
strategy. To eliminate the influence of extreme value, the best
price situation and worst price situation are pruned. The average
total profit is calculated by rest of situation. Compare the average
profit among different marketing strategy in different yield value
τi. Select marketing strategy with maximum average value as a
round result of the stochastic programming based optimization
process.

4. Market-driven petroleum society aware production opti-
mization

Assuming that every single company utilizing the dynamic
programming optimization algorithm as illustrated in Section 3,
companies are about to sell as much oil as they can to make
maximum profit at the peak price. As a result, the crude oil price
can rapidly decrease when the daily sold volume is significant.
Thus, oil companies are required to collaborate and compete to
make maximum profit over time.

Assuming that every single company utilizes the dynamic pro-
gramming optimization algorithm as illustrated in Section 3, com-
panies are supposed to sell crude oil as much as they can at the
peak price. But according to the real pricing model, a negative
correlation exists between oil price and oil quantity. Oil price can
be reducedwhen the daily sold quantity is increased. At petroleum
society level, companies are required to collaborate and compete
to make maximum profit over time. In this work a multi-company
driven price variation aware approach is proposed for production
optimization at the petroleum society level.
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Fig. 4. The process of stochastic programming based optimization.

In this approach, every company can select onemarketing strat-
egy from all possible solutions to maximize its profit. When no
player can increase its profit without changing the operation of
others, a convergence is met. It is a solution concept of a non-
cooperative game involving two or more players in which each
player is assumed to know the equilibrium strategies of the other
players, and no player has anything to gain by changing only his or
her own strategy [13].

For the game theoretic algorithm, after each company optimize
the production to gain the maximum oil quantity at one time
interval, they drawn up their marketing strategies at current time
interval without considering other oil companies. Then, at the
next time interval, they re-schedule second time interval strat-
egy according to the last time interval the oil production quanti-
ties of other companies. For example, at the time interval t , the
company i obtain history sale quantities {Q11,Q12,Q13, . . . ,Q1n},
{Q21,Q22, . . . ,Q2n}, ..., {Qt1,Qt2, . . . ,Qtn} and total quantities of
each time interval is

∑n
i Q1i,

∑n
i Q2i, ...,

∑n
i Qni. Given these total

sale quantities of all companies, oil price in time interval t can
be estimated by company i and company i will re-schedule the
sale quantity. Other companies similar to company i. After all the
time interval are scheduled, calculate total profit of each company.
Repeat these process until the equilibrium is achieved. In other
words, this process terminates when no company can increase its
total profit of sale oil any more by changing sale solution. The
two companies participating game theoretic algorithmic flow is
as Fig. 5, where Qij is the sale quantity Q of company j at time
interval i, t is the number of time interval and n is the number of
company.

Fig. 5. The process of multi-company interacted production optimization.

5. Case study

The reservoir modeling for production simulation is based on
the PUNQ − S3 case which has been taken from a reservoir engi-
neering study on a real field performed Elf Exploration Production
and the field contains 6 wells located around the Gas Oil con-
tact [14]. Porosity and permeability fields are generated utilizing
a Gaussian Random Field based geostatistical model. Pressure,
volume and temperature (PVT), aquifer data from the real situation
andwith power law relative permeability functions are required to
complete this model. In addition, Gaussian noise, which is able to
correlate in time to mimic the more systematic character of errors
for production data, is added into the model.

For the single company production optimization experiment,
we optimize the production process through inject the water into
the well. Due to the strong aquifer of field, more than one injection
well will cut down production quantities. We choose one well
PRO−15 as a injectionwell and five well PRO−1, PRO−4, PRO−5,
PRO − 11, PRO − 12 as production wells. The total time is from
January 1st 1967 to July 31st 1983. We assume that inject water at
the 1st day and 10th day of month, which means we separate the
total time into 398 time intervals. In each intervals, whether inject
water are required to decided. If need to inject, we injectmaximum
volume of water that can be inject into the well.

For the production optimization of multiple companies, we
firstly take two companies into consideration. And for the price
model, because merely no effect to current oil price for selling oil
quantities before two times, we assumed that in equation 11, if i
is less than t − 2, αi equals to 0. After the regression analysis, the
equation 11 can be transformed into follows.

St = 1099.4 − 4.7747Pt − 1.5195Pt−1 − 6.8168Pt−2, (17)
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Table 1
The optimization result of single company.
Time 0 1 2 3 4 5
Date 0 1967.4.1. 1967.4.10. 1967.6.1. 1967.5.10. 1967.8.10.
Q (m3) 5 383918 5421630 5425936 5426470 5426980 5427459
Rate 0.0000% 0.7004% 0.7804% 0.7904% 0.7998% 0.8087%

Time 6 7 8 9 10 11
Date 1967.7.10. 1983.7.10. 1967.9.10. 1967.10.10. 1967.6.10. 1973.10.1.
Q (m3) 5 427875 5428260 5428610 5428922 5429210 5429732
Rate 0.8164% 0.8236% 0.8301% 0.8359% 0.8429% 0.8509%

Time 12 13 14 15 16 17
Date 1968.10.10. 1967.7.1. 1967.5.1. 1973.1.10. 1967.8.1. 1968.2.1.
Q (m3) 5 429980 5430222 5430474 5430718 5430950 5431197
Rate 0.8554% 0.8600% 0.8647% 0.8693% 0.8736% 0.8782%

Time 18 19 20 21 22 23
Date 1970.11.10. 1968.7.10. 1968.6.10. 1971.11.10. 1968.12.10. 1968.11.10.
Q (m3) 5 431428 5431652 5431872 5432088 5432302 5432508
Rate 0.8824% 0.8866% 0.8907% 0.8987% 0.8987% 0.9025%

where parameters are calculated utilizing the OPEC statistic from
1971 to 1999. In the experiment, a time interval is amonth and the
oil price range is from $5 per barrel to $120 per barrel. The reserve
cost per time interval is $0.3 per barrel. The maximum amount of
reserved oil is 400 barrels. The minimum and maximum turnover
at one time interval is 25 and 550 barrels.

Results of optimizing production quantity for single company
are shown in Table 1. Time represents the injection time. Date
represents one injection day that can maximize the oil production
based on the last time solution. Q represents the total oil quantity.
Rate represents the total improving rate comparing to the no in-
jection solution. Note that for each time t , the scheduling solution
is adding all the current best solution together {date1, date2, . . . ,
daten}. For example, two times injections, apart from injecting
water at April 10th 1967, also need to inject at April 1st 1967.
According to Table 1, adding water first 12 times brought a rapidly
increase to the total production and its increasing rate is 0.8164%.
Then, from 13rd to 23rd time, the total production increases slow-
ing and at 23rd time, the rate reaches 0.9025%.

In order to prove the effective of the proposed linear program-
ming based marketing strategy for single company in stochas-
tic programming based optimization, there are two comparison
strategies examined in the case study. The first strategy, named
conventional strategy, sells all petroleum production in each time
interval. The second strategy, named improved conventional strat-
egy, on the basis of the conventional strategy principle, considers
special affairs which could influence the oil demands. For example,
people tend to take vocation in Christmas which would enhance
the market oil demands and it is a wise choice to increase the
oil suppliance. Note that crude oil prices utilized in this part is
monthly oil prices in 2016 [15].

Results of monetary income for the company have been shown
in Fig. 6. Total profits of all the company utilizing the linear pro-
gramming based marketing strategy and conventional strategy
are steadily increasing in a year. In the first month, the profit of
linear programming based strategy is only 699.5 dollars while con-
ventional strategy and improved conventional strategy is 5139.4
dollars. The linear programming basedmarketing strategy reserves
the petroleum when the price is low and makes the best profit
when the price is high. After 12 months, the profit of linear pro-
gramming based strategy is up to 97536.4 dollars. For conventional
strategy and improved conventional strategy, the profit is about
88662 dollars and 89139 dollars less than linear programming
based strategy. The improvement of linear programming based
marketing strategy is 10.01% =

97536.4−88662
88662 × 100% and 9.42% =

97536.4−89139
89139 ∗100% comparing to the conventional strategy and the

improved conventional strategy.

Fig. 6. Accumulative profits of different marketing strategy for in a year.

Fig. 7. The result of different petroleum society level marketing strategy optimiza-
tion.

Petroleum society level results are illustrated in Fig. 7. ‘‘Un-
optimization’’ bars in the graph represent utilizing the linear pro-
gramming based marketing strategy to sell petroleum with multi-
ple companies in society. ‘‘Optimization’’ bars represent utilizing
the linear programming based marketing strategy iteratively to
compete other companies until all companies making the best
full-year profit. The figure shows that there is a rapid increase in
total profit with years. Comparing to the un-optimized method,
the total profit of the linear programming based game theory
marketing strategy is increasing more rapidly. In 12 months, the
total profit of optimization method can reach 45307.1 million dol-
lars while un-optimization profit only can reach 186514.6 dollars.
From the result we can conclude that the linear programming
based game theory marketing strategy increases about 311.67% =
186514.6−45307.1

45307.1 × 100% profit than un-optimized method in a year.

6. Conclusion

In this work a monetary profit optimization flow has been
proposed for Petroleum Cyber–Physical Systems. The proposed
method includes optimization for both single company scenario
andmultiple company scenario, inwhich optimization formultiple
company scenarios is based on the single company one. The pro-
posed method first optimizes the on field production quantity by
the dynamic programming technique. Based on it, the monetary
profit for a single company is optimized by using the Linear Pro-
gramming technique, and the price prediction variation is consid-
ered and solved by stochastic programming technique. After that,
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the optimization is built for the petroleum society level, and the
case study result shows that themonetary income can be increased
up to 311.67% in an one year time span.
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